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Abstract—Millimeter-wave (mmWave) with phase array sys-
tems are utilized to increase the data rate in wireless com-
munication systems. With the larger phase array, narrower
beams can be generated to compensate for the path loss and
boost the effective SNR. In order to perform beamforming,
however, one must find the Angle of Arrival (AoA). In this
paper, we consider the problem of initial beam alignment and CSI
acquisition for (sub-)mmWave communication over a single-path
channel with a single RF-chain. A three stage adaptive alignment
algorithm based on the posterior probability, called Adaptive
Phase Matching, is proposed. The algorithm maps the candidate
angles of arrivals onto a simple constellation on the complex
plane adaptively. The proposed scheme generalizes HiePM to
both account for practically feasible antenna patterns as well as
utilize the phase information. Furthermore, an upper bound of
the expected search time for any given alignment resolution and
error probability is derived.

Index Terms—millimeter wave communication, adaptive
search, posterior probability, random mapping, feedback channel

I. INTRODUCTION

In order to achieve higher data rates for communication
systems, millimeter-wave (mmWave) systems with large fre-
quency bandwidth are deployed. It is well known though that
mmWave systems have a large path loss nature. Massive an-
tenna array systems then are, in fact, needed to perform highly
directional communications by generating narrow beams to
compensate for the large path loss. However, before perform-
ing the beamforming technique, the transmitter and receiver
must find the AoA. Traditional non-adaptive channel/AoA
estimation algorithms such as MUSIC [1] and ESPRIT [2]
have high resolution performance. The beam alignment prob-
lem can also be solved with a random hashing code-book
[3]-[5]. In particualr, in [3], the random hashing beams are
combined with voting algorithms, while [4] solve the problem
with compressive sensing techniques. The random hashing
code book can also be combined with machine learning
techniques to find the AoA [5]. However, these algorithms
require sufficiently large raw SNR, making them practically
unsuitable for mmWave communication.

Drawing on the connection to the problem of search with
measurement-dependent noise [6], adaptive beam alignment
algorithms, such as SortPM [7] and HiePM [8], select the
next beamforming vector in a dynamic fashion according to
the posterior probability. These adaptive strategies are shown
to outperform the open-loop strategies particularly in low
SNR regimes. In particular, [8] provided a lower bound for
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this performance gain over open-loop strategies. This work
has since be generalized by follow up work have relaxed
practically relevant assumptions on the model mismatch, trans-
mitter/receive structure, etc. In [10], for instance, error control
sounding strategies are proposed. Other adaptive algorithms
are also proposed to maximize the data rate instead of finding
the precise AoA [11].

Prior adaptive strategies, however, all have relied on an
ideal rectangular beams or the approximate rectangular beams
[12] in order to distinguish the candidate angles with differ-
ent magnitude response. In reality, the received beamformed
signals are complex-valued vectors. In short, for a given
beam, the collection of the responses for different input angles
can be viewed as a constellation on the complex plane. We
are motivated by the use of phase information in many of
the open loop strategies, including antenna selection. In this
paper, we generalize SortPM [8] and investigate the potential
benefit of using both magnitude and phase information to
distinguish the candidate angles by designing some simple
constellations. Specifically, for each observation, the agent
designs a received beamforming vector that maps the candidate
angles onto a constellation on the complex plane. An adaptive
mapping algorithm, called Phase Matching, is proposed based
on posterior matching [9] and an upper bound for the expected
searching time is derived with the Extrinsic Jensen Shannon
(EJS) divergence [14] [15].

In this paper, our goal is to generalize the proposed adaptive
beamforming and alignment algorithms and to investigate
the potential benefit of using the extra phase information.
Therefore, we simply follow the setting of [7] and [8] where
the channel coefficient is assumed to be known. We note,
however, that prior works [10], [13] have proposed methods
to allow the use of adaptive schemes despite of unknown
channel gains. Thus, we believe utilizing similar techniques
to allow for uncertainty in the estimation of channel gains is
an important yet straight-forward extension best left for future
(and more detailed) work.

Notations: We use boldface letters to represent vectors. P(x)
denotes the probability mass function for random variable
X and FE[X] indicates the expectation of X. D(P||Q) =
> . P(x)log ggjg denotes the Kullback-Leibler (KL) diver-
gence between two distribution P and Q. We use 7+ (t) to
indicate the sorted version of the vector 7 (¢) in descending
order elements and Wj'(t) represent the ¢ — th largest element
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of 7(t). We denote the capacity of a Gaussian channel with
Q input symbols (a @) points constellation Xy on the complex
plane) and noise with standard deviation o as C(Xg,0).

II. PROBLEM FORMULATION

Consider a receiver with an antenna array with M antenna
elements and a single RF chain. Given a beamforming vector,
the received signal can be written as the weighted sum of
the signal and noise samples on each antenna element. The
structure of the receiver is shown in Fig. 1. Our goal is to
design the dynamic selection of the beamforming vector w
based on all the past observations to find the true AoA with
a minimum number of observations.

A. System Model

The normalized single-path channel model' with M antenna
elements at the receiver can be written as:

h = a(¢) D
where a(¢) denotes the M x 1 steering vector with impinge
angle ¢ for a half wavelength spacing antenna array:

a((b) = [17€—jﬂ5in¢’ 6_]'27I'Si1’1¢7 - e_j(M—l)ﬂSiII¢]T (2)

Here, the angle-of-arrival ¢ is assumed to be fixed during the
initial beam alignment process. Assuming w(t) is the M x 1
receiver beamforming vector, the received signal at time ¢ can
be written as:

y(t) = w (t)h + w" (t)n(t) 3)
= w'(t)a(p) + w" (t)n(t) )
=w'(t)a(¢) + v(t) )

where n(t) is the M x 1 AWGN vector with known covariance
matrix 021 and v(t) ~ CN(0, ||w(t)||?c?) is the noise term
after beamforming.

In order to calculate the posterior probability, we quantize
the angular space [—m/2,7/2] into M sections denoted as
[01, 09, ...,0x]. Also, we assume that the true AoA ¢ belongs
to one of the quantized angles:

d)E Q.= [91,92,...,0]u] (6)
Note that the resolution for the quantized angles is defined
as 0 = ﬁ Moreover, in order to get rid of the sin

function in (2), here we applied a non-linear quantization
for the angle space. Specifically, we let [01,6s,...,0p] =
arcsin(2(0,1,..., %, -4 +1, -2 +2 . —2 -1]/M), then
the steering vector for 6; can be written as:

a(b;) = [176—3‘2#(1‘—1)/M’ m’e—jQTr(i—l)(M—l)/M]T 7
fort=1,2,..., M.
With the above setting, we can stack all the steering vectors
together and define the steering matrix A(0) as:
A(0) :=[a(01),a(02),...a(0m)] = [DFT] 00y ()

With this non-uniform quantization, it is shown that the
steering matrix for all candidate angles is the M x M DFT
matrix.

IWe rely on an (implicit) assumption of a fixed complex channel gain.

B. Adaptive Alignment with Fixed Constellations

In this paper, we proposed a three stage adaptive searching
algorithm to find the AoA by mapping the candidate angles of
arrivals to target constellation in complex plane parameterized
by the number of points on the unit circle, K. More precisely,
given the design parameter K < M, we introduce three sim-
ple constellations that will be used to design the beamforming
vector w for our proposed three stages of operation.

1) Constellation 1:
ximital . — o) 2o, 23, ., 2K 9

] (10)

.o . ox2 (K —1)%27
=[1,%, eI R . ef K

2) Constellation 2:

X[Zé’i“l"i“ = [z1, 22, X3, ..., T, T0) (11)
=Ll R IR 0] (12)

3) Constellation 3:
gonfim . — (g1 x0) = [1, 0] (13)

Note that the subscript of X indicates the distinct points in
the constellation with their number K as a design parameter.

Our proposed algorithm at any given time selects a mapping
v : Q — X that maps the M candidate angles onto the
constellation points. More precisely, the algorithm selects a
constellation X € [A2l, zoom-in xsonim] and then maps
the M candidate angles onto the constellation points X.

Next, we show that any mapping can be realized by design-
ing the received beamforming vector w. Let d;(t) := v(6;) €
X denote the point that 6; will be mapped onto at time ¢. This
means the beamforming vector w(t) satisfies the following
linear equation:

w (t)a(h;) = d;(t). (14)

By combining all M linear equations for all candidate angles,
[01, 602, ...,0a7], we can rewrite (14):

dy(t) = [di(t), da(t), ... dar (t)] = w! (t) A(B).

In other words,

15)

w, (1) = - [DFT)d (1) (16)

Fig. 3 and Fig. 4 illustrate two instances of different
mappings where in each figure samples of the (noisy) outputs
for all M = 1024 candidate angle-of-arrivals are shown.
Both mappings map the candidate AoAs to the constellation
stf’ﬂn'i“. In Fig. 3 (on the left) the beamforming is given as

fori=1,...,64

H _ xmod(i)-‘rl
w t)a 91' = 8 17
casel( ) ( ) {xo for i = 65, ...,1024 a7

while in Fig. 4 the same mapping is applied to a random
permutation of candidate AoAs; i.e. d(t) used for each figure
is a column permutation of the other.
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Fig. 1. M antenna elements with 1
RF chain

Fig. 2. Gaussian channel

C. Gaussian Channel

Since we restrict the received beamforming vector w to be
the vectors with the form of (16), the observed signal model
(5), can be viewed as the output of a complex Gaussian chan-
nel with discrete input alphabet X' € [Xjaitial, yzoom-in  ygonfirm]
[16] and additive Gaussian noise. Accordingly, one can view
our (candidate angles), [01, 0, ..., Op7] as M message with M
message mapped into the (coded) input symbol w’ (t)a(;) €
X as shown in Fig. 2. Note that since we define three different
constellations, [Xjiial yzoom-in yconfim] “here we have three
different Gaussian channels which are adaptively selected.

This means that our design of adaptive alignment strategies
is equivalent to feedback coding over an additive Gaussian
channel with the caveat that the noise variance of our channel
depends on our mapping (and more precisely on how many
distinct candidate AoAs are mapped onto the unit circle).

D. Posterior probability

Now we define the posterior probability for the candidate
angles: boldsymbolr(t) := [m1(t), m2(t), ..., Tar(t)]

where ;(t) is the posterior probability for 6;: m;(t) :=

The initial prior probability are assumed to be uniformly

distributed over all M candidate angles:
m(0)=1/M, i=1,2,..,. M (18)

The updated posterior probability can be calculated with the
Bayes rule:

() f(y(t 4+ 1)]6;, w(t + 1))

m ) = S T D wr )

where
Flyt+1)]0;,w(t+1)) ~ CN(y(t+1); w (t+1)a(6;),0?)
(20)

is the likelihood function.

III. ADAPTIVE PHASE MATCHING

In this paper, we propose a three stage adaptive searching
algorithm to find the AoA:

1) Initial search: searching with X’ }?mal,

2) Zoom in search: searching with X fgi“l"i“, and

3) Confirmation: searching with x$orfirm,

In the first two stages, we apply Sorted Posterior Match-
ing (sortPM) [9], [14], [7] to the constellation X &€
[jial | xzoom-in] for that stage. The main difference between
these stages is that in the second stage the noise variance
is controlled via a design parameter o € [0,1] by ensuring

imag

>

o

%
=
imag
x

o
<@

real real

Fig. 3. Received signals (complex)
associated with M = 1024 candi-
date AoAs when wg,e; is selected.
The blue dots show the target con-
stellation XZ9T" in,

Fig. 4. Received signals (complex)
associated with M = 1024 candi-
date AoAs where the beamforming
vector is a permutation of Weage] -

that only aM of candidate AoAs are mapped onto unit circle
while the rest on mapped to 0. In the last stage, we simply
separate the candidate angle with the largest probability from
other candidate angles by mapping them onto z; and xg
in xgenfim | respectively. Note that while we have presented
the three stages sequentially, the algorithm uses the posterior
probability to select the appropriate stage. The decision on
how to navigate between stages is determined by the shape of
the posterior which is compared to two thresholds: 5y and (7.

Next we first describe sortPM algorithm applied to an ad-
ditive Gaussian channel with discrete complex input alphabet
X. We then proceed and detail the choice of thresholds and
the adaptive scheme navigating between our stages.

A. Posterior Matching and Sorted Posterior Matching

Posterior Matching (PM) [9] [14] is a random mapping
scheme that maps [0;,60s, ...,0)/] onto the @) points on the
constellation X according to the posterior probability 7r(t).

Assume we have a Gaussian channel with constellation
Xo and observation noise with standard deviation o. Let
C(Xg, o) represents the capacity of the Gaussian channel
with capacity achieving distribution [7}, 73, ..., 7TZ2] Then, for
a given posterior probability 7;(¢) of the i—th candidate angle,
6;, the Posterior Matching scheme will map 6; onto the points
within a set S; :=

- .
{xzi € Xp: lZm/ < Z T and Z < im/}

=1 2/ <z, T/ <xz; /=1
(2D

and the angle 0, will be mapped to x,, € S; with probability
Ag

5Lz *

min{z:’:l i’y Zx’gxzi W;’} - max{zz;l1 Ty Zx’<xzi ﬂ—;’}

TG

(22)

Recall that the behavior of mapping the candidate angle
0; onto the constellation point x,, at time t is done by
assigning d;(t) = xz.,, as shown in (14). Since now we
assign x., to d;(t) randomly with probability A, .. . This
means that the vector d(¢) in (15) will be assigned with a
specific vector d.(t) := [z.,,%,,...,T-,,] With probability
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Ay = Moy a., X Moy, X oo X Agy o, . Also, the corre-
sponding received beamforming vector w.,(t) is obtained from
(15):

Zz2

w, (t) = ﬁ[DFT]dAt)H (23)

Finally, we select w(t) to be w.,(t) with probability A,. We
propose to utilize sortPM [7] [15]: a variation of Posterior
Matching where PM mapping is applied to the sorted posterior
mt(t). It is shown in [9] and [7] that when M > K this
algorithm can achieve the capacity C'(Xg, o) of the channel.
Note that the calculation for sortPM requires: a sorting op-
eration with complexity O(M), finding the mapping regime
for M angles, which can be calculated with matrix operation
with complexity O(M x @), and a random mapping operation
with complexity O(Q) for M angles. Therefore, the overall
complexity will be O(M x Q).

B. Thresholds and Capacity for the stages

In the first stage, constellation X! js a symmetric pattern
with K points around the unit circle. Therefore, the capacity
achieving distribution for these K points is 7], 75, ..., 75| =
(£, 2%, ... ] Since d;(t) € X1l for all 4 in this stage, from
(15), (16) and (5), we have v(t) ~ CN(0,|lw(t)|[*0?) =
CN(0,0?). Then, with sortPM, we achieve C/(Xntal g).

In the second stage, we map at most oM angles
with high probability onto the points on the unit circle,
[€1,x2,...,xK], and map other candidate angles with low
probability onto zy. The capacity achieving distribution of
constellation X721 can be written as 7}, 75, ..., ), 7] =

zoom-in

[Poutside(XK+1 7(X0')

Zoom-in

Poutside (X4 ,00)
’ K PRXER) K )

K

1- Poutside (X[Z(oinll_ma 040)], where Poutside(xfzginll_m7 ag) =
Zfil mF. Since the power of the noise term, v(¢) is at most
o0, in this stage, we can achieve C'(X7291™, ao). Fig. 5 and
Fig. 6 show the noisy observation samples for constellation
Xgeomin with two different values of . Here we can see that
a smaller o ensures a smaller noise variance (visually seen
in the deviation from the target constellation point shown in
blue) but also reduces the number of distinguishable AoAs.

To chose the threshold 3y, we note that under sortPM, (21)
implies that when Zf:]\f rl»l(t) > Poutside(X Izé’j’r“l"i“, ao), there
will be at most M candidate angles mapped onto the unit
circle. Therefore, we pick By := Poutside (Xf;’i“{'i“, ao) to be
the threshold for entering the zoom-in stage.

The algorithm enters the confirmation stage, when the
candidate AoA with the largest (posterior) probability, Td’,
becomes large become larger than threshold 3; > % [14].
Note that this stage allows for a sequential binary hypothesis
test with error exponent E:

Zoom-in
Poutside (XA ,00)

E = D(P(Y|X =0)||P(Y]|X = x0)> (24)

ensuring, in effect, a very high reliability for our alignment.

o
* . .
*, % %
g 3 g, 5
£ % b %, £ ¥
05 o.
.
oo R 5 o Gt B
* o K

05 05 o
real real

Fig. 5. Received signals (complex)
associated with M = 1024 candidate
AoAs with AZPP" and v = 1/16.

Fig. 6. Received signals (complex)
associated with M = 1024 candidate
AoAs with AZ9™" and o = 1/4.

C. Main Result

In our proposed three stage adaptive searching algorithm,
the expected searching time for any resolution, § > 0, and

any error probability, 0 < € < 1, is upper bounded by:
log 5 log L 1

¢ € + o(log —
Clammi o) T T olog )

E <
[Te,é] > Se

(25)

where C(X7290™ ao) is the capacity of the constellation
X9 with noise power a?0? and a > 4 and E is
reliability of hypotheses testing as given by the KL divergence
(24). Note that this result is a generalization of [15] by utilizing
the phase information. If K = 1, (only the second and third
stages) we will have the upper bound for the binary searching

case as shown in [15].

IV. ANALYSIS

Before we start the analysis, we first introduce the average
log-likelihood function and Extrinsic Shannon divergence. We
use the average log-likelihood to measure the uncertainty and
the reduction of the uncertainty is the Extrinsic Shannon
divergence (EJS) [14].

A. Average Log-likelihood

For a given posterior probability at time ¢, the average log-
likelihood U (¢) is defined as:

l mi(t)
Ut)=U(x(t)) := Zm(t) log e (26)

Property 1: U(t) is a submartingale: E[U(t 4+ 1)|w(t)] =
U(t) + EJS(x(t),7), where EJS(m(t),~) is defined as:

M
EIS(r(t),1) = S mi()D | Py |3 2y
P Py 1-— 7T74(t)
27)
Here, ~y represents the mapping for 6; onto X;,i = 1,2, ..., M.
Property 2: if 7;(t) < 1 — ¢, then U(t) < log 1=<

B. Good event and Bad event

In the second stage of the adaptive searching algorithm,
we apply the sortPM scheme trying” to achieve the capacity
C (X7 o). However, we can only achieve it when we
map no more than oM angles on the unit circle. That is
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Z?ﬁ 7t(t) > [y. Otherwise, we can only achieve the
capacity of the first stage C(XNital &) Therefore, we can
separate these two cases as:
o The "Bad” event: when Z?ﬁ () < Bo, we do not
achieve C(X{29%™, ao) but achieve C(XR o).
o The "Good” event: when Efﬂf 7t (t) > By we achieve
C(XEm™ ao).
C. Proof of the Main Result
aM

We denote E; to be the "bad” event S0 7t (t) < fo, the
union of the ”bad” event F, = U2 E; and the complement
of this union which is the “good” event F,,° = (U2 ,LEf) .
By using the total probability theorem, the union bound and
the EJS searching theorem [14] [15], we have:

E[Te,a}z/m dIP’<Z E755|7r 1] dIP’+/

Fn© (28) derive the bound for the non-grouping version.
oo U(t+1)—U(t)|
loa(1/6) __ los(1/ j
S PE)<t+ + +f ‘“““"o’ €, t 1 t
2 Ceg) " TR || 5 1y D = 5 i s 2L
—
log(1/5) log(1/e) ’
+ C'( xzoom- in + E + fC(Xmom o), E(e,d) (36)
( K+1 ;ao') (29) <Z7T‘(t+1) lo M_ L(t)
log 1 5 ' gl—m‘(t—kl) 1—m(t)
where fo g(es) = %+|X+)96 (02) ‘ i (t)
. L maxg y x ) s _ e\
with C := max iy POy =y X=1) + Z |mi(t + 1) — m(t)| |log —m) ‘ 37
Now, if the probability of the "bad” event P(E;) < kge ‘o ) m(t)
and by letting n = [loglog i] then we have: < Zm t+1)logCy + Zm 1 —m;(t)]Cs |lo 117(75)
-
log * lo g =
E[T‘—vfs] = C'( xzoom- isn + E +gR E(G 5) (30) (38)
( K+1 , o) <logCo+ MCy, =B (39)
where . .
fone—Eo Next, we use this to bound of the grouping average log-
gr.e(€,0) == N _go PRy likelihood: |Uy(t + 1) = U, ()| < U+ 1) = U(t)| < B
(1= e Fo)(log 5.)"° From (34), the expected drift of U,(t) is the group EJS,
1 log 3 log which is lower bounded by:
(Dog IOg &—I + C(X}?i‘ia]7 0_) + E + fC(X‘“““‘l 0),E(€,8)

kO —2EU

1
+ )2E0 |—10g IOg E—‘ + fC(X;gTii“,ao),E(e,é)

(1 — e Fo)2(log 5,
(€29)
D. Probability of the “Bad” event
Now, we want to prove that the probability of the “bad”
event P(E;) < koe~'F0. Since, we are comparing the proba-
bility of the first &M angles with 3y, we can define a grouping
version average log-likelihood and use property 2 to bound this

”bad” event.
aM 1- B
P(Et):P<Z7ri¢<5o> <P(Ua(t)<log 5 O>
i— 0
i=1 (32)

Where the grouping version of the average log-likelihood is

defined as: (each group aM angles, total G = é groups)
1/
Un(t) = U, ZW log (33)

where m( 1= 3", (g Ti(t) and group(g) = [aM (g —
1)+1,aM(g—1)+2,...,aM(g)]
Similar to property 1, the expected drift of the grouping

average log-likelihood is the grouping version EJS:

EUa(t +1)|my ()] = Ualt) =

P . 7Tj P .
PEAGL (Elegwg((t)) = Zjig_%)(t)y XJ) (34)

g
We can see that the group EJS is the weighted sum of the KL-
divergence of each group against the mixture of other groups.

Group EJS =

Zw

mzw of Group g||Pmm of non—Group g) (35)

Te,s dP Now, we will derive the probability of “bad” event. We first

Group EJS > éD(Pmix of G'roulePmix of non—Groupl)
(40)
Since we are using posterior matching, which is a random
coding scheme. When calculating the lower bound of group
EJS, we must take the average over different mapping ~.

Group EJS with Posterior Matching
Sy
K —-11 1 alM —1

>———D P _—

=% PGt e
where x, and x; are the two closet point of the constellation.
Now, with this lower bound, we have a submartingale:

ElU,(t+ D|w(t)] — Uas(t) > K,

Note that the sorting order for (¢ + 1) and ¢ might

be different. However, since E[US™ “* D 4 1) >

B[Ufem eder oy 4 1)], 43) still hold if the sorting order

mzz of Groupl”mec of non— GToupl) (41)

P, lIP,) = Ko (42)

(43)
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Probability of error with M=1024, T=16
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Fig. 7. probability of error for sortPM with and without phase information
with M = 1024, = 1/16,T = 16

is different. Next, we define a new bounded submartingale:
V(t) :=Uas(t) —tKa, [VE+1)-V(t)| < B+ K,

Finally, we apply Azuma’s inequality to the new submartin-
gale V(t) to bound the probability of the “bad” event:

aM 1_ﬂ
P(Ey) =P Zw#<ﬁo <P(Ua(t)<log 5 O)
i=1 0

(44)

—[tK, + Ua(0) — log 16%0]2
2t(B + K,)?

< exp (45)

V. SIMULATION RESULTS

In our simulations, the angular space for alignment is
quantized into M = 1024 candidate AoAs, hence an alignment
resolution of 0.18 degrees. Fig. 7 shows the probability of
misalignment after a small number 7' = 16 of observations
when the design parameters K = 8, $; = 1/2 are chosen:
Adaptive Phase Matching algorithm is shown to outperforms
sortPM without the phase information [7] [15] for all values of
« when the raw SNR is above -4dB. In the low SNR regime,
on the other hand, the binary HiePM performs better than
our proposed three stage algorithm when « is selected to be
too small or when the algorithm enters the zoom-in stage late
(large By). We note that Adaptive Phase Matching outperforms
HiePM when oo = 1 and 3y = 0, even thought our theoretical
guarantees do not hold.

VI. CONCLUSION

In this paper, a three stage adaptive searching algorithm is
proposed. The algorithm utilizes three target constellation and
three stages to provide fast yet highly reliable high-resolution
alignment. We analyze the algorithm’s superior performance
theoretically and numerically. The constellations shown in
this paper are chosen to mostly demonstrates the value of
phase information in adaptive beam alignment strategies by

generalizing the known algorithms in the literature. Note that
if there exist some imperfections of the hardware, such as RF
impairments, then this will introduce some bias (shifting and
rotation) to the constellation points. Although the constellation
points might not be perfectly placed on a unit circle, one can
still apply the essential ideal of this paper: to separate all the
response for all angles according to the posterior probability.
The problem of constellation design and optimization remains
an important area of future work.
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