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Degree Heterogeneity in Higher-Order Networks:

Inference in the Hypergraph β-Model

Sagnik Nandy and Bhaswar B. Bhattacharya

Abstract— The β-model for random graphs is commonly
used for representing pairwise interactions in a network
with degree heterogeneity. Going beyond pairwise interactions,
Stasi et al. (2014) introduced the hypergraph β-model for cap-
turing degree heterogeneity in networks with higher-order
(multi-way) interactions. In this paper we initiate the rigorous
study of the hypergraph β-model with multiple layers, which
allows for hyperedges of different sizes across the layers. To begin
with, we derive the rates of convergence of the maximum
likelihood (ML) estimates and establish their minimax rate
optimality. We also derive the limiting distribution of the ML
estimates and construct asymptotically valid confidence intervals
for the model parameters. Next, we consider the goodness-of-fit
problem in the hypergraph β-model. Specifically, we establish
the asymptotic normality of the likelihood ratio (LR) test under
the null hypothesis, derive its detection threshold, and also
its limiting power at the threshold. Interestingly, the detection
threshold of the LR test turns out to be minimax optimal, that
is, all tests are asymptotically powerless below this threshold.
The theoretical results are further validated in numerical exper-
iments. In addition to developing the theoretical framework for
estimation and inference for hypergraph β-models, the above
results fill a number of gaps in the graph β-model literature,
such as the minimax optimality of the ML estimates and the
non-null properties of the LR test, which, to the best of our
knowledge, have not been studied before.

Index Terms— Graphical models, maximum likelihood (ML)
estimation, minimax techniques.

I. INTRODUCTION

T
HE β-model is an exponential family distribution on

graphs with the degree sequence as the sufficient statis-

tic. Specifically, in the β-model with vertex set rns :<
t1, 2, . . . , nu, the edge pi, jq is present independently with

probability

pij :< e´i`´j

1 ` e´i`´j
, (I.1)

for 1 ď i ă j ď n and β < p´1, ´2, . . . , ´nq P R
n. This

model was first considered by Park and Newman [41] and can
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also be viewed as the undirected version of the p1-model that

appears in the earlier work of Holland and Leinhardt [26].

Thereafter, the β-model has been widely used for capturing

degree heterogeneity in networks (see Blitzstein and Diaco-

nis [7] Chen et al. [11] Graham [23] Jackson et al. [28],

among several others). The term β-model can be attributed

to the seminal paper of Chatterjee et al. [10], which provides

the theoretical foundations for parameter estimation in this

model.

While random graph models, such as the β-model, are

important tools for understanding binary (pairwise) relational

data, in many modern applications interactions occur not just

between pairs, but among groups of agents. Examples include

folksonomy [17], collaboration networks [29], [30], [42], com-

plex ecosystems [24], biological networks [37], [43], circuit

design [32], computer vision [1], among others. Hypergraphs

provide the natural mathematical framework for modeling such

higher-order interactions [4], [5], [6]. Formally, a hypergraph

H is denoted by H < pV pHq, EpHqq, where V pHq is the

vertex set (the agents in the network) and EpHq is a collection

of non-empty subsets of V pHq of cardinality greater than 1.

The elements in EpHq, referred to as hyperedges, represent the

interactions among groups of agents. Motivated by the emer-

gence of complex relational data with higher-order structures,

there has been a slew of recent results on modeling random

hypergraphs, community detection, recovery, clustering, and

motif analysis, among others (see [2], [3], [15], [18], [19],

[20], [21], [22], [27], [33], [34], [35], [36], [40], [51], [57],

[58], [59] and the references therein).

In this paper we study the hypergraph β-model, intro-

duced by Stasi et al. [45], that allows one to incorporate

degree heterogeneity in networks with higher-order structures.

Like the graph β-model (I.1), this is an exponential family

on hypergraphs where the (hypergraph) degrees (as defined

in (II.3)) are the sufficient statistics. In its general form it

allows for layered hypergraphs with hyperedges of different

sizes across the layers. To describe the model formally we

need a few notations: For r ě 2, denote by
`rns
r

˘
the collection

of all r-element subsets of rns :< t1, 2, . . . , nu. A hypergraph

H < pV pHq, EpHqq is said to be r-uniform if every element

in EpHq has cardinality r. (Clearly, 2-uniform hypergraphs

are simple graphs.) We will denote by Hn,r the collection

of all r-uniform hypergraphs with vertex set rns and by

Hn,rrs :< Ťr
s<2 Hn,s, the collection of all hypergraphs with

vertex set rns where every hyperedge has size at most r. Then

the r-layered hypergraph β-model is a probability distribution

on Hn,rrs defined as follows:
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Definition 1: [45] Fix r ě 2 and parameters B :<
pβ2, . . . ,βrq, where βs :< p´s,vqvPrns P R

n. The

r-layered hypergraph β-model is a random hypergraph in

Hn,rrs, denoted by Hrrspn,Bq, where, for every 2 ď s ď r,

the hyperedge tv1, v2, . . . , vsu P
`rns
s

˘
is present independently

with probability:

pv1,v2,...,vs
:< e´s,v1

`...`´s,vs

1 ` e´s,v1
`...`´s,vs

. (I.2)

This model can be expressed as an exponential family on

Hn,rrs with the hypergraph degrees up to order r as the

sufficient statistics (see (II.2)). Specifically, the parameter ´s,u
encodes the popularity of the node u P rns to form groups of

size s, for 2 ď s ď r. Consequently, ´s,u controls the local

density of hyperedges of size s around the around node u.

The model (I.2) includes as a special case the classical graph

β-model (when r < 2) and also the r-uniform hypergraph

β-model, where only the hyperedges of size r are present.

More formally, given parameters β < p´1, ´2, . . . , ´nq P R
n,

the r-uniform hypergraph β-model is a random hypergraph

in Hn,r, denoted by Hrpn,βq, where each r-element hyper-

edge tv1, v2, . . . , vru P
`rns
r

˘
is present independently with

probability:

pv1,v2,...,vr
:< e´v1

`...`´vr

1 ` e´v1
`...`´vr

. (I.3)

It is worth noting that, since the degrees (defined later

in (II.3)) are the sufficient statistics in the aforementioned

models, it is enough to observe only the degree sequences (not

the entire network) for inference regarding the model param-

eters. This feature makes the β-model particularly attractive

because collecting information about the entire network can

often be difficult for cost or privacy reasons. For example,

Elmer et al. [16] (see also Zhang et al. [60]) studied social

networks between a group of Swiss students before and during

COVID-19 lockdown, where, for privacy reasons, only the

total number of connections of each student in the network

(that is, the degrees of the vertices) were released. The

β-model is also relevant in the analysis of aggregated rela-

tional data, where instead of asking about connections between

groups of individuals directly, one collects data on the number

of connections of an individual with a given feature (see, for

example, Breza et al. [8] and the references therein).

Stasi et al. [45] proposed two algorithms for computing

the maximum likelihood (ML) estimates for the hypergraph

β models described above and reported their empirical perfor-

mance. However, the statistical properties of the ML estimates

in these models have remained unexplored.

A. Summary of Results

In this paper we develop a framework for estimation

and inference in the hypergraph β-model. Along the way,

we obtain a number of new results on the graph β-model

as well. The following is a summary of the results:

‚ Estimation: In Section II we derive the rates of con-

vergence of the ML estimates in r-layered hypergraph

β-model (I.2), both in the L8 and the L2 norms.1 Specif-

ically, we show that given a sample Hn > Hrrspn,Bq
from the r-layered hypergraph β-model, the ML estimate

B̂ < pβ̂2, . . . , β̂rq of B satisfies the following:

}β̂s ´ βs}2 ď Cs

c
1

ns´2
,

}β̂s ´ βs}8 ď Cs

c
log n

ns´1
, (I.4)

for some constant Cs ą 0 (depending on s and }βs}8),

where 2 ď s ď r, with probability going to 1 (see

Theorem 1). These extend the results of Chatter-

jee et al. [10] on the graph β-model, where the rate of

convergence of the ML estimate was derived only in the

L8 norm, to the hypergraph case. Next, in Theorem 2

we show that both the rates in (I.4) are, in fact, minimax

optimal (up to a
?

log n factor for the L8 norm). To the

best of our knowledge, these are the first results showing

the statistical optimality of the ML estimates in the β-

model even for the graph case.

‚ Inference: In Section II-C we derive the asymptotic distri-

bution of the ML estimate B̂. In particular, we prove that

the finite dimensional distributions of the ML estimate

converges to a multivariate Gaussian distribution (see

Theorem 3). Moreover, the covariance matrix of the

Gaussian distribution can be estimated consistently, using

which we can construct asymptotically valid confidence

sets for the model parameters (see Theorem 4).

‚ Testing: In Section III we study the goodness-of-fit prob-

lem for the hypergraph β-model, that is, given γ P R
n

we wish to distinguish:

H0 : βs < γ versus H1 : βs ‰ γ. (I.5)

We show that the likelihood ratio (LR) statistic for this

problem (centered and scaled appropriately) is asymp-

totically normal under H0 (see Theorem 5 for details).

Using this result we construct an asymptotically level

³ test for (I.5). Next, we study the power properties

of this test. In particular, we show that the detection

threshold for the LR test in the L2 norm is n´ 2s´3

4 , that

is, the LR test is asymptotically powerful/powerless in

detecting γ1 P R
n depending on whether }γ1 ´ γ}2 is

asymptotically greater/smaller than n´ 2s´3

4 , respectively.

We also derive the limiting power function of the LR

test at the threshold }γ1 ´ γ}2 < Θpn´ 2s´3

4 q (see

Theorem 6). Further, in Theorem 7 we show that this

detection threshold is, in fact, minimax optimal, that is

all tests are asymptotically powerless when }γ1 ´ γ}2 is

asymptotically smaller than n´ 2s´3

4 . In Section III-C we

also obtain the detection threshold of the LR test in the

L8 norm and establish its optimality. Again, these appear

to be the first results on the non-null properties of the LR

test and its optimality in the β-model for the graph case

itself.

1We denote by }x}8 and }x}2, the L8 and the L2 norms of a vector x,
respectively.
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In Section IV we illustrate the finite-sample performances of

the proposed methods in simulations.

B. Related Work on the Graph β-Model

As mentioned before, Chatterjee et al. [10] initiated the

rigorous study of estimation in the graph β-model. They

derived, among others things, the convergence rate of the

ML estimate in the L8 norm. Thereafter, Rinaldo et al. [44]

derived necessary and sufficient conditions for the existence

of the ML estimate in terms of the polytope of the degree

sequences. Yan and Xu [52] proved the asymptotic normality

of ML estimate and later, Yan et al. [54] derived the properties

of a moment based estimator. Karwa and Slavkovic [31]

studied the problem of estimation in the β-model under

privacy constraints.

In the context of hypothesis testing, Mukherjee et al. [38]

considered the problem of sparse signal detection in the

β-model, that is, testing whether all the node parameters are

zero versus whether a (possibly) sparse subset of them are

non-zero. Recently, Yan et al. [56] derived the asymptotic

properties of the LR test for the goodness-of-fit problem in

the graph β-model, under the null hypothesis.

The graph β-model has also been generalized to incorporate

additional information, such as covariates, directionality,

sparsity, and weights (see Chen et al. [11] Chen and

Olvera-Cravioto [12] Graham [23] Hillar and

Wibisono [46] Yan and Xu [53] Hillar and Wibisono [25]

Wahlström et al. [49], [55] Zhang et al. [60] and the

references therein). For other exponential random graph

models with functions of the degrees as sufficient statistics,

see Mukherjee [39] and Xu and Mukherjee [50].

C. Asymptotic Notation

For positive sequences tanuně1 and tbnuně1, an < Opbnq
means an ď C1bn and an < Θpbnq (and equivalently,

an 4 bn) means C2bn ď an ď C1bn, for all n large enough

and positive constants C1, C2. Similarly, for positive sequences

tanuně1 and tbnuně1, an À bn means an ď C1bn and

an Á bn means an ě C2bn for all n large enough and positive

constants C1, C2. Moreover, subscripts in the above notation,

for example O˝, À˝, Á˝, and Θ˝, denote that the hidden

constants may depend on the subscripted parameters. Also,

for positive sequences tanuně1 and tbnuně1, an ! bn means

an{bn Ñ 0 and an " bn means an{bn Ñ 8, as n Ñ 8.

II. MAXIMUM LIKELIHOOD ESTIMATION

IN HYPERGRAPH β-MODELS

In this section we consider the problem of parameter

estimation in the hypergraph β-model using the ML method.

In Section II-A we derived the rates of the consistency of the

ML estimate. The central limit theorem of the ML estimate

and the construction of confidence intervals for the model

parameters are presented in Section II-C.

A. Rates of Convergence

Given a sample Hn > Hn,rrspn,Bq from the r-layered

hypergraph β-model, the likelihood function can be written

as follows:

LnpBq

<
ź

2ďsďr

ź

tv1,v2,...,vsuPEpHnq

ep´s,v1
`...`´s,vs q

1 ` e´s,v1
`...`´s,vs

. (II.1)

Therefore, the negative log-likelihood is given by

ℓnpBq :< ´ logLnpBq

< ´
rÿ

s<2

#
nÿ

v<1

´s,vdspvq

´
ÿ

tv1,v2,...,vsuPprns
s q

log p1 ` exp p´s,v1 ` . . .` ´s,vs
qq

,
/.

/-
, (II.2)

where

dspvq :<
ÿ

ePEpHnq:|e|<s
1tv P eu, (II.3)

is the s-degree of the vertex v P rns, that is, the number of

hyperedges of size s in Hn passing through v. The negative

log-likelihood in (II.2) can be re-written as:

ℓnpBq <
rÿ

s<2

ℓn,spβsq, (II.4)

where

ℓn,spβq :<
ÿ

tv1,v2,...,vsuPprns
s q

log p1 ` exp p´s,v1 ` . . .` ´s,vs
qq

´
nÿ

v<1

´s,vdspvq. (II.5)

Note that (II.4) is separable in β2, . . . ,βr, hence, the ML

estimate of B < pβ2, . . . ,βrq is given by B̂ < pβ̂2, . . . , β̂rq,

where

β̂s :< argminβ ℓn,spβq. (II.6)

Therefore, differentiating (II.2) with respect to βs and setting

the gradient to zero we can conclude that the ML estimate

β̂s satisfies the following set of gradient equations: For all

v P rns and 2 ď s ď r,

dspvq <
ÿ

tv2,...,vsuPprnsztvu
s´1 q

e
ˆ́

s,v` ˆ́
s,v2

`...` ˆ́
s,vs

1 ` e
ˆ́

s,v` ˆ́
s,v2

`...` ˆ́
s,vs

, (II.7)

where
`rnsztvu
s´1

˘
denotes the collection of all ps ´ 1q-element

subsets of rnsztvu. Stasi et al. [45] presented two algorithms

for computing the ML estimate, namely, an iterative pro-

portional scaling algorithm and a fixed point algorithm, and

showed that both algorithms converge if the ML estimate

exists.

In this paper we study the asymptotic properties of the

ML estimates. In the following theorem we show that

the likelihood equations (II.7) have a unique solution with

high-probability and derive its rate of convergence. Recall we

denote by }x}8 and }x}2, the L8 and the L2 norms of a

vector x, respectively. Also, denote BM < tx : }x}8 ď Mu,
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the L8 the ball of radius M . Throughout we will assume

βs P BM , for all 2 ď s ď r, for some constant M ą 0.

Theorem 1: Suppose Hn > Hn,rrspn,Bq is a sample from

the r-layered hypergraph β-model as defined in (I.2). Then

with probability 1 ´ op1q the likelihood equations (II.7) have

a unique solution B̂ < pβ̂2, . . . , β̂rq, that satisfies:

}β̂s ´ βs}2 Às,M

c
1

ns´2
,

}β̂s ´ βs}8 Às,M

c
log n

ns´1
, (II.8)

for 2 ď s ď r.

Theorem 1 provides the rates for the ML estimates for

the parameters in a r-layered hypergraph β-model both in

the L8 and L2 norms. To interpret the rates in (II.8) note

that s-degree of a vertex (recall (II.3)) in the r-layered

model Hn,rrspn,Bq is Opns´1q with high probability. This

means there are essentially Opns´1q independent hyperedges

containing information about each parameter in the s-th layer.

Hence, each parameter in the s-th layer can be estimated at the

rate 1{
?
ns´1. Aggregating this over the n coordinates gives

the rates in (II.8) for the vector of parameters βs in the s-th

layer.

The proof of Theorem 1 is given in Appendix V. The

following discussion provides a high-level outline of the proof.

‚ For the rate in the L2 norm we first upper bound

the gradient of the log-likelihood at the true parameter

value. Specifically, we show that }∇ℓn,spβsq}2
2 < Opnsq

with high probability (see Lemma 1 for details). Next,

we show that the smallest eigenvalue of the Hessian

matrix ∇2ℓn,spβsq is bounded below by ns´1 (up to

constants) in a neighborhood of the true parameter (see

Lemma 2). Then a Taylor expansion of the log-likelihood

around the true parameter, combined with the above

estimates, imply the rate in the L2 norm in (II.8) (see

Appendix V-A for details).

‚ The proof of the rate in the L8 norm is more involved.

For the graph case, [10] analyzed the fixed point

algorithm for solving the ML equations and developed a

stability version of the Erdős-Gallai condition (which pro-

vides a necessary and sufficient condition for a sequence

of numbers to be the degree sequence of a graph) to derive

the rate of ML estimate in the L8 norm. One of the

technical challenges in dealing with the hypergraph case

is the absence of Erdős-Gallai-type characterizations of

the degree sequence. To circumvent this issue, we take a

more analytic approach based on the ‘leave-one-out’ tech-

nique, that appear in the analysis of ranking models [13],

[14]. Here the idea is to decompose, for each u P rns, the

log-likelihood function of the s-th layer ℓn,s (recall (II.5))

into two parts: one depending on ´s,u and the other not

depending on it. Using the part of the log-likelihood

not depending on ´s,u we first analyze the properties

of the constrained leave-one-out ML estimate, which

is the maximizer of the part of the log-likelihood not

depending on ´s,u in a neighborhood of the leave-one-out

true parameter. Then from the part of the log-likelihood

depending on ´s,u we obtain, by a Taylor expansion

around the true parameter value ´s,u, the L8 rate in (II.8)

with an extra additive error term which depends on the

constrained leave-one-out ML estimate. Using the bound

on the latter obtained earlier we show this error term is

negligible compared to the L8 rate in (II.8).

The following corollary about the r-uniform model is an

immediate consequence of Theorem 1. We record it separately

for ease of referencing.

Corollary 1: Suppose Hn > Hn,rpn,βq is a sample from

the r-uniform hypergraph β-model as defined in (I.3). Then

with probability 1´op1q the ML estimate β̂ is unique and the

following hold:

}β̂ ´ β}2 Àr,M

c
1

nr´2
,

}β̂ ´ β}8 Àr,M

c
log n

nr´1
. (II.9)

B. Minimax Rates

In the following theorem we establish the tightness of the

rates of ML estimate obtained in the previous section by

proving matching lower bounds.

Theorem 2: Suppose Hn > Hn,rrspn,Bq, with B <
pβ2, . . . ,βrq, such that βs P BM , for 2 ď s ď r. Given

¶ P p0, 1q there exists a constant C (depending on M , r, and

¶) such that the following holds for estimation in the L2 norm:

min
β̂

max
βsPBM

P

˜

}β̂ ´ βs}2 ě C

c
1

ns´2

¸

ě 1 ´ ¶. (II.10)

Moreover, for estimation in the L8 norm the following holds:

there exists n0 ě 0 such that for all n ě n0

min
β̂

max
βsPBM

P

˜

}β̂ ´ βs}8 ě C

c
log n

ns´1

¸

ě 1 ´ ¶. (II.11)

This result shows that the ML estimate is minimax rate

optimal in both the L2 and the L8 metrics. The proof

of Theorem 2 is given in Appendix VI. The bounds in

(II.10) and (II.11) are proved using Fano’s lemma. For the

bound in (II.10) we construct 2Θpnq well-separated points in

the parameter space which have ‘small’ average Kulbeck-

Leibler (KL) divergence with the origin (see Appendix VI-A)

and for the bound in (II.11) we construct n well separated

points which have ‘small’ KL-divergence with the origin (see

Appendix VI-B)

C. Central Limit Theorems and Confidence Intervals

The results obtained in the previous section show that the

vector ML estimates are consistent in the L8-norm. However,

for conducting asymptotically precise inference on the indi-

vidual model parameters, we need to understand the limiting

distribution of the ML estimates. In Theorem 3 below we show

that the finite dimensional distributions of the ML estimates

(appropriately scaled) converge to a multivariate Gaussian

distribution. Using this result in Theorem 4 we construct joint

confidence sets for any finite collection of parameters. Towards
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this, for Hn > Hn,rrspn,Bq denote the variance of the s-

degree of the node v P rns as:

Ãspvq2 :< Varrdspvqs (II.12)

<
ÿ

tv2,...,vsuPprnsztvu
s´1 q

e´s,v`´s,v2
`...`´s,vs

p1 ` e´s,v`´s,v2
`...`´s,vs q2 . (II.13)

Then we have the following result:

Theorem 3: Suppose Hn > Hn,rrspn,Bq is a sample from

the r-layered hypergraph β-model as defined in (I.2). Fix any

collection of integers a1, a2, . . . , ar ě 1 and any subsets of

nodes J1, J2, . . . , Jr with cardinalities a1, a2, . . . , ar, respec-

tively. Then as n Ñ 8,
¨

˚̊
˚
˝

rD2pβ̂2 ´ β2qsJ2

rD3pβ̂3 ´ β3qsJ3

...

rDrpβ̂r ´ βrqsJr

˛

‹‹‹
‚

DÑ Nř
r
s“2

as
p0, Iq, (II.14)

where Ds < diag pÃspvqqvPrns, for 2 ď s ď r and for any

vector x P R
n, rxsJs

< pxvqJ
vPrJss.

Remark 1: Observe that since βs P BM for all 2 ď s ď r,

OpÃspvq2q 4 ns´1 for all v P rns. Therefore, the convergence

rate of rpβ̂s ´ βsqsJs
is of order nps´1q{2 for all 2 ď s ď r.

The proof of Theorem 3 is given in Appendix VII-A. The

idea of the proof is to linearize ˆ́
s,v ´ ´s,v in terms of the s-

degree of the node v P rns. Since the s-degree of a node is the

sum of independent random variables, applying Lindeberg’s

CLT gives the result in (II.14). In the special case of the r-

uniform model, Theorem 3 can be written in the following

simpler form:

Corollary 2: Suppose Hn > Hn,rpn,βq is a sample from

the r-uniform hypergraph β-model as defined in (I.3). For all

v P rns, let

Ãpvq2 :<
ÿ

tv2,...,vruPprnsztvu
r´1 q

e´v`´v2
`...`´vr

1 ` e´v`´v2
`...`´vr

.

Then for any collection of a ě 1 indices J :< tv1, ¨ ¨ ¨ , vau P`rns
a

˘
, as n Ñ 8,

rDsJprβ̂sJ ´ rβsJq DÑ Nap0, Iq,
where D < diag pÃpvqqvPrns, rDsJ < diag pÃpvqqvPJ ,

rβ̂sJ < p ˆ́
vqJ
vPrJs, and rβsJ < p´vqJ

vPrJs.
To use the above results to construct confidence sets for the

parameters, we need to consistently estimate the elements of

the matrix Ds. Note that the natural plug-in estimate of Ãspvq
is

Ã̂spvq2

:<
ÿ

tv2,...,vsuPprnsztvu
s´1 q

e
ˆ́

s,v` ˆ́
s,v2

`...` ˆ́
s,vs

p1 ` e
ˆ́

s,v` ˆ́
s,v2

`...` ˆ́
s,vs q2

. (II.15)

This estimate turns out to be consistent for Ãspvq, leading to

the following result (see Appendix VII-B for the proof):

Theorem 4: Suppose Hn > Hn,rrspn,Bq is a sample from

the r-layered hypergraph β-model as defined in (I.2). Fix any

collection of integers a1, a2, . . . , ar ě 1 and any subsets of

nodes J1, J2, . . . , Jr with cardinalities a1, a2, . . . , ar, respec-

tively. Then, for all ³ P p0, 1q,

lim
nÑ8

P

˜#
rÿ

s<2

prpβ̂s ´ βsqsJs
qJrD̂2

ssJs
prpβ̂s ´ βsqsJs

q

ď Ç2ř
r
s“2

as,1´³

)¯
< 1 ´ ³, (II.16)

where D̂
2

s < diagpÃ̂spvq2qvPrns, rD̂2

ssJs
< diagpÃ̂spvq2qvPJs

,

for 2 ď s ď r, and for a ě 1, Ç2
a,1´³ is the p1´³q-th quantile

of the chi-squared distribution with a degrees of freedom.

III. GOODNESS-OF-FIT: ASYMPTOTICS OF THE

LIKELIHOOD RATIO TEST AND MINIMAX

DETECTION RATES

In this section we consider the problem of testing for

goodness-of-fit in the hypergraph β-model. In particular, given

γ P R
n and a sample Hn > Hn,rrspn,Bq, with B <

pβ2, . . . ,βrq, we consider the following hypothesis testing

problem: For 2 ď s ď r,

H0 : βs < γ versus H1 : βs ‰ γ. (III.1)

This section is organized as follows: In Section III-A we derive

the asymptotic distribution and detection rates of the likelihood

ratio (LR) test for the problem (III.1). In Section III-B we show

that the detection rate of the LR test is minimax optimal for

testing in L2 norm. Rates for testing in L8 norm are derived

in Section III-C.

A. Asymptotics of the Likelihood Ratio Test

Consider the LR statistic for the testing problem (III.1):

log Λn,s < ℓn,spγq ´ ℓn,spβ̂sq, (III.2)

where ℓn,s is the negative log-likelihood function (II.5) and

β̂s is the ML estimate (II.6). The following theorem proves

the limiting distribution of the LR statistic (III.2) under H0.

Theorem 5: Suppose γ P BM . Then under H0,

¼n,s :< 2 log Λn,s ´ n?
2n

DÑ N p0, 1q, (III.3)

for log Λn,s as defined in (III.2).

The proof of Theorem 5 is given in Appendix VIII-A.

To prove the result we first expand log Λn,s around the null

parameter γ and derive an asymptotic expansion of ¼n,s
in terms of the sum of squares of the s-degree sequence

pdsp1q, dsp2q, . . . , dspnqqJ (see (VIII.13)). Since the degrees

are asymptotically independent (recall Theorem 3), we can

show that the sum of squares of the degrees (appropri-

ately centered and scaled) is asymptotically normal (see

Proposition 3), establishing the result in (III.3).

Theorem 5 shows that the LR test

ϕn,s :< 1
 

|¼n,s| ą z³{2
(
, (III.4)

where z³{2 is the p1´³{2q-th quantile of the standard normal

distribution, has asymptotic level ³. To study the power of this

test consider the following testing problem:

H0 : βs < γ versus H1 : βs < γ1, (III.5)
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where γ1 ‰ γ is such that }γ ´ γ1}2 < Op1q. Recall that

ds < pdsp1q, dsp2q, . . . , dspnqqJ is the vector of s-degrees.

Also, Covγrdss will denote the covariance matrix of the vector

of s-degrees (see (VII.2)).

Theorem 6: Suppose (III.3) holds and γ1 be as in (III.5),

then the asymptotic power of the test ϕn,s defined in (III.4)

satisfies:

lim
nÑ8

Eγ1 rϕn,ss <
#
³ if }γ1 ´ γ}2 ! n´ 2s´3

4 ,

1 if }γ1 ´ γ}2 " n´ 2s´3

4 .
(III.6)

Moreover, if n
2s´3

4 }γ1 ´ γ}2 Ñ Ä P p0,8q, then there exists

¸ P p0,8q depending on Ä such that

¸ < lim
nÑ8

pγ1 ´ γqJ Covγrdsspγ1 ´ γq?
n

,

where the limit always exists along a subsequence, and

lim
nÑ8

Eγ1 rϕn,ss < P

´ˇ̌
ˇN p´ ?̧

2
, 1q

ˇ̌
ˇ ą z³{2

¯
. (III.7)

The proof of Theorem 6 is given in Appendix VIII-B.

It entails analyzing the asymptotic distribution of the scaled

LR statistic ¼n,s under H1 as in (III.5). Specifically, we show

that when }γ1 ´ γ}2 ! n´ 2s´3

4 , then ¼n,s
DÑ N p0, 1q, hence

the LR test (III.3) is asymptotically powerless in detecting

H1. On the other hand, if }γ1 ´ γ}2 " n´ 2s´3

4 , then the

¼n,s diverges to infinity, hence the LR test is asymptotically

powerful. In other words, n´ 2s´3

4 is the detection threshold in

the L2 norm of the LR test. We also derive the limiting power

function of the LR test at the threshold n
2s´3

4 }γ1 ´γ}2 Ñ Ä P
p0,8q. In this case, ¼n,s

DÑ N p´¸{
?

2, 1q, where ‘effective

signal strength’ ¸ is the limit of the scaled Mahalanobis

distance between γ and γ1, where the dispersion matrix is

the covariance matrix of the degrees. Here, the Mahalanobis

distance between two vectors γ and γ1 with the dispersion

matrix Σ refers to the quantity pγ ´ γ1qJ
Σpγ ´ γ1q. In the

next section we will show that this detection rate is, in fact,

minimax optimal.

B. Minimax Detection Rate in the L2 Norm

In this section we will show that the detection threshold of

the LR test obtained in Theorem 6 is information-theoretically

tight. To formalize this consider the testing problem: For

ε ą 0 and γ P BM ,

H0 : βs < γ versus H1 : }βs ´ γ}2 ě ε. (III.8)

The worst-case risk of a test function Èn for the testing

problem (III.8) is defined as:

RpÈn,γq
< PH0

pÈn < 1q ` sup
γ1PBM :}γ1´γ}2ěε

Pγ1 pÈn < 0q, (III.9)

which is the sum of the Type I error and the maximum possible

Type II error of the test function Èn. Given Hn > Hn,spn,βsq,

for some βs P BM , and ε < εn (depending on n), a sequence

of test functions Èn is said to be asymptotically powerful

for (III.9), if for all γ P BM limnÑ8 RpÈn,γq < 0. On the

other hand, a sequence of test functions Èn is said to be

asymptotically powerless for (III.9), if there exists γ P BM

such that limnÑ8 RpÈn,γq < 1.

Theorem 7: Given Hn > Hn,spn,βsq and γ P BM , con-

sider the testing problem (III.8). Then the following hold:

(a) The LR test (III.4) is asymptotically powerful for (III.8),

when ε " n´ 2s´3

4 .

(b) On the other hand, all tests are asymptotically powerless

for (III.8), when ε ! n´ 2s´3

4 .

The result in Theorem 7 (a) is a direct consequence of

Theorem 6. The proof of Theorem 7 (b) is given in

Appendix IX-A. For this we chose γ < 0 P R
n and

randomly perturb (that is, randomly add or subtract ε{?
n)

the coordinates of γ to construct βs P BM satisfying }βs ´
γ}2 ě ε. Then a second-moment calculation of the likelihood

ratio shows that detecting these two models is impossible for

ε ! n´ 2s´3

4 . These results combined show that n´ 2s´3

4 is the

minimax detection rate for the testing problem (III.8) and the

LR test attain the minimax rate.

Remark 2 (Comparison Between Testing and Estimation

Rates): Recall from (II.8) and (II.10) that the minimax rate

of estimating β̂s in the L2 norm is n´ s´2

2 . On the other

hand, Theorem 7 shows that the minimax rate of testing in

the L2 norm is n´ 2s´3

4 ! n´ s´2

2 . For example, in the graph

case (where s < 2), the estimation rate is Θp1q whereas the

rate of testing is n´ 1

4 . This is an instance of the well-known

phenomenon that high-dimensional estimation is, in general,

harder that testing in the squared-error loss.

C. Testing in the L8 Norm

In this section we consider the goodness-of-fit problem

when the separation is measured in the L8 norm. This

complements our results on estimation in the L8 norm in

Theorem 1. Towards this, as in (III.8), consider the testing

problem: For ε ą 0 and γ P BM ,

H0 : βs < γ versus H1 : }βs ´ γ}8 ě ε. (III.10)

In this case the minimax risk of a test function is defined as

in (III.9) with the L2 norm }γ1 ´ γ}2 replaced by the L8
norm }γ1 ´ γ}8. Then consider the test:

ϕmax
n,s :< 1

#

}β̂s ´ γ}8 ě 2C

c
log n

ns´1

+

, (III.11)

where C :< Cps,Mq ą 0 is chosen according to (II.8) such

that

Pκ

˜

}β̂s ´ κ}8 ď C

c
log n

ns´1

¸

Ñ 1,

for all κ P BM . This implies, Eγrϕmax
n,s s Ñ 0. Also, for

γ1 P BM such that }γ ´ γ1}8 ě ε,

Eγ1 rϕmax
n,s s < Pγ1

˜

}β̂s ´ γ}8 ě 2C

c
log n

ns´1

¸

ě Pγ1

˜

}β̂s ´ γ1}8 ď C

c
log n

ns´1

¸

Ñ 1, (III.12)
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Fig. 1. (a) QQ plot of the ML estimate β̂1, (b) confidence intervals for β1, and (c) power of the LR test for the goodness of fit problem (IV.1). The first
two plots correspond to the 3-uniform hypergraph β-model whereas plot (c) corresponds to s-uniform hypergraph β-model for s “ 2, 3.

whenever ε "
a

log n{ns´1. This is because }β̂s ´ γ1}8 ď
C
a

log n{ns´1 implies,

}β̂s ´ γ}8 ě }γ ´ γ1}8 ´ }β̂s ´ γ1}8

ě ε´C
c

log n

ns´1
ě 2C

c
log n

ns´1
, (III.13)

whenever ε "
a

log n{ns´1. This implies that the test ϕmax
n,s

in (III.11) is asymptotically powerful for (III.10) whenever

ε "
a

log n{ns´1. The following result shows that this rate is

optimal (up to a factor of
?

log n) for testing in the L8 norm.

Theorem 8: Given Hn > Hn,spn,βsq and γ,βs P BM ,

consider the testing problem (III.10). Then the following hold:

(a) The test ϕmax
n,s in (III.12) is asymptotically powerful

for (III.10), when ε "
b

log n
ns´1 .

(b) On the other hand, all tests are asymptotically powerless

for (III.10), when ε !
b

log n
ns´1 .

The proof of Theorem 8 (b) is given in Appendix IX-B.

Note that in this case minimax rates of estimation and testing

are the same, since the effect of high-dimensional aggregation

does not arise when separation is measured in the L8 norm.

IV. NUMERICAL EXPERIMENTS

In this section we study the performance of the ML

estimates and the LR tests discussed above in simulations.

To begin with we simulate a 3-uniform hypergraph β-model

H3pn,βq, with n < 400 vertices and β < 0 P R
n. Figure 1(a)

shows the quantile-quantile (QQ) plot (over 200 iterations) of

the first coordinate of the ML estimate rDs1prβ̂´βs1q (where

β̂ is computed using the fixed point algorithm described

in [45]. Here D is as defined in Corollary 2). We observe

that the empirical quantiles closely follow the quantiles of the

standard normal distribution, validating the result in Corol-

lary 2.

In the same setup as above, Figure 1(b) shows the 95%

confidence interval for rβs1 over 50 iterations. Specifically,

we plot the intervals
«

rβ̂s1 ´ 1.96

rD̂s1
, rβ̂s1 ` 1.96

rD̂s1

ff

,

where D̂ is the estimate of D as defined in Theorem 4.

This figure shows that 47 out of 50 of intervals cover

the true parameter, which gives an empirical coverage

of 47{50 < 0.94.

Next, we consider the goodness of fit problem in s-uniform

hypergraph β-model:

H0 : βs < 0 versus H1 : βs ‰ 0, (IV.1)

for s < 2, 3. For this we simulate Hn > Hspn,γq, with

n < 250 and γ < ³ ¨ u, where u is chosen uniformly at

random from the n-dimensional unit sphere and ³ P r0, 1s.
Figure 1(c) shows the empirical power of the LR test (III.4)

(over 50 iterations) as ³ varies over a grid of 25 uniformly

spaced values in r0, 1s, for s < 2, 3. In both cases, as expected,

the power increases with ³, which, in this case, determines

the signal strength. Also, the LR test is more powerful in the

3-uniform case compared to the 2-uniform case. This aligns

with conclusions of Theorem 6, which shows that the detection

threshold of the LR test in the 3-uniform case is n´ 3

4 , while

for 2-uniform case it is n´ 1

4 . Hence, one expects to see more

power at lower signal strengths (smaller ³) for s < 3 compared

to s < 2.

V. PROOF OF THEOREM 1

A. Convergence Rate in the L2 Norm

As mentioned in the Introduction, the proof of Theorem 1

involves showing the following: (1) a concentration bound on

the gradient of negative log-likelihood ℓn,s (recall (II.5)) at the

true parameter value B < pβ2, . . . ,βrq, and (2) the strong

convexity of ℓn,s in a neighborhood of the true parameter.

We begin with the concentration of the gradient ∇ℓn,s in both

the L2 and the L8 norms:

Lemma 1: Suppose the assumptions of Theorem 1 hold.

Then for each 2 ď s ď r, there exists a constant C ą 0

(depending on r and M ) such that the following hold:

}∇ℓn,spβsq}2
2 ď C ns and

}∇ℓn,spβsq}2
8 ď C ns´1 log n, (V.1)

with probability 1 ´O
`

1
n2

˘
.

The next step is to establish the strong convexity of ℓn,s.

Towards this we need to show that the smallest eigenvalue

¼minp∇2ℓn,sq of the Hessian matrix ∇2ℓn,s (appropriately

scaled) is bounded away from zero in a neighborhood of the

true value βs. This is the content of the following lemma,
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which also establishes a matching upper bound on the largest

eigenvalue ¼maxp∇2ℓn,sq of the Hessian matrix ∇2ℓn,s.

Lemma 2: Suppose the assumptions of Theorem 1 hold. Fix

2 ď s ď r and a constant K ą 0. Then there exists constants

C 1
1, C

1
2 ą 0 (depending on r and M ) such that the following

hold:

C 1
1e

´s}β´βs}8ns´1 ď ¼minp∇2ℓn,spβqq
ď ¼maxp∇2ℓn,spβqq ď C 1

2n
s´1. (V.2)

As a consequence, there exists a constants C1, C2 ą 0

(depending on r, K, and M ) such that the following hold:

C1n
s´1 ď inf

β:}β´βs}2ďK
¼minp∇2ℓn,spβqq (V.3)

ď sup
β:}β´βs}2ďK

¼maxp∇2ℓn,spβqq ď C2n
s´1. (V.4)

Note that the constant K ą 0 in the above lemma specifies

the width of the neighborhood around βs where the inequality

(A.3) holds. The inequality continues to hold for any K ą 0,

but the constants C1 and C2 start depending on K. If K

is large, the constants C1 and C2 become small and large,

respectively.

The proofs of Lemma 1 and Lemma 2 are given in

Appendix V-A2 and Appendix V-A3, respectively. We first

apply these results to prove the rate of convergence in the

L2 norm in Theorem 1.

1) Deriving the L2 Norm Bound in (II.8): To begin with

suppose the ML equations (II.7) have a solution B̂ <
pβ̂2, . . . , β̂rq. This implies, ∇ℓn,spβ̂sq < 0, for 2 ď s ď r,

where ℓn,s is as defined in (II.5). For 2 ď s ď r and 0 ď t ď 1,

define

β̄sptq :< tβ̂s ` p1 ´ tqβs,
and

gsptq :< pβ̂s ´ βsqJ
∇ℓn,spβ̄sptqq.

Note that ∇ℓn,spβsp1qq < ∇ℓn,spβ̂sq < 0. Hence, by the

Cauchy-Schwarz inequality,

|gsp1q ´ gsp0q| < |pβ̂s ´ βsqJ
∇ℓn,spβsq|

ď }β̂s ´ βs}2 ¨ }∇ℓn,spβsq}2. (V.5)

Also,

g1
sptq < pβ̂s ´ βsqJ

∇
2ℓn,spβ̄sptqqpβ̂s ´ βsq (V.6)

ě ¼minp∇2ℓn,spβ̄sptqqq}β̂s ´ βs}2
2. (V.7)

We now consider two cases: To begin with assume s ě 3.

By Lemma 2, given a constant K ą 0 there exists a constant

C1 ą 0 (depending on r,K,M ) such that

inf
β:}β´βs}2ďK

¼minp∇2ℓn,spβqq ě C1n
s´1. (V.8)

Note that }β̄sptq ´ βs}2 < t}β̂s ´ βs}2. Then

|gsp1q ´ gsp0q| ě gsp1q ´ gsp0q

<
ż 1

0

g1
sptqdt

ě
ż mint1, K

}β̂s´βs}2
u

0

g1
sptqdt

ě C1n
s´1}β̂s ´ βs}2

2 min

#

1,
K

}β̂s ´ βs}2

+

,

where the last step follows from (V.6) and (V.8). Therefore,

by (V.5) and Lemma 1, with probability 1 ´Op 1
n2 q,

mint}β̂s ´ βs}2,Ku Àr,K,M

1

ns´1
¨ }∇ℓn,spβsq}2

Àr,K,M

c
1

ns´2
. (V.9)

Since K ą 0 is fixed and the RHS of (V.9) converges to zero

for s ě 3, the L2 norm bound in (II.8) follows, under the

assumption that ML equations (II.7) have a solution.

Next, suppose s < 2. Since }β̄2ptq´β2}8 < t}β̂2 ´β2}8.

Since t P r0, 1s, by Lemma 2,

¼minp∇2ℓn,2pβ̄2ptqqq ě C 1
1e

´2t}β̂
2

´β
2

}8n

ě C 1
1e

´2}β̂
2

´β
2

}8n, (V.10)

for some constant C 1
1 ą 0 depending on M . Then

|g2p1q ´ g2p0q| ě g2p1q ´ g2p0q

<
ż 1

0

g1
2ptqdt

ě C 1
1n}β̂2 ´ β2}2

2e
´2}β̂

2
´β

2
}8

. (by (V.6) and (V.10))

Therefore, by (V.5) and Lemma 1, with probability 1 ´ op1q,

}β̂2 ´ β2}2e
´2}β̂

2
´β

2
}8 ď 1

C 1
1n

¨ }∇ℓn,2pβ2q}2

ď C 1, (V.11)

for some constant C 1 ą 0 depending on M . Hence, if there

exists a bounded solution to (II.7), the L2 norm rate will follow

for s < 2.

To complete the proof we need to show that bounded

solution to equation (II.7) exists. To this end, for 2 ď s ď r,

denote by Ds, the set of all possible degree sequences in an s-

uniform hypergraph on n vertices. Moreover, let Rs be the set

of all expected degree sequences in a hypergraph on n vertices

sampled from the s-uniform model (I.3). The following result

shows that any convex combination of s-degree sequences in

Ds can be reached by the limit of expected degree sequences

of the s-uniform hypergraph β-model. This was proved in the

graph case (s < 2) by Chatterjee et al. [10, Theorem 1.4].

Here, we show that the same holds for all 2 ď s ď r.

Proposition 1: Fix 2 ď s ď r and let Ds and Rs be

as defined above. Then conv pDsq < R̄s, where conv pDsq
denotes the convex hull of Ds and sRs is the closure of Rs.

The proof of the above result is given in Appendix X.

Using this proposition we now show the existence of bounded

solutions of the ML equations (II.7). Note that by Propo-

sition 1, given Hn > Hn,rrspn,Bq the s-degree sequence

pdsp1q, . . . , dspnqq P Ds Ď R̄s. This implies, there exists a

sequence txtutě0 P Rs satisfying

lim
tÑ8

xt < pdsp1q, . . . , dspnqq.
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Since xt P Rs, there exists tβ̂ptq
2 , . . . , β̂

ptq
r u such that

pxtqv <
ÿ

tv2,...,vsuPprnsztvu
s´1 q

e
ˆ́ptq

s,v` ˆ́ptq
s,v2

`...` ˆ́ptq
s,vs

1 ` e
ˆ́ptq

s,v` ˆ́ptq
s,v2

`...` ˆ́ptq
s,vs

, (V.12)

for 1 ď v ď n and 2 ď s ď r. In other words, for each

t ě 0, tβ̂ptq
2 , . . . , β̂

ptq
r u is a solution of the ML equations (II.7)

with pdsp1q, dsp2q, . . . , dspnqq replaced by xt. By the previous

argument, there exists C ą 0 (not depending on t) such that

with probability 1 ´ op1q,

max
2ďsďr

}β̂ptq
s }8 ď C,

for all t ě 0. Therefore, the sequence tpβ̂ptq
2 , . . . , β̂

ptq
r qutě0

has a limit point. This limit point is a solution to (II.7) (by

taking limit as t Ñ 8 in (V.12)) and is bounded. Finally,

since ℓn,s is strongly convex for β P BM (see (V.2)), if the

gradient equations have a bounded solution, it is the unique

minimizer. Therefore, there exists a unique bounded solution

to (II.7) which is the minimizer of ℓn,s.

2) Proof of Lemma 1: Recalling (II.7) note that, for v P rns,
v-th coordinate of the gradient of ∇ℓn,s is given by:

∇ℓn,spβsqv < Erdspvqs ´ dspvq (V.13)

where

Erdspvqs

<
ÿ

tv2,...,vsuPprnsztvu
s´1 q

e´s,v`´s,v2
`...`´s,vs

1 ` e´s,v`´s,v2
`...`´s,vs

. (V.14)

Since dspvq is the sum of Opns´1q independent random

variables bounded by 1, by Hoeffding’s inequality and the

union bound,

P
`
}∇ℓn,spβsq}2

8 ě 4Cs,Mn
s´1 log n

˘
ď 1

n2
,

for some constant Cs,M ą 0 (depending on s and M ). This

establishes the second bound in (V.1).

Next, we prove the first bound in (V.1). Denote by B
n :<

tx P R
n : }x}2 ď 1u the unit ball in R

n. By [48, Lemma 5.2],

we can construct an 1
2

-net V of B
n satisfying log |V| ď C1n

for some constant C1 ą 0. By a 1
2

-net of B
n, we refer to a set

V , such that for all u P B
n there exists v P V satisfying }u´

v}2 ď 1
2

. Now, for any unit vector a < pa1, a2, . . . , anqJ P
B
n and the corresponding point b < pb1, b2, . . . , bnqJ P V ,

recalling (V.13) gives,

nÿ

v<1

av∇ℓn,spβsqv <
nÿ

v<1

av pErdspvqs ´ dspvqq

<
nÿ

v<1

bv pErdspvqs ´ dspvqq ` ∆, (V.15)

where

∆ :<
nÿ

v<1

pav ´ bvq pErdspvqs ´ dspvqq

ď

gffe
nÿ

v<1

pav ´ bvq2
nÿ

v<1

pErdspvqs ´ dspvqq2

ď 1

2

gffe
nÿ

v<1

pErdspvqs ´ dspvqq2 < 1

2
}∇ℓn,spβsq}2,

(V.16)

by the Cauchy-Schwarz inequality and the fact that }a´b}2 ď
1
2

. Using the above in (V.15) gives,

nÿ

v<1

av∇ℓn,spβsqv ď
nÿ

v<1

bv pErdspvqs ´ dspvqq

` 1

2
}∇ℓn,spβsq}2. (V.17)

The inequality (V.17) holds for all a such that }a}2 < 1.

In particular,

max
a:}a}2<1

nÿ

v<1

av∇ℓn,spβsqv

ď
nÿ

v<1

bv pErdspvqs ´ dspvqq ` 1

2
}∇ℓn,spβsq}2. (V.18)

By Cauchy-Schwartz inequality, the maximum value in the left

hand side is equal to }∇ℓn,spβsq}2. Therefore, by maximizing

over a P B
n and b P V on both sides of (V.18) and rearranging

the terms,

}∇ℓn,spβsq}2 ď 2 max
bPV

nÿ

v<1

bv pErdspvqs ´ dspvqq . (V.19)

For e < pu1, u2, . . . , usq P
`rns
s

˘
denote βs,e <

p´s,u1
, ´s,u2

, . . . , ´s,us
qJ. Hence, by (V.19), Hoeffding’s

inequality, and union bound,

P
`
}∇ℓn,spβsq}2

2 ą 4C2ns
˘

ď
ÿ

bPV
P

˜
nÿ

v<1

bv pErdspvqs ´ dspvqq ą 2Cn
s
2

¸

<
ÿ

bPV
P

˜
nÿ

v<1

ÿ

ePprns
s q:vPe

bv

#
eβJ

s,e1

1 ` eβJ
s,e1

´ 1te P EpHnqu
+

ą 2Cn
s
2

¸

ď
ÿ

bPV
e

´ 2C2nřn
v“1

b2v ď 2C1ne´2C2n Ñ 0,

by choosing C ą C1 to be large enough. This proves the first

inequality in (V.1). l

3) Proof of Lemma 2: For e < pu1, u2, . . . , usq P`rns
s

˘
and β < p´1, ´2, . . . , ´nq P R

n, denote βe <
p´u1

, ´u2
, . . . , ´us

qJ. Recalling (II.7) note that, the Hessian

matrix ∇2ℓn,s can be expressed as:

∇
2ℓn,spβq <

ÿ

u,vPrns

ÿ

ePprns
s q

eβJ
e 1

p1 ` eβJ
e 1q2

ηuη
J
v 1tu, v P eu,

where ηu is the u-th basis vector in R
n, for 1 ď u ď n.

Note that for β P R
n, since βs P BM , we have,

|1Jβe| ď s}β}8 ď s}βs}8 ` s}βs ´ β}8.
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Hence,

1

4
e´spM`}βs´β}8q ď e1

Jβe

p1 ` e1
Jβeq2 ď 1. (V.20)

For x P R
n, consider

xJ
∇

2ℓn,spβqx

<
ÿ

u,vPrns

ÿ

ePprns
s q

eβJ
e 1

p1 ` eβJ
e 1q2

xuxv1tu, v P eu

<
ÿ

ePprns
s q

eβJ
e 1

p1 ` eβJ
e 1q2

¨

˝
ÿ

u,vPrns
xuxv1tu, v P eu

˛

‚

<
ÿ

ePprns
s q

eβJ
e 1

p1 ` eβJ
e 1q2

¨

˝
ÿ

uPrns
xu1tu P eu

˛

‚

2

ě 1

4
e´spM`}βs´β}8q

ÿ

ePprns
s q

¨

˝
ÿ

uPrns
xu1tu P eu

˛

‚

2

,

where the last step uses (V.20). Observe that for any x P R
n

ÿ

ePprns
s q

¨

˝
ÿ

uPrns
xu1tu P eu

˛

‚

2

< xJLx,

where

L :<
ÿ

u,vPrns

ÿ

ePprns
s q

ηuη
J
v 1tu, v P eu

<
ˆˆ

n´ 1

s´ 1

˙
´
ˆ
n´ 2

s´ 2

˙˙
In `

ˆ
n´ 2

s´ 2

˙
11

J, (V.21)

where In is the nˆn identity matrix and 1 < p1, 1, . . . , 1qJ.

Similarly, we can show from (V.20) that for any x P R
n

xJ
∇

2ℓn,spβqx ď xJLx.

Thus, for β P R
n

1

4
e´spM`}βs´β}8q¼min pLq ď ¼minp∇2ℓn,spβqq

ď ¼maxp∇2ℓn,spβqq
ď ¼max pLq . (V.22)

Note that L is a circulant matrix with 2 non-zero eigenvalues:
ˆ
n´ 1

s´ 1

˙
and

ˆ
n´ 1

s´ 1

˙
´
ˆ
n´ 2

s´ 2

˙
.

Further, there exists constants C2
1 , C

2
2 ą 0 (depending on r),

such that
ˆ
n´ 1

s´ 1

˙
ď C2

1n
s´1 and

ˆ
n´ 1

s´ 1

˙
´
ˆ
n´ 2

s´ 2

˙
ě C2

2 n
s´1.

This implies, from (V.22), that there exists constants C 1
1,

C 1
2 ą 0 (depending on r and M ) such that (V.2) hold.

The result in (V.3) from hold from (V.2) by noting that

}βs ´ β}8 ď }βs ´ β}2.

B. Convergence Rate in the L8 Norm

Suppose Hn > Hn,rrspn,Bq be as in the statement of

Theorem 1. From the arguments in Appendix V-A we know

that, with probability 1´op1q, the ML equations (II.7) have a

bounded solution B̂ < pβ̂2, . . . , β̂rq, that is, ∇ℓn,spβ̂sq < 0,

for 2 ď s ď r, and max2ďsďr }β̂s}8 < Op1q. To establish

the rate in L8 norm we decompose the likelihood for the s-th

layer as follows.

ℓn,spβq <
ÿ

tv1,v2,...,vsuPprns
s q

log
`
1 ` e´v1

`...`´vs

˘
´

nÿ

v<1

´vdspvq

<
ÿ

ePprns
s q

!
log

´
1 ` eβJ

e 1

¯
´ 1te P EpHnquβJ

e 1

)

< ℓ`
n,sp´u|βūq ` ℓ´

n,spβūq, (V.23)

where βū < p´1, . . . , ´u´1, ´u`1, . . . , ´nq,

ℓ`
n,sp´u|βūq :<

ÿ

ePprns
s q:uPe

!
log

´
1 ` eβJ

e 1

¯

´1te P EpHnquβJ
e 1

)
,

ℓ´
n,spβūq :<

ÿ

ePprns
s q:uRe

!
log

´
1 ` eβJ

e 1

¯

´1te P EpHnquβJ
e 1

)
. (V.24)

Fix a constant K ą 0 and define

β̂
˝
s,ū < argminβū:}βū´βs,ū}2ďK ℓ

´
n,spβūq, (V.25)

where βs,ū < p´s,1, . . . , ´s,u´1, ´s,u`1, . . . , ´s,nq. This is

the leave-one-out ML estimate on the constrained set }βū ´
βs,ū}2 ď K. First we bound the difference (in L2 norm) of

constrained leave-one-out ML estimate defined above and the

leave-one-out true parameter βs,ū.

Lemma 3: Let β̂
˝
s,ū and βs,ū be as defined above. Then,

for u P rns, with probability 1 ´ op1q,

max
uPrns

}β̂˝
s,ū ´ βs,ū}2

2 Às,M,K

1

ns´2
. (V.26)

Proof: To begin with, observe that

ℓ´
n,spβs,ūq ě ℓ´

n,spβ̂
˝
s,ūq

< ℓ´
n,spβs,ūq ` pβ̂˝

s,ū ´ βs,ūqJ
∇ℓ´

n,spβs,ūq

` 1

2
pβ̂˝

s,ū ´ βs,ūqJ
∇

2ℓ´
n,spβ̃qpβ̂˝

s,ū ´ βs,ūq,

where }β̃ ´ βs,ū}2 ď }β̂˝
s,ū ´ βs,ū}2 ď K. This implies,

}β̂˝
s,ū ´ βs,ū}2 ¨ }∇ℓ´

n,spβs,ūq}2

ě ´pβ̂˝
s,ū ´ βs,ūqJ

∇ℓ´
n,spβs,ūq

ě 1

2
pβ̂˝

s,ū ´ βs,ūqJ
∇

2ℓ´
n,spβ̃qpβ̂˝

s,ū ´ βs,ūq.
(V.27)

By Lemma 2,

pβ̂˝
s,ū ´ βs,ūqJ

∇
2ℓ´
n,spβ̃qpβ̂˝

s,ū ´ βs,ūq
Ás,M,K }β̂˝

s,ū ´ βs,ū}2ns´1. (V.28)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on May 05,2025 at 02:25:33 UTC from IEEE Xplore.  Restrictions apply. 



6010 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

Also, by Lemma 1, }∇ℓ´
n,spβs,ūq}2

2 Às,M,K ns with proba-

bility 1´Op 1
n2 q. Plugging in the above inequalities in (V.27),

and using the union bound we get (V.26). l

Next, we bound the difference between the constrained

leave-one-out ML estimate β̂
˝
s,ū and the (unconstrained)

leave-one-out ML estimate β̂s,ū < p ˆ́
s,1, . . . , ˆ́

s,u´1, ˆ́
s,u`1,

. . . , ˆ́
s,nq.

Lemma 4: Let β̂
˝
s,ū and β̂s,ū be as defined above. Then,

with probability 1 ´ op1q,

max
uPrns

}β̂˝
s,ū ´ β̂s,ū}2

2 Às,M,K

1

n
` }β̂s ´ βs}2

8
ns´1

. (V.29)

Proof: [Please read this proof a bit. . . .there may be some

mistakes. . . .I made some major changes.] By the definition of

β̂
˝
s,ū (recall (V.25))

ℓ´
n,spβ̂s,ūq ě ℓ´

n,spβ̂
˝
s,ūq

< ℓ´
n,spβ̂s,ūq ` pβ̂˝

s,ū ´ β̂s,ūqJ
∇ℓ´

n,spβ̂s,ūq

` pβ̂˝
s,ū ´ β̂s,ūqJ

∇ℓ´
n,spβ̄qpβ̂˝

s,ū ´ β̂s,ūq,

where }β̄ ´ β̂s,ū}2 ď }β̂˝
s,ū ´ β̂s,ū}2. Note that }β̂˝

s,ū ´
β̂s,ū}2 < Op1q, since }β̂s}8 < Op1q and }β̂˝

s,ū} < Op1q.

Therefore, we have K ą 0 such that by Lemma 2,

}β̂˝
s,ū ´ β̂s,ū}2

2 Às,M,K

}∇ℓ´
n,spβ̂s,ūq}2

2

n2ps´1q . (V.30)

Since ∇ℓn,spβ̂sq < 0, that is, B
B´v

ℓn,spβ̂sq < 0, for v P rns.
Hence, we have from (V.23),

B
B´v

ℓ´
n,spβ̂s,ūq < ´ B

B´v
ℓ`
n,sp ˆ́

s,u|β̂s,ūq

< ´
ÿ

ePprns
s q:tu,vuPe

tXe ´ Èp1Jβ̂s,equ,

where Èpxq :< ex

1`ex and Xe < 1te P EpHnqu for e P
`rns
s

˘
.

This implies,

}∇ℓ´
n,spβ̂s,ūq}2

2

<
ÿ

vPrnsztuu

¨

˚
˝

ÿ

ePprns
s q:tu,vuPe

tXe ´ Èpβ̂J
s,e1qu

˛

‹
‚

2

À
ÿ

vPrnsztuu

»

—
–

¨

˚
˝

ÿ

ePprns
s q:tu,vuPe

tXe ´ Èp1Jβs,equ

˛

‹
‚

2

`

¨

˚
˝

ÿ

ePprns
s q:tu,vuPe

tÈp1Jβ̂s,eq ´ Èp1Jβs,equ

˛

‹
‚

2fi

ffi
fl

Àr

ÿ

vPrnsztuu

¨

˚
˝

ÿ

ePprns
s q:tu,vuPe

tXe ´ Èp1Jβs,equ

˛

‹
‚

2

` n2s´3}β̂s ´ βs}2
8, (V.31)

using

|Èp1Jβ̂s,eq ´ Èp1Jβs,eq| À |1Jβ̂s,e ´ 1
Jβs,e|

Àr }β̂s ´ βs}2
8. (V.32)

By (V.30) and (V.31), to prove the result in (V.29) it suffices

show the following holds with probability 1 ´ op1q,

max
1ďuďn

ÿ

vPrnsztuu

¨

˚
˝

ÿ

ePprns
s q:u,vPe

!
1te P EpHnqu ´ ÈpβJ

s,e1q
)
˛

‹
‚

2

À ns´1. (V.33)

This is proved in Appendix V-B.1. l

We now apply the above lemmas to derive the bound in

the L8 norm. To begin with note that since ℓn,spβ̂sq <
minβs

ℓn,spβsq,

ℓ`
n,sp´s,u|β̂s,ūq ` ℓ´

n,spβ̂s,ūq ě ℓn,spβ̂sq

< ℓ`
n,sp ˆ́

s,u|β̂s,ūq ` ℓ´
n,spβ̂s,ūq.

(V.34)

The above inequality implies

ℓ`
n,sp´s,u|β̂s,ūq ě ℓ`

n,sp ˆ́
s,u|β̂s,ūq

< ℓ`
n,sp´s,u|β̂s,ūq

` p ˆ́
s,u ´ ´s,uq B

B´u
ℓ`
n,sp´s,u|β̂s,ūq

` 1

2
p ˆ́
s,u ´ ´s,uq2 B2

B´2
u

ℓ`
n,sp ˜́|β̂s,ūq,

where ˜́ is a convex combination of ˆ́
s,u and ´s,u. Therefore,

p ˆ́
s,u ´ ´s,uq2 ď

4| B
B´u

ℓ`
n,sp´s,u|β̂s,ūq|2

| B2

B´2
u
ℓ`
n,sp ˜́|β̂s,ūq|2

. (V.35)

From arguments in Appendix V-A we know that with probabil-

ity 1´op1q, }β̂s´βs}8 ď }β̂s´βs}2 À 1. Note that for β P
R
n such that }β ´ βs}8 À 1, we have }β}8 À 1 and hence,

|1Jβe| À 1. This implies, Èp1Jβe,sqp1´Èp1Jβe,sqq Á 1 and

hence,

B2

B´2
u

ℓ`
n,sp ˜́|β̂s,ūq <

ÿ

ePprns
s q:uPe

Èp1Jβ̄e,sqp1 ´ Èp1Jβ̄e,sqq

Á ns´1, (V.36)

where β̄s < p ˆ́
s,1, . . . , ˆ́

s,u´1, ´s,u, ˆ́
s,u`1, . . . , ˆ́

s,nqJ.

Hence, (V.35) implies,

p ˆ́
s,u ´ ´s,uq2 À

| B
B´u

ℓ`
n,sp´s,u|β̂s,ūq|2

n2s´2
. (V.37)

Now, we bound | B
B´u

ℓ`
n,sp´s,u|β̂s,ūq|2. For this define

β̄
˝
s < prβ̂˝

s,ūs1, . . . , rβ̂
˝
s,ūsu´1, ´s,u, rβ̂

˝
s,ūsu`1, . . . , rβ̂

˝
s,ūsnqJ.
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Then we have

ˇ̌
ˇ̌ B
B´u

ℓ`
n,sp´s,u|β̂s,ūq

ˇ̌
ˇ̌ <

ˇ̌
ˇ̌
ˇ

ÿ

ePprns
s q:uPe

tXe ´ Èp1Jβ̄e,squ
ˇ̌
ˇ̌
ˇ

ď T1puq ` T2puq ` T3puq, (V.38)

where

T1puq :<
ˇ̌
ˇ̌
ˇ

ÿ

ePprns
s q:uPe

tXe ´ Èp1Jβe,squ
ˇ̌
ˇ̌
ˇ
,

T2puq :<
ˇ̌
ˇ̌
ˇ

ÿ

ePprns
s q:uPe

tÈp1Jβ̄
˝
e,sq ´ Èp1Jβe,squ

ˇ̌
ˇ̌
ˇ
,

and

T3puq :<
ˇ̌
ˇ̌
ˇ

ÿ

ePprns
s q:uPe

tÈp1Jβ̄
˝
e,sq ´ Èp1Jβ̄e,squ

ˇ̌
ˇ̌
ˇ
.

Note that since tXeu
ePprns

s q are independent and bounded

random variables, using Hoeffding’s inequality and union

bound gives

max
uPrns

T1puq À
a
ns´1 log n,

with probability 1 ´ op1q. Next, we consider T2puq.

By Lemma 3, with probability 1 ´ op1q,

max
uPrns

T2puq À max
uPrns

ÿ

ePprns
s q:uPe

#
ÿ

vPe

|´s,v ´ rβ̂˝
s,ūsv|

+

< max
uPrns

ÿ

vPrnsztuu
ns´2|´s,v ´ rβ̂˝

s,ūsv|

À ns´ 3

2 max
uPrns

}βs,ū ´ β̂
˝
s,ū}2 À

?
ns´1.

A similar argument shows that, with probability 1 ´ op1q,

maxuPrns T3puq À ns´ 3

2 }β̂s,ū ´ β̂
˝
s,ū}2. Combining the

bounds on T1, T2 and T3 with (V.37) and (V.38) gives, with

probability 1 ´ op1q,

}β̂s´βs}8 À
c

log n

ns´1
`

maxuPrns }β̂s,ū ´ β̂
˝
s,ū}2?

n
. (V.39)

Applying (V.39) in (V.29) now gives, with probability 1´op1q,

max
uPrns

}β̂˝
s,ū ´ β̂s,ū}2

Às,M,K

c
1

ns´1
` }β̂s ´ βs}8?

n

Às,M,K

c
1

ns´1
`

maxuPrns }β̂˝
s,ū ´ β̂s,ū}2

n
À
c

1

ns´1
.

Using this inequality with (V.39) gives, with probability 1 ´
op1q,

}β̂s ´ βs}8 Às,M,K

c
log n

ns´1
,

establishing the desired bound in (II.8).

1) Proof of (V.33): Proof: Denote by B
n´1 <

tx P R
n´1 : }x}2 ď 1u. Using [48, Lemma 5.2],

we can construct an 1
2

-net V1 of B
n´1 (defined in

Section V-A.2) satisfying log |V1| ď C2n for some constant

C2 ą 0. Now, for any u P rns, any unit vector ã <
pã1, . . . , ãu´1, ãu`1, . . . , ãnqJ P B

n´1 and the corresponding

point b̃ < pb̃1, . . . , b̃u´1, b̃u`1, . . . , b̃nqJ P V1,

ÿ

vPrnsztuu
ãv

$
’&

’%

ÿ

ePprns
s q:u,vPe

#

Xe ´ e1
Jβe

1 ` e1
Jβe

+
,
/.

/-

<
ÿ

vPrnsztuu
b̃v

$
’&

’%

ÿ

ePprns
s q,u,vPe

#

Xe ´ e1
Jβe

1 ` e1
Jβe

+
,
/.

/-
` ∆u,

(V.40)

where

∆u :<
ÿ

vPrnsztuu
pãv ´ b̃vq

$
’&

’%

ÿ

ePprns
s q:u,vPe

#

Xe ´ e1
Jβe

1 ` e1
Jβe

+
,
/.

/-
.

Proceeding as in (V.16), for all u P rns, we can show

|∆u| ď 1

2

gffffe
ÿ

vPrnsztuu

$
’&

’%

ÿ

ePprns
s q:u,vPe

"
Xe ´ e1

Jβe

1 ` e1
Jβe

*
,
/.

/-

2

.

Maximizing over ã P B
n´1 and b̃ P V1 on both sides of (V.40)

we get
gffffe

ÿ

vPrnsztuu

$
’&

’%

ÿ

ePprns
s q:u,vPe

"
Xe ´ e1

Jβe

1 ` e1
Jβe

*
,
/.

/-

2

ď 2 max
b̃PV1

ÿ

vPrnsztuu
b̃v

$
’&

’%

ÿ

ePprns
s q:u,vPe

#

Xe ´ e1
Jβe

1 ` e1
Jβe

+
,
/.

/-
.

(V.41)

As the above relation holds for all u P rns we get
gffffemax
uPrns

ÿ

vPrnsztuu

$
’&

’%

ÿ

ePprns
s q:u,vPe

"
Xe ´ e1

Jβe

1 ` e1
Jβe

*
,
/.

/-

2

ď 2 max
uPrns

max
b̃PV1

ÿ

vPrnsztuu
b̃v

$
’&

’%

ÿ

ePprns
s q:u,vPe

tXe´

e1
Jβe

1 ` e1
Jβe

++

. (V.42)

Hence, using (V.42), Hoeffding Inequality and union bound

we get

P

˜

max
uPrns

ÿ

vPrnsztuu

$
’&

’%

ÿ

ePprns
s q:u,vPe

#

Xe ´ e1
Jβe

1 ` e1
Jβe

+
,
/.

/-

2
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ą 4K2ns´1

¸

(V.43)

ď
nÿ

u<1

ÿ

b̃PV1

P

¨

˚
˝

ÿ

vPrnsztuu
b̃v

$
’&

’%

ÿ

ePprns
s q:u,vPe

tXe´

e1
Jβe

1 ` e1
Jβe

++

ą 2Kn
s´1

2

¸

ď
nÿ

u<1

ÿ

b̃PV1

e
´ 2K2n

řn´1

v“1
b̃2v

ď n 2C2ne´2K2n Ñ 0,

for K large enough. l

VI. ESTIMATION LOWER BOUNDS: PROOF OF THEOREM 2

The lower bound in the L2 norm is proved in

Appendix VI-A and the lower bound in the L8 norm is proved

Appendix VI-B.

A. Estimation Lower Bound in the L2 Norm: Proof of (II.10)

For γ P R
n, denote the probability distribution of s-uniform

model Hspn,γq by Pγ . To prove the result (II.10) recall the

following version of Fano’s lemma:

Theorem 9 ( [47, Theorem 2.5]): Suppose there exists

γp0q, ¨ ¨ ¨ ,γpJq P R
n, with }γpjq} P BM for all 0 ď j ď J ,

such that

p1q }γpjq ´ γpℓq}2 ě 2 s ą 0 for all 0 ď j ‰ ℓ ď J ,

p2q 1
J

řJ
j<1 KLpPγpjq } Pγp0q q ď ³ log J ,

where ³ P p0, 1{8q. Then

min
γ̂

max
γ

P p}γ̂ ´ γ}2 ě sq ě
?
J?

J ` 1

ˆ
1 ´ 2³ ´

c
2³

log J

˙
.

(VI.1)

To obtain γp0q, . . . ,γpJq P R
n as in the above lemma

we will invoke the Gilbert-Varshamov Theorem (see [47,

Lemma 2.9]) which states that there exists ωp0q, . . . ,ωpJq P
t0, 1un, with J ě 2n{8, such that ωp0q < p0, ¨ ¨ ¨ , 0qJ and

}ωpjq ´ ωpℓq}1 ě n

8
, (VI.2)

for all 0 ď j ‰ ℓ ď J . For ωp0q, . . . ,ωpJq P t0, 1un as above

and ¶ P p0, 1{8q define,

γpjq < εnω
pjq, for 0 ď j ď J,

where εn < 16Cn´ s´1

2 , with C < Cp¶, sq ą 0 a constant

depending on ¶ and s to be chosen later. By (VI.2) we have

}γpjq ´ γpℓq}2 ě 2Cn´ s´2

2 .

Now,

KLpPγpjq } Pγp0q q

<
sÿ

t<0

ˆ}ωpjq}1

t

˙ˆ
n´ }ωpjq}1

s´ t

˙!
È ptεnq log p2È ptεnqq

` p1 ´ È ptεnqq log p2 p1 ´ È ptεnqqq
)
,

where Èpxq < ex

1`ex is the logistic function defined in

Lemma 4. By a Taylor expansion, for small enough x ą 0,

Èpxq logp2Èpxqq`p1´Èpxqq logp2p1´Èpxqqq < x2

8
`Opx3q.

Hence, using
`}ωpjq}1

t

˘`
n´}ωpjq}1

s´t
˘

Às n
s gives

1

J

Jÿ

j<1

KLpPγpjq }Pγp0q q Às n
sε2n Às C

2n ď ¶ log J,

for C < Cp¶, sq chosen appropriately. Hence, applying

Theorem 9 and taking J Ñ 8 in (VI.1) gives

min
γ̂

max
γ

P

´
}γ̂ ´ γ}8 ě Cn´ s´2

2

¯
ě 1 ´ 2¶.

This completes the proof of (II.10).

B. Estimation Lower Bound in L8 Norm: Proof of (II.11)

Let us consider n ` 1 points γp0q,γp1q, . . . ,γpnq P R
n

defined as follows:

γpjq <
#

2εej if j P t1, . . . , nu,

0 if j < 0,

where ej is the j-th unit vector for j P rns and ε < C̃

b
log n
ns´1

for a constant C̃ < C̃p¶, sq ą 0 (depending on ¶ and s) to be

chosen later. By definition, we have

}γpjq ´ γpℓq}8 ě 2C̃

c
log n

ns´1
.

Denote the probability distribution of the s-uniform models

Hspn,γpjqq by Pγpjq . Observe that for all j P t1, . . . , nu
KLpPγpjq }Pγp0q q

< 1

2

ÿ

ePprns
s q:jPe

„
log

" p1 ` e2εq
2 e2ε

*
` log

"
1

2
p1 ` e2εq

*
.

(VI.3)

By Taylor’s theorem, we get

log

" p1 ` e2εq
2 e2ε

*
` log

"
1

2
p1 ` e2εq

*
< 4ε2 `Opε3q

< 4C̃2 log n

ns´1
`O

˜
plog nq 3

2

n
3

2
ps´1q

¸

. (VI.4)

Hence, from (VI.3),

KLpPγpjq }Pγp0q q

< LsC̃
2 log n`O

˜
plog nq 3

2

n
1

2
ps´1q

¸

, (VI.5)

for some constant Ls depending on s. Therefore, we have

1

n

nÿ

j<1

KLpPγpjq }Pγp0q q Às LsC̃
2 log n ď ¶ log n,

for C̃ < C̃p¶, sq chosen appropriately to ensure ¶ P p0, 1{8q.

Hence, applying Theorem 9 (with the L2 norm replaced by

the L8 norm) and taking large enough n in (VI.1) gives

min
γ̂

max
γ

P

˜

}γ̂ ´ γ}8 ě C̃

c
log n

ns´1

¸

ě 1 ´ 2¶.

(VI.6)

This completes the proof of (II.11).
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VII. PROOF OF THEOREM 3 AND THEOREM 4

We begin with the proof of Theorem 3 in Section VII-A.

The proof of Theorem 4 is given in Section VII-B.

A. Proof of Theorem 3

Recall that, for 2 ď s ď r, ds < pdsp1q, dsp2q, . . . , dspnqqJ

is the vector of s-degrees. The first step in the proof of

Theorem 3 is to derive a linearization of β̂s in terms of the

s-degrees as in Proposition 2 below. The proof is given in

Appendix VII-A.1.

Proposition 2: Fix 2 ď s ď r. Then under the assumptions

of Theorem 3, with probability 1 ´ op1q as n Ñ 8,

}β̂s ´ βs ´ Σ
´1
n,spds ´ Erdssq}8 < O

ˆ
log n

ns´1

˙
, (VII.1)

where Σn,s < ppÃspu, vqqqu,vPrns is a nˆ n matrix with

Ãspu, vq :<
ÿ

ePprns
s q:u,vPe

e1
Jβs,e

p1 ` e1
Jβs,eq2

and

Ãspu, uq :< Ãspuq2 <
ÿ

ePprns
s q:uPe

e1
Jβs,e

p1 ` e1
Jβs,eq2

, (VII.2)

where Ãspuq2 is also defined in (II.12).

Next, define the matrix Γn,s < pµspu, vqqu,vPrns as follows:

µspu, vq :< 1tu < vu
Ãspuq2 . (VII.3)

The following lemma shows that it is possible to replace the

matrix Σ
´1
n,s in (VII.1) with the matrix Γn,s asymptotically.

The proof of the lemma is given in Appendix VII-A.1.

Lemma 5: Suppose Σn,s and Γn,s be as defined in (VII.2)

and (VII.3), respectively. Then under the assumptions of

Theorem 3,

}Γn,s ´ Σ
´1
n,s}8 ď O

ˆ
1

ns

˙
, (VII.4)

where }A}8 < maxu,vPrns |au,v| for a matrix A <
ppau,vqqu,vPrns. Furthermore,

} CovrpΓn,s ´ Σ
´1
n,sqpds ´ Erdssqs}8

ď }Γn,s ´ Σ
´1
n,s}8 `O

ˆ
1

ns

˙
. (VII.5)

To complete the proof of Theorem 3, consider Js P
`rns
as

˘
, for

as ě 1 fixed. Proposition 2 and Lemma 5 combined implies,

}rpβ̂s ´ βsqsJs
´ rΓn,spds ´ ErdssqsJs

}8 < O

ˆ
1?
ns

˙
,

with probability 1 ´ op1q. Now, recall from the statement of

Theorem 3 that Ds < diag pÃspvqqvPrns. From (VII.2) observe

that maxvPrns Ãspvq2 4 ns´1, since }βs}8 ď M < Op1q.

Hence,

}rDspβ̂s´βsqsJs
´rDspΓn,spds´ErdssqsJs

}8 < O

ˆ
1?
n

˙
.

Note that for v P Js,

ÃspvqrΓn,spds ´ Erdssqvs < dspvq ´ Erdspvqs
Ãspvq . (VII.6)

Therefore, from (VII.6),

rDssJs
prpβ̂s ´ βsqsJs

q <
˜˜

dspvq ´ Erdspvqs
a

Varrdspvqs

¸¸

vPJs

`O

ˆ
1?
n

˙

DÑ Nas
p0, Iq,

using the central limit theorem for sums of independent

bounded random variables. Since β̂s are independent across

2 ď s ď r, the result in (II.14) follows.

1) Proof of Proposition 2: For 2 ď s ď r and e <
pu1, u2, . . . , usq P

`rns
s

˘
, let βs,e < p´s,u1

, ´s,u2
, . . . , ´s,us

qJ

and β̂s,e < p ˆ́
s,u1

, ˆ́
s,u2

, . . . , ˆ́
s,us

qJ. Moreover, 1 will

denote the vector of ones in the appropriate dimension.

To begin with, (II.7) and (V.14) gives, for v P rns,
dspvq ´ Erdspvqs

<
ÿ

ePprns
s q:vPe

#
e1

Jβ̂s,e

1 ` e1
Jβ̂s,e

´ e1
Jβs,e

1 ` e1
Jβs,e

+

. (VII.7)

Note that for e P
`rns
s

˘
, by a Taylor expansion,

e1
Jβ̂s,e

1 ` e1
Jβ̂s,e

´ e1
Jβs,e

1 ` e1
Jβs,e

< e1
Jβs,e

p1 ` e1
Jβs,eq2

´
1

Jβ̂s,e ´ 1
Jβs,e

¯
` Ts,e, (VII.8)

where

|Ts,e| ď 1

2

ˇ̌
ˇ1Jβ̂s,e ´ 1

Jβs,e

ˇ̌
ˇ
2

Àr }β̂s ´ βs}2
8. (VII.9)

Then, from (VII.7),

dspvq ´ Erdspvqs <
”
Σn,spβ̂s ´ βsq

ı

v
`Rv,s, (VII.10)

where Rv,s < ř
ePprns

s q:vPe
Ts,e. From (VII.10), we have

β̂s ´ βs < Σ
´1
n,spds ´ Erdssq ´ Σ

´1
n,sRn,s, (VII.11)

where Rn,s < pR1,s, R2,s, . . . , Rn,sqJ. Note that

from (VII.9),

|Rv,s| ď
ÿ

ePprns
s q:vPe

|Ts,e| Àr n
s´1}β̂s ´ βs}2

8. (VII.12)

To bound }Σ´1
n,sRn,s}8, note that for v P rns,

|rΣ´1
n,sRn,ssv|

ď |rΓn,sRn,ssv| ` |rpΣ´1
n,s ´ Γn,sqRn,ssv|. (VII.13)

Observe that

rΓn,sRn,ssv < Rv,s

Ãspvq2 .

Using Ãspvq2 4 ns´1, (VII.12), and (II.8) gives,

|rΓn,sRn,ssv| À }β̂s ´ βs}2
8 < O

ˆ
log n

ns´1

˙
,
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with probability 1 ´ op1q. Further, by Lemma 5, (VII.12),

and (II.8),

|rpΣ´1
n,s ´ Γn,sqRn,ssv| ď }pΣ´1

n,s ´ Γn,sq}8 ˆ n}Rn,s}8

À }β̂s ´ βs}2
8

ď O

ˆ
log n

ns´1

˙
,

with probability 1´op1q. Hence, by (VII.11) and (VII.13) the

result in (VII.1) follows. l

2) Proof of Lemma 5

Proof of (VII.4): Denote

∆n,s < Γn,s ´ Σ
´1
n,s < pp¶spu, vqqqu,vPrns,

Zn,s < In ´ Σn,sΓn,s < ppzspu, vqqqu,vPrns,

and

Θn,s < Γn,sZn,s < p¹spu, vqqu,vPrns.

Then

∆n,s < pΓn,s ´ Σ
´1
n,sqpIn ´ Σn,sΓn,sq

´ Γn,spIn ´ Σn,sΓn,sq
< ∆n,sZn,s ´ Θn,s. (VII.14)

Hence, for u, v P rns,

¶spu, vq

<
nÿ

w<1

¶spu,wqzspw, vq ´ ¹spu, vq

<
nÿ

w<1

¶spu,wq
#

1tw < vu ´
nÿ

b<1

Ãspw, bqµspb, vq
+

´ ¹spu, vq

<
nÿ

w<1

¶spu,wq
#

1tw < vu

´
nÿ

b<1

Ãspw, bq
1tv < bu
Ãspvq2

+

´ ¹spu, vq

(by (VII.3))

<
nÿ

w<1

¶spu,wq
"
1tw < vu ´ Ãspw, vq

Ãspvq2
*

´ ¹spu, vq

< ´
nÿ

w<1

¶spu,wq
"
1tw ‰ vuÃspw, vq

Ãspvq2
*

´ ¹spu, vq,

(VII.15)

since
ř
bPrnsztwu Ãspw, bq < Ãspw,wq < Ãspwq2. The follow-

ing lemma bounds the maximum norm of Θn,s < Γn,sZn,s <
pp¹spu, vqqqu,vPrns.

Lemma 6: For u, v, w P rns,

max t|¹spu, vq|, |¹spu, vq ´ ¹spv, wq|u À Ãs,max

Ã2
s,minn

2
,

(VII.16)

where Ãs,min :< min1ďuăvďn Ãspu, vq and Ãs,max :<
max1ďuăvďn Ãspu, vq.

Proof: Note that Θn,s < Γn,sZn,s < Γn,s ´
Γn,sΣn,sΓn,s. This means for u, v P rns,

¹spu, vq < µspu, vq ´
ÿ

x,yPrns
µspu, xqÃspx, yqµspy, vq.

(VII.17)

Then recalling the definition of µspu, vq from (VII.3) gives,
ÿ

x,yPrns
µspu, xqÃspx, yqµspy, vq

<
ÿ

x,yPrns

1tu < xu1ty < vuÃspx, yq
Ãspuq2Ãspvq2

< Ãspu, vq
Ãspuq2Ãspvq2 .

Hence, from (VII.3) and (VII.17),

|¹spu, vq| <
ˇ̌
ˇ̌Ãspu, vq1tu ‰ vu
Ãspuq2Ãspvq2

ˇ̌
ˇ̌ À Ãs,max

Ã2
s,minn

2
.

This completes the proof of (VII.16). l

Now, for u P rns, let m,m P rns be such that

¶spu,mq < max
wPrns

¶spu,wq and

¶spu,mq < min
wPrns

¶spu,wq. (VII.18)

The following lemma gives bounds on ¶spu,mq and ¶spu,mq.

Lemma 7: For u P rns,
nÿ

w<1

¶spu,wqÃspw, uq < 0.

This implies, ¶spu,mq ě 0 and ¶spu,mq ď 0.

Proof: Note that
řn
w<1 ¶spu,wqÃspw, uq is the u-th diag-

onal element of the matrix ∆n,sΣn,s < Γn,sΣn,s´In (recall

that ∆n,s < Γn,s´Σ
´1
n,s). Note that the u-th diagonal element

of Γn,sΣn,s is given by

ÿ

wPrns
µspu,wqÃspw, uq <

ÿ

wPrns

1tu < wu
Ãspuq2 Ãspw, uq < 1,

since Ãspu, uq < Ãspuq2. Hence, u-th diagonal element of

∆n,sΣn,s is zero. l

Now, recalling (VII.15) note that

¶spu,mq ´ ¶spu,mq ` p¹spu,mq ´ ¹spu,mqq

<
nÿ

w<1

¶spu,wq
"
1tw ‰ muÃspw,mq

Ãspmq2

´1tw ‰ muÃspw,mq
Ãspmq2

*

<
nÿ

w<1

p¶spu,wq ´ ¶spu,mqq
"
1tw ‰ muÃspw,mq

Ãspmq2

´1tw ‰ muÃspw,mq
Ãspmq2

*
, (VII.19)

since
ÿ

wPrnsztmu
Ãspw,mq < Ãspmq2, and
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ÿ

wPrnsztmu
Ãspw,mq < Ãspmq2.

Define

Ω :<
"
w P rns :

1tw ‰ muÃspw,mq
Ãspmq2

ě 1tw ‰ muÃspw,mq
Ãspmq2

*
, (VII.20)

and ¼ :< |Ω|. Then, we have

ÿ

wPΩ

p¶spu,wq ´ ¶spu,mqq
"
1tw ‰ muÃspw,mq

Ãspmq2

´1tw ‰ muÃspw,mq
Ãspmq2

*

ď p¶spu,mq ´ ¶spu,mqq
"ř

wPΩ Ãspw,mq
Ãspmq2

´
ř
wPΩ 1tw ‰ muÃspw,mq

Ãspmq2
*
. (VII.21)

Note that
ř
wPΩ Ãspw,mq
Ãspmq2

<
ř
wPΩ Ãspw,mq

ř
wPΩ Ãspw,mq ` ř

wPrnszpΩŤ
mq Ãspw,mq

< 1

1 `
ř

wPrnszpΩ
Ť

mq Ãspw,mq
ř

wPΩ
Ãspw,mq

, (VII.22)

since m R Ω. Now, observe that
ř
wPrnszpΩŤ

mq Ãspw,mq
ř
wPΩ Ãspw,mq ě pn´ ¼´ 1qÃs,min

¼Ãs,max

This implies,
ř
wPΩ Ãspw,mq
Ãspmq2 ď ¼Ãs,max

¼Ãs,max ` pn´ ¼´ 1qÃs,min

. (VII.23)

Similarly,
ř
wPΩ 1tw ‰ muÃspw,mq

Ãspmq2 <
ř
wPΩ 1tw ‰ muÃspw,mq

ř
wPrns 1tw ‰ muÃspw,mq

< 1

1 `
ř

wPrnszΩ 1tw‰muÃspw,mq
ř

wPΩ
1tw‰muÃspw,mq

.

(VII.24)

Therefore, since m P Ω,
ř
wPrnszΩ 1tw ‰ muÃspw,mq
ř
wPΩ 1tw ‰ muÃspw,mq ď pn´ ¼qÃs,max

p¼´ 1qÃs,min

.

Hence,
ř
wPΩ 1tw ‰ muÃspw,mq

Ãspmq2

ě p¼´ 1qÃs,min

p¼´ 1qÃs,min ` pn´ ¼qÃs,max

. (VII.25)

Applying (VII.23) and (VII.25) in (VII.21) gives,

ÿ

wPΩ

p¶spu,wq ´ ¶spu,mqq
"
1tw ‰ muÃspw,mq

Ãspmq2 (VII.26)

´1tw ‰ muÃspw,mq
Ãspmq2

*

ď p¶spu,mq ´ ¶spu,mqqfp¼q, (VII.27)

where

fp¼q < ¼Ãs,max

¼Ãs,max ` pn´ 1 ´ ¼qÃs,min

´ p¼´ 1qÃs,min

p¼´ 1qÃs,min ` pn´ ¼qÃs,max

.

(VII.28)

Note that fp¼q attains maximum at ¼ < n{2 over ¼ P p1, n´1q
and

fpn{2q < nÃs,max ´ pn´ 2qÃs,min

nÃs,max ` pn´ 2qÃs,min

.

Therefore, from Lemma 6, (VII.19), there exists a constant

C ą 0 such that (VII.26),

¶spu,mq ´ ¶spu,mq

ď nÃs,max ´ pn´ 2qÃs,min

nÃs,max ` pn´ 2qÃs,min

p¶spu,mq ´ ¶spu,mqq

` CÃs,max

Ã2
s,minn

2
.

This implies,

¶spu,mq ´ ¶spu,mq ď CÃs,maxpnÃs,max ` pn´ 2qÃs,minq
2pn´ 2qÃ3

s,minn
2

À
Ã2
s,max

Ã3
s,minn

2
.

Hence, from Lemma 7,

max
1ďwďn

|¶spu,wq| ď ¶spu,mq ´ ¶spu,mq

ď
Ã2
s,max

Ã3
s,minn

2
À 1

ns
,

since Ãs,min 4 ns´2 and Ãs,max 4 ns´2, using

}βs}8 ď M < Op1q.
This completes the proof of (VII.4). l

Proof of (VII.5):

Define

Un,s < CovrpΓn,s ´ Σ
´1
n,sqpds ´ Erdssqs

< Covr∆n,spds ´ Erdssqs, (VII.29)

since ∆n,s < Γn,s ´ Σ
´1
n,s. Observe that

Un,s < ∆n,sErpds ´ Erdssqpds ´ ErdssqJs∆J
n,s

< ∆n,sΣn,s∆
J
n,s

< pΓn,s ´ Σ
´1
n,sq ´ Γn,spIn ´ Σn,sΓn,sq

< pΓn,s ´ Σ
´1
n,sq ´ Θn,s, (VII.30)

since Θn,s < Γn,sZn,s and Zn,s < In ´ Σn,sΓn,s.

By Lemma 6,

}Θn,s}8 À Ãs,max

Ã2
s,minn

2
À 1

ns
, (VII.31)

since Ãs,min 4 ns´2 and Ãs,max 4 ns´2, using }βs}8 ď
M < Op1q. By (VII.4), (VII.30), and (VII.31) the result

in (VII.5) follows. l
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B. Proof of Theorem 4

For x < px1, x2, . . . , xnq P R
n and u P rns define the

function

gupxq <
ÿ

ePprns
s q:uPe

e1
Jxe

p1 ` e1
Jxeq2 ,

where xe < pxu1
, xu2

, . . . , xus
q for e < pu1, u2, . . . , usq.

Then recalling (II.12) and (II.15), Ãspvq2 < gvpβsq and

Ã̂spvq2 < gvpβ̂sq for all v P rns. Hence, by a Taylor

expansion,

|Ã̂spvq2 ´ Ãspvq2|
< |gvpβ̂sq ´ gvpβsq|

<

ˇ̌
ˇ̌
ˇ̌
ˇ

ÿ

ePprns
s q:vPe

#
e1

Jβ̂s,e

p1 ` e1
Jβ̂s,eq2

´ e1
Jβs,e

p1 ` e1
Jβs,eq2

+
ˇ̌
ˇ̌
ˇ̌
ˇ

Àr }β̂s ´ βs}8n
s´1. (VII.32)

Recalling the definition of Js < tvs,1, . . . , vs,as
u from Theo-

rem 4, this implies

rÿ

s<2

prpβ̂s ´ βsqsJs
qJrD̂2

ssJs
prpβ̂s ´ βsqsJs

q

<
rÿ

s<2

asÿ

j<1

Ã̂spvaj
q2p ˆ́

s,vaj
´ ´s,vaj

q2

<
rÿ

s<2

asÿ

j<1

Ãspvaj
q2p ˆ́

s,vaj
´ ´s,vaj

q2

`
rÿ

s<2

asÿ

j<1

pÃ̂spvaj
q2 ´ Ãspvaj

q2qp ˆ́
s,vaj

´ ´s,vaj
q2

DÑ Ç2ř
r
s“2

as
` oP p1q,

by Theorem 3, (VII.32) and (II.8). This completes the proof

of (II.16).

VIII. PROOFS OF THEOREMS 5 AND 6

A. Proof of Theorem 5

Suppose Hn > Hn,spn,γq for γ as in (III.1). Let Σn,s be as

defined in (VII.2) with βs replaced by γ < pµ1, µ2, . . . , µnqJ.

Then ∇2ℓn,spγq < Σn,s. By a Taylor expansion,

ℓn,spγq ´ ℓn,spβ̂sq

< pβ̂s ´ γqJ
∇ℓn,spγq ` 1

2
pβ̂s ´ γqJ

Σn,spβ̂s ´ γq ` Tn,s,

(VIII.1)

where

Tn,s < T
p1q
n,s ` T

p2q
n,s ` T

p3q
n,s , (VIII.2)

with

T
p1q
n,s :< 1

6

nÿ

u<1

B3ℓn,spγ ` ¹pβ̂s ´ γqq
Bp´s,uq3 p ˆ́

s,u ´ µuq3,

T
p2q
n,s :< 1

3

ÿ

1ďu‰vďn

#
B3ℓn,spγ ` ¹pβ̂s ´ γqq

Bp´s,uq2B´s,v

p ˆ́
s,u ´ µuq2p ˆ́

s,v ´ µvq
+

,

T
p3q
n,s :< 1

6

ÿ

1ďu‰v‰wďn

#
B3ℓn,spγ ` ¹pβ̂s ´ γqq

B´s,uB´s,vB´s,w

p ˆ́
s,u ´ µuqp ˆ́

s,v ´ µvqp ˆ́
s,w ´ µwq

+

,

for some ¹ P p0, 1q.

Now, by arguments as in (VII.11) it follows that

β̂s ´ γ < Σ
´1
n,spds ´ Eγrdssq ` Σ

´1
n,sRn,s, (VIII.3)

where Rn,s is as defined in (VII.10) and (VII.11) with βs
replaced by γ. Using this and noting that ´∇ℓn,spγq < ds ´
Eγrdss,

pβ̂s ´ γqJ
∇ℓn,spγq

< pds ´ EγrdssqJ
Σ

´1
n,s∇ℓn,spγq ` RJ

n,sΣ
´1
n,s∇ℓn,spγq

< ´pds ´ EγrdssqJ
Σ

´1
n,spds ´ Eγrdssq

´ RJ
n,sΣ

´1
n,spds ´ Eγrdssq. (VIII.4)

Similarly, using (VIII.3),

pβ̂s ´ γqJ
Σn,spβ̂s ´ γq

< pds ´ EγrdssqJ
Σ

´1
n,spds ´ Eγrdssq

` 2RJ
n,sΣ

´1
n,spds ´ Eγrdssq ` RJ

n,sΣ
´1
n,sRn,s.

(VIII.5)

Combining (VIII.1), (VIII.4), and (VIII.5) gives,

ℓn,spβ̂sq ´ ℓn,spγq

< ´1

2
pds ´ EγrdssqJ

Σ
´1
n,spds ´ Eγrdssq

` 1

2
RJ
n,sΣ

´1
n,sRn,s ` Tn,s. (VIII.6)

We begin by showing that RJ
n,sΣ

´1
n,sRn,s < oP p?

nq.

To this end, (VII.12) and Ãspuq2 4 ns´1 gives,

ˇ̌
ˇRJ

n,sΓn,sRn,s

ˇ̌
ˇ <

ˇ̌
ˇ̌
ˇ

nÿ

u<1

R2
s,u

Ãspuq2

ˇ̌
ˇ̌
ˇ

À ns}β̂s ´ βs}4
8 À log2 n

ns´2
,

(VIII.7)

with probability 1 ´ op1q by (II.8). Next, observe that
ˇ̌
ˇRJ

n,s∆n,sRn,s

ˇ̌
ˇ ď n}∆n,sRn,s}8 ¨ }Rn,s}8

ď n2}Rn,s}2
8 ¨ }∆n,s}8

À ns}β̂s ´ βs}4
8

(by (VII.4) and (VII.12))

À log2 n

ns´2
, (VIII.8)

with probability 1 ´ op1q by (II.8). Combining (VIII.7)

and (VIII.8) it follows that with probability 1 ´ op1q,
ˇ̌
ˇRJ

n,sΣ
´1
n,sRn,s

ˇ̌
ˇ ď

ˇ̌
ˇRJ

n,sΓn,sRn,s

ˇ̌
ˇ

`
ˇ̌
ˇRJ

n,s∆n,sRn,s

ˇ̌
ˇ À log2 n

ns´2

< oP p
?
nq. (VIII.9)
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This implies, the second term in the RHS of (VIII.6) does not

contribute to the CLT of the log-likelihood ratio log Λn,s.

Next, we show that the third term in the RHS of (VIII.6)

is oP p?
nq, hence, it also does not contribute to the CLT of

log Λn,s.

Lemma 8: Suppose s ě 3 and γ P BpMq. Then Tn,s <
oP p?

nq.

Proof: Define β̃s < γ ` ¹pβ̂s ´ γq, for ¹ P p0, 1q. Then

recalling (VIII.2) observe that

T
p1q
n,s :< 1

6

nÿ

u<1

#«
ÿ

ePprns
s q:uPe

e1
Jβ̃s,ep1 ´ e1

Jβ̃s,eq
p1 ` e1

Jβ̃s,eq3

ff

p ˆ́
s,u ´ µuq3

+

T
p2q
n,s :< 1

3

ÿ

1ďu‰vďn

#«
ÿ

ePprns
s q:u,vPe

e1
Jβ̃s,ep1 ´ e1

Jβ̃s,eq
p1 ` e1

Jβ̃s,eq3

ff

p ˆ́
s,u ´ µuq2p ˆ́

s,v ´ µvq
+

,

T
p3q
n,s :< 1

6

ÿ

1ďu‰v‰wďn

#«
ÿ

ePprns
s q:u,v,wPe

e1
Jβ̃s,ep1 ´ e1

Jβ̃s,eq
p1 ` e1

Jβ̃s,eq3

ff

p ˆ́
s,u ´ µuqp ˆ́

s,v ´ µvqp ˆ́
s,w ´ µwq

+

,

where

β̃s,e < p ˜́
s,u1

, ˜́
s,u2

, . . . , ˜́
s,us

qJ, for e < pu1, u2, . . . , usq.

Since γ P BM and

}β̂s ´ γ}8 Às,M

a
log n{ns´1

with probability 1 ´ op1q, β̂s P B2M for large n with

probability 1 ´ op1q. This implies,

T
p1q
n,s ÀM ns}β̂s ´ γ}3

8 ÀM,s

c
plog nq3
ns´3

< oP p
?
nq,
(VIII.10)

for s ě 3. Similarly, we can show that for s ě 3, T
p2q
n,s <

oP p?
nq and T

p3q
n,s < oP p?

nq. This completes the proof of

the Lemma 8. l

Remark 3: Note that Lemma 8 assumes that s ě 3. This

is because when s < 2 (that is, the graph case), the proof

of Lemma 8 gives the bound Tn,2 < Oppolygonpnq{?
nq

which is not oP p?
nq (see (VIII.10)). Nevertheless, it follows

from the proof of Theorem 1 (a) in Yan et al. [56], where the

asymptotic null distribution of the LR test for the graph β-

model was derived, that the result in Lemma 8 also holds when

s < 2, that is, Tn,2 < oP p?
nq. For this one has to expand

ℓn,spβ̂sq ´ ℓn,spγq up to the fourth order term, and show that

the third order term is oP p?
nq at the true parameter value

and the fourth order term is oP p?
nq at an intermediate point.

For s ě 3, the third order term at an intermediate point is

oP p?
nq, hence, we do not have to consider the fourth order

term.

Now, recall the definition of log Λn,s from (III.2). Then by

Lemma 8 and (VIII.6)

2 log Λn,s ´ n?
2n

(VIII.11)

<
pds ´ EγrdssqJ

Σ
´1
n,spds ´ Eγrdssq´n?
2n

` oP p1q.

(VIII.12)

By the following lemma we can replace Σ
´1
n,s with Γn,s

in the RHS above. The proof of the lemma is given in

Appendix VIII-A.1.

Lemma 9: For L ą 0,

P
`
ds ´ EγrdssqJpΣ´1

n,s ´ Γn,sqpds ´ Eγrdssq ą L
˘

À 1

L2
.

This implies, pds ´ EγrdssqJpΣ´1
n,s ´ Γn,sqpds ´ Eγrdssq is

bounded in probability.

By Lemma 9 and recalling (VII.3),

pds ´ EγrdssqJ
Σ

´1
n,spds ´ Eγrdssq?
2n

< pds ´ EγrdssqJ
Γn,spds ´ Eγrdssq?
2n

` oP p1q

< 1?
2n

nÿ

u<1

pdspuq ´ Eγrdspuqsq2
Ãspuq2 ` oP p1q . (VIII.13)

Proposition 3 establishes the asymptotic normality of the

leading term in the RHS above. The proof is given in

Appendix VIII-A.2. l

Proposition 3: Under the assumption of Theorem 5,

1?
2n

#
nÿ

u<1

pdspuq ´ Eγrdspuqsq2
Ãspuq2 ´ n

+
DÑ N p0, 1q.

(VIII.14)

The result in (III.3) now follows from (VIII.11), (VIII.13),

and Proposition 3.

1) Proof of Lemma 9: To begin with note that

Eγrpds ´ EγrdssqJpΣ´1
n,s ´ Γn,sqpds ´ Eγrdssqs

< trpEγrpds ´ Eγrdssqpds ´ EγrdssqJspΣ´1
n,s ´ Γn,sqq

< trpIn ´ Σn,sΓn,sq
< n´

ÿ

u,vPrns
Ãspu, vqµspu, vq

< n´
ÿ

u,vPrns
Ãspu, vq1tu < vu

Ãspuq2 < 0.

Next, we will show that Varγrpds ´ EγrdssqJpΣ´1
n,s ´

Γn,sqpds ´ Eγrdssqs < Op1q. The result in Lemma 9 then

follows by Chebyshev’s inequality. Recall that ∆n,s :< Σ
´1
n,s´

Γn,s. We shall denote the entries of ∆n,s by pp¶u,vqq for

u, v P rns. Then

pds ´ EγrdssqJpΣ´1
n,s ´ Γn,sqpds ´ Eγrdssq

<
ÿ

u,vPrns
¶u,vpdspuq ´ Eγrdspuqsqpdspvq ´ Eγrdspvqsq.
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Define d̄spuq :< dspuq ´ Eγrdspuqs, for u P rns. Then

Varγrpds ´ EγrdssqJpΣ´1
n,s ´ Γn,sqpds ´ Eγrdssqs

<
ÿ

u,v,u1,v1Prns
¶u,v¶u1,v1 Covγrd̄spuqd̄spvq, d̄spu1qd̄spv1qs.

(VIII.15)

To analyze the RHS of (VIII.15) we consider the following

4 cases.

a) Case 1: u < v < u1 < v1. In this case we have

Covγrd̄spuqd̄spvq, d̄spu1qd̄spv1qs < Varγrd̄spuq2s.
For e P

`rns
s

˘
, denote Xe :< 1te P EpHnqu and X̄e :< 1te P

EpHnqu ´ Er1te P EpHnqus. Since tX̄e : e P
`rns
s

˘
u are

independent and have zero mean, tX̄eX̄e1 : e, e1 P
`rns
s

˘
u are

pairwise uncorrelated. Hence,

Varγrd̄spuq2s < Varγ

»

—
–

ÿ

e,e1Pprns
s q:uPe

Ş
e1

X̄eX̄e1

fi

ffi
fl

<
ÿ

e,e1Pprns
s q:uPe

Ş
e1

Varγ

“
X̄eX̄e1

‰

<
ÿ

ePprns
s q:uPe

VarγrX̄2
es

`
ÿ

e‰e1Pprns
s q:uPeXe1

VarγrX̄es VarγrX̄e1 s.

(VIII.16)

Since }γ}8 ď M ,

VarγrX̄es < VarγrXes < e1
Jµe

p1 ` e1
Jγeq 4M 1,

where µe < pµu1
, µu2

, . . . , µus
qJ, for e < pu1, u2, . . . , usq.

Similarly, VarγrX̄2
es 4M 1. Hence, (VIII.16) implies that

Varγrd̄spuq2s ÀM n2s´2.

b) Case 2: u ‰ v < u1 < v1. Observe that

Covγrd̄spuqd̄spvq, d̄spu1qd̄spv1qs
< Covγrd̄spuqd̄spvq, d̄spvq2s
<

ÿ

e1,e2,e3,e4Pprns
s q

uPe1,vPe1Xe2Xe3

 
EγrX̄e1

X̄e2
X̄e3

X̄e4
s

´EγrX̄e1
X̄e2

sEγrX̄e3
X̄e4

s
(
.

Note that the non-zero contributions in the RHS above come

from the terms when ei < ej and ek < eℓ for i, j, k, ℓ P
t1, . . . , 4u. Hence,

Covγrd̄spuqd̄spvq, d̄spvq2s
<

ÿ

ePprns
s q,u,vPe

`
EγrX̄4

es ´ pEγrX̄2
esq2

˘

` 2
ÿ

e1‰e2Pprns
s q

u,vPe1,vPe2

EγrX̄2
e1

sErX̄2
e2

s

ÀM n2s´3,

since EγrX̄4
es 4M 1 and EγrX̄2

esq 4M 1.

c) Case 3: u ‰ v ‰ u1 < v1: By similar reasoning as

the previous two cases it can be shown that

Covγrd̄spuqd̄spvq, d̄spu1qd̄spv1qs
< Covγrd̄2

spuq, d̄spu1qd̄spu1qs ÀM n2s´3.

d) Case 4: u ‰ v ‰ u1 ‰ v1. In this case, it can be

shown that

Covγrd̄spuqd̄spvq, d̄spu1qd̄spv1qs ÀM n2s´4.

Combining the 4 cases and using (VIII.15),

Varγrpds ´ EγrdssqJpΣ´1
n,s ´ Γn,sqpds ´ Eγrdssqs

ÀM max
u,vPrns

|¶u,v|2n2s < Op1q,

where the last step uses (VII.4).

2) Proof of Proposition 3: Suppose Hn <
pV pHnq, EpHnqq > Hn,spn,γq for γ as in (III.1). For

e < tv1, v2, . . . , vsu P
`rns
s

˘
, denote

Xe :< Xtv1,v2,...,vsu :< 1te P EpHnqu.
and X̄e :< 1te P EpHnqu ´ Eγr1te P EpHnqus. Also, for

u P rns denote

d̄spuq < dspuq ´ Eγrdspuqs <
ÿ

ePprns
s q:uPe

X̄e.

Observe that

d̄spuq2 <
ÿ

ePprns
s q:uPe

X̄2
e `

ÿ

e‰e1Pprns
s q:uPeXe1

X̄eX̄e1 .

(VIII.17)

This implies,

Eγrd̄spuq2s <
ÿ

ePprns
s q:uPe

EγrX̄2
es

<
ÿ

ePprns
s q:uPe

VarγrX̄2
es<Varγrdspuqs < Ãspuq2.

Hence,

1?
2n

#
nÿ

u<1

pdspuq ´ Eγrdspuqsq2
Ãspuq2 ´ n

+

< 1?
2n

nÿ

u<1

d̄spuq2 ´ Eγrd̄spuq2s
Ãspuq2

< 1?
2n

nÿ

u<1

ÿ

ePprns
s q:uPe

X̄2
e ´ EγrX̄2

es
Ãspuq2

` 1?
2n

nÿ

u<1

ÿ

e‰e1Pprns
s q:uPeXe1

X̄eX̄e1

Ãspuq2

(by (VIII.17))

:< T1 ` T2. (VIII.18)

We will first show that T1 < oP p1q. Towards this note that

T1 < s?
2n

ÿ

ePprns
s q

X̄2
e ´ EγrX̄2

es
Ãspuq2 .
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Since tX̄e : e P
`rns
s

˘
u are independent,

VarγrT1s < s2

2 n

ÿ

ePprns
s q

VarγrX̄2
es

Ãspuq4 ÀM

1

ns´1
,

using VarγrX̄2
es 4M 1 and Ãspuq2 4M ns´1. This implies,

T1 < oP p1q.

Therefore, from (VIII.18), to prove (VIII.14) it remains to

show T2
DÑ Np0, 1q. For this we will express T2 as a sum

of a martingale difference sequence. To this end, define the

following sequence of sigma-fields: For u P rns,

Fu :< Ã

˜
uď

v<1

tX̄e : v P eu
¸

,

is the sigma algebra generated by the collection of random

variables
Ťu
v<1tX̄e : v P eu. Clearly, F1 Ď F2 ¨ ¨ ¨ Ď Fn,

hence tFuuuPrns is a filtration. Now, for u P rns, define

T2,u :<
ÿ

e,e1Pprns
s q:e‰e1,uPeXe1,

eXt1,...,uu‰∅

and e1Xt1,...,u´1u<∅

we,e1X̄eX̄e1

where we,e1 :< ř
zPeXe1

1
Ãspzq2 . Note that T2,u is Fu measur-

able and EγrT2,u|Fu´1s < 0, that is, T2,u, for u P rns, is a

martingale difference sequence. Also, recalling the definition

of T2 from (VIII.18) observe that

T2 < 1?
2n

nÿ

u<1

ÿ

e‰e1Pprns
s q:uPeXe1

X̄eX̄e1

Ãspuq2

< 1?
2n

ÿ

e‰e1Pprns
s q,eXe1‰∅

we,e1X̄eX̄e1

< 1?
2n

nÿ

u<1

T2,u,

that is, T2 is the sum of a martingale difference sequence.

Now, invoking the martingale central theorem [9] it can be

shown that T2
DÑ Np0, 1q. The details are omitted.

B. Proof of Theorem 6

Suppose Hn > Hn,spn,γ1q for γ1 as in (III.5). Then by

arguments as in (VIII.6),

ℓn,spβ̂sq ´ ℓn,spγ1q

< ´1

2
pds ´ Eγ1 rdssqJ

Σ
´1

n,spds ´ Eγ1 rdssq

` 1

2
RJ
n,sΣ

´1

n,sRn,s ` Tn,s,

where Σn,s and Rn,s are as defined in (VII.2) and (VII.10),

respectively, with βs replaced by γ1 and Tn,s as defined

in (VIII.2) with γ replaced by γ1. Therefore,

ℓn,spβ̂sq ´ ℓn,spγq

< ´1

2
pds ´ Eγ1 rdssqJ

Σ
´1

n,spds ´ Eγ1 rdssq

` 1

2
RJ
n,sΣ

´1

n,sRn,s ` Tn,s

` ℓn,spγ1q ´ ℓn,spγq, (VIII.19)

By Taylor expansion,

ℓn,spγ1q ´ ℓn,spγq

< pds ´ Eγ1 rdssqJpγ1 ´ γq ` 1

2
pγ1 ´ γqJ

Σ̃n,spγ1 ´ γq,

where Σ̃n,s is the covariance matrix defined in (VII.2) with

βs replaced by γ̃ < γ1 ` ¹pγ1 ´ γq for some 0 ă ¹ ă 1.

Then by arguments as in (VIII.9) and Lemma 8, Lemma 9,

(VIII.19) can be written as:

ℓn,spβ̂sq ´ ℓn,spγq

< ´1

2
pds ´ Eγ1 rdssqJ

Γn,spds ´ Eγ1 rdssq
` pds ´ Eγ1 rdssqJpγ1 ´ γq

` 1

2
pγ1 ´ γqJ

Σ̃n,spγ1 ´ γq ` oP p
?
nq, (VIII.20)

where Γn,s is as defined in (VII.3) with the parameter βs
replaced by γ1.

We begin with the case }γ1 ´ γ}2 ! n´ 2s´3

4 . In this case,

since ∇2ℓn,spγ1q < Σn,s, by Lemma 2

pγ1´γqJ
Σn,spγ1´γq4ns´1}γ1´γ}2

2 !
?
n. (VIII.21)

Similarly,

pγ1´γqJ
Σ̃n,spγ1´γq4ns´1}γ1´γ}2

2 !
?
n. (VIII.22)

Hence,

Varrpds ´ Eγ1 rdssqJpγ1´γqs<pγ1´γqJ
Σn,spγ1 ´ γq!n,

which implies, pds ´ Eγ1 rdssqJpγ1 ´ γq < oP p?
nq, since

Erpds ´ Eγ1 rdssqJpγ1 ´ γqs < 0. Therefore, under H1 as

in (III.5),

2 log Λn,s ´ n?
2n

< 2pℓn,spγq ´ ℓn,spβ̂sqq ´ n?
2n

< pds ´ Eγ1 rdssqJ
Γn,spds ´ Eγ1 rdssq´n?

2n
` oP p1q

(by (VIII.20), (VIII.21), and (VIII.22))

DÑ N p0, 1q,

by Proposition 3. This proves the first assertion in (III.6).

Next, suppose }γ1 ´ γ}2 " n´ 2s´3

4 . In this case,

by Lemma 2, pγ1 ´γqJ
Σn,spγ1 ´γq 4 ns´1}γ1 ´γ}2

2 " ?
n.

We will first assume:
?
n ! pγ1 ´ γqJ

Σn,spγ1 ´ γq À n. (VIII.23)

Then we have

Varrpds ´ Eγ1 rdssqJpγ1 ´ γqs
< pγ1 ´ γqJ

Σn,spγ1 ´ γq < Opnq. (VIII.24)

Using this and Proposition 3 it follows that

1?
n

„
1

2
pds ´ Eγ1 rdssqJ

Γn,spds ´ Eγ1 rdssq
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`pds ´ Eγ1 rdssqJpγ1 ´ γq
‰

(VIII.25)

is bounded in probability. Hence, from (VIII.20),

2 log Λn,s ´ n?
2n

< pℓn,spγq ´ ℓn,spβ̂sqq ´ n?
2n

Ñ 8,

in probability, since by Lemma 2, pγ1 ´ γqJ
Σ̃n,spγ1 ´ γq 4

ns´1}γ1 ´ γ}2
2 " ?

n. This implies, Eγ1 rϕn,ss Ñ 1, when-

ever (VIII.23) holds. Next, we assume

pγ1 ´ γqJ
Σn,spγ1 ´ γq " n. (VIII.26)

For notational convenience denote ϑn,s :< pγ1 ´ γqJ
Σn,s

pγ1 ´ γq. Then Proposition 3 and (VIII.26) imply that

1
a
ϑn,s

„
1

2
pds ´ Eγ1 rdssqJ

Γn,spds ´ Eγ1 rdssq

`pds ´ Eγ1 rdssqJpγ1 ´ γq
‰

is bounded in probability. Using (VIII.21) and (VIII.22) we

also get

pγ1 ´ γqJ
Σ̃n,spγ1 ´ γq

a
ϑn,s

4 n
s´1

2 }γ1 ´ γ}2 Ñ 8.

This implies, from from (VIII.20),

Eγ1 rϕn,ss < Pγ1

˜ˇ̌
ˇ̌
ˇ
2 log Λn,s ´ n

a
ϑn,s

ˇ̌
ˇ̌
ˇ

ě z³{2

d
2n

ϑn,s

¸

Ñ 1.

This concludes the proof. This completes the proof of the third

assertion in (III.6).

Now, we consider the case n
2s´3

4 }γ1 ´ γ}2 Ñ Ä P p0,8q.

By Taylor expansion,

ℓn,spγ1q ´ ℓn,spγq
< pds ´ Eγ1 rdssqJpγ1 ´ γq

` 1

2
pγ1 ´ γqJ

Σn,spγ1 ´ γq ` T̃n,s, (VIII.27)

where Σn,s is as defined in (VII.2) with βs replaced by γ

and T̃n,s is as defined in (VIII.2) with the parameter γ̃ <
γ1 ` ¹pγ1 ´ γq for some 0 ă ¹ ă 1. By arguments as in

Lemma 8, T̃n,s < oP p?
nq. Then (VIII.9) and Lemma 8,

Lemma 9, (VIII.19) can be written as:

ℓn,spβ̂sq ´ ℓn,spγq

< ´1

2
pds ´ Eγ1 rdssqJ

Γn,spds ´ Eγ1 rdssq
` pds ´ Eγ1 rdssqJpγ1 ´ γq

` 1

2
pγ1 ´ γqJ

Σn,spγ1 ´ γq ` oP p
?
nq. (VIII.28)

Note that Erpds ´ Eγ1 rdssqJpγ1 ´ γqs < 0 and by Lemma 2,

Varrpds ´ Eγ1 rdssqJpγ1 ´ γqs
< pγ1 ´ γqJ

Σn,spγ1 ´ γq 4n,r

?
n,

when }γ1 ´ γ}2 4 n´ 2s´3

4 . Hence, in this case,

pds ´ Eγ1 rdssqJpγ1 ´ γq < oP p
?
nq.

This also implies that

¸ :< lim
nÑ8

pγ1 ´ γqJ
Σn,spγ1 ´ γq?
n

exists along a subsequence. (Note that Covγrdss < Σn,s.)

Hence, from (VIII.28),

2 log Λn,s ´ n?
2n

< 2pℓn,spγq ´ ℓn,spβ̂sqq ´ n?
2n

< pds ´ Eγ1 rdssqJ
Γn,spds ´ Eγ1 rdssq ´ n?

2n

´ pγ1 ´ γqJ
Σn,spγ1 ´ γq?
2n

` oP p1q
DÑ N p´ ?̧

2
, 1q.

This completes the proof of (III.7).

IX. TESTING LOWER BOUNDS

In this section we prove the lower bounds for the goodness-

of-fit problem in the L2 and L8 norms, that is, Theorem 7 (b)

and Theorem 8 (b), respectively. For this, suppose Ãn be a

prior probability distribution on the alternative H1 (as in (III.8)

or (III.10)). Then the Bayes risk of a test function Èn is defined

as

RpÈn,γ, Ãnq < PH0
pÈn < 1q ` Eγ1>Ãn

rPγ1 pÈn < 0qs .
(IX.1)

For any prior Ãn the worst-case risk of test function Èn,

as defined in (III.9), can be bounded below as:

Lemma 10: Let Hn,s denote the collection of s-uniform

hypergraphs on n vertices. Then

RpÈn,γq ě RpÈn,γ, Ãnq ě 1 ´ 1
2

b
EH0

rL2
Ãn

s ´ 1, (IX.2)

where LÃn
< Eγ1„πnrPγ1 pÉqs

PH0
pÉq , É P Hn,s, is the Ãn-integrated

likelihood ratio.

Proof: Clearly, RpÈn,γq ě RpÈn,γ, Ãnq. To show the

second inequality in (IX.2) observe that,

RpÈn,γ, Ãnq ě inf
Èn

tPH0
pÈn < 1q ` Eγ1>Ãn

pPγ1 pÈn < 0qqu

ě 1 ´ sup
Èn

|PH0
pÈn < 1q

´Eγ1>Ãn
pPγ1 pÈn < 1qq|

ě 1 ´ sup
ÉPHn,s

|PH0
pÉq ´ Eγ1>Ãn

rPγ1 pÉqs|

ě 1 ´ 1

2

ÿ

ÉPHn,s

ˇ̌
ˇ̌Eγ1>Ãn

rPγ1 pÉqs
PH0

pÉq ´ 1

ˇ̌
ˇ̌PH0

pÉq

< 1 ´ 1
2
EH0

|LÃn
´ 1|

ě 1 ´ 1
2

b
EH0

rL2
Ãn

s ´ 1,

where the last step uses the Cauchy-Schwarz inequality. l

Therefore, to show all tests are powerless it suffices to

construct a prior Ãn on H1 such that EH0
rL2
Ãn

s Ñ 1. We show

this for the L2 norm in Appendix IX-A and for the L8 norm

in Appendix IX-B.
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A. Testing Lower Bound in L2 Norm: Proof of Theorem 7 (b)

We choose γ < 0, ε ! n´ 2s´3

4 , and construct a prior Ãn on

H1 as in (III.8) as follows: Suppose γ1 < pµ1
1, µ

1
2, . . . , µ

1
nqJ P

R
n with

µ1
u < ¸u ¨ ε?

n
,

for u P rns, where ¸1, . . . , ¸n are i.i.d Rademacher random

variables, taking values t˘1u with probability 1
2

. Clearly, }γ´
γ1}2 < ε. Then, for H P Hn,s, the Ãn integrated likelihood

ratio is given by

LÃn
< Eη

„
Pγ1 pHq
P0pHq


< Eη

»

—
–

ź

ePprns
s q

2 ewηpeqXe

1 ` ewηpeq

fi

ffi
fl ,

where Xe :< 1te P EpHqu, η :< p¸1, . . . , ¸nq, and wηpeq :<
ε?
n

ř
uPe ¸u, for e P

`rns
s

˘
. Then

L2
Ãn

< Eη,η1

»

—
–

ź

ePprns
s q

4 epwηpeq`wη1 peqqXe

p1 ` ewηpeqqp1 ` ewη1 peqq

fi

ffi
fl ,

where ¸1
1, . . . , ¸

1
n are i.i.d Rademacher random variables which

are independent of ¸1, . . . , ¸n, η1 :< p¸1
1, . . . , ¸

1
nq, and

wη1 peq :< ε?
n

ř
uPe ¸

1
u, for e P

`rns
s

˘
. Taking expectation with

respect to H0 gives,

EH0
rL2
Ãn

s

< Eη,η1

»

—
–

ź

ePprns
s q

2 pepwηpeq`wη1 peqq ` 1q
p1 ` ewηpeqqp1 ` ewη1 peqq

fi

ffi
fl

< Eη,η1

«
ź

ePprns
s q

2 tÈpwηpeqqÈpwη1 peqq

`p1 ´ Èpwηpeqqqp1 ´ Èpwη1 peqqqu
ff

, (IX.3)

where Èpxq is the logistic function as defined in Lemma 4.

Using the Taylor expansions of Èpxq and 1 ´ Èpxq around 0,

we can show that for all x P R,

Èpxq ď 1

2
` x

4
` x3

48
and 1 ´ Èpxq ď 1

2
´ x

4
` x3

48
.

As a consequence, for e P
`rns
s

˘
,

2 tÈpwηpeqqÈpwη1 peqq ` p1 ´ Èpwηpeqqqp1 ´ Èpwη1 peqqqu

ď 1 ` 1

4
wηpeqwη1 peq ` 1

24
pwηpeq3 ` wη1 peq3q

` 1

242
wηpeq3wη1 peq3.

Using this bound in (IX.3) gives,

EH0
rL2
Ãn

s

ď Eη,η1

»

—
–

ź

ePprns
s q

ˆ
1 ` 1

4
wηpeqwη1 peq ` 1

24
pwηpeq3

`wη1 peq3q ` 1

242
wηpeq3wη1 peq3

˙

ď Eη,η1

»

—
–exp

˜
ÿ

ePprns
s q

"
1

4
wηpeqwη1 peq ` 1

24
pwηpeq3

`wη1 peq3q ` 1

242
wηpeq3wη1 peq3

*¸ff

,

(IX.4)

since 1 ` x ď ex.

Recalling the definition of wηpeq observe that

ˇ̌
ˇ̌
ˇ̌
ˇ

ÿ

ePprns
s q
wηpeq3

ˇ̌
ˇ̌
ˇ̌
ˇ

ď ε3

n
3

2

ÿ

ePprns
s q

˜
ÿ

uPe

|¸u|
¸3

ď ε3ns´ 3

2 .

Hence,

E

„
e
2
ř

ePprns
s q wηpeq3


ď e2ε

3n
s´ 3

2 Ñ 1, (IX.5)

since ε ! n´ 2s´3

4 and, for s ě 2, ´ s
2

` 3
4

ą 0. Similarly,

it can be shown that

lim
nÑ8

E

„
e
2
ř

ePprns
s q wηpeq3wη1 peq3


< 1. (IX.6)

Then Hölder’s inequality applied to (IX.4) followed by (IX.5)

and (IX.6) gives

EH0
rL2
Ãs ď

"
Eη,η1

„
e

3

4

ř
ePprns

s q wηpeqwη1 peq
*1{3

p1 ` op1qq.

(IX.7)

Next, observe that

ÿ

ePprns
s q
wηpeqwη1 peq

< ε2

n

$
’&

’%

ÿ

ePprns
s q

˜
ÿ

uPe

¸u

¸˜
ÿ

vPe

¸1
v

¸
,
/.

/-

< ε2

n

#ˆ
n´ 1

s´ 1

˙ nÿ

u<1

¸u¸
1
u `

ˆ
n´ 2

s´ 2

˙ ÿ

1ďu‰vďn
¸u¸

1
v

+

ď ε2ns´2
nÿ

u<1

¸u¸
1
u ` ε2ns´3

ÿ

1ďu‰vďn
¸u¸

1
v

< ε2ns´2
nÿ

u<1

¸u¸
1
u

` ε2ns´3

#˜
nÿ

u<1

¸u

¸˜
nÿ

v<1

¸1
v

¸

´
nÿ

u<1

¸u¸
1
u

+

. (IX.8)

Note that ε2ns´3 |řn
u<1 ¸u¸

1
u| ď ε2ns´2. Hence,

E

”
e

9

4
ε2ns´3

řn
u“1

¸u¸
1
u

ı
À eε

2ns´2 Ñ 1, (IX.9)
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since ε ! n´ 2s´3

4 . From (IX.7), by Hölder’s inequality

followed by (IX.8) and (IX.9) gives

EH0
rL2
Ãs Às

!
Eη,η1

”
e

9

4
ε2ns´2

řn
u“1

¸u¸
1
u

ı)1{9
ˆ

!
Eη,η1

”
e

9

4
ε2ns´3přn

u“1
¸uqpřn

v“1
¸1

vq
ı)1{9

p1 ` op1qq. (IX.10)

Denote Xn :< řn
u<1 ¸u and Yn :< řn

v<1 ¸
1
u. Since Xn

and Yn are independent and each of them is a sum of i.i.d.

Rademacher random variables,

Eη,η1

”
e

9

4
ε2ns´3XnYn

ı
< E

”
E

”
e

9

4
ε2ns´3XnYn |Yn

ıı

< E

„ˆ
cosh

ˆ
9

4
ε2ns´3Yn

˙˙n

ď E

”
e

81

16
ε4n2s´5Y 2

n

ı
,

where last step uses coshpxq ď ex
2

, for all x P R. Since

|Yn| ď n, this implies,

Eη,η1

”
e

9

4
ε2ns´3XnYn

ı
ď e

81

16
ε4n2s´5Y 2

n ď e
81

16
ε4n2s´3 Ñ 1,

(IX.11)

since ε ! n´ 2s´3

4 . Next, observe that ¸u¸
1
u, for u <

1, ¨ ¨ ¨ , n, are i.i.d. Rademacher random variables. Again using

coshpxq ď ex
2

for all x P R, we can show that

Eη,η1

”
e

9

4
ε2ns´2

řn
u“1

¸u¸
1
u

ı

<
ˆ

cosh

ˆ
9

4
ε2ns´2

˙˙n
ď e

81

16
ε4n2s´3 Ñ 1, (IX.12)

since ε ! n´ 2s´3

4 . Hence, using (IX.11) and (IX.12) in (IX.10)

gives,

lim
nÑ8

EH0
rL2
Ãs < 1.

By Lemma 10, this completes the proof of Theorem 7 (b).

B. Testing Lower Bound in L8 Norm: Proof of

Theorem 8 (b)

We choose γ < 0, ε ! plog n{ns´1q1{2, and construct a

prior Ãn on H1 as in (III.8) as follows: Suppose γu P R
n

with

γu < εeu,

for u P rns, where e1, . . . ,en being the canonical basis vectors

in R
n. Then Ãn assigns probability 1{n to each γu. Clearly,

}γ ´ γu}8 < ε for all u P rns. Then, for H P Hn,s, the Ãn
integrated likelihood ratio is given by

LÃn
< 1

n

ÿ

uPrns

ź

ePprns
s q:uPe

2 eεXe

1 ` eε
,

where Xe :< 1te P EpHqu. Then

L2
Ãn

< 1

n2

ÿ

uPrns

ź

ePprns
s q:uPe

4 e2εXe

p1 ` eεq2

` 1

n2

ÿ

u‰vPrns

ź

ePprns
s q:u,vPe

4 e2εXe

p1 ` eεq2 . (IX.13)

Observe that

EH0

»

—
–

ź

ePprns
s q:uPe

4 e2εXe

p1 ` eεq2

fi

ffi
fl

<
`
2Èpεq2 ` 2 p1 ´ Èpεqq2

˘p n

s´1q , (IX.14)

where Èpxq < ex

1`ex . Similarly,

EH0

»

—
–

ź

ePprns
s q:u,vPe

4 e2εXe

p1 ` eεq2

fi

ffi
fl

<
`
2Èpεq2 ` 2 p1 ´ Èpεqq2

˘p n

s´2q . (IX.15)

Since ε ! plog n{ns´1q1{2, a Taylor expansion around zero

gives Èpεq < 1
2

` 1
4
ε`Opε2q. Hence,

2Èpεq2 ` 2p1 ´ Èpεqq2 < 1 `Opε2q.
Therefore, by (IX.14)-(IX.15) and using 1 ` x ď ex gives,

EH0
rL2
Ãn

s ď 1

n
eOpε2ns´1q ` eOpε2ns´2q Ñ 1,

since ε ! plog n{ns´1q1{2. By Lemma 10, this completes the

proof of Theorem 8 (b).

X. PROOF OF PROPOSITION 1

Define g < pg1, g2, . . . , gnq : R
n Ñ R

n where gu : R
n Ñ

R, for u P rns, as follows:

gupxq <
ÿ

ePprns
s q:uPe

exJ
e 1

1 ` exJ
e 1
,

where x < px1, x2, . . . , xnqJ and xe < pxu1
, xu2

, . . . , xus
qJ

for e < pu1, u2, . . . , usq. Observe that Rs is the range of g.

Since the expected degree of a vertex is a weighted combina-

tion of all the possible degrees in s-uniform hypergraphs on

n vertices, this implies R̄s Ď conv pDsq.

To show the other side, for every y P R
n we define,

fypxq <
nÿ

i<1

xiyi ´
ÿ

tv1,v2,...,vsuPprns
s q

logp1 ` exv1
`...`xvs q.

Since the probability of observing an s-uniform hyper-

graph with parameter x and s-degree sequence ds <
pdsp1q, . . . , dspnqq is

e
řn

v“1
dspvqxv

ś
tv1,v2,...,vsuPprns

s qp1 ` exv1
`...`xvs q .

and is less than 1, taking logarithm on both sides we get

fds
pxq ď 0. Further as fypxq depends linearly on y, we have

fypxq ď 0 for all y P conv pDsq and x P R
n. Now, let us

fix y P conv pDsq. It can be shown that the Hessian ∇2fypxq
is uniformly bounded, hence, by [10, Lemma 3.1] there exists

a sequence txkukě1 such that ∇fypxkq Ñ 0. Observing that

∇fypxkq < y ´ gpxq, we get gpxkq Ñ y. As y P conv pDsq
is arbitrary, this implies conv pDsq Ď R̄s. l
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