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Degree Heterogeneity in Higher-Order Networks:
Inference in the Hypergraph 3-Model

Sagnik Nandy

Abstract— The (3-model for random graphs is commonly
used for representing pairwise interactions in a network
with degree heterogeneity. Going beyond pairwise interactions,
Stasi et al. (2014) introduced the hypergraph 3-model for cap-
turing degree heterogeneity in networks with higher-order
(multi-way) interactions. In this paper we initiate the rigorous
study of the hypergraph (3-model with multiple layers, which
allows for hyperedges of different sizes across the layers. To begin
with, we derive the rates of convergence of the maximum
likelihood (ML) estimates and establish their minimax rate
optimality. We also derive the limiting distribution of the ML
estimates and construct asymptotically valid confidence intervals
for the model parameters. Next, we consider the goodness-of-fit
problem in the hypergraph (-model. Specifically, we establish
the asymptotic normality of the likelihood ratio (LR) test under
the null hypothesis, derive its detection threshold, and also
its limiting power at the threshold. Interestingly, the detection
threshold of the LR test turns out to be minimax optimal, that
is, all tests are asymptotically powerless below this threshold.
The theoretical results are further validated in numerical exper-
iments. In addition to developing the theoretical framework for
estimation and inference for hypergraph (3-models, the above
results fill a number of gaps in the graph B-model literature,
such as the minimax optimality of the ML estimates and the
non-null properties of the LR test, which, to the best of our
knowledge, have not been studied before.

Index Terms— Graphical models, maximum likelihood (ML)
estimation, minimax techniques.

I. INTRODUCTION
HE B-model is an exponential family distribution on
graphs with the degree sequence as the sufficient statis-
tic. Specifically, in the B-model with vertex set [n] :=
{1,2,...,n}, the edge (¢,j) is present independently with
probability
eBitB;
pij = m, (Il)

forl <i<j<nand B = (61,02,--.,0,) € R™. This
model was first considered by Park and Newman [41] and can
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also be viewed as the undirected version of the p;-model that
appears in the earlier work of Holland and Leinhardt [26].
Thereafter, the 3-model has been widely used for capturing
degree heterogeneity in networks (see Blitzstein and Diaco-
nis [7] Chen et al. [11] Graham [23] Jackson et al. [28],
among several others). The term (-model can be attributed
to the seminal paper of Chatterjee et al. [10], which provides
the theoretical foundations for parameter estimation in this
model.

While random graph models, such as the (B-model, are
important tools for understanding binary (pairwise) relational
data, in many modern applications interactions occur not just
between pairs, but among groups of agents. Examples include
folksonomy [17], collaboration networks [29], [30], [42], com-
plex ecosystems [24], biological networks [37], [43], circuit
design [32], computer vision [1], among others. Hypergraphs
provide the natural mathematical framework for modeling such
higher-order interactions [4], [5], [6]. Formally, a hypergraph
H is denoted by H = (V(H),E(H)), where V(H) is the
vertex set (the agents in the network) and F(H) is a collection
of non-empty subsets of V' (H) of cardinality greater than 1.
The elements in E(H), referred to as hyperedges, represent the
interactions among groups of agents. Motivated by the emer-
gence of complex relational data with higher-order structures,
there has been a slew of recent results on modeling random
hypergraphs, community detection, recovery, clustering, and
motif analysis, among others (see [2], [3], [15], [18], [19],
(201, [21], [22], [27], [33], [34], [35], [36], [40], [51], [57],
[58], [59] and the references therein).

In this paper we study the hypergraph (3-model, intro-
duced by Stasi et al. [45], that allows one to incorporate
degree heterogeneity in networks with higher-order structures.
Like the graph B-model (I.1), this is an exponential family
on hypergraphs where the (hypergraph) degrees (as defined
in (IL.3)) are the sufficient statistics. In its general form it
allows for layered hypergraphs with hyperedges of different
sizes across the layers. To describe the model formally we
need a few notations: For > 2, denote by ([’TL]) the collection
of all r-element subsets of [n] := {1,2,...,n}. A hypergraph
H = (V(H),E(H)) is said to be r-uniform if every element
in F(H) has cardinality r. (Clearly, 2-uniform hypergraphs
are simple graphs.) We will denote by H,, , the collection
of all r-uniform hypergraphs with vertex set [n] and by
Hp [ = UZ:2 H,,,s, the collection of all hypergraphs with
vertex set [n] where every hyperedge has size at most r. Then
the r-layered hypergraph (3-model is a probability distribution
on H,, [, defined as follows:
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Definition 1: [45] Fix » > 2 and parameters B :=

(Bg,...,8,), where 3, (Bsw)ven) € R™. The
r-layered hypergraph (3-model is a random hypergraph in

H,,[r]- denoted by Hy,j(n, B), where, for every 2 < s <7,
the hyperedge {v1, va,...,vs} € ([Z]) is present independently
with probability:
eﬂsv“l +---+Bs,us
Porya,vs 2= I R By

1.2)

This model can be expressed as an exponential family on
H,, ) with the hypergraph degrees up to order r as the
sufficient statistics (see (I1.2)). Specifically, the parameter [ o,
encodes the popularity of the node u € [n] to form groups of
size s, for 2 < s < r. Consequently, [, ,, controls the local
density of hyperedges of size s around the around node w.
The model (I.2) includes as a special case the classical graph
(B-model (when r = 2) and also the r-uniform hypergraph
B-model, where only the hyperedges of size r are present.
More formally, given parameters 3 = (01, B2, ...,0,) € R,
the r-uniform hypergraph (3-model is a random hypergraph
in H,, ,, denoted by H,(n,3), where each r-element hyper-
edge {vi,ve,...,v.} € ([:f]) is present independently with
probability:

Bor et Bu,

Puyva,...vp = W 1.3)

It is worth noting that, since the degrees (defined later
in (IL.3)) are the sufficient statistics in the aforementioned
models, it is enough to observe only the degree sequences (not
the entire network) for inference regarding the model param-
eters. This feature makes the 3-model particularly attractive
because collecting information about the entire network can
often be difficult for cost or privacy reasons. For example,
Elmer et al. [16] (see also Zhang et al. [60]) studied social
networks between a group of Swiss students before and during
COVID-19 lockdown, where, for privacy reasons, only the
total number of connections of each student in the network
(that is, the degrees of the vertices) were released. The
B-model is also relevant in the analysis of aggregated rela-
tional data, where instead of asking about connections between
groups of individuals directly, one collects data on the number
of connections of an individual with a given feature (see, for
example, Breza et al. [8] and the references therein).

Stasi et al. [45] proposed two algorithms for computing
the maximum likelihood (ML) estimates for the hypergraph
B models described above and reported their empirical perfor-
mance. However, the statistical properties of the ML estimates
in these models have remained unexplored.

A. Summary of Results

In this paper we develop a framework for estimation
and inference in the hypergraph (-model. Along the way,
we obtain a number of new results on the graph (3-model
as well. The following is a summary of the results:

o Estimation: In Section II we derive the rates of con-
vergence of the ML estimates in r-layered hypergraph
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B-model (1.2), both in the L, and the L, norms.' Specif-
ically, we show that given a sample H,, ~ Hp(n, B)
from the r-layered hypergraph 3-model, the ML estimate
B = (B,,...,0,) of B satisfies the following:

N [ 1
HIBS 763H2 < CS F7
. logn
1By = Bullo < Con| 2,
n

for some constant Cs > 0 (depending on s and |3,]«),
where 2 < s < r, with probability going to 1 (see
Theorem 1). These extend the results of Chatter-
jee et al. [10] on the graph B-model, where the rate of
convergence of the ML estimate was derived only in the
L, norm, to the hypergraph case. Next, in Theorem 2
we show that both the rates in (I.4) are, in fact, minimax
optimal (up to a v/logn factor for the L., norm). To the
best of our knowledge, these are the first results showing
the statistical optimality of the ML estimates in the 3-
model even for the graph case.

o Inference: In Section II-C we derive the asymptotic distri-
bution of the ML estimate B. In particular, we prove that
the finite dimensional distributions of the ML estimate
converges to a multivariate Gaussian distribution (see
Theorem 3). Moreover, the covariance matrix of the
Gaussian distribution can be estimated consistently, using
which we can construct asymptotically valid confidence
sets for the model parameters (see Theorem 4).

o Testing: In Section III we study the goodness-of-fit prob-
lem for the hypergraph B-model, that is, given v € R"
we wish to distinguish:

1.4)

Hy:B, =~ versus H;:B,#"~.
We show that the likelihood ratio (LR) statistic for this
problem (centered and scaled appropriately) is asymp-
totically normal under Hy (see Theorem 5 for details).
Using this result we construct an asymptotically level
a test for (I.5). Next, we study the power properties
of this test. In particular, we show that the 2czeigection
threshold for the LR test in the Lo norm is n~~7 , that
is, the LR test is asymptotically powerful/powerless in
detecting ' € R" depending on whether [y — /2 is
asymptotically greater/smaller than n~ =7 3, respectively.
We also derive the limiting power function of the LR
test at the threshold |y — ]2 = @(n‘y) (see
Theorem 6). Further, in Theorem 7 we show that this
detection threshold is, in fact, minimax optimal, that is
all tests are asymptotically powerless when |v' — ||z is
asymptotically smaller than n~=*T. In Section III-C we
also obtain the detection threshold of the LR test in the
L, norm and establish its optimality. Again, these appear
to be the first results on the non-null properties of the LR
test and its optimality in the 3-model for the graph case
itself.

(1.5)

'We denote by ||« and |z||2, the Lo, and the Lo norms of a vector x,
respectively.
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In Section IV we illustrate the finite-sample performances of
the proposed methods in simulations.

B. Related Work on the Graph B-Model

As mentioned before, Chatterjee et al. [10] initiated the
rigorous study of estimation in the graph (3-model. They
derived, among others things, the convergence rate of the
ML estimate in the L., norm. Thereafter, Rinaldo et al. [44]
derived necessary and sufficient conditions for the existence
of the ML estimate in terms of the polytope of the degree
sequences. Yan and Xu [52] proved the asymptotic normality
of ML estimate and later, Yan et al. [54] derived the properties
of a moment based estimator. Karwa and Slavkovic [31]
studied the problem of estimation in the B-model under
privacy constraints.

In the context of hypothesis testing, Mukherjee et al. [38]
considered the problem of sparse signal detection in the
(B-model, that is, testing whether all the node parameters are
zero versus whether a (possibly) sparse subset of them are
non-zero. Recently, Yan et al. [56] derived the asymptotic
properties of the LR test for the goodness-of-fit problem in
the graph B-model, under the null hypothesis.

The graph B-model has also been generalized to incorporate
additional information, such as covariates, directionality,
sparsity, and weights (see Chen et al. [11] Chen and
Olvera-Cravioto [12] Graham [23] Hillar  and
Wibisono [46] Yan and Xu [53] Hillar and Wibisono [25]
Wahlstrom et al. [49], [55] Zhang et al. [60] and the
references therein). For other exponential random graph
models with functions of the degrees as sufficient statistics,
see Mukherjee [39] and Xu and Mukherjee [50].

C. Asymptotic Notation

For positive sequences {ay}n>1 and {b,}n>1, an = O(by)
means a, < Cib, and a, = ©(b,) (and equivalently,
an = b,) means Cqb, < a, < C1b,, for all n large enough
and positive constants C, C5. Similarly, for positive sequences
{apn}n=1 and {b,}n>1, an < b, means a, < Cib, and
a, 2 b, means a,, > Csb, for all n large enough and positive
constants C7, Co. Moreover, subscripts in the above notation,
for example O,, <o, 2o, and O,, denote that the hidden
constants may depend on the subscripted parameters. Also,
for positive sequences {a, },>1 and {b,}n>1, an < b, means
an/bp — 0 and a,, » b, means a, /b, — o0, as n — o0.

II. MAXIMUM LIKELIHOOD ESTIMATION
IN HYPERGRAPH 3-MODELS

In this section we consider the problem of parameter
estimation in the hypergraph B-model using the ML method.
In Section II-A we derived the rates of the consistency of the
ML estimate. The central limit theorem of the ML estimate
and the construction of confidence intervals for the model
parameters are presented in Section II-C.

A. Rates of Convergence

Given a sample H, ~ H, [(n, B) from the r-layered
hypergraph (3-model, the likelihood function can be written

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

as follows:
Ln(B)

- 11

<SS {v1,02,0. 0, e E(Hy)

e(ﬁs,ul +.HBs,vs)

1 + eﬁs’vl+"'+65,v5 . (II.I)

Therefore, the negative log-likelihood is given by
En(B) = —log Ln(B)

= - Z {Z ﬁs,vds(v)
=2 \v=1

_Z lOg (1 + exp (ﬂs,l;] 4+ ...+ ﬂs,vs)) s (HZ)
{vl,vz,..,,vs}e([:])

where

ds(v) = Z

ecE(H,):|le|=s

1{v e e}, (IL.3)

is the s-degree of the vertex v € [n], that is, the number of
hyperedges of size s in H,, passing through v. The negative
log-likelihood in (II.2) can be re-written as:

ln(B) = Y lns(B,), (IL4)
s=2

where

KTL,S(IB) = Z IOg (1 + eXp (68,1}1 +...+ /Bs,vs))

{U1,U2,~-~,Us}€([:])

- Z Bs,vds(v)- (HS)
v=1

Note that (IL.4) is separable in 3,,...

estimate of B = (83,,...,/3,) is given by B = (3, ...

where

761"’ henf:e, the ML
7I8T)’

B := argming £,, 5(B). (IL.6)

Therefore, differentiating (I1.2) with respect to B, and setting
the gradient to zero we can conclude that the ML estimate
,@s satisfies the following set of gradient equations: For all
veE[n]and 2 < s <,

Bs,vtBs v+ FBo,u,
ds(v) = 2 1+ eBswtBopt o tBon,’
{va,vs)e ()

(IL7)

where (I"\"}) denotes the collection of all (s — 1)-element
subsets of [n]\{v}. Stasi et al. [45] presented two algorithms
for computing the ML estimate, namely, an iterative pro-
portional scaling algorithm and a fixed point algorithm, and
showed that both algorithms converge if the ML estimate
exists.

In this paper we study the asymptotic properties of the
ML estimates. In the following theorem we show that
the likelihood equations (II.7) have a unique solution with
high-probability and derive its rate of convergence. Recall we
denote by ||| and |x|2, the Lo and the Ly norms of a
vector x, respectively. Also, denote By = {x : ||z < M},
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the Lo, the ball of radius M. Throughout we will assume
B, € By, for all 2 < s < r, for some constant M > 0.

Theorem 1: Suppose H,, ~ H,, ;](n, B) is a sample from
the r-layered hypergraph (3-model as defined in (I.2). Then
with probability 1 — o(1) the likelihood equations (IL.7) have
a unique solution B = (BQ, e ,ﬁr), that satisfies:

- [ 1
Hﬂs - IGSHQ $S7M P7

- [logn
H/Bs_/BsHOC SS,M Fa

for 2 <s<r.

Theorem 1 provides the rates for the ML estimates for
the parameters in a r-layered hypergraph (3-model both in
the Lo, and Ly norms. To interpret the rates in (IL.8) note
that s-degree of a vertex (recall (IL.3)) in the r-layered
model H,, ,1(n,B) is O(n*"!) with high probability. This
means there are essentially O(n*~!) independent hyperedges
containing information about each parameter in the s-th layer.
Hence, each parameter in the s-th layer can be estimated at the
rate 1/v/ns—1. Aggregating this over the n coordinates gives
the rates in (I1.8) for the vector of parameters 3, in the s-th
layer.

The proof of Theorem 1 is given in Appendix V. The
following discussion provides a high-level outline of the proof.

o For the rate in the Lo norm we first upper bound
the gradient of the log-likelihood at the true parameter
value. Specifically, we show that |/, s(8,)[3 = O(n®)
with high probability (see Lemma 1 for details). Next,
we show that the smallest eigenvalue of the Hessian
matrix V2¢, (83,) is bounded below by n*~! (up to
constants) in a neighborhood of the true parameter (see
Lemma 2). Then a Taylor expansion of the log-likelihood
around the true parameter, combined with the above
estimates, imply the rate in the Lo norm in (IL.8) (see
Appendix V-A for details).

o The proof of the rate in the L., norm is more involved.
For the graph case, [10] analyzed the fixed point
algorithm for solving the ML equations and developed a
stability version of the Erd6s-Gallai condition (which pro-
vides a necessary and sufficient condition for a sequence
of numbers to be the degree sequence of a graph) to derive
the rate of ML estimate in the L., norm. One of the
technical challenges in dealing with the hypergraph case
is the absence of Erd6s-Gallai-type characterizations of
the degree sequence. To circumvent this issue, we take a
more analytic approach based on the ‘leave-one-out’ tech-
nique, that appear in the analysis of ranking models [13],
[14]. Here the idea is to decompose, for each u € [n], the
log-likelihood function of the s-th layer ¢,, s (recall (IL.5))
into two parts: one depending on s, and the other not
depending on it. Using the part of the log-likelihood
not depending on 3, we first analyze the properties
of the constrained leave-one-out ML estimate, which
is the maximizer of the part of the log-likelihood not
depending on f; ,, in a neighborhood of the leave-one-out
true parameter. Then from the part of the log-likelihood
depending on (s, we obtain, by a Taylor expansion

(IL8)
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around the true parameter value s ,,, the L, rate in (I1.8)
with an extra additive error term which depends on the
constrained leave-one-out ML estimate. Using the bound
on the latter obtained earlier we show this error term is
negligible compared to the L, rate in (IL.8).

The following corollary about the r-uniform model is an
immediate consequence of Theorem 1. We record it separately
for ease of referencing.

Corollary 1: Suppose H, ~ H,, .(n,3) is a sample from
the r-uniform hypergraph B-model as defined in (I.3). Then
with probability 1 —o(1) the ML estimate ﬁ is unique and the

following hold:
. 1
18 = Bll2 <r,m 2

A logn
1B = Bl St | 22,

n7

(IL9)

B. Minimax Rates

In the following theorem we establish the tightness of the
rates of ML estimate obtained in the previous section by
proving matching lower bounds.

Theorem 2: Suppose H, ~ H,q(n,B), with B =
(By,---,8,), such that B, € By, for 2 < s < r. Given
d € (0,1) there exists a constant C' (depending on M, r, and
d) such that the following holds for estimation in the Lo norm:

ns—

min max P [|3—8,].>C
B B.€Bm

12)>1—& (IL.10)

Moreover, for estimation in the L., norm the following holds:
there exists ng = 0 such that for all n > ng

1
%7>>1—& (IL11)
ns—

min max P | [|3—B8,|e = C
B B.eBum

This result shows that the ML estimate is minimax rate
optimal in both the Lo and the L, metrics. The proof
of Theorem 2 is given in Appendix VI. The bounds in
(II.10) and (II.11) are proved using Fano’s lemma. For the
bound in (I1.10) we construct 2°(") well-separated points in
the parameter space which have ‘small’ average Kulbeck-
Leibler (KL) divergence with the origin (see Appendix VI-A)
and for the bound in (I.11) we construct n well separated
points which have ‘small’ KL-divergence with the origin (see
Appendix VI-B)

C. Central Limit Theorems and Confidence Intervals

The results obtained in the previous section show that the
vector ML estimates are consistent in the L,-norm. However,
for conducting asymptotically precise inference on the indi-
vidual model parameters, we need to understand the limiting
distribution of the ML estimates. In Theorem 3 below we show
that the finite dimensional distributions of the ML estimates
(appropriately scaled) converge to a multivariate Gaussian
distribution. Using this result in Theorem 4 we construct joint
confidence sets for any finite collection of parameters. Towards
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this, for H,, ~ H, [r1(n, B) denote the variance of the s-
degree of the node v € [n] as:

0s(v)? := Var[d,(v)] (I.12)

eBs.vtBs vy + .+ Bs v
- Z (1 + ePervtBoattBens)2” (L13)
{va,..., vs}e(["ﬁi{lﬂ})

Then we have the following result:

Theorem 3: Suppose H,, ~ H,, [,1(n, B) is a sample from
the r-layered hypergraph B-model as defined in (I.2). Fix any
collection of integers aj, as,...,a, = 1 and any subsets of

nodes Ji, Ja, ..., J, with cardinalities a1, as, ..., a,, respec-
tively. Then as n — oo,

[D2(@2 —B2)ls

D3(B8; — B3)]

[Da(Bs . | g Nsr 4. (0,1), (IL14)

DB, — )]s,

where D, = diag (0(v))ye[n], for 2 < s < 7 and for any
vector € R”, [z];. = (o) pep)-

Remark 1: Observe that since 3, € By for all 2 < s < r,
O(os(v)?) = n*~* for all v € [n]. Therefore, the convergence
rate of [(3, — 3,)]. is of order n(s=1/2 for all 2 < s < 7.

The proof of Theorem 3 is given in Appendix VII-A. The
idea of the proof is to linearize BM — f3s,, in terms of the s-
degree of the node v € [n]. Since the s-degree of a node is the
sum of independent random variables, applying Lindeberg’s
CLT gives the result in (II.14). In the special case of the r-
uniform model, Theorem 3 can be written in the following
simpler form:

Corollary 2: Suppose H, ~ H,, -(n,3) is a sample from
the r-uniform hypergraph 8-model as defined in (I.3). For all
v € [n], let

B +Bug+ ..+ Bu,

1 4+ efotBoy e tBu,

0'(?})2 =
{va a~»~’ﬂr}e([ﬁ;]i{l1)})

Then for any collection of a > 1 indices J := {vy,- -
([Z]), as n — o0,

P D
[D1,([8]s — [Bls) = Na(0, 1),
where D = diag (0(v))yepu). [D]s = diag (0(v)).es.
(8], = (ﬁv)IE[J]’ and [B]; = (@J)Iewy
To use the above results to construct confidence sets for the
parameters, we need to consistently estimate the elements of

the matrix D. Note that the natural plug-in estimate of o4(v)
is

Va} €

Bs,v+Bs,vp+o B 0, 15
= Z (1+6;§S,1,+BS,1,2+...+Bs,1,s)2~ (I1.15)
{Uzwwvs}e([ns]ylv})

This estimate turns out to be consistent for o4(v), leading to
the following result (see Appendix VII-B for the proof):
Theorem 4: Suppose H,, ~ H,, ;](n, B) is a sample from
the r-layered hypergraph (3-model as defined in (I.2). Fix any
collection of integers aq, as,...,a, = 1 and any subsets of
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nodes Jp, Jo, ..., J, with cardinalities a1, as, . .
tively. Then, for all « € (0, 1),

., @y, TESpec-

lim P ({ SUUB, ~ BT ID (B, — B

n—oo
s=2

<X, as,l—a}) =1-a, (IL16)

A2 ~ 2

where Ds = diag(&s(v)Q)ve[n]’ [DS]JS = dlag(&s (’U)2)U€J5,
for2 <s<r,andfora>1,x2,_, is the (1—)-th quantile
of the chi-squared distribution with a degrees of freedom.

III. GOODNESS-OF-FIT: ASYMPTOTICS OF THE
LIKELIHOOD RATIO TEST AND MINIMAX
DETECTION RATES

In this section we consider the problem of testing for
goodness-of-fit in the hypergraph 3-model. In particular, given
v € R™ and a sample H, ~ H,p(n,B), with B =
(Bs,...,8,), we consider the following hypothesis testing
problem: For 2 < s < r,

Hy:B,=7 versus H;:03, #"~.

This section is organized as follows: In Section III-A we derive
the asymptotic distribution and detection rates of the likelihood
ratio (LR) test for the problem (III.1). In Section III-B we show
that the detection rate of the LR test is minimax optimal for
testing in Lo norm. Rates for testing in Lo, norm are derived
in Section III-C.

(IIL1)

A. Asymptotics of the Likelihood Ratio Test
Consider the LR statistic for the testing problem (III.1):

log An,s = gn,s('}') - én,s(ﬁs)a (IH-Z)

where /,, ; is the negative log-likelihood function (IL5) and

BS is the ML estimate (II.6). The following theorem proves

the limiting distribution of the LR statistic (I[I.2) under Hj.
Theorem 5: Suppose ~ € Bys. Then under Hy,

2logA,s—n p
=—2" 5 N(0,1),
V2n (0.1)

for log A,, s as defined in (IIL.2).

The proof of Theorem 5 is given in Appendix VIII-A.
To prove the result we first expand log A,, s around the null
parameter ~ and derive an asymptotic expansion of A, g
in terms of the sum of squares of the s-degree sequence
(ds(1),ds(2),...,ds(n))T (see (VIIL.13)). Since the degrees
are asymptotically independent (recall Theorem 3), we can
show that the sum of squares of the degrees (appropri-
ately centered and scaled) is asymptotically normal (see
Proposition 3), establishing the result in (II1.3).

Theorem 5 shows that the LR test

(bn,s =1 {|)\n,s| > Za/2}>

where z,/5 is the (1 —c/2)-th quantile of the standard normal
distribution, has asymptotic level . To study the power of this
test consider the following testing problem:

Ans : (IIL.3)

(IIL.4)

Hy:B,=~ versus Hy:[B, =7, (I11.5)
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where 4’ # < is such that |y — 4'|2 = O(1). Recall that
ds = (ds(1),ds(2),...,ds(n))" is the vector of s-degrees.
Also, Cov.[d,] will denote the covariance matrix of the vector
of s-degrees (see (VIL.2)).

Theorem 6: Suppose (II1.3) holds and ~’ be as in (IIL5),
then the asymptotic power of the test ¢,, ; defined in (III.4)
satisfies:

. / _2:-3
lim E [¢n,s] = {a iy =7l <n ;

111.6
i Uiy =yl » e, O

Moreover, if T [¥ — ]2 — 7 € (0,00), then there exists
1 € (0,00) depending on 7 such that

(v =)' Covyldi] (' — )
\/ﬁ b

where the limit always exists along a subsequence, and

lim E[fn.] = P (‘N(—\i@, 1)‘ > za/2> .

n—ao0

(il

(I11.7)

The proof of Theorem 6 is given in Appendix VIII-B.
It entails analyzing the asymptotic distribution of the scaled
LR statistic A, s under H; as in (IIL.5). Specifically, we show
that when |y — |2 « n=*7", then An,s 5 N(0,1), hence
the LR test (III.3) is asymptotically powerless in detecting
H,. On the other hand, if | — v|2 » n=*7", then the
An,s diverges to infinity, hence the LR test is asymptotically
powerful. In other words, n—>7" is the detection threshold in
the Lo norm of the LR test. We also deri\;E:_tslle limiting power
function of the LR test at the threshold n™ 1 |y —~|2 —> 7€
(0,0). In this case, A\, s B N(=n/v/2,1), where ‘effective
signal strength’ 7 is the limit of the scaled Mahalanobis
distance between ~ and ~’, where the dispersion matrix is
the covariance matrix of the degrees. Here, the Mahalanobis
distance between two vectors « and ' with the dispersion
matrix 3 refers to the quantity (v — ') T2(y — 7). In the
next section we will show that this detection rate is, in fact,
minimax optimal.

B. Minimax Detection Rate in the L, Norm

In this section we will show that the detection threshold of
the LR test obtained in Theorem 6 is information-theoretically
tight. To formalize this consider the testing problem: For

€ >0 and ~ € By,
Hy:B8,=~ versus H;:|B,—7|2=¢.

The worst-case risk of a test function ), for the testing
problem (IIL.8) is defined as:

R(¥n, )

(IIL8)

sup
Y'eBu:|y —vl2=¢e

Py (= 0),  (IIL9)
which is the sum of the Type I error and the maximum possible
Type II error of the test function v,,. Given H,, ~ H,, s(n, B,),
for some 3, € By, and € = ¢, (depending on n), a sequence
of test functions 1, is said to be asymprotically powerful
for (I11.9), if for all 4 € By lim, o R(tn,7y) = 0. On the
other hand, a sequence of test functions 1, is said to be
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asymptotically powerless for (II1.9), if there exists v € By,
such that lim,,_,o R(¢n,y) = 1.

Theorem 7: Given H, ~ H, s(n,3,) and ~ € By, con-
sider the testing problem (III.8). Then the following hold:

(a) The LR test (II1.4) is asymptotically powerful for (I11.8),
when & » n= =T

(b) On the other hand, all tests are asymptotically powerless
for (IIL.8), when & « n~ =T

The result in Theorem 7 (a) is a direct consequence of
Theorem 6. The proof of Theorem 7 (b) is given in
Appendix IX-A. For this we chose v+ = 0 € R™ and
randomly perturb (that is, randomly add or subtract &/4/n)
the coordinates of « to construct 3, € By, satisfying |3, —
7l|l2 = €. Then a second-moment calculation of the likelihood
ratio shgxzi that detecting these two models is impgssgble for
€ « n~ "1 . These results combined show that n= "7 is the
minimax detection rate for the testing problem (II1.8) and the
LR test attain the minimax rate.

Remark 2 (Comparison Between Testing and Estimation
Rates): Recall from (I1.8) and (II.10) that the minimax rate
of estimating BS in the Lo norm is n_%. On the other
hand, Theorem 7 shows that the minimax rate of testing in
the Ly norm is n= "7 « n="z". For example, in the graph
case (where s = 2), the estimation rate is O(1) whereas the
rate of testing is n~4. This is an instance of the well-known
phenomenon that high-dimensional estimation is, in general,
harder that testing in the squared-error loss.

C. Testing in the Lo, Norm

In this section we consider the goodness-of-fit problem
when the separation is measured in the L., norm. This
complements our results on estimation in the L., norm in
Theorem 1. Towards this, as in (IIL.8), consider the testing
problem: For € > 0 and ~ € By,

Hy By = vloo = &

In this case the minimax risk of a test function is defined as
in (II1.9) with the Ly norm |+’ — ~|2 replaced by the L,
norm ||5" — ~||s. Then consider the test:

1
Og”}, (IL11)

Hy: B, =~ versus (II1.10)

¢II1&X
n,s nsfl

=1 {IBS ~ Yl = 2C

where C := C(s, M) > 0 is chosen according to (IL.8) such

that
. logn
P <|ﬁs — Ko < Cx/;gl) — 1,
n

na] — 0. Also, for

logn

nsfl
logn
nsfl

for all ke By. This implies, E.[
~' € By such that |y —+'|« = &,

E [QSZI,ZX] =Py (”Bs - '7”30 = 2C

=Py (”Bs - '7,Hoo <C

-1,

(IIL.12)
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whenever £ » /logn/n*=1. This is because |3, — v'[» <
C+/logn/ns—1 implies,

1By = Alloo = 1Y = 7'lloc = 185 = llo

> e Oy 281 5 0[BT
n n

whenever £ » 4/logn/ns=1. This implies that the test o
in (III.11) is asymptotically powerful for (III.10) whenever

g » 4/logn/n*~1. The following result shows that this rate is
optimal (up to a factor of 4/log n) for testing in the L., norm.

Theorem 8: Given H, ~ H, s(n,B,) and ~,03, € By,
consider the testing problem (III.10). Then the following hold:

(a) The test @@

n,s

for (III.10), when & » T
(b) On the other hand, all tests are asymptotically powerless
for (II1.10), when & « /182
The proof of Theorem 8 (b) is given in Appendix IX-B.
Note that in this case minimax rates of estimation and testing
are the same, since the effect of high-dimensional aggregation
does not arise when separation is measured in the L, norm.

(IIL.13)

in (II.12) is asymptotically powerful

logn

IV. NUMERICAL EXPERIMENTS

In this section we study the performance of the ML
estimates and the LR tests discussed above in simulations.
To begin with we simulate a 3-uniform hypergraph (3-model
Hs(n, 3), with n = 400 vertices and 3 = 0 € R™. Figure 1(a)
shows the quantile-quantile (QQ) plot (over 200 iterations) of
the first coordinate of the ML estimate [D]; ([3—3]1) (where
,@ is computed using the fixed point algorithm described
in [45]. Here D is as defined in Corollary 2). We observe
that the empirical quantiles closely follow the quantiles of the
standard normal distribution, validating the result in Corol-
lary 2.

In the same setup as above, Figure 1(b) shows the 95%
confidence interval for [3]; over 50 iterations. Specifically,
we plot the intervals

1.96
(B + [b]l )

where D is the estimate of D as defined in Theorem 4.
This figure shows that 47 out of 50 of intervals cover

the true parameter, which gives an empirical coverage
of 47/50 = 0.94.

Next, we consider the goodness of fit problem in s-uniform
hypergraph B-model:

Hy:B8,=0 versus H;:83,#0, Iv.1)

for s = 2,3. For this we simulate H,, ~ Hg(n,~), with
n = 250 and v = « - u, where u is chosen uniformly at
random from the n-dimensional unit sphere and « € [0, 1].
Figure 1(c) shows the empirical power of the LR test (II.4)
(over 50 iterations) as o varies over a grid of 25 uniformly
spaced values in [0, 1], for s = 2, 3. In both cases, as expected,
the power increases with a, which, in this case, determines
the signal strength. Also, the LR test is more powerful in the
3-uniform case compared to the 2-uniform case. This aligns
with conclusions of Theorem 6, which shows that the dptection
threshold of the LR test in the 3-uniform case is n_%, while
for 2-uniform case it is n 1. Hence, one expects to see more
power at lower signal strengths (smaller «) for s = 3 compared
to s = 2.

V. PROOF OF THEOREM 1
A. Convergence Rate in the L, Norm

As mentioned in the Introduction, the proof of Theorem 1
involves showing the following: (1) a concentration bound on
the gradient of negative log-likelihood ¢,, 5 (recall (I1.5)) at the
true parameter value B = (3,,...,08,), and (2) the strong
convexity of £, ; in a neighborhood of the true parameter.
We begin with the concentration of the gradient V/,,  in both
the Lo and the L., norms:

Lemma 1: Suppose the assumptions of Theorem 1 hold.
Then for each 2 < s < r, there exists a constant C > 0
(depending on 7 and M) such that the following hold:

IVl,s(B,)]5 < Cn®
IVln,s(B,)|% < Cn*'logn,

with probability 1 — O (-5).

The next step is to establish the strong convexity of /,, .
Towards this we need to show that the smallest eigenvalue
Amin(V?4,, ) of the Hessian matrix V?2/,, ; (appropriately
scaled) is bounded away from zero in a neighborhood of the
true value 3,. This is the content of the following lemma,

and
V.1)
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which also establishes a matching upper bound on the largest
eigenvalue Apax (V24 ) of the Hessian matrix V2/,, .

Lemma 2: Suppose the assumptions of Theorem 1 hold. Fix
2 < s < r and a constant K > 0. Then there exists constants
C1,C% > 0 (depending on r and M) such that the following
hold:

Cre *IB=Bellons=1 < A i (V2 5(B))
< Amax(V205(8)) < Con®~'. (V22)
As a consequence, there exists a constants C7,Cy > 0

(depending on 7, K, and M) such that the following hold:

Cinft < inf Amin (V20,5(8)) (V:3)
B18-B.l2<K

< s Amax(Vns(8)) < Con®~l (VA)
B18-B.l2<K

Note that the constant i > 0 in the above lemma specifies
the width of the neighborhood around 3, where the inequality
(A.3) holds. The inequality continues to hold for any K > 0,
but the constants C; and Cs start depending on K. If K
is large, the constants C; and C3 become small and large,
respectively.

The proofs of Lemma 1 and Lemma 2 are given in
Appendix V-A2 and Appendix V-A3, respectively. We first
apply these results to prove the rate of convergence in the
Lo norm in Theorem 1.

1) Deriving the L, Norm Bound in (1I.8): To begin with
suppose the ML equations (IL7) have a solution B =
(B, ..., B,). This implies, V£, .(8,) = 0, for 2 < s <
where /,, ; is as defined in (IL.5). For2 < s <rand 0 <t <
define

T,
1,
B.(t) =B, + (1 - 1)B,,

and

95(8) = (B, = B.) TVl s(B,(1)).

Note that V¢, s(B,(1)) = V&, (8,) = 0. Hence, by the
Cauchy-Schwarz inequality,

l9s(1) — g5(0)| = |(Bq - ,BS)TV&W(,BS)\

<18, = Bil2 - IVl s(BL)]2- (V.5)

Also,
gi(t) = (B, — By) V2 s(Bs())(B, — B,)  (V.6)
= Amin(v2€n,s(/@8(t)))”33 - ﬁq”% (V7)

We now consider two cases: To begin with assume s > 3.
By Lemma 2, given a constant K > 0 there exists a constant
C1 > 0 (depending on r, K, M) such that

Amin (V2 5(8)) = C1n®~ (V.8)

inf
B:B=Bl2<K
Note that HIBS(t) - /35”2 = t“/és - /BSHQ' Then
|95(1) — 9s(0)] = g5(1) — g:(0)

—f%@w

min{l, —%&—}
>J 1Bs—Bsl2 g (£)dt
0
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A K
> C1n*" B, — B[ min {1, } :
185 = Bsll2

where the last step follows from (V.6) and (V.8). Therefore,
by (V.5) and Lemma 1, with probability 1 — O(=;),

/n/2
min{|B, — B2, K} Srxc.m 1 Vs (B2)l2
1
SrEM Al 55 (V.9)
n

Since K > 0 is fixed and the RHS of (V.9) converges to zero
for s > 3, the Ly norm bound in (II.8) follows, under the
assumption that ML equations (II.7) have a solution.

Next, suppose s = 2. Since B, (t) = Ba o = B2 — Bao-
Since t € [0, 1], by Lemma 2,

Amin (V200 2(B5 (1)) = Cfe2H1Ba=Ball

S Ciefzuéfﬁz lo gy, (V.10)

for some constant C'{ > 0 depending on M. Then
|92(1) = g2(0)| = g2(1) — g2(0)
1
- [ ssterar
0

> Cyn||By — By 36 2IP2Pale
(by (V.6) and (V.10))

Therefore, by (V.5) and Lemma 1, with probability 1 — o(1),

. 9. — 1
185 = Ballae™*1%2 72l < o [V n2(By):

n

<, (V.11)
for some constant C’ > 0 depending on M. Hence, if there
exists a bounded solution to (I1.7), the Lo norm rate will follow
for s = 2.

To complete the proof we need to show that bounded
solution to equation (I.7) exists. To this end, for 2 < s < 7,
denote by D, the set of all possible degree sequences in an s-
uniform hypergraph on n vertices. Moreover, let R ; be the set
of all expected degree sequences in a hypergraph on n vertices
sampled from the s-uniform model (I.3). The following result
shows that any convex combination of s-degree sequences in
D; can be reached by the limit of expected degree sequences
of the s-uniform hypergraph 3-model. This was proved in the
graph case (s = 2) by Chatterjee et al. [10, Theorem 1.4].
Here, we show that the same holds for all 2 < s < r.

Proposition 1: Fix 2 < s < r and let D; and R be
as defined above. Then conv (D) = R, where conv (D)
denotes the convex hull of D, and R, is the closure of R,.

The proof of the above result is given in Appendix X.
Using this proposition we now show the existence of bounded
solutions of the ML equations (II.7). Note that by Propo-
sition 1, given H, ~ Hn,[rl(”’ B) the s-degree sequence
(ds(1),...,ds(n)) € Dy € Rs. This implies, there exists a
sequence {x;}>0 € R satisfying

s ds(n))-

Jim @, = (da(1), ...
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, Bit) } such that

BEL+B, +.- B
DS +BE S

. . ~(t
Since x; € R, there exists {Bé ), ..

(wt)v =

{va,...,

1+ eé.gfz)ri’ﬁgr,), +.. *52*2;5 ’ (VIZ)

veye (V)
for 1 < v < nand 2 < s < r. In other words, for each
t=0, {Bét), ... ,,Bit)} is a solution of the ML equations (I.7)
with (ds(1),ds(2),...,ds(n)) replaced by ;. By the previous
argument, there exists C' > 0 (not depending on t) such that
with probability 1 — o(1),

Jnax 181 < .

for all ¢ > 0. Therefore, the sequence {(B;t), . ,Bff))}tzo
has a limit point. This limit point is a solution to (IL.7) (by
taking limit as ¢ — oo in (V.12)) and is bounded. Finally,
since ¢, s is strongly convex for 3 € Bjs (see (V.2)), if the
gradient equations have a bounded solution, it is the unique
minimizer. Therefore, there exists a unique bounded solution
to (I1.7) which is the minimizer of ¢, ;.

2) Proof of Lemma 1: Recalling (I1.7) note that, for v € [n],

v-th coordinate of the gradient of V/,, ; is given by:

Vi s(Bs)v = Elds(v)] — ds(v) (V.13)

where

E[ds(v)]
eﬁs,v“‘ﬁa‘,vQ +---+Bc‘,’vs

- Z 1 + ePsvtBovgtotBovg V-14)

veye(IMN)

Since d4(v) is the sum of O(n*~!) independent random
variables bounded by 1, by Hoeffding’s inequality and the
union bound,

P (|Vn,s(8,)]%

for some constant Cs 5y > 0 (depending on s and M). This
establishes the second bound in (V.1).

Next, we prove the first bound in (V.1). Denote by B™ :=
{ € R™ : |x||2 < 1} the unit ball in R™. By [48, Lemma 5.2],
we can construct an 3-net V of B" satisfying log [V| < Cin
for some constant C; > 0. By a %-net of B™, we refer to a set
V, such that for all u € B™ there exists v € V satisfying |u —

1

-1
= 4C, yn® logn) < el

v|2 < 4. Now, for any unit vector @ = (a1, as,...,a,)" €
B" and the corresponding point b = (by,bs,...,b,)" € V,
recalling (V.13) gives,
Z ayVin,s(B,)v = Z ay (E[ds(v)] — ds(v))
v=1 v=1
= ) by (E[ds(v)] = da(v)) + A, (V.15)
v=1
where
A= Z (ay — by) (Elds(v)] — ds(v))
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n

> (Elds(0)] — du(0)? =

v=1

<

1
5 HVETL,S(IBS)H%

1
2
(V.16)

by the Cauchy-Schwarz inequality and the fact that ||ja—b|s <
1. Using the above in (V.15) gives,

v=1

— ds(v))

+ iHV&L,S(ﬁS)HQ. (V.17)

The inequality (V.17) holds for all a such that |a|s = 1
In particular,

n

max avv‘gn s(/B )71
a:laf=1 =4
1
< Z by (E[ds(0)] = dy(0)) + 5[V (B,)]2- (V.18)
v=1

By Cauchy-Schwartz inequality, the maximum value in the left
hand side is equal to ||V, 5(3,)]|2. Therefore, by maximizing
over a € B™ and b € V on both sides of (V.18) and rearranging
the terms,

n

960 (B2 < 2max 3 by (B[d.(0)] — du(0) . (V19)
For e = (uj,us,...,u;) € (M) denote B,, =
(Bsuys Bsugs -+, Bs,) - Hence, by (V.19), Hoeffding’s

inequality, and union bound,

P (HV&LS(Bs)Hg > 402715)

beV v=1
n e ,T,el
- ZP( bv{ 5T ]l{eeE(Hn)}}
beV v=1ee(I"):vee '

- 2
< Z e Zn_jb2 < 2C1nef2C n

beV

— 0,

by choosing C' > C'; to be large enough. This proves the first
inequality in (V.1). O

3) Proof of Lemma 2: For e = (uj,ug,...,us) €
([Z]) and B8 = (061,02,...,0,) € R", denote B8, =
(Buy» Buss -+ Bu.) |- Recalling (I1.7) note that, the Hessian
matrix V2€n’s can be expressed as:

eBel
Vi (B)= > D] s oBriy 5 Mt Lu,v € e},

u,ve[n] ee( 'L])

where 77,, is the u-th basis vector in R"”, for 1 <u < n.

Note that for 3 € R", since 3, € By, we have,

1178,] < 5Bl < 584l + 585 — Bllec-
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Hence,
1 - el7Be
e s(MH[B,-Blx) < m <1. (V.20)
For x € R"™, consider
mTv2€n,s(ﬁ)a’
eBel
- Z Z[l] (EEE s Tutu 1 {u, v € €}
u,ve[n] ec(™
Bi1
6 e
" X (e | & metinveel
ee([z]) w,ve[n]
; 2
Bl
e e
= Z e — 1{u € e}
BI1)2 Z Tu
ee([z]) (1 te ) u€e[n]
2

\%

1
1 s(M+18.-810)
1€ 2,

ee([z]>

Z z,{uece} | ,

ue[n]

where the last step uses (V.20). Observe that for any x € R”

2
Z Z z,d{uce}| =a'Lex,
ee([f]) u€e[n]
where
Lo Y Y naltfuvee)
w,ve[n] eE([Z'])
n—1 n—2 n—2
= — I, 117 21
(G Rl V) RS Gy B

where T, is the n x n identity matrix and 1 = (1,1,...,1)T.

Similarly, we can show from (V.20) that for any € R"

:CTVQ&,,,S(ﬁ)a: <

Thus, for 3 € R™
1

' L.

B*S(JV[Jf”ﬁs*BHm)/\min (L) <

(V.22)

Note that L is a circulant matrix with 2 non-zero eigenvalues:

n—1 and n—1 n—2

s—1 s—1 s—2)°
Further, there exists constants C{,C% > 0 (depending on r),
such that

n—1 n—1 n—2
C// s—1 d _ 20” s—1
(s—l) an (s—l) (s—?) 21

This implies, from (V.22), that there exists constants C7,
CL > 0 (depending on r and M) such that (V.2) hold.
The result in (V.3) from hold from (V.2) by noting that
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B. Convergence Rate in the Lo, Norm

Suppose H,, ~ H, j(n,B) be as in the statement of
Theorem 1. From the arguments in Appendix V-A we know
that, with probability 1 —o(1), the ML equations (II.7) have a
bounded solution B = (B3,,...,3,), that is, V/, ,(8,) = 0,
for 2 < s < r, and maxagcs<r 3|, = O(1). To establish
the rate in L, norm we decompose the likelihood for the s-th
layer as follows.

n

ln,s(B) = D, log (14 Pt — 3" 3,d,(v)
{vl,vg,...,vs}e([:]) v=1
= log (14 eP:1) —1{e e E(H,)}B]1
PREIEES }
=05 (BulBa) + £, s (Ba), (V.23)

where B; = (04, ...
é:;,s(ﬁuLBﬁ) = Z

ee(["]) uce

s Bu—1, But1, -+ Bn)s
{log (1 + eﬁzl>

~1{ee B(H,)}B]1f.

Z {log <1+eﬁzl)

ee([:]):u¢e

E;,,G(ﬁ’ﬁ) :

1fec E(Hn)}g§1} . (V24)

Fix a constant K > 0 and define

A0

Bsu = argming 5 g <k lns(Ba);

where B, = (Bs1,--+Bsu—1,Bsut1s- -+ Bsn). This is
the leave-one-out ML estimate on the constrained set |3, —

Bs.ul2 < K. First we bound the difference (in Lo norm) of
constrained leave-one-out ML estimate defined above and the
leave-one-out true parameter 3,

Lemma 3: Let BZ* and 3, ; be as defined above. Then,
for u € [n], with probability 1- o(1),

(V.25)

o 1
5 < , V.26
max 1850 = Baalz Ssmrx = (V.26)

Proof: To begin with, observe that

g;,s(l@s,ﬂ) > E;,S(Bz,ﬁ)

= s (Boa) + (Boa — B,
1

E)Tvgrzs(ﬁs,ﬁ)

5 (Bi = o) 'V (B)Bo — Boa).
where |3 — B, 42 < H@Zﬁ — B, al2 < K. This implies,
18,2 — Byallz - Ive, ( sl
= 7( 8,1 ) 9( s u)
1 ~0
= 5( )Tv2gn é( )(Igs,ﬂ - /68,11)'
(V.27)
By Lemma 2,
Bea—Ban) V2 (B) (B — Bar)
2ok [Beg — Boal?n®™t (V28)
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Also, by Lemma 1, IVl (Bsa)l3 Ss,mx n® with proba-  using
bility 1 — O( 5 ). Plugging in the above inequalities in (V.27),

T2 T T2 T
and using the union bound we get (V.26). O el ﬂ&e) -1 ﬂ&e)' sh Bse—1 'Bs,e|
Next, we bound the difference between the constrained -
50 : S B = Bol% (V32)

leave-one-out ML estimate (3, ; and the (unconstrained)
leave-one-out ML estimate 3, ; = (85,1, Bs.u—1,Bsut1, By (V.30) and (V.31), to prove the result in (V.29) it suffices

.. 7[337”). show the following holds with probability 1 — o(1),
Lemma 4: Let ﬁ:- and ﬁ be as defined above. Then, 2
with probability 1 — o(1),
) max Y] > {tlee B} - w(Bl1)}
max HBZ.& -3, qu <MK — u (V.29) veln\{u} \ ee(Im):u,vee
ue[n] ’ n n
<nsL. (V.33)

Proof: [Please read this proof a bit. .. .there may be some
mistakes. ...I made some major changes.] By the definition of ¢ io proved in Appendix V-B.1. 0

Bs.u (recall (V.25)) We now apply the above lemmas to derive the bound in

_ _ 50 the Lo, norm. To begin with note that since /,, AS =
En,s(lgs,ﬁ) = gn,s( s,ﬁ) ming 02715(/8 ) g ' (ﬁ )

= é;,s(/és,ﬁ) + (B:a - BS,E)TVE;,S(BS,E) o+ (63 u|é _) + 0o (B _) >, S(B )
+ (Bz,ﬁ - BS,E)TVE;,S(B)(BZ,E - Bs,ﬁ)a

= g:,s(ﬁs;u|ﬁs,ﬂ) + gr:,s(/ésﬂ)'

®

\ivhere HB - BS,EHQ < UBS,E - Bs,a‘b- NoteA Othat HBsﬁ - (V.34)
Bsalz = O(1), since Bl = O(1) and |8, 4] = O(1).
Therefore, we have K > 0 such that by Lemma 2, The above inequality implies
»° > ”vg'r_Ls(ﬁs 17,)“2 0 ] ﬁ Bqﬂ n ﬂ? /8911
1o = Buald Samr 5= (V.30) s BoalBog) 2 &n,s(PalBe)
. A A = gzs(ﬂs,uLgs ﬁ)
Since VY, s(8,) = 0, that is, 05 =4, s(B,) =0, for v € [n].
Hence, we have from (V.23),
8 ) a (5 /BSU)aBu ns(68u|/65u)
=t (/6*) = (ﬁsu';ﬁ ) 2
0 X n,s\Ms,a a X ns s, 1 0 ~ A
5 5 R §(ﬁs u ﬁs u) ﬁ Z,s(ﬁ'ﬁs,ﬁ)v
=Y (Xe—v(TB ~ R
es(I"):{u,v}ee where 3 is a convex combination of (3 ,, and (3, ,,. Therefore,
where ¢(z) := % and X, = I{ee E(H,)} for e € ([Z]). % ) 4|ag or (/gs,u|Bs,ﬂ)|2 (V.35)
This i li s,u — Ms,u E ~ = .
s implies TR
IVE. S( i a) H2 From arguments in Appendix V-A we know that with probabil-
B ity 1—0(1), |Bs— Bl < B, —B,]2 < 1. Note that for 3 €
B Z Z (Xo— w(BT 1} R™ such that |3 — B[« < 1, we have |3]s < 1 and hence,
- € s,e |17 3,| < 1. This implies, (173, ,)(1-¢(17 B, ,)) = 1 and
ve[n]\{u} ee([z]):{u,u}ee hence ’ ’
— 2 62 A Z T B T B
(B18s,a) = P17 Be) (1 = (17 B, )
T 222 n S s, e,s e,s
S Z Z {Xe - ¢(1 'ste)} ﬂ ee([f]):uee
ve[n]\{u} ee([zj):{u,v}ee '

>n*"t  (V.36)

N where BS = (Bs,lw--;Bs,uflaﬁs,quﬁs;u 17--~7Bs7n>—r‘
+ Z {¢(1T163,e) - ¢(1T/63,e)} HCHCC, (V35) implies, '

ee([:]):{u,v}ee

2 ~ ‘ (ﬁs u|168 u)‘
(Bou — Bsw)® S a5’ e : (V.37)
gr Z Z {Xe - ,(/}(17,6’878)} 2 4 R 9 .
veln\{u} \ ee(I™):(u,v}ee Now, we bound |06u 03 o(Bs,ulBs.z)|*. For this define
Tt (V31) IBZ = ([/3:,71]1)-"7[B‘:,ﬁ]uflaﬁs,u7[B‘:,ﬁ]qula'-w[/éZ}ﬂ]n)T-
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Then we have

0 . _
‘(mgrt,s(ﬁs,ulﬁ&u) = Z {Xe - w(lT/Be,s)}‘
¢ eE([Z]):uEe
<Ti(u) +To(u) + Ts(u),  (V.38)
where

)

T1 (U) = Z

ee<[:]):uee

Tr(u) := Z

ee([:]):uee

{Xe - ¢(1Tlge,s)}

{¢(1TIBZ,S) - w(l—rﬂe,s)}

and

{w(lTle,s) - w(lTIBe,s)} .

T3(u) := Z

eE([Z']):uee

Note that since {Xc}__(in1) are independent and bounded

random variables, using i—Ioeffding’s inequality and union
bound gives

max 71 (u) < +/n~1logn,

u€[n]

with probability 1 — o(1). Next, we consider T5(u).
By Lemma 3, with probability 1 — o(1),

max Th(u) < géi[i.% 2 { Z |Bs,0 — [ﬁzuM}

uetn] ee([?]):uee vee

= max Z ns—2|ﬁs7v - [Bs,a]v|
€] ey
<0 Emax |, ;- Boalz < Voo,
ue|n

A similar argument shows that, with probability 1 — o(1),
maXye[,] I3(u) < nS*%HBS’ﬂ - BEEHQ Combining the
bounds on T, T, and T3 with (V.37) and (V.38) gives, with
probability 1 — o(1),

. logn  maxuepn) 1850 — Baale
ﬂsﬁslooS\/j+ A —
ns Vn

Applying (V.39) in (V.29) now gives, with probability 1—o(1),

(V.39)

~A O A~
max ”ﬂs,ﬁ - 163717,”2
ue[n]

1 3 _
ss,M,K ns?l + ”ﬁ@ \/58|w

1 I maXye[n] ”ﬁs,ﬂ - 163,1]”2 < 1

~

Ss, MK

ns—1 n ns—1 :

Using this inequality with (V.39) gives, with probability 1 —

o(1),
. [logn
”ﬁg - BSHOC ss,M,K F7

establishing the desired bound in (IL.8).

6011

Proof: Denote by B"~! =
{x € R*! |z]2 < 1}. Using [48, Lemma 5.2],
we can construct an %-net VYV, of B™ ! (defined in
Section V-A.2) satisfying log |V;| < Can for some constant
Cy > 0. Now, for any v € [n], any unit vector @ =
(@1, ..., Gy_1,8us1,---,0,)" €B"! and the corresponding
point i) = (517. .. 75u—171~)u+17~ . .,i)n)—r eV,

178
~ € e
2 Ay Z {Xe_ 1+61T,@e}
ee([:]):umee

ve[n]\{u}

1) Proof of (V.33):

-
61 BE

- 2 b %‘4 {Xe_1+elwe} B,
,u,vEE

vel\u) | ee(”]
(V.40)
where
173
- = € e
Au ::Z (av - bv) Z {Xe - 1+ elT:Be }
ee([:]):u,vee

ve[n]\{u}

Proceeding as in (V.16), for all v € [n], we can show

el Be
Xo— S
14+ el'Be

Maximizing over a € B"~! and b € V; on both sides of (V.40)
we get

INEENED) >

ve[n]\{u} ee([z]):u,vee

178,
2 D

ve[n]\{u} ee([”]):u,vee
{Xe - elTB‘: }
14 el'Pe

s

< 2max Z by Z

PV velnl\ub | ee(M)uvee
(van
As the above relation holds for all u € [n] we get
2
elTBe
- St
ueln] ve[n]\{u} ee([:]):u,vee 1+et'Pe
< 2 max max BU Xe—
ueln] bev, 2 X

ve[n]\{u}

ee([g]):u,vee
el Be

Hence, using (V.42), Hoeffding Inequality and union bound
we get

1’8

e e

P(%ﬁ 2, 2 {Xe_1+elme}
ee([:’]):u,vee

ve[n]\{u}
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> 4K2n51> (V.43)

2 by

u=1pey, ve[n]\{u} ee([z]):u,vee
61T’Ge 2K s—=1
2
T el B (70"
n 2K2%n

< Z Z e Iuiib?

u=1 BEV]
<n 202n€ 2K?%n N 07

for K large enough. O

VI. ESTIMATION LOWER BOUNDS: PROOF OF THEOREM 2

The lower bound in the Lo norm is proved in
Appendix VI-A and the lower bound in the L., norm is proved
Appendix VI-B.

A. Estimation Lower Bound in the L, Norm: Proof of (11.10)

For v € R™, denote the probability distribution of s-uniform
model H,(n,v) by P~. To prove the result (IL.10) recall the
following version of Fano’s lemma:

Theorem 9 ([47, Theorem 2.5]): Suppose there exists
~O 4 e R, with [vU)| € By forall 0 < j < J,
such that

(1) ¥ =4Oy =25 >0forall 0 < j# £ < J,
(2) 337 KL(Pyo) | Pyo) < alog ,
where « € (0,1/8). Then

VI ( [ 2a )

min max P (|4 — >s5) > 1—2a— .

(VL.1)

To obtain v, ..., ~(/) € R” as in the above lemma

we will invoke the Gilbert-Varshamov Theorem (see [47,

Lemma 2.9]) which states that there exists w(®, ... w(/) e
{0,1}™, with J = 2™/8, such that w(® = (0,---,0)T and

lw® —w®@; > 2, (VI1.2)

oo

forall 0 < j # £ < J. For w© ... w() e {0,1}" as above
and § € (0,1/8) define,

~9) = e, for0<j<J,

where ¢, = 16Cn~ "2, with C = C(d,s) > 0 a constant
depending on § and s to be chosen later. By (V1.2) we have

@ =45 > 2007,
Now,

KL, || Pyo)
s Hw(J)Hl n — Hw(f)\h

= ¥ (ten) log (20 (e,
t=0< t )( s—1 ){ (ten) log (29 (ten))

+ (L= ¥ (tea)) log (2 (1 — ¥ (t2,))) |,
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where ¢(z) = % is the logistic function defined in
Lemma 4. By a Taylor expansion, for small enough x > 0,

() og(20(2)) +(1=0(x)) log (21— (@) = T +O0(?).

. @ e .
Hence, using (”‘"t ”1)(" lo Hl) <s n° gives

s—t

J
1
5 D IKLP, o) [Pyw) S n'ep <4 CPn < Slog J,
j=1

for C = (C(d,s) chosen appropriately. Hence, applying
Theorem 9 and taking J — o0 in (VI.1) gives

min max P (H’? =Y = Cn_%) >1-—204.
¥

This completes the proof of (II.10).

B. Estimation Lower Bound in Lo, Norm: Proof of (II.11)

Let us consider n + 1 points (O M 4 ¢ R
defined as follows:

A0) = 2ee; ifje{l,...,n},
0 ifj=0,
where e; is the j-th unit vector for j € [n] and ¢ = C if_;g_'f

for a constant C' = C'(6,s) > 0 (depending on & and s) to be
chosen later. By definition, we have

; ~ |logn
¢ /
H'Y(]) - '7( )Hoo =20 1

Denote the probability distribution of the s-uniform models
Hy(n, ) by P Observe that for all j € {1,...,n}

KL(P. ) [P-or)
1 (1 + %) 1 _
=3 Z [log{%%}+log{2(l+e2)}].
(VL3)

ee([:’]):jee

By Taylor’s theorem, we get

log{(”e%)} Hlog {5149} = 16+ O()

2e2e
4C?1 logn)?
_4C7ogn ) ((Uogn)* ) (V1)
TL571 nE(S_l)
Hence, from (VI.3),
KL(P, ) [P0 )
=2 (logn)?
nz\$—

for some constant L depending on s. Therefore, we have

1 & ~
E Z KL(]P),Y(]‘) H]P),Y(o)) <s LSCQ logn < 5logn,
j=1
for C = C(d,s) chosen appropriately to ensure ¢ € (0,1/8).
Hence, applying Theorem 9 (with the Lo norm replaced by
the L, norm) and taking large enough n in (VIL.1) gives

~ 1
min max P <|'§/—'y|OC =C og7}> >1-—20.
¥y ns—

(VL.6)
This completes the proof of (IL.11).
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VII. PROOF OF THEOREM 3 AND THEOREM 4

We begin with the proof of Theorem 3 in Section VII-A.
The proof of Theorem 4 is given in Section VII-B.

A. Proof of Theorem 3

Recall that, for 2 < s <7, ds = (ds(1),ds(2),...,ds(n))"
is the vector of s-degrees. The first step in the proof of
Theorem 3 is to derive a linearization of BS in terms of the
s-degrees as in Proposition 2 below. The proof is given in
Appendix VII-A.1.

Proposition 2: Fix 2 < s < r. Then under the assumptions
of Theorem 3, with probability 1 — o(1) as n — o,

logn

1B~ 6, =k~ EldDl - 0 (£ ) v

where 3, s = ((05(1,v)))u,ve[n] 18 @ 7 x 7 matrix with

T
61 IBS,e

(14 el Pee)2

T
el lﬂs,e

S AYS | )
(1+ 61T65,3)2 (

ee([z]):uee

where o (u)? is also defined in (I1.12).
Next, define the matrix T'y, s = (75(u, )y, ve[n] as follows:

{u = v}
os(u)? -

The following lemma shows that it is possible to replace the
matrix 2;; in (VIL.1) with the matrix T’ ; asymptotically.
The proof of the lemma is given in Appendix VII-A.1.
Lemma 5: Suppose X, ; and I';, ; be as defined in (VIL.2)
and (VIL3), respectively. Then under the assumptions of

Theorem 3,

¥s(u,v) := (VIL3)

1
IThs =il <O <> , (VIL4)
, >

where [Al = max, ye[n]|Guy| for a matrix A =
((@u,v))uve[n]- Furthermore,

| Cov(Tns = 5)(ds — E[ds])]]lo
1
<P =24l +0 (n> : (VILS)

To complete the proof of Theorem 3, consider J; € (Pl”]) , for

as = 1 fixed. Proposition 2 and Lemma 5 combined iniplies,

1
—o—),
with probability 1 — o(1). Now, recall from the statement of

Theorem 3 that D, = diag (05(v))ye[n]- From (VIL.2) observe
that max,ep,, 0s(v)? = n*~ ', since |B,]c < M = O(1).

Hence,
1
-=o(5)

H[(Bs - /65)]]5 - [Fn,s(ds - E[ds])]Js

H [Ds (Bs_fas)]Js _[Ds (Fn,s(ds _]E[ds])]Js

6013

Note that for v € Jg,
05(V)[Tn,s(ds —

Therefore, from (VIL6),

(D103, - B)1) = ((W))
s veJs

B N, (0,1),

using the central limit theorem for sums of independent
bounded random variables. Since BS are independent across
2 < s < r, the result in (II.14) follows.

1) Proof of Proposition 2: For 2 < s < r and e =
(ur,uz, .y us) € (1), et B, o = (Bsyur s B Bs)|
and ,35,6 (Bsir> Bsugs -+ -+ Bsa,)T. Moreover, 1 will
denote the vector of ones in the appropriate dimension.
To begin with, (IL.7) and (V.14) gives, for v € [n],

ds(v) — E[ds(v)]
1B

elT'és‘e
) Z 1 + €1Té5,e N 1 + elTﬁs,e . (VII7)

ee([z]):vee

Note that for e € (["]), by a Taylor expansion,

S

T3 T
1B 1B

1 + elT,és,e 1 + elTﬁS’e

-
e 174 17 T VILS
S (BB # T VILS)

where

1 - 2
|Tse <§‘1Tﬂs,e—1Tﬂs,e < 1B, — BL%,. (VIL9)

Then, from (VIL.7),
ds(v) = E[dy(0)] = [Sns(B, = B,)| + Ruve (VILIO)
Ts e. From (VIL.10), we have

where vas = Zee([z]):vee
By — B, =%, 4(ds —E[d,]) - =, R,  (VILID)
where R, s = (Ris,Ras,---,Rns)'. Note that
from (VIL9),
Rosl <)) |Toel o0 tB, = Byl%. (VILI2)
ee([;‘]):vee
To bound HE;}SRn,s o, Note that for v € [n],
|[E;,13Rn,3]v|
< |[Fn,sRn7S]v| + ‘[(2;,15 - Fn,S)Rn7S]v|- (VIL13)
Observe that
Rv,s
[I‘n,sRn,s]U = 0'5(7))2 .

Using o,(v)? = n*~1, (VIL12), and (IL.8) gives,

s logn
PR L) 18 - 8.1 = 0 (225,

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 05,2025 at 02:25:33 UTC from IEEE Xplore. Restrictions apply.



6014

with probability 1 — o(1). Further, by Lemma 5, (VIL.12),
and (IL8),

(=

- I‘n,s)Rn,s]v| §
<

with probability 1 —o(1). Hence, by (VIL.11) and (VIL.13) the

result in (VIL.1) follows. O
2) Proof of Lemma 5

Proof of (VII.4): Denote

Ao =Ty, E;i = ((05(w, 0)))uvefn)
Zn,s =I,-3, F ((Zs(uu v)))u,’ue[n]y

and
®n,s = Fn,sZn,s = (95<uav))u,ve[n]-
Then
An,s = (Fn,s - 2;;)(171 - En,srn,s)
- Fn,s(In - En,srnﬁs)
=AnsZns — O (VIL14)

Hence, for u,v € [n],

ds(u,v)
ds(u, w)zs(w,v) — Os(u, v)

RS
<

|
M=

g
l

I
=

s (u, w) {It{w =0} — Zn: os(w, b)ys(b, v)}

w= b=1
(u,v)
2 {]l{w—v}
o ]l{vfb} 0w
g LG byl St AEY

(by (VIL3))
i (u,w){ T{w = v} — 75 (w,v) — 0s(u,v)
o(v)?

:wjzn]la( ){]l{w;é }US(Z})Z)}GS(UW),

(VIL15)

since Yper)\fuy 05 (W; 0) = o5(w,w) = o(w)?. The follow-
ing lemma bounds the maximum norm of ®,, s = 'y, s Z,, s =
((09 (U, U)))u,ve[n]~

Lemma 6: For u,v,w € [n],

O0s,max

2 27
Us,minn

max {[0s (u, v)|, 05 (u, v) — 05 (v, w)[} <
(VIL16)

where s min = Miljcy<p<n 0s(U,v) and o5 max =
maxj<y<v<n s (U, V).
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Proof: Note that O, I'nsZns =
I, X, I, This means for u,v € [n],

Y vs(w@)os(z,y)ys(y, ).

z,y€[n]

0 (U,U) = p)/s(ua ’U) -

(VIL17)

Then recalling the definition of vs(u,v) from (VIL3) gives,
D1 v, z)os(@,y)7s(y, v)

@,y€[n]
_ H{u = 2}1{y = v}os(x,y)
RPN e o
_ os(u,v)
os(u)2og(v)?

Hence, from (VIIL.3) and (VII.17),

O'S(U,U)]I{U a U} 0 s,max
0 - < e
|05 (u, v)| o5 (u)204(v)? ~ Uiminnz
This completes the proof of (VIL.16). U

Now, for u € [n], let M, m € [n] be such that

0s(u,m) = max ds(u,w) and

we[n]
ds(u,m) = m%n] 0s(u, w). (VIL.18)
wWE|N
The following lemma gives bounds on d;(u, m) and ds(u, ).
Lemma 7: For u € [n],

i ds(u, w)os(w,u) = 0.

This implies, d5(u, ) > 0 and J5(u, m) < 0.

Proof: Note that > _ 0 (u, w)os(w, u) is the u-th diag-
onal element of the matrix A, 3, ; = I'y, 3, s — I, (recall
that A, , =T 5 —2;,13)' Note that the u-th diagonal element
of T'y, 3, s is given by

2 s (u, w)os(w, u) = os(w,u) =1,

1{u = w}
Z o5 ()2

we[n] we[n]
since os(u,u) = os(u)?. Hence, u-th diagonal element of
A, X, s 1S zero. ]
Now, recalling (VIIL.15) note that
0s(u,m) — d5(u, m) + (0s(u,m) — 05(u, m))

os(m)?

= 2 55 (u, w) {]l{w # mjos (v, m)

n TH{w i:r(ti;f)z(w, m) }

1{w # m}os(w, m)
os(m)?

() = .0, ) |

CLw m}az(w,m) } |

w=1

(VIL19)

os(m)

since

and

Z os(w,m) = US(m)Qv
we[n]\{m}
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Z os(w,m) = o4(m)?>.

we[n]\{m}
Define
Q= {w € [n]: Hw ianéij)sz(w’m)
T{w # W}ifs (w,m) } (VIL20)
Os (m)2

and X := |Q|. Then, we have

(8 w) — b1, )

we

{ 1w #02235)52(10, m)

~ L{w # mjos(w,m) }

os()?

< (68(u7m) - 55(’“,@)) {z:“’EQO—S(w’Tn)

Os (m>2
_ Zuwe 1w # Mo, (w, ) } . (VIL21)
os(m)?
Note that
Diwen Ts(w, m)

0s(m)?
_ Dwen 9s(w,m)

2weq Os(w, m) + Zwe[n]\(QUm) os(w, m)

1
T = oo (wm) (VIL22)
1+ we[n\(QJm) TS\ ==

weq Os(w,m)

since m ¢ €). Now, observe that

Dwen\(@Um) T (W, 1)
Yiwen 0s(w,m)

This implies,

(n — A= 1)Us,min

/\Us,max

ZweQ Us(wam) < )‘Js,max . (VIL23)
Os (m)Q )‘Us,max + (TL —A- 1)Us,min
Similarly,
DYiweo Hw # mpos(w,m) ¥, cq H{w # mios(w,m)
Os (m)2 Zwe[n] ]l{w # m}ﬂ's (w7m>

1

ZwE[n]\Q ]I{UJ;&m}GS (wvﬁ) ’
Zweﬂ Il{w;éﬁ}o'é (wvﬁ)
(VIL24)

1+

Therefore, since m € €,

Zwe[n]\Q ]l{w #* m}()’s (U], m)
Zweﬂ ]l{w # m}JS(’wvm)

(’/l - )\)US max
< . .
()\ - 1)O's,min

Hence,
Zweﬂ ]l{w 7 W}Us(w,m)

os(m)?
()‘ - 1)Us,min
- (A =1)05 min + (1 — N)0s max (VIL.25)
Applying (VII.23) and (VIL.25) in (VIL.21) gives,
D (0w, w) — 8, (u, m)) {ﬂ{w 7 m}a’;(w’m) (VIL.26)
wEe Os (m)
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- Lw # mios(w, m) }

os(T)2

< (0s(u,m) — 65 (u,m)) f(N), (VIL27)
where
>\US max
A) = ;
f( ) /\a's,max + (?’L -1- )\)Us,min
_ <>‘ - 1)Us,min
()\ - 1)Us,rllin + (n - A)Us,max '

(VIL.28)

Note that f(\) attains maximum at A = n/2 over A € (1,n—1)
and ( %)
N0 smax — \ — 2)0s min
2) = = ymin
f(n/ ) NOs max + (TL - 2)0'3,min

Therefore, from Lemma 6, (VIL.19), there exists a constant
C > 0 such that (VIIL.26),

0s(u,m) — ds(u, m)

NO s max — (’I’L — 2)05 min L
< > > S (w7 — 62 (u.m
h N0 s max + (n — 2)08,n11n< S( ’ ) 8( 77))
C0smax
O-g,minn2

This implies,
Cas,max(ngs,max + (Tl - 2)Us,min)
2(n—2)o3 . n?

s, min

0s(u,m) — ds(u,m) <

Hence, from Lemma 7,

max |Js(u, w)| < ds(u, M) — ds(u, m)

I<w<n
o o L
o—g,mimn2 n? 7
Since 05 min = n°"2 and 0 max = N2, using
1Bsllc < M = O(1).
This completes the proof of (VIL4). O
Proof of (VILS):
Define
Uns= COV[(I‘H,S - E;,%e)(ds — E[d,])]
= Cov[A, s(ds — E[ds])], (VIL.29)
since A, s =T, s — E;;. Observe that
Un,s = An,sE[(ds - E[dS])(ds - E[ds])T]A;Lr,S
= An,sEn,sA;s
= (I‘n,s - 2;719) - I‘n,s(In - 2n,s]-—‘n,s)
= (Tns —2,5) — Ons, (VIL30)
since ®,, = I'y.,Z,, and Z,,, = I, — %, I, ,.
By Lemma 6,
05, max 1
1®n,sleo < e — S (VIL31)
Since o min = N2 and 0 pmax = n°72, using B, <
M = O(1). By (VIL4), (VIL30), and (VIL31) the result

in (VIL5) follows. O
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B. Proof of Theorem 4

For ¢ = (x1,%9,...
function

,Zn) € R™ and u € [n] define the

1Twe

gu(x) = Z a_fgw7

ee([:”]):uee

where e = (Tyy, Tugs---,Tu,) for € = (ug,ug,. .., us).
Then recalling (I1.12) and (IL.15), os(v)? = g¢,(B,) and
6,()? = g,(B,) for all v € [n]. Hence, by a Taylor
expansion,

165(v)* = 0 (v)?|
= l95(B.) — 95(8,)]

el Bie el Bee
ee(t))vee { (1+ elTBS“‘)Q - (I+ elTBS’E)z }

S 1B = Billoon® ™

Recalling the definition of Js = {v,1, ..
rem 4, this implies

(VIL32)

., Vs q,} from Theo-

i
=
=
>
»

=
w

o
=
<
:

v
_'
—
o
w N
i
<
:

A
=
—
@
w

|

@
w

o
=
<
:

v

»
Il

I
D17
Q>

e
B

3<’Uaj )2(3371)&], - ﬁs,vaj )2

@
Il
N
s S
a
—

Il
-

Og ('Uaj )Q(Bs,vaj - ﬁs,vaj )2

@
R

+
b
—
Q>
)
—
<
s)
S

N
<.
Il
—

-)2 - US(”aj)2)(Bs,vaj - ﬂs,vaj )2

w
Il
N
<.
Il
it

D
=

P

X :=2 as + OP(l)a

by Theorem 3, (VII.32) and (II.8). This completes the proof
of (I1.16).

VIII. PROOFS OF THEOREMS 5 AND 6
A. Proof of Theorem 5

Suppose H,, ~ H,, 5(n,~) for v as in (IIL.1). Let 3,, 5 be as
defined in (VI1.2) with 3, replaced by v = (V1,72,---,7n) -
Then V24, s(v) = X, 5. By a Taylor expansion,

gn,s (7) - E’ﬂ,s(l@s)

— (B.— ) V(1) + 2(B. = 1) BBy — ) + T,

2
(VIIL1)
where
Tns =T + T3 + 7.0, (VIIL2)
with
1 Bl + 0B, =) 5
,Zyn(ls) =z L 2 (/83 [ '7u)37
’ 6 ugl a(ﬂs,u)g
7. L s (v +0(Bs =)
" I1<u#v<n a(ﬂs,u)zaﬁs,v
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(Bs,u - 'VU)2(BS,1) - 7@)}a

3)._ 1 0*ns (7 + 0B, ~ 7))
7 T Z { aﬁs,uaﬁsxvaﬁs’w

I<uz#v#w<n
(Bs,u - 'Yu)(Bs,v - ’Yv)([gs,w - 'Yw)},

for some 6 € (0,1).
Now, by arguments as in (VIL.11) it follows that

B, —v =3, (ds —E,[d,]) + =, Ry, (VIIL3)
where R, , is as defined in (VIL10) and (VIL.11) with 3,

replaced by . Using this and noting that —V¢,, ;(v) = ds —
E,lds],

(Bs - "y)TVKmS(j/)

= (ds — E,[d,]) "=, VL, () + R} 2,1V, ()

= —(ds — E,[d,]) "=, (ds — E4[ds])
- Rg,szi,%s(ds - ]E’y [ds])

n

(VIIL4)
Similarly, using (VIIL.3),
Bs =) Zns(Bs — )
= (ds — E4[d,]) 27 (ds — E4[ds])
+2R, 3, (d, —Ey[d,]) + R} 5, R, ..

n,s“n,s n,s

(VIILS)
Combining (VIIL.1), (VIIL4), and (VIILS) gives,
lns(By) = n,s(7)
(ds = By[d,]) "2, (ds — Eq[dy])

1
2

1
+ 51122752;}81%5,178 + T s (VIIL6)

We begin by showing that RI)SE;;R,,,S = op(y/n).
To this end, (VIL.12) and o (u)? = n*~! gives,

RLrn R = |8 ] <wip, - g < 2

n,s+ n,stln.s| = 2 =n s Ms ~ s—2
u=1 O'S(U) n

(VIIL.7)

with probability 1 — o(1) by (IL.8). Next, observe that
< nHAn,sRn,SHOO : HRn,sHoO
< nzHRn,s |go A

< nsHBs - Bs”zolo
(by (VIL4) and (VIL12))

.
AN

o]

log®n

(VIILS)

~ ns_2 b

with probability 1 — o(1) by (I.8). Combining (VIIL7)
and (VIIL.8) it follows that with probability 1 — o(1),

R} S, Ry, <|R] T R,
log®n
-
+ ’Rn,sAn,sRn,s S F
= op(+/n). (VIIL9)
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This implies, the second term in the RHS of (VIII.6) does not
contribute to the CLT of the log-likelihood ratio log A,, .
Next, we show that the third term in the RHS of (VIIL.6)
is op(4/n), hence, it also does not contribute to the CLT of
log Ay s.
Lemma 8: Suppose s
op(v/n). ) A
Proof: Define 3, = v + 0(3,
recalling (VIIL.2) observe that

1 & el Pee(l — el Bse)
53 |
u=1 ee([Z’]):uee

> 3 and v € B(M). Then 7,, s =

— =), for 6 € (0,1). Then

(14! Buc)?

(Bs,u - ’Yu)g}
PP { l e Pue(l - eﬂés,e)]
3 1<uz#v<n ee(["]) woce (1 + elTBs,e)S

(Bs,u - ’Yu)Q(Bs,U - fYU)}a

FRONSES ﬂ 3 et Pl —ele’Sve)]
) 6 1<urvrwsn e (171) 0,0 wee (1+ e1Tﬁs,e)3

where
Bee = (Bour Bouss -
Since ~y € Bys and

1B, — Yoo Sens ViognjnT

with probability 1 — o(1), BS € Boys for large n with
probability 1 — o(1). This implies,

aBs,us)T7 fOI' € = (ulau%"'aus)'

(logn)3

T(l) <um ns”B p—

n,s ~

= op(v/n),
(VIIL.10)

for s > 3. Similarly, we can show that for s > 3, ’Tn(2) =

op(4/n) and ’Tn(?’g) = op(4/n). This completes the proof of
the Lemma 8. U

Remark 3: Note that Lemma 8 assumes that s > 3. This
is because when s = 2 (that is, the graph case), the proof
of Lemma 8 gives the bound 7,2 = O(polygon(n)/+/n)
which is not op(4/n) (see (VIIL.10)). Nevertheless, it follows
from the proof of Theorem 1 (a) in Yan et al. [56], where the
asymptotic null distribution of the LR test for the graph (3-
model was derived, that the result in Lemma 8 also holds when

= 2, that is, 7,2 = op(y/n). For this one has to expand
ln.s(B,) = ln.s(~) up to the fourth order term, and show that
the third order term is op(y/n) at the true parameter value
and the fourth order term is op (/1) at an intermediate point.
For s > 3, the third order term at an intermediate point is
op(4/n), hence, we do not have to consider the fourth order
term.

'YHoc S M,s
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Now, recall the definition of log A,, s from (III.2). Then by
Lemma 8 and (VIIL.6)

2log Ay s — 1

VIIL.11
o ( )
(ds — Ey[d.]) 'S, (ds — Ey[di])—n
= = +Op(1).
V2n
(VIIL.12)
By the following lemma we can replace Ens with T, 4

in the RHS above. The proof of the lemma is given in
Appendix VIII-A.1.
Lemma 9: For L > 0,

P (ds - E’Y[dS])T(Er_L,ls - I‘n,S)(dé‘ - EV[dS]) > L) 3 ﬁ
This implies, (ds — Eq[ds])T (2, — Th.s)(ds — B [ds]) is
bounded in probability.
By Lemma 9 and recalling (VIL.3),
(ds - E"/[ds])TE’r_L,IS(dS - E’Y[ds])
V2n
(ds — E"/[dS])TFn S(ds — E'Y[dSD
= - +op (1
1\ (ds(u) — By [ds (u)])®
= +op(1l). (VIII13
V2n 7;1 os(u)? P )

Proposition 3 establishes the asymptotic normality of the

leading term in the RHS above. The proof is given in

Appendix VIII-A.2. O
Proposition 3: Under the assumption of Theorem 5,

L[R5 (@) = By fdy(w)])?
m{z o.(u)?

— n} B N(,1).
(VIIL14)

The result in (II1.3) now follows from (VIIL.11), (VIII.13),
and Proposition 3.
1) Proof of Lemma 9: To begin with note that

Ey[(ds — By[ds]) T (25} — Do) (ds — By [dy])]
= tr(Ey [(ds — Ey[di])(ds — Eq[d]) T](2, 5 — Ts))
=tr(l, — X, Tns)
=n— os(u,v)ys(u,v)

w,ve[n]

1{u = v}

=n-— os(u,v)————== = 0.

w,ve[n] s (u)2

Next, we will show that Var,[(ds — E4[d,])T (2} —
I, s)(ds — E[ds])] = O(1). The result in Lemma 9 then
follows by Chebyshev’s inequality. Recall that A, ; := 3 !

7?€

T, s. We shall denote the entries of A, s by ((Jy,)) for
u,v € [n]. Then
(d —E [d ])T(Z;; - Fn s)(ds - E‘Y[ds])
Z Ou,o(ds(u) — Eqy[ds(u)])(ds(v) — Ey[ds(v)]).

u,ve[n]
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Define ds(u) := ds(u) — E4[ds(u)], for w € [n]. Then c) Case 3: u # v # v = v': By similar reasoning as
Y y g
Var, [(ds — E, [d])T (271 — Ty (ds — E,[d.])] the prev10usitwo (iases it can be shown that
= D1 Suwburw Covyldy(u)ds(v), dy(u')ds(v)]. Covy [ds(u)ds (v), ds (u')ds (v')]
wvw €] = Covy[d3(u), ds(u')ds(u')] Sar n** >
(VIIL15) d) Case 4: u # v # u' # v'. In this case, it can be
To analyze the RHS of (VIIL.15) we consider the following shown that
4 cases. 7 7 T (0INT (0] 2s—4
a) Case I: uw=v =1 =v'. In this case we have Covylds(u)ds(v), ds(w')ds (V)] Sar m :
Cova [ds(u)ds(v), ds(u')ds(v')] = Var, [dy(w)2]. Combining the 4 cases and using (VIIIL.15),
- Ty—1
For e € (I"]), denote X, := 1{e € E(H,)} and X, := 1{ee Vary[(ds — Ey[ds]) (2,5 — T s)(ds — Ey[ds])]
E(H,)} — E[1{e € E(H,)}]. Since {X, : e € ("))} are Sw max 6,0 *n%° = O(1),
independent and have zero mean, {X.X. : e, e’ € ([Z])} are ’
pairwise uncorrelated. Hence, where the last step uses (VIL4).
2) Proof of Proposition 3: Suppose H, =
B o (V(H,),E(H,)) ~ Hys(n,vy) for v as in (IIL.1). For
Var. [dy(u)?] = Var, > XeXer e = {v1,0s,...,vs} € ("), denote
ee’e(l")uceNe’
( ) _ Xe _X{vl V2., Us} * —]I{GEE(H )}
= > Var,, [XeXe | .
cere(t)uce e’ and X, :=1{ee€ E(H,)} —E,[1{eec E(H,)}]. Also, for
TS - u € [n] denote
= D, Var,[X]] ) i}
ee(!™)):uee ds(u) = ds(u) — By [ds(u)] = Z Xe.
_ _ ee([;]) uce
+ Z Vary [X.] Vary [Xe].
re(InY. / Observe that
eF#e e( s ).ueer\e
(VIIL16) do(u)?®= > X2+ D XoXor.
Since H’YHOO <M, ee([:]):uee e#e/e([z]):ueeme’
o1 e (VIIL.17)
Var[Xe] = Vary | Xe] = Gy =v L This implies,
where Ve = (Yuys Yups---»Yu.) s fOr € = (ug,ug, ... ug). Ey[ds(u)?] = Z E,[X2]
Similarly, Var[X2] =) 1. Hence, (VIIL.16) implies that ee(I)):uee
Vary [d (u)?] Sar 072, = Y Var, [XZ]=Vary[dy(w)] = oy(w)?.
b) Case 2: u # v =u' = v'. Observe that ee("):uee
Covy[ds(u)ds(v), ds(u)ds(v')] Hence,
= Covy[ds(u)ds(v), ds(v )2] ) 1 i (d(w) ~ Eo[d, (w)])?
- Z { [ XeyXe,] 2n | 2 os(u)?
e1,e2,e3,eqe(™ n 3 7
aeneyec(t) L @) - Bl
*E’V[XmXez]E’y [XesXe4]} : m u=1 as(u
n 2 72
Note that the non-zero contributions in the RHS above come — 1 2 2 X — By [XC]
from the terms when e; = e; and e, = e, for ¢,5,k,0 € 2n =1 ge((M):uee os(u)?
{1,...,4}. Hence, 15 " 2.7
_ _ - e\e’
Cova [ds(u)ds (v), ds(v)?] t Zl [Z o4 (u)?
= Y (B [XI- E,[X2)) 1= eere()mcene

(by (VIIL17))

=T +Ts. (VIIL.18)
+20 3 B[XEE[RE) e
erese(IM) We will first show that T} = op(1). Towards this note that
u,vEe] ,VELes _ _
o X2 -E,[X2]
< 25—3 T, = s e Y el
S ntT, 1 s Z[;L] ()
since E [X]AMland]E [X2]) = 1. ee("))

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 05,2025 at 02:25:33 UTC from IEEE Xplore. Restrictions apply.



NANDY AND BHATTACHARYA: DEGREE HETEROGENEITY IN HIGHER-ORDER NETWORKS

Since {X. : e € (")} are independent,

s Var, [ X2] 1
Var,[T1] = — T_el <
ar~ [T71] 57 Z o)t M T
eE([Z])
using Var,[X2] =y 1 and o4(u)? =y n*~!. This implies,
T1 = Op(l).

Therefore, from (VIIL.18), to prove (VIII.14) it remains to

show T 5 N(0,1). For this we will express T5 as a sum
of a martingale difference sequence. To this end, define the
following sequence of sigma-fields: For u € [n],

Fui=0 (L;Jl{Xe tVE e}> ,

is the sigma algebra generated by the collection of random
variables | Ji_,{Xe : v € e}. Cleatly, 71 € Fy--- S Fp,
hence {F,}ye[n is a filtration. Now, for u € [n], define

Thy = We,e' XeXer
e,e'e([z]):eie',ueeme/,
en{l,...,u}#2
and e'n{1,...,u—1}=92
where we e = Zzeeme, ﬁ Note that 15 ,, is F,, measur-

able and E[T5 ,|Fy—1] = 0, that is, T, for u € [n], is a
martingale difference sequence. Also, recalling the definition
of T from (VIII.18) observe that

< X Xe
f ; 2 s(u)?
1

e#e’ e(['f]):ueeme’

Z we7e’XeXe’

that is, 75 is the sum of a martingale difference sequence.
Now, invoking the martingale central theorem [9] it can be
shown that T5 5N (0,1). The details are omitted.

B. Proof of Theorem 6
Suppose H,, ~ H, s(n,~’) for 4 as in (IIL5). Then by
arguments as in (VIIL6),
gn,S(ﬁs) - Zn,s('yl)
1 —1
- 5 (d, — By [d,]) S

n,s

(dy — Ey[d,))
1 T w1
+ iRn,SEn,SRan + 7;7,,57
where fms and R, ¢ are as defined in (VIL.2) and (VII.10),

respectively, with 3, replaced by ' and 7, , as defined
in (VIIL.2) with ~ replaced by +'. Therefore,

En,s(/és) - gn,s('y)
— L (d. By [d.)S, (d, - Eyld.)

1 —1
+ iRI,sEn,sRn’S + 7;74;5

6019

+ lns(Y) = ln s (), (VIIL.19)
By Taylor expansion,
s (Y') = Ln,s(7)
= (dy ~ By [d) (7 =) + 507 =) Eusr’ =),

where fln’s is the covariance matrix defined in (VIL.2) with
B, replaced by 4 = v' + 6(v' — ~) for some 0 < 6 < 1.
Then by arguments as in (VIIL.9) and Lemma 8, Lemma 9,
(VIII.19) can be written as:

gn,S(Bs) - Kn,s(')’)
1(ds -E ’[dSDTFmS(dS - E'y’ [dSD
+(ds = Ey[ds]) (' =)
1

+ 50 =N (Y =) +op(vn),  (VIL20)

where fn,s is as defined in (VIL.3) with the parameter 3,

replaced by +'. s
We begin with the case |v' — |2 « n~ "7 . In this case,

since V24, (v') = ¥, 5, by Lemma 2
(V=) " Zns (Y =) =n*" v =[5 «v/n. (VIIL21)

Similarly,

(V' =7) (Y =) =0y 7|3 «v/n. (VIIL22)

Hence,
Var[(d; — Ey/[d,]) " (v —7)] =

which implies, (d —Ey[ds])T (v — )
E[(ds — E[ds])T (v *7)]

(Y =) " s (v =) <,
= op(y/n), since

= 0. Therefore, under H; as

in (IIL.5),

2log Ay s — 1

V2on
_2(8 s(v) — 5718(5 ) —n

Ton
ds —E[d, Tl"nsd —E[ds])—
_ [ds]) \/% [ds]) " 4 op(1)
(by (VIIL.20), (VIIL.21), and (VIIL.22))

B N(0,1),

by Proposition 3. This proves the first assertion in (IIL.6).

Next, suppose [v — v[2 > n=*. In this case,

by Lemma 2, (7' =) "%, (v =) = n* 7!y =~|5 » v/n.
We will first assume:

Vi< (v =) Zn (v =) $n.
Then we have

Var[(ds - E'y’ [ds])—r(’y/ - ’Y)]

=(Y =7'Z0s(y =) = 0(n).

(VIIL23)

(VIIL24)

Using this and Proposition 3 it follows that

% [;(ds —E [ds])Tfn’S(ds ~E, [d,])
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+(ds —Ev[d])T (v —v)]  (VIIL25)
is bounded in probability. Hence, from (VIIIL.20),
2log Aps — _ (Uns(Y) — gn,S(Bs)) " 0
V?2n \/% ’

in probability, since by Lemma 2, (7' — ) 2, (7 — ) =
n*~'|y" —~|3 » +/n. This implies, E~/[¢, s] — 1, when-
ever (VIIL.23) holds. Next, we assume

Y —=%)"Zns(v —7) »n. (VIIL.26)
For notational convenience denote ¥, s = (v — ) X,.¢
(' — ). Then Proposition 3 and (VIIL.26) imply that
1 1 _
N [Q(ds —Ey[d]) Ty s(ds — Ex[ds])

)

+(ds — Ev[d,])" (v — )]
is bounded in probability. Using (VIIL.21) and (VIIL.22) we
also get

O =) Z0s(Y =)

v 197175

s—1
=n"7 |y =72 — .
This implies, from from (VIIL.20),
2logAn s —m

2n
By [¢n,s] =Py ( m 19n7§> — 1.

This concludes the proof. This completes the proof of the third
assertion in (I11.6).

Now, we consider the case n” 7 |y’ — |2 — 7 € (0, ).
By Taylor expansion,

= Za/z

Ly 5(71) — gn s('}/)
= (ds —Ey[d])' (7' =)
%(7 N (Y =) + T, (VIIL27)

where 3, ¢ is as defined in (VIL.2) with 3 replaced by ~
and 7, ; is as defined in (VIIL.2) with the parameter ¥ =
vy + 0(v" — ) for some 0 < ¢ < 1. By arguments as in
Lemma 8, 7, s = op(y/n). Then (VIIL9) and Lemma 8,
Lemma 9, (VIIL.19) can be written as:
én,s(Bs) - én,s(’)’)
1
5(ds —Ey [ds]) T s(ds — Eo[ds])
+ (ds —Ey[ds])T (v =)

450 =) D =) + op(vi).
Note that E[(ds — E~/[ds]) " (¥ — )] = 0 and by Lemma 2,
Var[(ds — Ey[ds])" (' — )]

=~ 7)T2n78(7/ =) = VN,

. Hence, in this case,

(VIIL28)

when |7/ — ] = n~ 27
(ds = Ey[ds]) T (7' =) = op(v/n).
This also implies that

s =)

(v - V)Tzn
\/ﬁ

lim
n—o0

ni=
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exists along a subsequence. (Note that Cov.[
Hence, from (VIII.28),

ds] = Z3n,s')

2logAps —n  2(0y, Uy S(Bs))

s(v) =

Van Van
(d —Ey[d]) Tys(ds — Ey[ds]) —n
V2n
0= =) op(1)

)
\ﬁ
H,/\/(— 1).

This completes the proof of (IIL.7).

IX. TESTING LOWER BOUNDS

In this section we prove the lower bounds for the goodness-
of-fit problem in the Lo and Ly, norms, that is, Theorem 7 (b)
and Theorem 8 (b), respectively. For this, suppose m, be a
prior probability distribution on the alternative H; (as in (IIL.8)
or (III.10)). Then the Bayes risk of a test function ,, is defined
as

R(d}na v 7Tn)

=Puy(¥n = 1) + Eyor, [Py (¥, = 0)].

IX.1)

For any prior 7, the worst-case risk of test function ,,,
as defined in (II1.9), can be bounded below as:

Lemma 10: Let H,, , denote the collection of s-uniform
hypergraphs on n vertices. Then

R(n, v, ™) 21— 54/En,[L2,] -1, (IX.2)

where L, = w7

o . Prg (@)
likelihood ratio.

Proof: Clearly, R(¢n,7) = R(¥n,~, ). To show the
second inequality in (IX.2) observe that,

R(tpn, ) =

w € Hy,s, is the m,-integrated

R(¢n77a 7Tn) = ﬁ},lf {]P)Ho (d}n = 1) + E’Y/Nﬂ'n (]P)'Y/ (qp" = 0))}
= 1—sup|Pu,(¥n =1)
Pn
_Eﬁy,r\/ﬂ'n (]P)'y’ (wn = 1))|
21— sup [Pr,() = Eyror, [Py ()]
WEHp, s

1 Evyrr, [Py (w)]
>1-3 3 G

=1- %EH0|L7T” - 1|
EHO [Lzrn] -1,

- 1‘ Py, (w)

weH s

>1-1
where the last step uses the Cauchy-Schwarz inequality. [

Therefore, to show all tests are powerless it suffices to
construct a prior m, on H; such that Eg,[LZ ] — 1. We show
this for the Ly norm in Appendix IX-A and for the Ly, norm
in Appendix IX-B.
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A. Testing Lower Bound in L, Norm: Proof of Theorem 7 (b)

We choose v = 0, € « n*$, and construct a prior 7, on
H; as in (I11.8) as follows: Suppose v = (71, ¥, .-, vh) "
R™ with

;L €
Yu = N - \/ﬁ7
for u € [n], where 71,...,n, are i.i.d Rademacher random
variables, taking values {+1} with probability . Clearly, |y—
v'|2 = €. Then, for H € H, s, the m, integrated likelihood
ratio is given by

o [Py(H)] 2 eWn(e)Xe
Fo = B [PO(H)] ad B
ee([:f])
where Xe:=1{ec E(H)},n:= (m,...,1), and wy(e) :=

f Zueg nu’ fOr ec ([71]) Then

4 e(wn(€)+uny(€))Xe

Lfr =By )
eﬂwuwmm+w@>
where 7}, ..., 7}, are i.i.d Rademacher random variables which

/

s M = (My,...,n,), and
T Duee M fOr € € (I)). Taking expectation with

are independent of 7)1, e
Wy (€) 1=

respect to Hy gives,

]EHO [Lgrn]

B 2 (e(Wn(e)-*-wT,f(e)) +1)

_MWJ%OHWWHWWU

= En| [] 2 (0(wn(e)v(wy(e))
ee([’;])

+(1—¢%wn@ﬂﬂ(1—¢%wn%eﬁﬂl, (IX.3)

where () is the logistic function as defined in Lemma 4.
Using the Taylor expansions of ¢ (z) and 1 — () around 0,
we can show that for all x € R,

1z 2 1 3

—_ — gfff —_
gttt gdl-v@<g-1+3

]

P(x) <

As a consequence, for e € ([Z )
2 {p(w(€))P(wy (€)) + (1 = ¢ (wn(e))) (1 = ¥ (wy(e)))}
1+hm><>;<@%%@ﬂ

1
+ @wn(e)?’wn/(e)3.
Using this bound in (IX.3) gives,
EHD [L721'n:|

<

I1
ee(["])

B py (wn(e)g

1 1
(1 + an(e)wnr(e) + ﬂ

6021
3 1
+w"’(e) )+ 242 w"7<e) w"]’(e)
1 1 .
< E, . |exp Z wy(e)wy (e) + ﬂ(wn(e)
ee([z])
1 3
g (e)®) + s un(efup(e) |,
(IX.4)
since 1 + x < e*.
Recalling the definition of w,,(e) observe that
3
3l & < 3,5—3
> wnfe) n32(2m>\m2.
ec(t) ec(In)) \uee
Hence,
2 nl) W 3 s—3
E [e Zee(2]) () ] <eEnTE g (IX.5)
since ¢ « n— T and, for s > 2, —5 + % > 0. Similarly,

it can be shown that

2 n 3 ' 3
lim E [e ZEE([S]) wn(e)?w, (e) ] 1

n—0o0

(IX.6)

Then Holder’s inequality applied to (IX.4) followed by (IX.5)
and (IX.6) gives

EY gy wnle)w, (e)]) V3
1 "E([S]) Wn(e)w ]} (1+0(1)).

Ep,[L7] < {Enm’ [6
(IX.7)

Next, observe that

Y wnle)wny(e)
ee([’;])

2
== (Z m) <Z nL)
ee([:]) uce veEe
2 n—1\ <« n—2
T {(s - 1> uz=:1 ¥ (3 - 2> Ku;}gﬂ%%}
€2ns—2 i 77u77u + Z_:2”5 3 Z
u=1

I1<u#v<n
n
2, 5—2 /
=emn Z NuTly
u=1

e’ 3{(2 77u> (Z 772) -, nun;}. (IX.8)
= v=1 u=1

Note that e2n*=3 |37, nunl,| < £2n°~2. Hence,

)

s

[et ] s )
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since ¢ « n~>T". From (IX.7), by Holder’s inequality

followed by (IX.8) and (IX.9) gives
By [L2] <, {By [ Shewnl |1
{F [o17 ]}
(IX.10)

Denote X, := >.'_,n, and Y, := >"_ 7. Since X,
and Y,, are independent and each of them is a sum of i.i.d.
Rademacher random variables,

By |37 500 | — B [E[eden X0y, ||

e (o (fen) )

E 81 edn2s— 5Y2]

)

where last step uses cosh(z) < e®”, for all z € R. Since
|Y.| < n, this implies,

3 81 4,2 2 81 _4 253
Enn [e4£nq XY]geﬁ e“‘Yn<eﬁgng
)

— 1,
(IX.11)

2 Next, observe that 7,7, for u =

1,--- ,n, are i.i.d. Rademacher random variables. Again using
2

cosh(z) < e* for all x € R, we can show that

. _2s5-3
since € K n 4

Ep o [345 n TN 177u77u:|

= <COSh <252n3_2>> < efetn® 1

o Hence, using (IX.11) and (IX.12) in (IX.10)

(1X.12)

. _2s—
sincee « n~ 1
gives,

lim By, [L?] = 1.

n—o0

By Lemma 10, this completes the proof of Theorem 7 (b).

B. Testing Lower Bound in Lo, Norm: Proof of
Theorem 8 (b)

We choose v = 0, ¢ « (logn/n*~1)1/2, and construct a
prior 7, on H; as in (IIL.8) as follows: Suppose v, € R"
with

7u = 8eU7

for u € [n], where ey, .. ., e, being the canonical basis vectors
in R™. Then 7, assigns probability 1/n to each ~,,. Clearly,
|[¥ — Yulo = € for all u € [n]. Then, for H € H,, s, the 7,
integrated likelihood ratio is given by

Ly
1 e’
ue[n] ee(["]) uce te
where X, := l{e € E(H)}. Then
4 eQaXe
2 _
Lwn T2 Z 1_[ (1 + e)2

ue[n] e ([n]) uce
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4 erXe
- [l — (IX.13)
)2
u#”E[”] ee([n] ‘u,vEE (1 te )
Observe that
4 e2£Xe
O I )
0 1 )2
ee([:]):uee ( te )
— (20(e) +2(1 - v()?) ", (IX.14)
where (z) = Hﬁ% Similarly,
4 erXe
Ey ] —
0 1 )2
ee([z]):u,vee ( te )
= (2¢(e)*+2(1 - w(e))2)(:2) : (IX.15)

Since ¢ « (logn/n*~')1/2, a Taylor expansion around zero
gives (g) = 3 + e + O(g?). Hence,
20(e)? + 2(1 — 1p(e))* = 1 + O(e?).

Therefore, by (IX.14)-(IX.15) and using 1 + = < e® gives,

2 s—2
eO(E n ) N 17

]EHO [Lgrn] < %60(527;571) n

since ¢ « (logn/n*~1)1/2. By Lemma 10, this completes the
proof of Theorem 8 (b).

X. PROOF OF PROPOSITION 1

Define g = (g1,92,---,9n) : R™ — R™ where g, : R" —
R, for u € [n], as follows:

gu(w) = Z

ee([z]):uee

ele
14 e®it’
where = (71, 22,...,2,) and Te = (Tuys Tugs -+ Tu,)
for e = (uy,us,...,us). Observe that Ry is the range of g.
Since the expected degree of a vertex is a weighted combina-
tion of all the possible degrees in s-uniform hypergraphs on
n vertices, this implies R € conv (Dy).

To show the other side, for every y € R™ we define,

n
= 2 TiYi — 2 log(1 4 et Fovs ),
i=1

{v1,02,.. ﬂ)s}e(”])
Since the probability of observing an s-uniform hyper-
graph with parameter x and s-degree sequence ds =
(ds(1),...,ds(n)) is
823:1 ds(v)zy

1_[ o1 e v e (1+efvu1+...+mvs)'
{v1,v2,...,v5} (s)

and is less than 1, taking logarithm on both sides we get
fa,(x) < 0. Further as fy(x) depends linearly on y, we have
fy(x) < 0 for all y € conv (Dy) and x € R™. Now, let us
fix y € conv (D). It can be shown that the Hessian V? f, ()
is uniformly bounded, hence, by [10, Lemma 3.1] there exists
a sequence {xy}r>1 such that V fy(x;) — 0. Observing that
Viy(zk) =y —g(x), we get g(xx) — y. As y € conv (D)
is arbitrary, this implies conv (Ds) € Rs. O
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