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SUMMARY

The kernel two-sample test based on the maximum mean discrepancy is one of the most
popular methods for detecting differences between two distributions over general metric
spaces. In this paper we propose a method to boost the power of the kernel test by combin-
ing maximum mean discrepancy estimates over multiple kernels using their Mahalanobis
distance. We derive the asymptotic null distribution of the proposed test statistic and use
a multiplier bootstrap approach to efficiently compute the rejection region. The resulting
test is universally consistent and, since it is obtained by aggregating over a collection of
kernels/bandwidths, is more powerful in detecting a wide range of alternatives in finite
samples. We also derive the distribution of the test statistic for both fixed and local con-
tiguous alternatives. The latter, in particular, implies that the proposed test is statistically
efficient, that is, it has nontrivial asymptotic (Pitman) efficiency. The consistency proper-
ties of the Mahalanobis and other natural aggregation methods are also explored when
the number of kernels is allowed to grow with the sample size. Extensive numerical experi-
ments are performed on both synthetic and real-world datasets to illustrate the efficacy of
the proposed method over single-kernel tests. The computational complexity of the pro-
posed method is also studied, both theoretically and in simulations. Our asymptotic results
rely on deriving the joint distribution of the maximum mean discrepancy estimates using
the framework of multiple stochastic integrals, which is more broadly useful, specifically,
in understanding the efficiency properties of recently proposed adaptive maximum mean
discrepancy tests based on kernel aggregation and also in developing more computationally
efficient, linear-time tests that combine multiple kernels. We conclude with an application
of the Mahalanobis aggregation method for kernels with diverging scaling parameters.

Some key words: Kernel method; Nonparametric two-sample testing; Pitman efficiency; U-statistic.

1. INTRODUCTION

Given two probability distributions P and Q on a separable metric space X, the two-
sample problem is to test the hypothesis

Hy: P=Q versus Hi: P+ Q, )

based on independent and identically distributed samples 2, = {X1,X>,..., X} and
%, = {Y1,Y,...,Y,} from distributions P and Q, respectively. This is a classical
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2 A. CHATTERJEE AND B. B. BHATTACHARYA

problem that has been extensively studied, especially in the parametric regime, where the
data are assumed to have certain low-dimensional functional forms. However, parametric
methods often perform poorly for misspecified models, especially when the number of nui-
sance parameters is large, and for non-Euclidean data. This necessitates the development of
nonparametric methods, which make minimal distributional assumptions on the data, but
remain powerful for a wide class of alternatives.

For univariate data, there are several well-known nonparametric tests such as the
two-sample Kolmogorov—Smirnoff maximum deviation test (Smirnov, 1948), the Wald—
Wolfowitz runs test (Wald & Wolfowitz, 1940), the rank-sum test (Mann & Whitney, 1947,
Wilcoxon, 1947) and the Cramér-von Mises test (Anderson, 1962). Efforts to general-
ize these univariate methods to higher dimensions date back to Weiss (1960) and Bickel
(1969). Thereafter, several nonparametric methods for multivariate two-sample testing have
been proposed over the years. These include tests based on geometric graphs (Friedman
& Rafsky, 1979; Henze, 1984; Schilling, 1986; Hall & Tajvidi, 2002; Rosenbaum, 2005;
Biswas et al., 2014; Chen & Friedman, 2017; Bhattacharya, 2019), tests based on data-depth
(Liu & Singh, 1993), the energy distance test (see the 2003 Bowling Green State University
technical report by G. J. Székely, Baringhaus & Franz, 2004; Székely & Rizzo, 2004; Aslan &
Zech, 2005; Székely & Rizzo, 2013), kernel maximum mean discrepancy tests (Gretton et al.,
2009, 2012a,b; Sejdinovic et al., 2013; Chwialkowski et al., 2015; Ramdas et al., 2015, 2017;
Shekhar et al., 2022; Song & Chen, 2023; Zhang et al., 2024), ball divergence (Pan et al.,
2018; Banerjee & Ghosh, 2022), projection-averaging (Kim et al., 2020) and classifier-based
tests (Lopez-Paz & Oquab, 2017; Kim et al., 2021), among others. Recently, a distribution-
free version of the energy distance test has been proposed by Deb & Sen (2021) using the
emerging theory of multivariate ranks based on optimal transport.

Among the aforementioned methods kernel-based tests have emerged as a powerful tech-
nique for detecting distributional differences on general domains. The basic idea is to
quantify the discrepancy between the two distributions P and Q in terms of the largest
difference in expectation between f(X) and f(Y), for X ~ Pand Y ~ Q, over functions f
in the unit ball of a reproducing kernel Hilbert space (RKHS) defined on X'. This is called
the maximum mean discrepancy (MMD) between distributions P and Q (see (2) for the pre-
cise definition), which can be conveniently estimated from the data in terms of the pairwise
kernel dissimilarities; see §2.1 for details. For characteristic kernels (see Assumption 1), a
useful property of the MMD is that it takes value zero if and only if distributions P and Q
are the same. Consequently, the test that rejects Hy for large values of the estimated MMD
is universally consistent. The power of the test converges to 1 as the sample size increases
for hypothesis (1); see Gretton et al. (2012a) for further details.

Although the kernel two-sample test is widely used and has found numerous applica-
tions, it often performs poorly for high-dimensional problems (Ramdas et al., 2015) and
its empirical performance depends heavily on the choice of the kernel. Kernels are usually
parameterized by their bandwidths, and the most popular strategy for choosing the kernel
bandwidth is the median heuristic, where the bandwidth is chosen to be the median of the
pairwise distances of the pooled sample (Gretton et al., 2012a). Despite its popularity, there
is limited understanding of the median heuristic and empirical results demonstrate that the
median heuristic performs poorly when differences between the two distributions occur at a
scale that differs significantly from the median of the interpoint distances. Another approach
is to split the data and estimate the kernel by maximizing an approximate empirical power
on the held-out data (Gretton et al., 2012b; Liu et al., 2020). This, however, can lead to loss
in power for smaller sample sizes.

Gz0zZ Aey GO Uo Jasn elueAjfsuuad Jo Alsioniun AQ 02768/ 2/8708eSe/ /2| | /o|onie/jawolq/wod dnosolwspese//:sdny woJj papeojumoq



Boosting the power of kernel two-sample tests 3

In this paper we propose a strategy for augmenting the power of the classical single-kernel
two-sample test by borrowing strengths from multiple kernels. Specifically, we propose a new
test statistic that combines MMD estimates from » > 1 kernels using their sample Maha-
lanobis distance. The advantage of aggregating across a collection of kernels/bandwidths
is that the test can simultaneously deal with cases that require both small and large band-
widths, and, hence, detect both global and local differences more effectively. We illustrate the
effectiveness of our method through a wide range of results, including a holistic study of its
asymptotic properties, finite-sample and real-data performance, computational complexity,
and comparison with other aggregation methods.

To begin with, we derive the joint distribution of the vector of MMD estimates under Hy,
which can be described using bivariate stochastic integrals, and, as a consequence, derive
the asymptotic distribution of the Mahalanobis aggregated MMD (Mahalanobis MMD)
statistic under Hy. Moreover, using the kernel Gram matrix representation, we develop a
multiplier bootstrap approach that allows us to efficiently compute the rejection threshold
for the Mahalanobis MMD statistic and show that the resulting test is universally consis-
tent. Next, we derive the distribution of the proposed test against local alternatives in the
well-known contamination model. In the Supplementary Material we derive the joint dis-
tribution of MMD estimates and, consequently, that of the Mahalanobis MMD statistic,
under the alternative.

To compliment the theoretical results, we perform extensive simulations to compare our
Mahalanobis MMD-based test with various single-kernel MMD tests, with bandwidths
chosen based on the median heuristic. The experiments show that the Mahalanobis MMD
method outperforms the single-kernel tests and also the graph-based Friedman—Rafsky test
(Friedman & Rafsky, 1979) across a range of alternatives and dimensions, showcasing the
efficacy of our aggregation method. To further reinforce the benefits of our aggregation
scheme, we also compare the Mahalanobis MMD test with bandwidth-optimized single-
kernel tests, as in Gretton et al. (2012b) and Liu et al. (2020), and with p-value combination
methods.

To understand the computational complexity, we analyse the running time of the Maha-
lanobis MMD tests and also report the trade-off between power and computation time of
the Mahalanobis MMD and the single-kernel MMD tests in simulations. We also implement
our Mahalanobis aggregation strategy for the linear-time statistic (Gretton et al., 2012a,
§6), derive the corresponding asymptotic theory and report its finite-sample performance.
The multiplier bootstrap also emerges as the more computationally efficient option than the
permutation test for calibrating the Mahalanobis MMD statistic.

Next, we apply the proposed method to compare images of digits in the noisy MNIST
dataset. The Mahalanobis MMD effectively distinguishes different digits for significantly
more noisy images compared to its single-kernel counterparts, again illustrating the advan-
tage of using multiple kernels.

We also investigate the behaviour of the Mahalanobis and other aggregation strate-
gies when the number of kernels is allowed to grow with the sample size. Specifically, we
derive consistent tests based on the Mahalanobis method, as well as maximum and L»-type
aggregations, in the growing r regime.

Our results on the joint distribution for multiple kernels are also more broadly useful in
understanding the asymptotic properties of general aggregation strategies. To demonstrate
this, we present two applications. We propose an asymptotic implementation of the adap-
tive MMD test recently proposed by Schrab et al. (2023), and derive its asymptotic local
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4 A. CHATTERJEE AND B. B. BHATTACHARYA

power. Numerical results comparing the Mahalanobis MMD method and the aforemen-
tioned adaptive test are also reported in the Supplementary Material. We also derive the
asymptotic distribution of the Mahalanobis MMD statistic for kernels with bandwidths
depending on the sample size. Specifically, we show that, when the scaling parameters are
chosen proportional to the optimal bandwidth, as in Li & Yuan (2019) and Schrab et al.
(2023), then the vector of MMD estimates has a multivariate normal distribution under
the null. Using this, we construct a test that aggregates multiple kernels with a chi-squared
distribution under Hy.

The codes for all the experiments are available at https://github.com/
anirbanc96/MMMD-boost-kernel-two-sample.

2. KERNEL MAXIMUM MEAN DISCREPANCY AND MAHALANOBIS AGGREGATION

2.1. Kernel maximum mean discrepancy

Suppose that X is a separable metric space and that Z(X) is the sigma-algebra generated
by the open sets of X'. Denote by P(X) the collection of all probability distributions on
{X, B(X)}. Suppose that P, Q € P(X) and that X ~ P and Y ~ Q are random variables
distributed as P and Q, respectively. Throughout, we assume that P and Q are nonatomic.
The maximum mean discrepancy between P and Q is defined as

MMDLF, P, Q] = ;up{Exw[f(X )] = Ey~olf (N1}, (2)
eF

where F is the unit ball of a reproducing kernel Hilbert space H defined on X (Aronszajn,
1950). Since H is an RKHS, for every x € X, the evaluation map operator n,: H — R given
nx(f) = f(x) is continuous. Thus, by the Riesz representation theorem (Reed & Simon, 1980,
Theorem I1.4), for each x € X, there is a feature mapping ¥, € H such that f(x) = {f, ¥x)x
for every f € H, where (-, )% is the inner product in 4. The feature mapping takes the
canonical form () = K(x, -), where K: X x X — R is a positive definite kernel. This, in
particular, implies that K(x, y) = (¥ (x), ¥ (»))%. Extending the notion of a feature map, an
element wp € H is defined to be the mean embedding of P € P(X) if

(f,mp)n = Ex~plf (X)] (3)

for all f € ‘H. By the canonical form of the feature map, it follows that
et i= [ 1) aPCO = Bxopl (X)) = ExrlK(t X)L @
X

Throughout, we make the following assumption.
Assumption 1. The kernel K: & x X — R satisfies the following conditions:

(i) Ex~p[K(X, X)!/?] < 0o and Ey~g[K(Y, Y)!/?] < o0,
(i) K is characteristic, that is, the mean embedding u: P(X) — H is a one-to-one
(injective) function.

Assumption 1 ensures that up,up € H (see Lemma 3 of Gretton et al., 2012a and
Lemma 2.1 of Park & Muandet, 2020) and that the MMD defines a metric on P(X). Then
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the MMD can be expressed as the distance between mean embeddings in H (see Lemma 4
of Gretton et al., 2012a):

MMD’[F, P, Q] = llup — uoll (5)

with || - ||z the norm corresponding to the inner product (-,-). This implies that
MMD?[F,P,Q] = 0 if and only if P = Q. Expanding the square in (5) and using
representation (4), it follows that

MMD?[F, P, 0] = Ex x~p[K(X, X1+ Ey, y~olK(Y, Y)] = 2Ex~p, y~olK(X, Y)I;

see Gretton et al. (2012a, Lemma 6) for details. Therefore, based on independent and identi-
cally distributed observations 2, := {X1, X2, ..., X} and %, :={ Y1, Y», ..., Y,;}, anatural
unbiased estimate of MMD?[F, P, Q] is given by

MMD?[K, Z, %3] = Wa, + Wa, — 2By, 2, (6)
where
1 1
Wa =gy 2. K@ Xp) and Wy = o )| KT Y)  (7)
=) Gem =D i

are the averages of the kernel dissimilarities within the samples in 2, and %}, respectively,
and

1 m n
Baia i=— Y ) KX Y) ®)
mne j=1

is the average of the kernel dissimilarities between the samples in .2;,, and ;. Throughout,
we assume that N := m + n — oo such that

m
po — p € (0,1). )

Then MMD?[K, 2;,, %,] is a consistent estimate of MMD? [F, P, Q] (see Theorem 7 of
Gretton et al., 2012a), that is,

MMD?[K, Z;n, %] & MMD?[F, P, Q]. (10)

Hence, the test that rejects Hy in (1) for large values of MMD?[K, Z;, %] is universally
consistent. In fact, for the consistency result, it suffices to assume that min{m, n} — oo. The
existence of the limit in (9) will be required for deriving the asymptotic distribution of the
test statistic.

2.2. Aggregating multiple kernels

Fix r > 1, and suppose that K;, K>, ..., K, are r distinct kernels each of which satisfy
Assumption 1. Denote the vector of MMD estimates as

MMD?2(K, Zp, %] = MMD?[K{, Zin, %1, ..., MMD?(K,, 2o, ZDT, (1)
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6 A. CHATTERJEE AND B. B. BHATTACHARYA

where K := {K{,Kj,...,K,}. In this paper we propose a new test statistic that combines
the contributions of the different kernels using the Mahalanobis distance of the vector
MMD?[K, Z, %] as

(MMD?[K, Z, Z) T S~HMMD?[K, 25, %)), (12)

where S is a consistent estimate of the limiting covariance matrix of MMD?[K, Zin, %]
under Hy, which we denote by X 57 = {(0up)}1<ap<r- Adjusting by the covariance matrix S
places the contributions of the individual MMD estimates on the same scale and by selecting
a range of kernels/bandwidths in K one can detect more fine-grained deviations from Hy,
leading to significant power improvements, as will be seen in § 6 below. In the Supplementary
Material we present general conditions under which X is invertible, which, in particular,
hold for any collection of Gaussian or Laplace kernels.
In Corollary 1 below we compute
gy = lim (m + n)* (cov iy {MMD?[K, Z3, %1 b
N—o00
2
= -5 Ex x~plKy(X, XK} (X, X, (13)
p2(1 — p)> “ b
where
KZ(an) = Ka(an) - EXNPKa(Xay) - EX/NPKG(-X’ X/) + EX,X/NPKQ(X: X/) (14)

is the centred VCI;SiOIl of kernel K, for 1 < a < r. Therefore, a natural empirical estimate of
Zp, s given by X = {(64p) h1<a,b<r» Where

. 2 1

= ey D K ORI ) as)

1<i,j<m

with

. 1 m 1 m 1 m
K36, 0) = Ka(x, ) — — Z; Ka(X ) = — Z; Ko, Xo) 4 — 3 7 Ka(Xo X,) - (16)
u= V=

u,v=1

the empirical analogue of K and p = m/(m + n). Therefore, choosing S = 3 in (12), we
define the Mahalanobis MMD statistic as

Tpun i= (MMD2[K, Z;, Z) TS~ (MMD2[K, Z;0, Z51). (17)
In Corollary 1 below we show that > LY Z p,; hence, (10) implies that

Ty~ (MMD(Z, P, O)) 2 (MMD?(Z, P, Q) := Tx. (18)
where F = {F}, ..., Fr}, with F, the unit ball in the RKHS of K, forall 1 < a < r, and

MMD?[E, P, Q] = (MMD?[F, P, Ql,...,MMD?[F,, P, O] ". (19)
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Boosting the power of kernel two-sample tests 7

Note that Tx = 0 under Hy and Tx > 0 whenever P &= Q. Hence, a test rejecting H for
large values of T}, , will be universally consistent. However, to construct a test based on
Tnm.n, we need to chose a cut-off (rejection region) based on the data. The first step towards
this is to derive the limiting null distribution of MMD?[K, Zin, %]

3. ASYMPTOTIC NULL DISTRIBUTION

In this section we derive the limiting distribution of the vector of MMD estimates (11)
under Hj and, consequently, that of the proposed statistic 7}, ,, using the framework of
multiple Weiner—Ito6 stochastic integrals. We recall the definition and basic properties of
multiple Weiner—Ito6 stochastic integrals in the Supplementary Material.

THEOREM 1. Suppose that K = {K(,Ks, ..., K.} is a collection of r distinct kernels such
that K, satisfies Assumption 1 and K, € L*(X2, P?) for 1 < a < r. Then, under Hy, in the
asymptotic regime (9),

(m + mMMD2[K, Z, %] 2 Gy = ﬁ{b«‘;),bmg), BT, (20)

where I>(-) is the bivariate multiple Weiner—Ité stochastic integral, as defined in the Supple-
mentary Material, and K, is defined in (14) for 1 < a < r. Moreover, the characteristic function

of G atn = (n,m2, ..., n)T e R is given by

exp{—r/p(1 — p)}
{1 —2u/p(1— p)}/?%

®(n) = E[e? 1= T] 1)

AeA())

where A(n) is the set of eigenvalues with repetitions of the Hilbert-Schmidt operator
Hic.p: L*(X, P) — L*(X, P) defined as

Healf 01 = [ (ke )10)dPo). 22)
a=1

The proof of Theorem 1 is given in the Supplementary Material. For an alternate
representation of the limiting distribution in (20), see Remark 2 in the Supplementary
Material.

Theorem 1 allows us to obtain the limiting distribution of any smooth function of
finitely many MMD estimates under Hy. In particular, for the Mahalanobis MMD statis-
tic Ty, in (17), we have the following result. The proof is given in the Supplementary
Material.

COROLLARY 1. Suppose that T := {(0ap)}1<ab<r andi = {(Gup) }1<ab<r are as in (13)
and (15), respectively. Then

2

= mEX,X/~P[KZ(X, XHK5 (X, X)), (23)

Oab
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8 A. CHATTERJEE AND B. B. BHATTACHARYA

where K¢, for 1 < a < ris as defined in (14). Moreover, in the asymptotic regime (9),
6—ab — Ogb (24)

almost surely for 1 < a, b < r. Furthermore, under Hy, for Gi as in (20),

D _
(m+ n)sz,n - GEEHé Gi. (25)

4. CALIBRATION USING THE GAUSSIAN MULTIPLIER BOOTSTRAP

In order to apply Corollary 1 to obtain a valid level « test based on 7},,, we need to
estimate the quantiles of the limiting distribution in (25), which depends on the unknown
distribution P. Although the distribution in (25) does not have a tractable closed form, we
can efficiently estimate its quantiles based on the samples 2, = {X1, X, ..., X}}, using
the kernel Gram matrix representation of the MMD estimate and the Gaussian multiplier
bootstrap. To this end, for each kernel K,, define its Gram matrix based on 2, as

Ka = {Ka(Xia Aij)}lglzjgnh
and their centred versions as

~o K2 (X, X))

N 1
K, =C,K.C,,/m= <7) , where C, =71-—1-1T, (26)
m 1<ij<m m

with kg defined as in (16) for 1 < a < r. For p := m/(m + n), define
ZK\Z,, — triK|1/p(1 — p)

S(IC, %m) =

Z3RoZ,, — iK1/ =) | o7

ZTK Z, — K, 1/p(1 — p)

where Z,, ~ N,{0,1/5(1 — p)} independent of Z;,,. In the following theorem we show that
the distribution of £(K, Z,,) conditional on .2, converges to G, as in (20).

THEOREM 2. Suppose that K = {K{, K, ..., K} isa collection of v > 1 distinct kernels such
that K, satisfies Assumption 1 and K, is bounded for all 1 < a < r. Then, under Hy, in the
asymptotic regime (9), EKC, Z) | Zm — Gx almost surely, where Gy is as defined in (20).

The proof of Theorem 2 is given in the Supplementary Material. It shows that the asymp-
totic distribution of £(KC, Z.,) | Z 1s the same as that of (m+n)MMD2[IC, X, %,]. Since
EWC, Zm) | A is completely determined by the data 2, we can use it to approximate the
quantiles of any nice functions Gy. To this end, define

T = U, 2o TS S0, 25). (28)
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Boosting the power of kernel two-sample tests 9

Now, by a direct computation,

2
Var[S(IC, %m) | «%m] —,\)2{(tr[K Kb])}1<a b<m-

/\2(1
IA{ence, from the proof of Corollary 1, specifically (24), it follows that var[E (K, Z,) | Zm] =
> &% Zh, This combined with Theorem 2 implies that, under Hy,

A D _
T | 2w = GLE G

almost surely. This shows that T has the same limiting distribution as (m + 2T, nunder
Hj (recall (25)); hence, we can use the quantiles of T to calibrate the statistic 7}, ». Specifi-
cally, for « € (0, 1), denote by g,.», the ath quantile of distribution T m | Zm and consider
the test function

G = U0+ 1) >Tp > q1am)- (29)
Corollary 1, (18) and (28) now imply the following result.

COROLLARY 2 (CONSISTENCY). Suppose that the assumptions of Theorem 2 hold and that
Gmn 1s defined as above. Then limy, o0 Enylomanl = o. Moreover, for any P £ Q,
My o0 Efy [@mn] = 1, that is, g, is universally consistent.

The result above shows that the Mahalanobis MMD statistic with cut-off chosen using
the multiplier bootstrap method attains the exact asymptotic level and 1s unlversally con-
sistent. In practice, to compute §j_, ,, We generate B replicates {T m T m y e m } of T, "o
based on B 1ndependent copies of Z,,, and choose §j_q 4, to be the sample ath quantile of
(7D 70 By

mosdm 5. m

Remark 1. While implementing the test we often replace 2_1 in (17) and (28) by (= +
A )*1 for some suitably chosen regularization parameter A > 0. Although the limiting
covariance matrix X is invertible (see Corollary L.1 in the Supplementary Material), and
hence ¥ is also 1nvert1ble for large sample sizes with probability 1, adding a small regular-
ization provides numerical stability in finite samples. In fact, the conclusmns in Corollary 2
remain valid for any choice of A = A(Z%},) converging almost surely to a deterministic
constant Ay > 0; see § 6 below for more details on the choice of A in our experiments.

5. LOCAL ASYMPTOTIC POWER

Throughout this section, we assume that X = R and that distributions P and Q have
densities fp and fp with respect to the Lebesgue measure in R?. To quantify the notion of
local alternatives, we adopt the commonly used contamination model:

Jo() = (1 =8)fp() +82(). (30)

Here § € [0,1) and g & fp is a probability density function with respect to the Lebesgue
measure in R such that the following assumption holds.
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10 A. CHATTERJEE AND B. B. BHATTACHARYA

Assumption 2. The support of g is contained in that of fp(-) and 0 < vary.-p[g(X)/
fP(X)] < oo

Under this assumption, contiguous local alternatives are obtained by considering local
perturbations of the mixing proportion § as (see Ch. 12 of Lehmann & Romano, 2005)

Hy:8=0 versus H;:8=h//N (31)

for some 4 & 0 and N = m + n. The following theorem derives the distribution of the
Mahalanobis MMD statistic 7}, , under H; as above.

THEOREM 3. Suppose that K = {K{,Ka, ...,K,} is a collection of r distinct kernels such
that K, satisfies Assumption | and K, € L*>(X?, P?) for 1 < a < r. Then, under Hy as in (31),
in the asymptotic regime (9),

(m + mMMD2[K, Zin, %] 2 G

yL(KS) + 2hy V21 (KS[g/fp)) + WP
yL(KS) + 2hy V2L (KS[g/fP]) + WP s

= , , (32
y LKD) + 2hy V21 (Ko[g/fP) + P e
where y = 1/p(1 — p), Kilg/fp1(x) := [, K5(x,»)g(») dy,
Y 10,9700 }
«=E|Ko(X, X)L 33
s [ XX (X (33)

and K¢, is defined in (14) for 1 < a <.

The proof of the theorem is given in the Supplementary Material. The following result
is an immediate consequence of the above result together with the continuous mapping
theorem and Corollary 1.

COROLLARY 3. Under Hj as in (31), (m + n)*T, mn B G]TC h;;I(l) Gic -

Using Corollary 3, we can derive the limiting local power of test ¢,,, in (29). Specifi-
cally, suppose that Fi ; denotes the cumulative distribution function of G,E hzl_{é Gi, and
that ¢;_ 1s the (1 — «)th quantile of distribution G,E;;Ié Gx. Note that GIC’,O = G. Since
Gi—am | Zm — qi—q almost surely, Corollary 3 implies that the asymptotic power of
¢m,n under Hy as in (31) is given by limy, y—o0 Ex, [@mn] = 1 — Fic 4(q1—¢). This implies
that ¢, , has nontrivial asymptotic (Pitman) efficiency and is rate optimal, in the sense that
1im|]’l\~>00 limm,nﬁoo EHI [¢m,n] =1

6. NUMERICAL EXPERIMENTS

6.1. Choice of kernels and experimental parameters

In this section, we study the finite-sample performance of the proposed Mahalanobis
MMD (abbreviated as MMMD in the figures) test across a range of simulation set-
tings. Specifically, we compare the Mahalanobis MMD test to the single-kernel MMD
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Boosting the power of kernel two-sample tests 11

test (Gretton et al., 2009) and the graph-based Friedman—Rafsky (FR) test (Friedman
& Rafsky, 1979). Additional simulations are given in the Supplementary Material. Through-
out, we set the significance level @ = 0.05.

For single-kernel tests, we use the Gaussian and Laplace kernels

Koauss (%, 1) = e FP/0% and Kpap(x, ) = e 1¥1/e (34)
with the bandwidth o chosen using the median heuristic o2 := Afned = median{||Z; —

Zj||2: 1 < i <j < n},where 2, U%, = {Z1,Z,,...,Zy} is the pooled sample and
| - || denotes the Euclidean norm. We refer to these tests as Gauss MMD and LAP MMD,
respectively.

For the Mahalanobis MMD statistic, we use multiple Gaussian kernels, multiple Laplace
kernels or a combination of Gaussian and Laplace kernels, with different bandwidths
chosen as follows.

() Gauss Mahalanobis MMD: this is the Mahalanobis MMD statistic with five
Gaussian kernels with bandwidths

11
22

(i) LAP Mahalanobis MMD: thisisthe Mahalanobis MMD statistic with five Laplace
kernels with bandwidths

515\/252))"1116(1' (35)

o = (01,02,03,04,05) = <

1 1
= = =,—=,1,4/2,2 | Amed- 36
g (613623635 045 05) (23 \/23 5\/ s ) med ( )
(i) Mixed Mahalanobis MMD: this is the Mahalanobis MMD statistic with three
Gaussian kernels and three Laplace kernels with the same set of bandwidths

1
7

In our implementation we choose the regularity parameter A (recall Remark 1) as A =
107 x minj<y<; 644 for 64, > 0, as in (15). Since A converges to 107> X min| <y, Ouq
almost surely (recall Corollary 1), the results in Corollary 2 remain valid. The cut-offs
of the tests are chosen based on the multiplier bootstrap as in (29) using B = 500
resamples.

Finally, for the Friedman—Rafsky test, we use the implementation in the R package
gTests (R Development Core Team, 2024), with the 5-MST (minimum spanning tree),
which is the recommended practical choice in Chen & Friedman (2017).

o = (01,02, 0) = ( ,1,¢2)xmed. (37)

6.2. Dependence on dimension

In this section we study the performance of the different tests as the dimension varies
in the following settings. We fix sample sizes m = n = 100, vary the dimension over
d € {5,10,25,50,75,100,150} and compute the empirical power by averaging over 500
iterations.
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Fig. 1. Empirical powers in (a) Setting 1 and (b) Setting 2.

Setting 1 (Gaussian location-scale). Here, we consider P = Ny(0,%,) and Q =
Ny(0.11,1.15%), where X = {(0.5 7N} <; j<4; see Fig. 1(a).

Setting 2 ( Gaussian and t-distribution mixture). Here, we consider P = %N’d(O,;O) +
111000, 2¢) and O = $N4(0,1.22%) + 3110(0, 1.22%), where X, is as above; see Fig. 1(b).

The plots show that the multiple kernel Mahalanobis MMD tests have significantly more
power than the single-kernel MMD tests and the FR test in both settings. Overall, the Gauss
Mahalanobis MMD and the Mixed Mahalanobis MMD tests perform the best, closely
followed by the Lap Mahalanobis MMD. This also shows the advantage of aggregating
kernels across a range of dimensions, from low dimensions to dimensions that are com-
parable and even larger than the sample size. Additional simulations are provided in the
Supplementary Material.

6.3. Mixture alternatives

In this section we evaluate the performance of the tests for mixture alternatives by varying
the mixing proportion. To this end, suppose that £, = {(0.5"7)},; ;<4 and consider

P =eNy(0.2) + (1 — )110(0.Z9) and Q= eNy(0,1.255) + (1 — £)110(0, 1.255).

Figure 2 shows the empirical power, averaged over 500 iterations, of the different tests as ¢
varies over [0, 1], with sample sizes m = n = 100 and dimensions d = 30 (see Fig. 2(a)) and
d = 150 (see Fig. 2 (b)). In both cases, the Mahalanobis MMD tests outperform the single-
kernel tests and the Friedman—Rafsky test, again illustrating the versatility of the aggregated
tests.

6.4. Computational complexity of the Mahalanobis MMD test

In the Supplementary Material we analyse the computational complexity of the Maha-
lanobis MMD test, when the rejection region is chosen based on B replications of statistic
T, from (28). In particular, we show that the computational cost of the Mahalanobis MMD
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(a) Gaussian and r-Distribution Mixture for d =30 (b) Gaussian and #-Distribution Mixture for d = 150
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Fig.2. Empirical powers as a function of the mixing proportion for (a) d = 30 and (b) d = 150.

testis O(r>* N2+ BrN*+ Blog B), assuming that r < N. In practice, the number of resamples
B is usually chosen to be much larger than the number of kernels r, in which case the time
complexity simplifies to O(BrN? + Blog B). In fact, realistically, one only aggregates over a
bounded number of kernels, that is, r = O(1), in which case the computational costs of the
Mahalanobis MMD test and the MMD test differ only by a constant factor. In the Supple-
mentary Material we also compare the running times of the MMD and the Mahalanobis
MMD tests in simulations (see Table 1). Our experiments show that the Mahalanobis MMD
tests provide significant power enhancement over the MMD test, with only a small increase
in the computation time.

Remark 2. One way to reduce the computation cost of the MMD test from O(N?) to
O(N) is the linear-time MMD statistic (Gretton et al., 2012a, §6). In the Supplementary
Material we apply the Mahalanobis aggregation strategy to combine linear-time statistics
over multiple kernels and develop the associated theory. We also compare the power of the
aggregated linear-time MMD tests with their single-kernel counterparts and also with the
quadratic time Mahalanobis MMD tests in simulations.

6.5. Comparison with the permutation test

Another alternative to choosing the rejection threshold for 7),, is the permutation
method. In fact, the permutation principle can be applied to calibrate any two-sample test
statistic based on the sample quantiles of the test statistic computed on B permuted versions
of the pooled data 2, U %;,. The resulting test is guaranteed to control the Type-I error in
finite samples. In this paper we adopt the multiplier bootstrap over the permutation method
for the following two reasons.

Firstly, the independence of the Gaussian multipliers makes the asymptotic theory of the
multiplier bootstrap method more tractable. Consequently, we are able to provide a holistic
asymptotic theory for the multiplier bootstrap—based Mahalanobis MMD test, including
limiting distributions, under both the null and the alternative, consistency and local power
analysis.
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14 A. CHATTERJEE AND B. B. BHATTACHARYA

Secondly, the multiplier bootstrap is computationally more efficient than the permutation
method, both in terms of their asymptotic running times as well as power versus com-
putation time trade-off in finite samples. To obtain the permutation p-value, we have to
compute the Mahalanobis MMD statistic 75, (recall (17)) for each of the B random per-
mutations of N samples, where N = m + n is the total number of samples. Since with r
kernels it takes O(r>N?) time to compute 7, m.n, the time complexity for the permutation test
is O(Br2N?), where B is the number of permutations. On the other hand, we know from
§ 6.4 that the time complexity of the multiplier bootstrap-based Mahalanobis MMD test
(29) is O(r*N? + BrN? + Blog B), which has a better dependence on r than the permutation
test. Even for fixed r one can see significant gains in computation time in finite samples. In
particular, our simulations show that the Type-I error and power of the multiplier bootstrap
and the permutation methods are comparable, but the computation time of the multiplier
bootstrap method is much faster.

6.6. Comparisons with bandwidth-optimized MMD tests and p-value combination methods

Recall that in the previous sections while implementing the MMD test we chose the band-
widths for the Gaussian and Laplace kernels based on the median heuristic. Although this
is the common choice in practice (Gretton et al., 2012a; Ramdas et al., 2015), it remains
a heuristic because there is no theoretical understanding of its validity. To address this
issue, there have been studies that aim to find the best single-kernel test by optimizing the
bandwidth in such a way that the asymptotic power is maximized. This approach was first
proposed by Gretton et al. (2012b) for the linear-time MMD test, which was subsequently
extended to the quadratic time MMD test by Sutherland et al. (2021). The method involves
splitting the data into two parts and using the first part to select the bandwidth by max-
imizing asymptotic power, or, equivalently, by maximizing the ratio (see Liu et al., 2020)
MMD?[K;, Zin, ] / 6%, where 6)% is a regularized estimator of the asymptotic variance of
MMD?[K;, Z;n, %] under H;. In the Supplementary Material we provide empirical com-
parisons of our test based on multiple kernels with the bandwidth-optimized single-kernel
test in different simulations. To mitigate the effect of data splitting, we also implement the
single-kernel tests with twice the amount of data as in Schrab et al. (2023, §5.3). This emu-
lates an oracle choice of bandwidth and represents the best single-kernel MMD test for
the given data. In all the settings considered, the Mahalanobis MMD tests have improved
power more than the bandwidth-optimized single-kernel tests. Also, Mahalanobis MMD
tests with Gaussian/Laplace kernels have better power than the Gaussian/Laplace oracle
MMD test (where the bandwidth is optimized with double the sample size), respectively.
The bandwidths for the kernels in the Mahalanobis MMD tests are chosen as in (35), (36)
and (37), respectively, which requires no optimization or data splitting. Even so, the multiple
kernel Mahalanobis MMD test is able to outperform the ‘best’ single kernel, demonstrating
the effectiveness of our aggregation scheme.

Another possible aggregation strategy is to consider tests that combine p-values for mul-
tiple single-kernel MMD tests. To illustrate how our aggregation strategy compares with
p-value combination methods, we consider the following experimental set-up. We imple-
ment the Gauss Mahalanobis MMD test based on five different Gaussian kernels with
respective bandwidths o = (01,02,03,04,05) = (1/2,1/4/2,1,/2,2)Amed, Where Apeq is
defined after (34). The Gauss Mahalanobis MMD test is calibrated using the multiplier
bootstrap with B = 500 resamples. For comparison, we consider the following p-value
combinations.

G20z Aey g0 uo Jasn elueajAsuuad Jo Alsianun Aq 0/¥68./2/87098S8/1/Z 1 | /alo1Ie1awolq/woo dnoolwepese//:sdiy woly papeojumod



Boosting the power of kernel two-sample tests 15

(C) MNIST Data with Gaussian Noise
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Fig. 3. MNIST data with additive Gaussian noise with (a) o = 0.6, (b) 0 = 1 and (c) estimated powers of the
tests with increasing noise strength.

(i) Bonferonni setting: reject Hy if Sminj<;<sp; <
(i) Harmonic mean: reject Hy if 2.214 7295 10g(5)/Zl 1pl s
} <

(iii) Bonferonni and geometric mean: reject Hy if 2 min{5 mlnl5 | Di»€ ]_[l_l D; a.

Here, p; denotes the p-value of the MMD test for a Gaussian kernel with bandwidth o;
for all 1 < i < 5, and the significance level « = 0.05. The validity of the above p-value
combinations follows from Vovk & Wang (2020).

The results of our experiments are given in the Supplementary Material. In all the simula-
tion settings considered, the Gauss Mahalanobis MMD test emerges as the clear winner.
This suggests that it is more advantageous to adopt our aggregation strategy over p-value
combination methods for boosting the performance of kernel two-sample tests.

7. REAL DATA APPLICATIONS

7.1. MNIST with additive Gaussian noise

In this subsection we illustrate the performance of the proposed test in detecting different
set of digits from the Modified National Institute of Standards and Technology (MNIST)
database when independent and identically distributed Gaussian noise with standard devi-
ation o is added to each pixel. Figure 3 shows such noisy data for (a) o = 0.6 and (b)
o=1.

To evaluate the proposed method, we consider the sets of digits P = {1,2,3}and
0 = {1,2,8}, and vary the standard error o € (0,0.2,0.4,0.6,0.8, 1). For each o, we draw
100 samples with replacements from the two sets and check if the tests successfully reject
Hyj at level o = 0.5. We repeat this experiment 500 times to estimate the power. Figure 3(c)
shows performance of the above-mentioned tests, where we plot the power over the index of
pairs of sets of digits. This shows that, for the clean data and small noise levels, the single-
kernel Gauss MMD test performs comparably to the Mahalanobis MMD tests. However,
for larger noise levels, the Mahalanobis MMD tests perform much better than the single-
kernel tests. The Friedman—Rafsky test also performs well in this case across the range of
noise levels.
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16 A. CHATTERJEE AND B. B. BHATTACHARYA

(b)  MNIST Data with Reduced Contrast and Noise
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Fig.4. (a) MNIST dataset with reduced contrast and additive noise and (b) estimated power.

7.2. MNIST with reduced contrast and additive Gaussian noise

In this subsection we illustrate the performance of the different tests on the noisy ver-
sion of the MNIST dataset considered in Basu et al. (2017), which is publicly available at
https://csc.lsu.edu/saikat/n-mnist/. Here, in addition to additive Gaussian
noise the contrast of the images is also reduced. Specifically, the contrast range is scaled
down to half and an additive Gaussian noise is introduced with a signal-to-noise ratio of
12. This emulates background clutter along with significant change in lighting conditions;
see Fig. 4 for an example of such a noisy image.

We evaluate the performance of the different test for the following five pairs of sets of
digits: (i) P = {2,4,8,9} and Q = {3,4,7,9}; (i) P = {1,2,4,8,9} and O = {1,3,4,7,9};
(iii) P = {0,1,2,4,8,9} and Q = {0,1,3,4,7,9}; (iv) P = {0,1,2,4,5,8,9} and Q =
{0,1,3,4,5,7,9}; and (v) P = {0,1,2,4,5,6,8,9} and O = {0,1,3,4,5,6,7,9}. For each
of the five cases, we draw 150 samples with replacements from the two sets and check if the
tests successfully reject Hy at level o = 0.5. We repeat this experiment 500 times to estimate
the power. Figure 4 shows the power of the different methods for the above five sets. In this
case, the multiple kernel tests and the Friedman—Rafsky test overall has the highest power
across the five sets, followed by the Gauss MMD and the Lap MMD.

8. AGGREGATION WITH AN INCREASING NUMBER OF KERNELS

8.1. Maximum and L, aggregations

There are many ways in which one can combine multiple kernels into a test statistic. For
instance, we could consider maximum or L,-based aggregations as (assuming that m = n
for simplicity)

Tmax . ni’?ilxMMDz[Ka, Zoms ] and  TE = IMMD?[K,,,. Zin. Dl |2,
a=

where r = r,, depends on m and K, ;== {K,: 1 < a < r,}. The consistency and asymptotic
distribution of these statistics when r is fixed follow from the results in § 2.2 and Theorem 1,
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respectively. In the following proposition, using uniform convergence bounds for the MMD

estimate, we construct tests based on 7,"** and T, ,ﬁz that are consistent in the growing r
regime. The proof is given in the Supplementary Material.

PROPOSITION 1. Suppose that K,,, = {K,:' 1 < a < ry} is a collection of ry, distinct
characteristic kernels such that 0 < K, < K forall 1 < a < ry. Fix a € (0,1), and consider

the test functions
1 6rm\ 2
P = 11{|T£?a"| > C(—m log —a’") }

12
r 6r
el oz

where C := 8K. Then both ¢;)** and o2 have level o in finite samples. Moreover, ot and

qj,ﬁz are asymptotically consistent for (1) if logr,, = o(m) and r,,;log r,,, = o(m), respectively.

8.2. Mahalanobis aggregation
In the growing r regime the Mahalanobis MMD statistic takes the form

Fm > Fm> %H’Ia %1])3 (38)

TNA := (MMD?(K,,,. Zin. %)) £, (MMD[K

where 2,,’" has entries defined in (15).

THEOREM 4. Suppose that the assumptions of Proposition 1 hold. Then the test

m

4K?
o) = ]1{|T,ﬁ‘1“| e }

Jm

is asymptotically consistent whenever 1im,,_, o inf Kagrm{MMDz[}"a, PO} > 0 and
rmlogry, = o(\u/m), where Ay, is the smallest eigenvalue of z, .

The proof of Theorem 4 is given in the Supplementary Material. Essentially, the result
shows that T ,ID{IA leads to a consistent test for r;,, = 0(A,,,4/m), ignoring logarithmic factors.
In comparison, for the maximum aggregation, one can have r,, grow subexponentially in m
and the L, aggregation allows any sublinear growth for r,, (recall Proposition 1). One of the
challenges in dealing with the Mahalanobis MMD statistic in the growing r,,, regime is that,
in addition to the concentration of the vector of the MMD statistic, one has to ensure the
concentration of X, , which necessitates a more stringent requirement on ry,, in comparison
to the L, aggregation, to guarantee consistency. Towards this, it is expected that the lowest
eigenvalue of the population covariance matrix X, plays a role in how large r,, can be.

Improving the dependence on r in the above results and investigating the behaviour of
the various aggregation strategies when r is comparable or even larger than m are impor-
tant future directions. However, from a practical standpoint one needs to exercise caution
while selecting r. Although the aggregated tests remain consistent under appropriate growth
conditions on r, in finite samples the power of the tests saturate and the tests also become
conservative when r is large. This latter issue, which is already apparent for the single-kernel
test when the cut-off is chosen based on concentration inequalities (see § 4 of Gretton et al.,
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18 A. CHATTERJEE AND B. B. BHATTACHARYA

2012a), becomes more significant when r grows with m. Moreover, the computation of 2_1
becomes less stable when r becomes too large. In practice, as we see in the simulations, there
is already significant improvement in power over single-kernel tests just by aggregating over
a few, up to five, kernels. Further exploring the interplay between the choice of r, the Type-I
error and power is an interesting future direction.

9. BROADER SCOPE I: LOCAL POWER OF ADAPTIVE MMD TESTS

The idea of using multiple kernels/bandwidths has recently emerged as a popular alter-
native to selecting a single bandwidth for developing adaptive kernel two-sample tests that
do not require data splitting. In this direction, Kiibler et al. (2020) proposed a method that
does not require data splitting using the framework of postselection inference. However, this
method requires asymptotic normality of the test statistic under Hy; hence, it is restricted to
the linear-time MMD estimate (Gretton et al., 2012a, § 6), which leads to loss in power when
compared to the more commonly used quadratic time estimate (7). Fromont et al. (2012,
2013) and, more recently, Schrab et al. (2023) introduced another non-asymptotic aggre-
gated test, hereafter referred to as MMDAgg, that is adaptive minimax up to an iterated
logarithmic term over Sobolev balls.

Our aggregation strategy leads to a test that can be efficiently implemented, enjoys
improved empirical power over single-kernel tests for a range of alternatives and scales well
in high dimensions. Moreover, our theoretical results apply to general aggregation schemes,
using which we can obtain the asymptotic local power of the aforementioned MMDAgg
test. To demonstrate this, in this section we propose an asymptotic implementation of the
MMDAgg test and sketch a heuristic argument that derives its limiting local power in
the contamination model (31). The argument can be made rigorous by using tools from
empirical process theory; however, since the purpose of this section is more illustrative than
technical, we have not pursued this direction.

To describe the asymptotic version of the MMDAgg test, suppose that X = ({Kj,
K,, ..., K.} is a finite collection of kernels and that W := {w;, w,, ..., w,} is an associated
collection of positive weights such that Y., wy < 1. Moreover, fora € (0,1)and 1 < s <,
let 1—q sm be the ath quantile of the distribution

&Ky, Zip) = 28K Z, — — tr[K; 1,

1
o1 —p)
where K: is as defined in (26) for 1 < a < rand Z,, ~ Np{0,1/5(1 — p)} is indepen-
dent of Z;,. The idea of the MMDAgg test is to reject Hy if any one of the individual
(single-kernel) tests based on the kernels in K rejects Hy for a specially chosen cut-off; see
Schrab et al. (2023, §3.5) for details. Here, we consider an alternative implementation of

the MMDAgg test based on the Gaussian multiplier bootstrap discussed in § 4. To this end,
define

u: . = argmax { ue (0,L): pr < max {& Ky, Zim) — q1—ww,.sm} > 0 | Zn >< o }

o,m
1<s<r

where L := minj <, w;l. The probability on the right-hand side above is over the random-

ness of Z,,, conditional on Z),; hence, u;, ,,, can be computed from the data by a grid search
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over u € (0, L). The MMDAgg test would then reject H if

MMDAgg . _
m,n,o =1

max (MMD?[Ky, 2, Z4] — @1 —wauzsm} > 0

} . (39)
1<s<r

To describe the asymptotic properties of this test, let g, ¢ be the ath quantile of the distribu-
tion r(K$)/p(1 — p) for 1 < s < r. Then, for each fixed u € (0, L), by Theorem 1, Slutsky’s
theorem and the continuous mapping theorem, as m — oo,

~ D
max {& (K, Z) — q17uw‘y,s,m} — max

 BK) = i
1<s<r lésgr{p(l — ) 2( s) q1 uwS,s}

. A a.s.
sSInce §1—uw,.s.ml Zm — q1—uw,s- Therefore, for each fixed u € (0, L), as m — oo,

pr ( max‘{é"(Ks, Xm) — &l—uws,s,m} >0 ‘ L )

1<s<r

1<s<r { mlz(Ks) - q1_uws’s} > o),

— pr( max
Now, since the convergence of the quantiles is uniform, we expect the following to hold as
Lk a.s. * N a.s.
m— OOl Uy py — Uy and g1y sm | Im —> q1—wguk s> where

o,m>*

uy, := argmax [u € (0,L): pr< max L(K?) — ql—uws,s} > 0) < ozi|.

1<s<r{p(1 - p)

Hence, under H; as in (31), by Theorem 3, Slutsky’s theorem and the continuous mapping
theorem,

~ D
max {MMDz[Ks; %}ﬂa %] - QI—wsu;,s,m} — mmax {GK‘Y,h - q1—wsu;,s}a

1<s<r <s<r

where Gk, := y L(K2) +2hy /211 (K2[g/fp]) + h* (s, and pu is as defined in (33). Therefore,
the limiting power of test (39) is given by

. MMDA
lim En [ 241 = pr ( max (G, = 41w} > 0)
m,n— 00 <s<
=1- E}C,h (Q1—w1u3‘(,1a cees Q1—wru3‘(,r)a
where Fy , is the cumulative distribution function of vector (Gk, i, Gk, - - - GK,,;,)T.

Numerical results comparing the empirical power of the Mahalanobis MMD test with
the MMDAgg test are reported in the Supplementary Material. The experiments show that
the Mahalanobis MMD test has better power than the MM DA gg test for a range of alterna-
tives, which include perturbed uniform distributions in the Sobolev class, as well as mixture
and local alternatives. This showcases both the practical relevance of the Mahalanobis
aggregation strategy and the broader scope of our asymptotic results.
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10. BROADER SCOPE II: AGGREGATION WITH DIVERGING BANDWIDTHS

In the previous sections we established the universal consistency and derived the asymp-
totic null distribution of the Mahalanobis MMD test for kernels with fixed bandwidths.
However, in practice, bandwidths are often chosen in a data-driven manner that depends
on the sample size N. For instance, to obtain tests that are optimal, in detecting smooth
departures from the null hypothesis, the scaling parameter A := 1/0% has to diverge with
the sample size; see Li & Yuan (2019) and Schrab et al. (2023). For such choices of the scal-
ing parameter, the test statistic has an asymptotically normal distribution under Hy; hence,
the rejection threshold can be readily obtained without any permutation/bootstrap resam-
pling. Combining this idea with our aggregation strategy, in this section we construct a new
test that combines multiple Gaussian kernels, with appropriately chosen diverging scaling
parameters, that has a multivariate normal distribution under Hy.

For > 0, let Ky (x, y) := e~ *I*=71” be the Gaussian kernel with scaling parameter A. For
r > 1, consider the collection of kernels K, := {K,,: 1 < a < r}, where v = (v, v2,..., 1)
is a set of scaling parameters that can possibly depend on N. Throughout this section, we
make the following assumptions.

Assumption 3. There exists {ny > 0: 1 < s < r}such that vy = nsAy foralll < s < r,
where Ay = o(N*9) such that Ay — 0o, in the asymptotic regime (9).

Assumption 4. Suppose that ¥ = R? for d > 1 and that distribution P has a density
frels (Rd ) with respect to the Lebesgue measure on RY,

Under these assumptions, we have the following theorem.

THEOREM 5. Suppose that the collection of kernels K, satisfies Assumption 3 and that
Assumption 4 holds. Then, under Hy, in the asymptotic regime (9),
mn dj4

A

2 D
W m N MMDIKy, 2o, 2] = N (0, 1),

where T' = (Vub)i<ab<r iS an r X r matrix with entries y,, = JTd/ZHfP”%/(T)a + np)/? for
1 <ab<r.

In Lemma K.6 in the Supplementary Material we provide a consistent estimate |[/}p||% of

pr”%, as in Theorem 4 of Li & Yuan (2019). Combining Theorem 5 and Lemma K.6 gives
the following result.

COROLLARY 4. Suppose that the conditions of Theorem 5 hold. Then, under Hy, in the
asymptotic regime (9),

. d/i4, > -1 2 D ~
Von = m)w /Pl MMD~[K,, Zn, %] = N(0,D),

where pr” » is defined in Lemma K.6 in the Supplementary Material and T = (Vab)1<ab<r
is an r x r matrix with entries Y = {m/(na + )42 for 1 < a,b < r. Consequently,
{ZL’nE Vipn > szlfa} is an asymptotically level-a test.

The test above has a tractable chi-squared distribution under Hj; hence, its rejection
region can be readily obtained without any bootstrap resampling (unlike the general test
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Boosting the power of kernel two-sample tests 21

with fixed bandwidths discussed in § 4). Furthermore, the test in Corollary 4 will be optimal
in detecting certain smooth alternatives for an appropriately chosen bandwidth, depending
on the smoothness parameter, similar to the single-kernel test; see § 3 of Li & Yuan (2019).
Moreover, we expect the test in Corollary 4 to have better power than its single-sample
counterpart in finite samples for specific types of smooth alternatives.
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