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SUMMARY

The kernel two-sample test based on the maximum mean discrepancy is one of the most

popular methods for detecting differences between two distributions over general metric

spaces. In this paper we propose a method to boost the power of the kernel test by combin-

ing maximum mean discrepancy estimates over multiple kernels using their Mahalanobis

distance. We derive the asymptotic null distribution of the proposed test statistic and use

a multiplier bootstrap approach to efûciently compute the rejection region. The resulting

test is universally consistent and, since it is obtained by aggregating over a collection of

kernels/bandwidths, is more powerful in detecting a wide range of alternatives in ûnite

samples. We also derive the distribution of the test statistic for both ûxed and local con-

tiguous alternatives. The latter, in particular, implies that the proposed test is statistically

efûcient, that is, it has nontrivial asymptotic (Pitman) efûciency. The consistency proper-

ties of the Mahalanobis and other natural aggregation methods are also explored when

the number of kernels is allowed to grow with the sample size. Extensive numerical experi-

ments are performed on both synthetic and real-world datasets to illustrate the efûcacy of

the proposed method over single-kernel tests. The computational complexity of the pro-

posed method is also studied, both theoretically and in simulations. Our asymptotic results

rely on deriving the joint distribution of the maximum mean discrepancy estimates using

the framework of multiple stochastic integrals, which is more broadly useful, speciûcally,

in understanding the efûciency properties of recently proposed adaptive maximum mean

discrepancy tests based on kernel aggregation and also in developing more computationally

efûcient, linear-time tests that combine multiple kernels. We conclude with an application

of the Mahalanobis aggregation method for kernels with diverging scaling parameters.

Some key words: Kernel method; Nonparametric two-sample testing; Pitman efûciency; U-statistic.

1. Introduction

Given two probability distributions P and Q on a separable metric space X , the two-

sample problem is to test the hypothesis

H0 : P = Q versus H1 : P |= Q, (1)

based on independent and identically distributed samples Xm := {X1,X2,&,Xm} and
Yn := {Y1,Y2,&,Yn} from distributions P and Q, respectively. This is a classical
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problem that has been extensively studied, especially in the parametric regime, where the

data are assumed to have certain low-dimensional functional forms. However, parametric

methods often perform poorly for misspeciûed models, especially when the number of nui-

sance parameters is large, and for non-Euclidean data. This necessitates the development of

nonparametric methods, which make minimal distributional assumptions on the data, but

remain powerful for a wide class of alternatives.

For univariate data, there are several well-known nonparametric tests such as the

two-sample Kolmogorov3Smirnoff maximum deviation test (Smirnov, 1948), the Wald3

Wolfowitz runs test (Wald & Wolfowitz, 1940), the rank-sum test (Mann &Whitney, 1947;

Wilcoxon, 1947) and the Cramér3von Mises test (Anderson, 1962). Efforts to general-

ize these univariate methods to higher dimensions date back to Weiss (1960) and Bickel

(1969). Thereafter, several nonparametric methods for multivariate two-sample testing have

been proposed over the years. These include tests based on geometric graphs (Friedman

& Rafsky, 1979; Henze, 1984; Schilling, 1986; Hall & Tajvidi, 2002; Rosenbaum, 2005;

Biswas et al., 2014; Chen &Friedman, 2017; Bhattacharya, 2019), tests based on data-depth

(Liu & Singh, 1993), the energy distance test (see the 2003 Bowling Green State University

technical report by G. J. Székely, Baringhaus & Franz, 2004; Székely &Rizzo, 2004; Aslan &

Zech, 2005; Székely &Rizzo, 2013), kernel maximummean discrepancy tests (Gretton et al.,

2009, 2012a,b; Sejdinovic et al., 2013; Chwialkowski et al., 2015; Ramdas et al., 2015, 2017;

Shekhar et al., 2022; Song & Chen, 2023; Zhang et al., 2024), ball divergence (Pan et al.,

2018; Banerjee & Ghosh, 2022), projection-averaging (Kim et al., 2020) and classiûer-based

tests (Lopez-Paz & Oquab, 2017; Kim et al., 2021), among others. Recently, a distribution-

free version of the energy distance test has been proposed by Deb & Sen (2021) using the

emerging theory of multivariate ranks based on optimal transport.

Among the aforementioned methods kernel-based tests have emerged as a powerful tech-

nique for detecting distributional differences on general domains. The basic idea is to

quantify the discrepancy between the two distributions P and Q in terms of the largest

difference in expectation between f (X) and f (Y ), for X > P and Y > Q, over functions f

in the unit ball of a reproducing kernel Hilbert space (RKHS) deûned on X . This is called

the maximummean discrepancy (MMD) between distributions P andQ (see (2) for the pre-

cise deûnition), which can be conveniently estimated from the data in terms of the pairwise

kernel dissimilarities; see § 2.1 for details. For characteristic kernels (see Assumption 1), a

useful property of the MMD is that it takes value zero if and only if distributions P and Q

are the same. Consequently, the test that rejectsH0 for large values of the estimated MMD

is universally consistent. The power of the test converges to 1 as the sample size increases

for hypothesis (1); see Gretton et al. (2012a) for further details.

Although the kernel two-sample test is widely used and has found numerous applica-

tions, it often performs poorly for high-dimensional problems (Ramdas et al., 2015) and

its empirical performance depends heavily on the choice of the kernel. Kernels are usually

parameterized by their bandwidths, and the most popular strategy for choosing the kernel

bandwidth is the median heuristic, where the bandwidth is chosen to be the median of the

pairwise distances of the pooled sample (Gretton et al., 2012a). Despite its popularity, there

is limited understanding of the median heuristic and empirical results demonstrate that the

median heuristic performs poorly when differences between the two distributions occur at a

scale that differs signiûcantly from themedian of the interpoint distances. Another approach

is to split the data and estimate the kernel by maximizing an approximate empirical power

on the held-out data (Gretton et al., 2012b; Liu et al., 2020). This, however, can lead to loss

in power for smaller sample sizes.
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In this paper we propose a strategy for augmenting the power of the classical single-kernel

two-sample test by borrowing strengths frommultiple kernels. Speciûcally, we propose a new

test statistic that combines MMD estimates from r > 1 kernels using their sample Maha-

lanobis distance. The advantage of aggregating across a collection of kernels/bandwidths

is that the test can simultaneously deal with cases that require both small and large band-

widths, and, hence, detect both global and local differences more effectively.We illustrate the

effectiveness of our method through a wide range of results, including a holistic study of its

asymptotic properties, ûnite-sample and real-data performance, computational complexity,

and comparison with other aggregation methods.

To begin with, we derive the joint distribution of the vector of MMD estimates underH0,

which can be described using bivariate stochastic integrals, and, as a consequence, derive

the asymptotic distribution of the Mahalanobis aggregated MMD (Mahalanobis MMD)

statistic under H0. Moreover, using the kernel Gram matrix representation, we develop a

multiplier bootstrap approach that allows us to efûciently compute the rejection threshold

for the Mahalanobis MMD statistic and show that the resulting test is universally consis-

tent. Next, we derive the distribution of the proposed test against local alternatives in the

well-known contamination model. In the Supplementary Material we derive the joint dis-

tribution of MMD estimates and, consequently, that of the Mahalanobis MMD statistic,

under the alternative.

To compliment the theoretical results, we perform extensive simulations to compare our

Mahalanobis MMD-based test with various single-kernel MMD tests, with bandwidths

chosen based on the median heuristic. The experiments show that the Mahalanobis MMD

method outperforms the single-kernel tests and also the graph-based Friedman3Rafsky test

(Friedman & Rafsky, 1979) across a range of alternatives and dimensions, showcasing the

efûcacy of our aggregation method. To further reinforce the beneûts of our aggregation

scheme, we also compare the Mahalanobis MMD test with bandwidth-optimized single-

kernel tests, as in Gretton et al. (2012b) and Liu et al. (2020), and with p-value combination

methods.

To understand the computational complexity, we analyse the running time of the Maha-

lanobis MMD tests and also report the trade-off between power and computation time of

theMahalanobisMMDand the single-kernelMMD tests in simulations.We also implement

our Mahalanobis aggregation strategy for the linear-time statistic (Gretton et al., 2012a,

§ 6), derive the corresponding asymptotic theory and report its ûnite-sample performance.

The multiplier bootstrap also emerges as the more computationally efûcient option than the

permutation test for calibrating the Mahalanobis MMD statistic.

Next, we apply the proposed method to compare images of digits in the noisy MNIST

dataset. The Mahalanobis MMD effectively distinguishes different digits for signiûcantly

more noisy images compared to its single-kernel counterparts, again illustrating the advan-

tage of using multiple kernels.

We also investigate the behaviour of the Mahalanobis and other aggregation strate-

gies when the number of kernels is allowed to grow with the sample size. Speciûcally, we

derive consistent tests based on the Mahalanobis method, as well as maximum and L2-type

aggregations, in the growing r regime.

Our results on the joint distribution for multiple kernels are also more broadly useful in

understanding the asymptotic properties of general aggregation strategies. To demonstrate

this, we present two applications. We propose an asymptotic implementation of the adap-

tive MMD test recently proposed by Schrab et al. (2023), and derive its asymptotic local
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power. Numerical results comparing the Mahalanobis MMD method and the aforemen-

tioned adaptive test are also reported in the Supplementary Material. We also derive the

asymptotic distribution of the Mahalanobis MMD statistic for kernels with bandwidths

depending on the sample size. Speciûcally, we show that, when the scaling parameters are

chosen proportional to the optimal bandwidth, as in Li & Yuan (2019) and Schrab et al.

(2023), then the vector of MMD estimates has a multivariate normal distribution under

the null. Using this, we construct a test that aggregates multiple kernels with a chi-squared

distribution under H0.

The codes for all the experiments are available at https://github.com/

anirbanc96/MMMD-boost-kernel-two-sample.

2. Kernel maximum mean discrepancy and Mahalanobis aggregation

2.1. Kernel maximum mean discrepancy

Suppose that X is a separable metric space and that B(X ) is the sigma-algebra generated

by the open sets of X . Denote by P(X ) the collection of all probability distributions on

{X ,B(X )}. Suppose that P,Q * P(X) and that X > P and Y > Q are random variables

distributed as P and Q, respectively. Throughout, we assume that P and Q are nonatomic.

The maximum mean discrepancy between P and Q is deûned as

MMD[F ,P,Q] = sup
f*F

{EX>P[f (X)] 2 EY>Q[f (Y )]}, (2)

where F is the unit ball of a reproducing kernel Hilbert space H deûned on X (Aronszajn,

1950). SinceH is an RKHS, for every x * X , the evaluation map operator ·x : H ³ R given

·x(f ) = f (x) is continuous. Thus, by the Riesz representation theorem (Reed& Simon, 1980,

Theorem II.4), for each x * X , there is a feature mapping Ëx * H such that f (x) = 〈f ,Ëx〉H
for every f * H, where 〈·, ·〉H is the inner product in H. The feature mapping takes the

canonical form Ëx(·) = K(x, ·), where K : X × X ³ R is a positive deûnite kernel. This, in

particular, implies that K(x, y) = 〈Ë(x),Ë(y)〉H. Extending the notion of a feature map, an

element µP * H is deûned to be the mean embedding of P * P(X ) if

〈f ,µP〉H = EX>P[f (X)] (3)

for all f * H. By the canonical form of the feature map, it follows that

µP(t) :=
∫

X

Ët(x)dP(x) = EX>P[Ët(X)] = EX>P[K(t,X)]. (4)

Throughout, we make the following assumption.

Assumption 1. The kernel K : X × X ³ R satisûes the following conditions:

(i) EX>P[K(X ,X)1/2] < > and EY>Q[K(Y ,Y )1/2] < >,

(ii) K is characteristic, that is, the mean embedding µ : P(X ) ³ H is a one-to-one

(injective) function.

Assumption 1 ensures that µP,µQ * H (see Lemma 3 of Gretton et al., 2012a and

Lemma 2.1 of Park & Muandet, 2020) and that the MMD deûnes a metric on P(X ). Then
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the MMD can be expressed as the distance between mean embeddings in H (see Lemma 4

of Gretton et al., 2012a):

MMD2[F ,P,Q] = ‖µP 2 µQ‖2H (5)

with ‖ · ‖H the norm corresponding to the inner product 〈·, ·〉H. This implies that

MMD2[F ,P,Q] = 0 if and only if P = Q. Expanding the square in (5) and using

representation (4), it follows that

MMD2[F ,P,Q] = EX ,X 2>P[K(X ,X 2)] + EY ,Y 2>Q[K(Y ,Y 2)] 2 2EX>P,Y>Q[K(X ,Y )];

see Gretton et al. (2012a, Lemma 6) for details. Therefore, based on independent and identi-

cally distributed observations Xm := {X1,X2,&,Xm} and Yn := {Y1,Y2,&,Yn}, a natural
unbiased estimate of MMD2[F ,P,Q] is given by

MMD2[K,Xm,Yn] = WXm + WYn 2 2BXm,Yn , (6)

where

WXm := 1

m(m2 1)

∑

16i |=j6m
K(Xi,Xj) and WYn :=

1

n(n2 1)

∑

16i |=j6n
K(Yi,Yj) (7)

are the averages of the kernel dissimilarities within the samples in Xm and Yn, respectively,

and

BXm,Yn :=
1

mn

m
∑

i=1

n
∑

j=1

K(Xi,Yj) (8)

is the average of the kernel dissimilarities between the samples in Xm and Yn. Throughout,

we assume that N := m+ n ³ > such that

m

m+ n
³ Ã * (0, 1). (9)

Then MMD2[K,Xm,Yn] is a consistent estimate of MMD2 [F ,P,Q] (see Theorem 7 of

Gretton et al., 2012a), that is,

MMD2[K,Xm,Yn]
P2³ MMD2[F ,P,Q]. (10)

Hence, the test that rejects H0 in (1) for large values of MMD2[K,Xm,Yn] is universally
consistent. In fact, for the consistency result, it sufûces to assume that min{m, n} ³ >. The

existence of the limit in (9) will be required for deriving the asymptotic distribution of the

test statistic.

2.2. Aggregating multiple kernels

Fix r > 1, and suppose that K1,K2,&,Kr are r distinct kernels each of which satisfy

Assumption 1. Denote the vector of MMD estimates as

MMD2[K,Xm,Yn] = (MMD2[K1,Xm,Yn],&,MMD2[Kr,Xm,Yn])T, (11)
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where K := {K1,K2,&,Kr}. In this paper we propose a new test statistic that combines

the contributions of the different kernels using the Mahalanobis distance of the vector

MMD2[K,Xm,Yn] as

(MMD2[K,Xm,Yn])TS21(MMD2[K,Xm,Yn]), (12)

where S is a consistent estimate of the limiting covariance matrix of MMD2[K,Xm,Yn]
under H0, which we denote by 6H0

= {(Ãab)}16a,b6r. Adjusting by the covariance matrix S

places the contributions of the individualMMDestimates on the same scale and by selecting

a range of kernels/bandwidths in K one can detect more ûne-grained deviations from H0,

leading to signiûcant power improvements, as will be seen in § 6 below. In the Supplementary

Material we present general conditions under which 6H0
is invertible, which, in particular,

hold for any collection of Gaussian or Laplace kernels.

In Corollary 1 below we compute

Ãab := lim
N³>

(m+ n)2(covH0
{MMD2[K,Xm,Yn]})ab

= 2

Ã2(1 2 Ã)2
EX ,X 2>P[Kç

a(X ,X 2)Kç
b(X ,X 2)], (13)

where

K
ç
a(x, y) = Ka(x, y)2 EX>PKa(X , y)2 EX 2>PKa(x,X

2)+ EX ,X 2>PKa(X ,X 2) (14)

is the centred version of kernel Ka for 1 6 a 6 r. Therefore, a natural empirical estimate of

6H0
is given by Æ6 = {( ÆÃab)}16a,b6r, where

ÆÃab = 2

ÆÃ2(1 2 ÆÃ)2
1

m2

∑

16i,j6m

ÆKç
a(Xi,Xj)

ÆKç
b(Xi,Xj) (15)

with

ÆKç
a(x, y) = Ka(x, y)2

1

m

m
∑

u=1

Ka(Xu, y)2
1

m

m
∑

v=1

Ka(x,Xv)+
1

m2

m
∑

u,v=1

Ka(Xu,Xv) (16)

the empirical analogue of Kç
a and ÆÃ = m/(m+ n). Therefore, choosing S = Æ6 in (12), we

deûne the Mahalanobis MMD statistic as

Tm,n := (MMD2[K,Xm,Yn])T Æ621
(MMD2[K,Xm,Yn]). (17)

In Corollary 1 below we show that Æ6 P2³ 6H0
; hence, (10) implies that

Tm,n
P2³ (MMD2[F ,P,Q])T621

H0
(MMD2[F ,P,Q]) := TK, (18)

where F = {F1,&,Fr}, with Fa the unit ball in the RKHS of Ka for all 1 6 a 6 r, and

MMD2[F ,P,Q] = (MMD2[F1,P,Q], . . . ,MMD2[Fr,P,Q])T. (19)
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Note that TK = 0 under H0 and TK > 0 whenever P |= Q. Hence, a test rejecting H0 for

large values of Tm,n will be universally consistent. However, to construct a test based on

Tm,n, we need to chose a cut-off (rejection region) based on the data. The ûrst step towards

this is to derive the limiting null distribution of MMD2[K,Xm,Yn].

3. Asymptotic null distribution

In this section we derive the limiting distribution of the vector of MMD estimates (11)

under H0 and, consequently, that of the proposed statistic Tm,n, using the framework of

multiple Weiner3Itô stochastic integrals. We recall the deûnition and basic properties of

multiple Weiner3Itô stochastic integrals in the Supplementary Material.

THEOREM 1. Suppose that K = {K1,K2,&,Kr} is a collection of r distinct kernels such
that Ka satisûes Assumption 1 and Ka * L2(X 2,P2) for 1 6 a 6 r. Then, under H0, in the

asymptotic regime (9),

(m+ n)MMD2[K,Xm,Yn]
D2³ GK := 1

Ã(1 2 Ã)
{I2(Kç

1), I2(K
ç
2),&, I2(K

ç
r )}T, (20)

where I2(·) is the bivariate multiple Weiner3Itô stochastic integral, as deûned in the Supple-

mentaryMaterial, andKç
a is deûned in (14) for 1 6 a 6 r.Moreover, the characteristic function

of GK at · = (·1, ·2,&, ·r)
T * R

r is given by

8(·) := E[e»·TGK] =
∏

»*3(·)

exp{2»»/Ã(1 2 Ã)}
{1 2 2»»/Ã(1 2 Ã)}1/2 , (21)

where 3(·) is the set of eigenvalues with repetitions of the Hilbert3Schmidt operator

HK,· : L
2(X ,P) ³ L2(X ,P) deûned as

HK,·[f (x)] =
∫

X

( r
∑

a=1

·aK
ç
a(x, y)

)

f (y)dP(y). (22)

The proof of Theorem 1 is given in the Supplementary Material. For an alternate

representation of the limiting distribution in (20), see Remark 2 in the Supplementary

Material.

Theorem 1 allows us to obtain the limiting distribution of any smooth function of

ûnitely many MMD estimates under H0. In particular, for the Mahalanobis MMD statis-

tic Tm,n in (17), we have the following result. The proof is given in the Supplementary

Material.

COROLLARY 1. Suppose that 6H0
:= {(Ãab)}16a,b6r and Æ6 := {( ÆÃab)}16a,b6r are as in (13)

and (15), respectively. Then

Ãab = 2

Ã2(1 2 Ã)2
EX ,X 2>P[Kç

a(X ,X 2)Kç
b(X ,X 2)], (23)
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where Kç
a for 1 6 a 6 r is as deûned in (14). Moreover, in the asymptotic regime (9),

ÆÃab ³ Ãab (24)

almost surely for 1 6 a, b 6 r. Furthermore, under H0, for GK as in (20),

(m+ n)2Tm,n
D2³ GT

K6
21
H0
GK. (25)

4. Calibration using the Gaussian multiplier bootstrap

In order to apply Corollary 1 to obtain a valid level ³ test based on Tm,n, we need to

estimate the quantiles of the limiting distribution in (25), which depends on the unknown

distribution P. Although the distribution in (25) does not have a tractable closed form, we

can efûciently estimate its quantiles based on the samples Xm = {X1,X2,&,Xm}, using
the kernel Gram matrix representation of the MMD estimate and the Gaussian multiplier

bootstrap. To this end, for each kernel Ka, deûne its Gram matrix based on Xm as

ÆKa = {Ka(Xi,Xj)}16i,j6m,

and their centred versions as

ÆKç
a = Cm

ÆKaCm/m =
( ÆKç

a(Xi,Xj)

m

)

16i,j6m

, where Cm = I 2 1

m
1 · 1T, (26)

with ÆKç
a deûned as in (16) for 1 6 a 6 r. For ÆÃ := m/(m+ n), deûne

E(K,Xm) :=

û

ü

ü

ü

ü

ü

ý

ZT
m

ÆKç
1Zm 2 tr[ ÆKç

1]/ ÆÃ(1 2 ÆÃ)

ZT
m

ÆKç
2Zm 2 tr[ ÆKç

2]/ ÆÃ(1 2 ÆÃ)
...

ZT
m

ÆKç
mZm 2 tr[ ÆKç

m]/ ÆÃ(1 2 ÆÃ)

þ

ÿ

ÿ

ÿ

ÿ

ÿ

ø

, (27)

where Zm > Nm{0, I/ ÆÃ(1 2 ÆÃ)} independent of Xm. In the following theorem we show that

the distribution of E(K,Xm) conditional on Xm converges to GK, as in (20).

THEOREM 2. Suppose thatK = {K1,K2,&,Kr} is a collection of r > 1 distinct kernels such

that Ka satisûes Assumption 1 and Ka is bounded for all 1 6 a 6 r. Then, under H0, in the

asymptotic regime (9), E(K,Xm) | Xm
D2³ GK almost surely, where GK is as deûned in (20).

The proof of Theorem 2 is given in the SupplementaryMaterial. It shows that the asymp-

totic distribution of E(K,Xm) | Xm is the same as that of (m+n)MMD2[K,Xm,Yn]. Since
E(K,Xm) | Xm is completely determined by the data Xm, we can use it to approximate the

quantiles of any nice functions GK. To this end, deûne

ÆTm := E(K,Xm)
T Æ621

E(K,Xm). (28)
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Now, by a direct computation,

var[E(K,Xm) | Xm] = 2

ÆÃ2(1 2 ÆÃ)2 {(tr[ ÆKç
a
ÆKç
b])}16a,b6m.

Hence, from the proof of Corollary 1, speciûcally (24), it follows that var[E(K,Xm) | Xm] =
Æ6 a.s.2³ 6H0

. This combined with Theorem 2 implies that, under H0,

ÆTm | Xm
D2³ GT

K6
21
H0
GK

almost surely. This shows that ÆTm has the same limiting distribution as (m+ n)2Tm,n under

H0 (recall (25)); hence, we can use the quantiles of ÆTm to calibrate the statistic Tm,n. Speciû-

cally, for ³ * (0, 1), denote by Æq³,m the ³th quantile of distribution ÆTm | Xm and consider

the test function

Çm,n = 1{(m+ n)2Tm,n > Æq12³,m}. (29)

Corollary 1, (18) and (28) now imply the following result.

COROLLARY 2 (Consistency). Suppose that the assumptions of Theorem 2 hold and that

Çm,n is deûned as above. Then limm,n³> EH0
[Çm,n] = ³. Moreover, for any P |= Q,

limm,n³> EH1

[

Çm,n

]

= 1, that is, Çm,n is universally consistent.

The result above shows that the Mahalanobis MMD statistic with cut-off chosen using

the multiplier bootstrap method attains the exact asymptotic level and is universally con-

sistent. In practice, to compute Æq12³,m, we generate B replicates { ÆT (1)m , ÆT (2)m ,&, ÆT (B)m } of ÆTm,
based on B independent copies of Zm, and choose Æq12³,m to be the sample ³th quantile of

{ ÆT (1)m , ÆT (2)m ,&, ÆT (B)m }.

Remark 1. While implementing the test we often replace Æ621
in (17) and (28) by ( Æ6 +

»Im)
21 for some suitably chosen regularization parameter » > 0. Although the limiting

covariance matrix 6H0
is invertible (see Corollary L.1 in the Supplementary Material), and

hence Æ6 is also invertible for large sample sizes with probability 1, adding a small regular-

ization provides numerical stability in ûnite samples. In fact, the conclusions in Corollary 2

remain valid for any choice of » = »(Xm) converging almost surely to a deterministic

constant »0 > 0; see § 6 below for more details on the choice of » in our experiments.

5. Local asymptotic power

Throughout this section, we assume that X = R
d and that distributions P and Q have

densities fP and fQ with respect to the Lebesgue measure in R
d . To quantify the notion of

local alternatives, we adopt the commonly used contamination model:

fQ(·) = (1 2 ·)fP(·)+ ·g(·). (30)

Here · * [0, 1) and g |= fP is a probability density function with respect to the Lebesgue

measure in R
d such that the following assumption holds.
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Assumption 2. The support of g is contained in that of fP(·) and 0 < varX>P[g(X)/
fP(X)] < >.

Under this assumption, contiguous local alternatives are obtained by considering local

perturbations of the mixing proportion · as (see Ch. 12 of Lehmann & Romano, 2005)

H0 : · = 0 versus H1 : · = h/
:
N (31)

for some h |= 0 and N = m + n. The following theorem derives the distribution of the

Mahalanobis MMD statistic Tm,n under H1 as above.

THEOREM 3. Suppose that K = {K1,K2,&,Kr} is a collection of r distinct kernels such
that Ka satisûes Assumption 1 and Ka * L2(X 2,P2) for 1 6 a 6 r. Then, under H1 as in (31),

in the asymptotic regime (9),

(m+ n)MMD2[K,Xm,Yn]
D2³ GK,h

:=

û

ü

ü

ü

ý

³ I2(K
ç
1)+ 2h³ 1/2I1(K

ç
1[g/fP])+ h2µ1

³ I2(K
ç
2)+ 2h³ 1/2I1(K

ç
2[g/fP])+ h2µ2

...

³ I2(K
ç
r )+ 2h³ 1/2I1(K

ç
r [g/fP])+ h2µr

þ

ÿ

ÿ

ÿ

ø

, (32)

where ³ = 1/Ã(1 2 Ã), Kç
a[g/fP](x) :=

∫

X
K

ç
a(x, y)g(y)dy,

µa := E

[

K
ç
a(X ,X 2)

g(X)g(X 2)

fP(X)fP(X 2)

]

(33)

and Kç
a is deûned in (14) for 1 6 a 6 r.

The proof of the theorem is given in the Supplementary Material. The following result

is an immediate consequence of the above result together with the continuous mapping

theorem and Corollary 1.

COROLLARY 3. Under H1 as in (31), (m+ n)2Tm,n
D2³ GT

K,h6
21
H0
GK,h.

Using Corollary 3, we can derive the limiting local power of test Çm,n in (29). Speciû-

cally, suppose that FK,h denotes the cumulative distribution function of GT
K,h
621
H0
GK,h and

that q12³ is the (1 2 ³)th quantile of distribution GT
K
621
H0
GK. Note that GK,0 = GK. Since

Æq12³,m | Xm ³ q12³ almost surely, Corollary 3 implies that the asymptotic power of

Çm,n under H1 as in (31) is given by limm,n³> EH1
[Çm,n] = 1 2 FK,h(q12³). This implies

that Çm,n has nontrivial asymptotic (Pitman) efûciency and is rate optimal, in the sense that

lim|h|³> limm,n³> EH1
[Çm,n] = 1.

6. Numerical experiments

6.1. Choice of kernels and experimental parameters

In this section, we study the ûnite-sample performance of the proposed Mahalanobis

MMD (abbreviated as MMMD in the ûgures) test across a range of simulation set-

tings. Speciûcally, we compare the Mahalanobis MMD test to the single-kernel MMD
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test (Gretton et al., 2009) and the graph-based Friedman3Rafsky (FR) test (Friedman

&Rafsky, 1979). Additional simulations are given in the SupplementaryMaterial. Through-

out, we set the signiûcance level ³ = 0.05.

For single-kernel tests, we use the Gaussian and Laplace kernels

KGAUSS(x, y) = e2‖x2y‖2/Ã 2 and KLAP(x, y) = e2‖x2y‖/Ã (34)

with the bandwidth Ã chosen using the median heuristic Ã 2 := »2
med

= median{‖Zi 2
Zj‖2 : 1 6 i < j 6 n}, where Xm * Yn = {Z1,Z2,&,ZN} is the pooled sample and

‖ · ‖ denotes the Euclidean norm. We refer to these tests as Gauss MMD and LAP MMD,

respectively.

For the Mahalanobis MMD statistic, we use multiple Gaussian kernels, multiple Laplace

kernels or a combination of Gaussian and Laplace kernels, with different bandwidths

chosen as follows.

(i) Gauss Mahalanobis MMD: this is the Mahalanobis MMD statistic with ûve

Gaussian kernels with bandwidths

Ã = (Ã1, Ã2, Ã3, Ã4, Ã5) =
(

1

2
,
1:
2
, 1,

:
2, 2

)

»med. (35)

(ii) LAP Mahalanobis MMD: this is theMahalanobisMMDstatistic with ûveLaplace

kernels with bandwidths

Ã = (Ã1, Ã2, Ã3, Ã4, Ã5) =
(

1

2
,
1:
2
, 1,

:
2, 2

)

»med. (36)

(iii) Mixed Mahalanobis MMD: this is the Mahalanobis MMD statistic with three

Gaussian kernels and three Laplace kernels with the same set of bandwidths

Ã = (Ã1, Ã2, Ã3) =
(

1:
2
, 1,

:
2

)

»med. (37)

In our implementation we choose the regularity parameter » (recall Remark 1) as » =
1025 × min16a6r ÆÃaa for ÆÃaa > 0, as in (15). Since » converges to 1025 × min16a6r Ãaa
almost surely (recall Corollary 1), the results in Corollary 2 remain valid. The cut-offs

of the tests are chosen based on the multiplier bootstrap as in (29) using B = 500

resamples.

Finally, for the Friedman3Rafsky test, we use the implementation in the R package

gTests (R Development Core Team, 2024), with the 5-MST (minimum spanning tree),

which is the recommended practical choice in Chen & Friedman (2017).

6.2. Dependence on dimension

In this section we study the performance of the different tests as the dimension varies

in the following settings. We ûx sample sizes m = n = 100, vary the dimension over

d * {5, 10, 25, 50, 75, 100, 150} and compute the empirical power by averaging over 500

iterations.
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Fig. 1. Empirical powers in (a) Setting 1 and (b) Setting 2.

Setting 1 (Gaussian location-scale). Here, we consider P = Nd(0,60) and Q =
Nd(0.11, 1.1560), where 60 = {(0.5|i2j|)}16i,j6d ; see Fig. 1(a).

Setting 2 (Gaussian and t-distribution mixture). Here, we consider P = 1
2
Nd(0,60) +

1
2 t10(0,60) and Q = 1

2Nd(0, 1.2260)+ 1
2 t10(0, 1.2260), where 60 is as above; see Fig. 1(b).

The plots show that the multiple kernel Mahalanobis MMD tests have signiûcantly more

power than the single-kernelMMDtests and the FR test in both settings. Overall, theGauss

Mahalanobis MMD and the Mixed Mahalanobis MMD tests perform the best, closely

followed by the Lap Mahalanobis MMD. This also shows the advantage of aggregating

kernels across a range of dimensions, from low dimensions to dimensions that are com-

parable and even larger than the sample size. Additional simulations are provided in the

Supplementary Material.

6.3. Mixture alternatives

In this section we evaluate the performance of the tests for mixture alternatives by varying

the mixing proportion. To this end, suppose that 60 = {(0.5|i2j|)}16i,j6d and consider

P = ·Nd(0,60)+ (1 2 ·)t10(0,60) and Q = ·Nd(0, 1.2560)+ (1 2 ·)t10(0, 1.2560).

Figure 2 shows the empirical power, averaged over 500 iterations, of the different tests as ·

varies over [0, 1], with sample sizes m = n = 100 and dimensions d = 30 (see Fig. 2(a)) and

d = 150 (see Fig. 2 (b)). In both cases, the Mahalanobis MMD tests outperform the single-

kernel tests and the Friedman3Rafsky test, again illustrating the versatility of the aggregated

tests.

6.4. Computational complexity of the Mahalanobis MMD test

In the Supplementary Material we analyse the computational complexity of the Maha-

lanobis MMD test, when the rejection region is chosen based on B replications of statistic
ÆTm from (28). In particular, we show that the computational cost of theMahalanobisMMD
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Fig. 2. Empirical powers as a function of the mixing proportion for (a) d = 30 and (b) d = 150.

test isO(r2N2+BrN2+B logB), assuming that r < N. In practice, the number of resamples

B is usually chosen to be much larger than the number of kernels r, in which case the time

complexity simpliûes to O(BrN2 +B logB). In fact, realistically, one only aggregates over a

bounded number of kernels, that is, r = O(1), in which case the computational costs of the

Mahalanobis MMD test and the MMD test differ only by a constant factor. In the Supple-

mentary Material we also compare the running times of the MMD and the Mahalanobis

MMD tests in simulations (see Table 1). Our experiments show that theMahalanobisMMD

tests provide signiûcant power enhancement over the MMD test, with only a small increase

in the computation time.

Remark 2. One way to reduce the computation cost of the MMD test from O(N2) to

O(N) is the linear-time MMD statistic (Gretton et al., 2012a, § 6). In the Supplementary

Material we apply the Mahalanobis aggregation strategy to combine linear-time statistics

over multiple kernels and develop the associated theory. We also compare the power of the

aggregated linear-time MMD tests with their single-kernel counterparts and also with the

quadratic time Mahalanobis MMD tests in simulations.

6.5. Comparison with the permutation test

Another alternative to choosing the rejection threshold for Tm,n is the permutation

method. In fact, the permutation principle can be applied to calibrate any two-sample test

statistic based on the sample quantiles of the test statistic computed on B permuted versions

of the pooled data Xm * Yn. The resulting test is guaranteed to control the Type-I error in

ûnite samples. In this paper we adopt the multiplier bootstrap over the permutation method

for the following two reasons.

Firstly, the independence of the Gaussian multipliers makes the asymptotic theory of the

multiplier bootstrap method more tractable. Consequently, we are able to provide a holistic

asymptotic theory for the multiplier bootstrap3based Mahalanobis MMD test, including

limiting distributions, under both the null and the alternative, consistency and local power

analysis.
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Secondly, the multiplier bootstrap is computationally more efûcient than the permutation

method, both in terms of their asymptotic running times as well as power versus com-

putation time trade-off in ûnite samples. To obtain the permutation p-value, we have to

compute the Mahalanobis MMD statistic Tm,n (recall (17)) for each of the B random per-

mutations of N samples, where N = m + n is the total number of samples. Since with r

kernels it takesO(r2N2) time to compute Tm,n, the time complexity for the permutation test

is O(Br2N2), where B is the number of permutations. On the other hand, we know from

§ 6.4 that the time complexity of the multiplier bootstrap-based Mahalanobis MMD test

(29) isO(r2N2 +BrN2 +B logB), which has a better dependence on r than the permutation

test. Even for ûxed r one can see signiûcant gains in computation time in ûnite samples. In

particular, our simulations show that the Type-I error and power of the multiplier bootstrap

and the permutation methods are comparable, but the computation time of the multiplier

bootstrap method is much faster.

6.6. Comparisons with bandwidth-optimized MMD tests and p-value combination methods

Recall that in the previous sections while implementing theMMD test we chose the band-

widths for the Gaussian and Laplace kernels based on the median heuristic. Although this

is the common choice in practice (Gretton et al., 2012a; Ramdas et al., 2015), it remains

a heuristic because there is no theoretical understanding of its validity. To address this

issue, there have been studies that aim to ûnd the best single-kernel test by optimizing the

bandwidth in such a way that the asymptotic power is maximized. This approach was ûrst

proposed by Gretton et al. (2012b) for the linear-time MMD test, which was subsequently

extended to the quadratic time MMD test by Sutherland et al. (2021). The method involves

splitting the data into two parts and using the ûrst part to select the bandwidth by max-

imizing asymptotic power, or, equivalently, by maximizing the ratio (see Liu et al., 2020)

MMD2[K»,Xm,Yn]/ ÆÃ 2
» , where ÆÃ 2

» is a regularized estimator of the asymptotic variance of

MMD2[K»,Xm,Yn] under H1. In the Supplementary Material we provide empirical com-

parisons of our test based on multiple kernels with the bandwidth-optimized single-kernel

test in different simulations. To mitigate the effect of data splitting, we also implement the

single-kernel tests with twice the amount of data as in Schrab et al. (2023, § 5.3). This emu-

lates an oracle choice of bandwidth and represents the best single-kernel MMD test for

the given data. In all the settings considered, the Mahalanobis MMD tests have improved

power more than the bandwidth-optimized single-kernel tests. Also, Mahalanobis MMD

tests with Gaussian/Laplace kernels have better power than the Gaussian/Laplace oracle

MMD test (where the bandwidth is optimized with double the sample size), respectively.

The bandwidths for the kernels in the Mahalanobis MMD tests are chosen as in (35), (36)

and (37), respectively, which requires no optimization or data splitting. Even so, the multiple

kernel Mahalanobis MMD test is able to outperform the 8best9 single kernel, demonstrating

the effectiveness of our aggregation scheme.

Another possible aggregation strategy is to consider tests that combine p-values for mul-

tiple single-kernel MMD tests. To illustrate how our aggregation strategy compares with

p-value combination methods, we consider the following experimental set-up. We imple-

ment the Gauss Mahalanobis MMD test based on ûve different Gaussian kernels with

respective bandwidths Ã = (Ã1, Ã2, Ã3, Ã4, Ã5) = (1/2, 1/
:
2, 1,

:
2, 2)»med, where »med is

deûned after (34). The Gauss Mahalanobis MMD test is calibrated using the multiplier

bootstrap with B = 500 resamples. For comparison, we consider the following p-value

combinations.
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Fig. 3. MNIST data with additive Gaussian noise with (a) Ã = 0.6, (b) Ã = 1 and (c) estimated powers of the
tests with increasing noise strength.

(i) Bonferonni setting: reject H0 if 5min16i65 pi 6 ³.

(ii) Harmonic mean: reject H0 if 2.214 7295 log(5)/
∑5

i=1 p
21
i 6 ³.

(iii) Bonferonni and geometric mean: reject H0 if 2min{5min5i=1 pi, e
∏5

i=1 p
1/5
i } 6 ³.

Here, pi denotes the p-value of the MMD test for a Gaussian kernel with bandwidth Ãi
for all 1 6 i 6 5, and the signiûcance level ³ = 0.05. The validity of the above p-value

combinations follows from Vovk &Wang (2020).

The results of our experiments are given in the SupplementaryMaterial. In all the simula-

tion settings considered, the Gauss Mahalanobis MMD test emerges as the clear winner.

This suggests that it is more advantageous to adopt our aggregation strategy over p-value

combination methods for boosting the performance of kernel two-sample tests.

7. Real data applications

7.1. MNIST with additive Gaussian noise

In this subsection we illustrate the performance of the proposed test in detecting different

set of digits from the Modiûed National Institute of Standards and Technology (MNIST)

database when independent and identically distributed Gaussian noise with standard devi-

ation Ã is added to each pixel. Figure 3 shows such noisy data for (a) Ã = 0.6 and (b)

Ã = 1.

To evaluate the proposed method, we consider the sets of digits P = {1, 2, 3} and
Q = {1, 2, 8}, and vary the standard error Ã * (0, 0.2, 0.4, 0.6, 0.8, 1). For each Ã , we draw

100 samples with replacements from the two sets and check if the tests successfully reject

H0 at level ³ = 0.5. We repeat this experiment 500 times to estimate the power. Figure 3(c)

shows performance of the above-mentioned tests, where we plot the power over the index of

pairs of sets of digits. This shows that, for the clean data and small noise levels, the single-

kernel Gauss MMD test performs comparably to the Mahalanobis MMD tests. However,

for larger noise levels, the Mahalanobis MMD tests perform much better than the single-

kernel tests. The Friedman3Rafsky test also performs well in this case across the range of

noise levels.
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Fig. 4. (a) MNIST dataset with reduced contrast and additive noise and (b) estimated power.

7.2. MNIST with reduced contrast and additive Gaussian noise

In this subsection we illustrate the performance of the different tests on the noisy ver-

sion of the MNIST dataset considered in Basu et al. (2017), which is publicly available at

https://csc.lsu.edu/saikat/n-mnist/. Here, in addition to additive Gaussian

noise the contrast of the images is also reduced. Speciûcally, the contrast range is scaled

down to half and an additive Gaussian noise is introduced with a signal-to-noise ratio of

12. This emulates background clutter along with signiûcant change in lighting conditions;

see Fig. 4 for an example of such a noisy image.

We evaluate the performance of the different test for the following ûve pairs of sets of

digits: (i) P = {2, 4, 8, 9} and Q = {3, 4, 7, 9}; (ii) P = {1, 2, 4, 8, 9} and Q = {1, 3, 4, 7, 9};
(iii) P = {0, 1, 2, 4, 8, 9} and Q = {0, 1, 3, 4, 7, 9}; (iv) P = {0, 1, 2, 4, 5, 8, 9} and Q =
{0, 1, 3, 4, 5, 7, 9}; and (v) P = {0, 1, 2, 4, 5, 6, 8, 9} and Q = {0, 1, 3, 4, 5, 6, 7, 9}. For each
of the ûve cases, we draw 150 samples with replacements from the two sets and check if the

tests successfully rejectH0 at level ³ = 0.5. We repeat this experiment 500 times to estimate

the power. Figure 4 shows the power of the different methods for the above ûve sets. In this

case, the multiple kernel tests and the Friedman3Rafsky test overall has the highest power

across the ûve sets, followed by the Gauss MMD and the Lap MMD.

8. Aggregation with an increasing number of kernels

8.1. Maximum and L2 aggregations

There are many ways in which one can combine multiple kernels into a test statistic. For

instance, we could consider maximum or L2-based aggregations as (assuming that m = n

for simplicity)

Tmax
m := rm

max
a=1

MMD2[Ka,Xm,Ym] and TL2
m := ‖MMD2[Krm ,Xm,Ym]‖2,

where r = rm depends on m and Krm := {Ka : 1 6 a 6 rm}. The consistency and asymptotic

distribution of these statistics when r is ûxed follow from the results in § 2.2 and Theorem 1,
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respectively. In the following proposition, using uniform convergence bounds for the MMD

estimate, we construct tests based on Tmax
m and T

L2
m that are consistent in the growing r

regime. The proof is given in the Supplementary Material.

PROPOSITION 1. Suppose that Krm = {Ka : 1 6 a 6 rm} is a collection of rm distinct

characteristic kernels such that 0 6 Ka 6 K for all 1 6 a 6 rm. Fix ³ * (0, 1), and consider
the test functions

Çmax
m := 1

{

|Tmax
m | > C

(

1

m
log

6rm

³

)1/2}

,

ÇL2
m := 1

{

|TL2
m | > C

(

rm

m
log

6rm

³

)1/2}

,

where C := 8K. Then both Çmax
m and Ç

L2
m have level ³ in ûnite samples. Moreover, Çmax

m and

Ç
L2
m are asymptotically consistent for (1) if log rm = o(m) and rm log rm = o(m), respectively.

8.2. Mahalanobis aggregation

In the growing r regime the Mahalanobis MMD statistic takes the form

TMA
m := (MMD2[Krm ,Xm,Ym])T Æ621

rm
(MMD2[Krm ,Xm,Ym]), (38)

where Æ6rm
has entries deûned in (15).

THEOREM 4. Suppose that the assumptions of Proposition 1 hold. Then the test

ÇMA
m := 1

{

|TMA
m | > 64K2

:
m

}

is asymptotically consistent whenever limm³> inf16a6rm{MMD2[Fa,P,Q]} > 0 and

rm log rm = o(»m
:
m), where »m is the smallest eigenvalue of 6rm

.

The proof of Theorem 4 is given in the Supplementary Material. Essentially, the result

shows that TMA
m leads to a consistent test for rm = o(»m

:
m), ignoring logarithmic factors.

In comparison, for the maximum aggregation, one can have rm grow subexponentially in m

and the L2 aggregation allows any sublinear growth for rm (recall Proposition 1). One of the

challenges in dealing with the Mahalanobis MMD statistic in the growing rm regime is that,

in addition to the concentration of the vector of the MMD statistic, one has to ensure the

concentration of 6rm
, which necessitates amore stringent requirement on rm, in comparison

to the L2 aggregation, to guarantee consistency. Towards this, it is expected that the lowest

eigenvalue of the population covariance matrix 6rm
plays a role in how large rm can be.

Improving the dependence on r in the above results and investigating the behaviour of

the various aggregation strategies when r is comparable or even larger than m are impor-

tant future directions. However, from a practical standpoint one needs to exercise caution

while selecting r. Although the aggregated tests remain consistent under appropriate growth

conditions on r, in ûnite samples the power of the tests saturate and the tests also become

conservative when r is large. This latter issue, which is already apparent for the single-kernel

test when the cut-off is chosen based on concentration inequalities (see § 4 of Gretton et al.,
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2012a), becomes more signiûcant when r grows withm. Moreover, the computation of Æ621

becomes less stable when r becomes too large. In practice, as we see in the simulations, there

is already signiûcant improvement in power over single-kernel tests just by aggregating over

a few, up to ûve, kernels. Further exploring the interplay between the choice of r, the Type-I

error and power is an interesting future direction.

9. Broader scope I: local power of adaptive MMD tests

The idea of using multiple kernels/bandwidths has recently emerged as a popular alter-

native to selecting a single bandwidth for developing adaptive kernel two-sample tests that

do not require data splitting. In this direction, Kübler et al. (2020) proposed a method that

does not require data splitting using the framework of postselection inference. However, this

method requires asymptotic normality of the test statistic underH0; hence, it is restricted to

the linear-timeMMD estimate (Gretton et al., 2012a, § 6), which leads to loss in power when

compared to the more commonly used quadratic time estimate (7). Fromont et al. (2012,

2013) and, more recently, Schrab et al. (2023) introduced another non-asymptotic aggre-

gated test, hereafter referred to as MMDAgg, that is adaptive minimax up to an iterated

logarithmic term over Sobolev balls.

Our aggregation strategy leads to a test that can be efûciently implemented, enjoys

improved empirical power over single-kernel tests for a range of alternatives and scales well

in high dimensions. Moreover, our theoretical results apply to general aggregation schemes,

using which we can obtain the asymptotic local power of the aforementioned MMDAgg

test. To demonstrate this, in this section we propose an asymptotic implementation of the

MMDAgg test and sketch a heuristic argument that derives its limiting local power in

the contamination model (31). The argument can be made rigorous by using tools from

empirical process theory; however, since the purpose of this section is more illustrative than

technical, we have not pursued this direction.

To describe the asymptotic version of the MMDAgg test, suppose that K = {K1,

K2,&,Kr} is a ûnite collection of kernels and that W := {w1,w2,&,wr} is an associated

collection of positive weights such that
∑r

s=1 ws 6 1.Moreover, for ³ * (0, 1) and 1 6 s 6 r,

let Æq12³,s,m be the ³th quantile of the distribution

E (Ks,Xm) := ZT
m

ÆKç
sZm 2 1

ÆÃ(1 2 ÆÃ) tr[
ÆKç
s ],

where ÆKç
s is as deûned in (26) for 1 6 a 6 r and Zm > Nm{0, I/ ÆÃ(1 2 ÆÃ)} is indepen-

dent of Xm. The idea of the MMDAgg test is to reject H0 if any one of the individual

(single-kernel) tests based on the kernels in K rejects H0 for a specially chosen cut-off; see

Schrab et al. (2023, § 3.5) for details. Here, we consider an alternative implementation of

the MMDAgg test based on the Gaussian multiplier bootstrap discussed in § 4. To this end,

deûne

u7
³,m := argmax

{

u * (0,L) : pr
(

max
16s6r

{E (Ks,Xm)2 Æq12uws,s,m} > 0
∣

∣

∣ Xm

)

6 ³

}

,

where L := min16s6r w
21
s . The probability on the right-hand side above is over the random-

ness of Zm, conditional on Xm; hence, u
7
³,m can be computed from the data by a grid search
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over u * (0,L). The MMDAgg test would then reject H0 if

Ç
MMDAgg
m,n,³ := 1

{

max
16s6r

{MMD2[Ks,Xm,Yn] 2 Æq12wsu7
³ ,s,m

} > 0
}

. (39)

To describe the asymptotic properties of this test, let q³,s be the ³th quantile of the distribu-

tion I2(K
ç
s )/Ã(1 2 Ã) for 1 6 s 6 r. Then, for each ûxed u * (0,L), by Theorem 1, Slutsky9s

theorem and the continuous mapping theorem, as m ³ >,

max
16s6r

{E (Ks,Xm)2 Æq12uws,s,m} D2³ max
16s6r

{

1

Ã(1 2 Ã)
I2(K

ç
s )2 q12uws,s

}

,

since Æq12uws,s,m|Xm
a.s.2³ q12uws,s. Therefore, for each ûxed u * (0,L), as m ³ >,

pr
(

max
16s6r

{E (Ks,Xm)2 Æq12uws,s,m} > 0
∣

∣

∣
Xm

)

³ pr

(

max
16s6r

{

1

Ã(1 2 Ã)
I2(K

ç
s )2 q12uws,s

}

> 0

)

.

Now, since the convergence of the quantiles is uniform, we expect the following to hold as

m ³ >: u7
³,m

a.s.2³ u7
³ and Æq12wsu7

³,m,s,m
| Xm

a.s.2³ q12wsu7
³ ,s
, where

u7
³ := argmax

[

u * (0,L) : pr
(

max
16s6r

{

1

Ã(1 2 Ã)
I2(K

ç
s )2 q12uws,s

}

> 0

)

6 ³

]

.

Hence, under H1 as in (31), by Theorem 3, Slutsky9s theorem and the continuous mapping

theorem,

max
16s6r

{MMD2[Ks,Xm,Yn] 2 Æq12wsu7
³ ,s,m

} D2³ max
16s6r

{GKs,h 2 q12wsu7
³ ,s

},

where GKs,h := ³ I2(K
ç
s )+2h³ 1/2I1(K

ç
s [g/fP])+h2µs, and µs is as deûned in (33). Therefore,

the limiting power of test (39) is given by

lim
m,n³>

EH1
[ÇMMDAgg
m,n,³ ] = pr

(

max
16s6r

{GKs,h 2 q12wsu7
³ ,s

} > 0
)

= 1 2 FK,h(q12w1u
7
³ ,1

,&, q12wru7
³ ,r
),

where FK,h is the cumulative distribution function of vector (GK1,h,GK2,h,&,GKr,h)
T.

Numerical results comparing the empirical power of the Mahalanobis MMD test with

the MMDAgg test are reported in the Supplementary Material. The experiments show that

theMahalanobisMMD test has better power than theMMDAgg test for a range of alterna-

tives, which include perturbed uniform distributions in the Sobolev class, as well as mixture

and local alternatives. This showcases both the practical relevance of the Mahalanobis

aggregation strategy and the broader scope of our asymptotic results.
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10. Broader scope II: aggregation with diverging bandwidths

In the previous sections we established the universal consistency and derived the asymp-

totic null distribution of the Mahalanobis MMD test for kernels with ûxed bandwidths.

However, in practice, bandwidths are often chosen in a data-driven manner that depends

on the sample size N. For instance, to obtain tests that are optimal, in detecting smooth

departures from the null hypothesis, the scaling parameter » := 1/Ã 2 has to diverge with

the sample size; see Li & Yuan (2019) and Schrab et al. (2023). For such choices of the scal-

ing parameter, the test statistic has an asymptotically normal distribution under H0; hence,

the rejection threshold can be readily obtained without any permutation/bootstrap resam-

pling. Combining this idea with our aggregation strategy, in this section we construct a new

test that combines multiple Gaussian kernels, with appropriately chosen diverging scaling

parameters, that has a multivariate normal distribution under H0.

For » > 0, let K»(x, y) := e2»‖x2y‖
2
be the Gaussian kernel with scaling parameter ». For

r > 1, consider the collection of kernels K¿ := {K¿a : 1 6 a 6 r}, where ¿ = (¿1, ¿2,&, ¿r)

is a set of scaling parameters that can possibly depend on N. Throughout this section, we

make the following assumptions.

Assumption 3. There exists {·s > 0: 1 6 s 6 r} such that ¿s = ·s»N for all 1 6 s 6 r,

where »N = o(N4/d) such that »N ³ >, in the asymptotic regime (9).

Assumption 4. Suppose that X = R
d for d > 1 and that distribution P has a density

fP * L2(R
d) with respect to the Lebesgue measure on R

d .

Under these assumptions, we have the following theorem.

THEOREM 5. Suppose that the collection of kernels K¿ satisûes Assumption 3 and that

Assumption 4 holds. Then, under H0, in the asymptotic regime (9),

mn

21/2(m+ n)
»
d/4
N MMD2[K¿ ,Xm,Yn]

D2³ Nr(0,u),

where u = (³ab)16a,b6r is an r × r matrix with entries ³ab = Ãd/2‖fP‖22/(·a + ·b)
d/2 for

1 6 a, b 6 r.

In Lemma K.6 in the Supplementary Material we provide a consistent estimate ‖ÆfP‖22 of
‖fP‖22, as in Theorem 4 of Li & Yuan (2019). Combining Theorem 5 and Lemma K.6 gives

the following result.

COROLLARY 4. Suppose that the conditions of Theorem 5 hold. Then, under H0, in the

asymptotic regime (9),

Vm,n :=
mn

21/2(m+ n)
»
d/4
N ‖ÆfP‖21

2 MMD2[K¿ ,Xm,Yn]
D2³ Nr(0, Þu),

where ‖ÆfP‖2 is deûned in Lemma K.6 in the Supplementary Material and Þu = ( Þ³ab)16a,b6r
is an r × r matrix with entries Þ³ab = {Ã/(·a + ·b)}d/2 for 1 6 a, b 6 r. Consequently,

{VT
m,n

Þu21
Vm,n > Ç

2
r,12³} is an asymptotically level-³ test.

The test above has a tractable chi-squared distribution under H0; hence, its rejection

region can be readily obtained without any bootstrap resampling (unlike the general test
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with ûxed bandwidths discussed in § 4). Furthermore, the test in Corollary 4 will be optimal

in detecting certain smooth alternatives for an appropriately chosen bandwidth, depending

on the smoothness parameter, similar to the single-kernel test; see § 3 of Li & Yuan (2019).

Moreover, we expect the test in Corollary 4 to have better power than its single-sample

counterpart in ûnite samples for speciûc types of smooth alternatives.
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