Effective Kahler and auxiliary field potentials
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I obtain the effective Kahler potential at three-loop order for a general renormaliz-
able supersymmetric theory containing only chiral supermultiplets. The three-loop
contribution is remarkably simple, consisting of only four terms involving three dis-
tinct renormalized master integrals. In the case of the Wess-Zumino model with a
single chiral superfield, I also obtain the effective auxiliary field potential at three-
loop order, extending previous results at one-loop order. The method used is infer-
ential, relying on existing knowledge of the ordinary scalar effective potential.
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I. INTRODUCTION

Radiative corrections in quantum field theories can be summarized in terms of the effective
action, which can be computed in perturbation theory by summing 1-particle irreducible vacuum
Feynman diagrams in the presence of external background fields. For some purposes, it is suf-
ficient to have the scalar effective potential [1-3], which is the effective action in the case that
the background fields are taken to be independent of spacetime position. At present, the effective
potential is known for a general renormalizable theory through 2-loop order [4, 5] and 3-loop order
[6, 7], including for supersymmetric gauge theories [8], and with leading QCD corrections for the
Standard Model at 4-loop order [9].

Despite increasingly strong constraints from collider and dark matter experiments, supersym-
metry remains a viable possibility for physics beyond the Standard Model, and it arises in string
theories that propose to consistently quantize gravity. It is therefore useful to understand as much
as possible about the form of radiative corrections in the supersymmetric context. In particu-
lar, the Higgs vacuum expectation values in supersymmetric extensions of the Standard Model are
most easily determined from the effective potential, and high-order radiative corrections are clearly
necessary in this regard. The radiative corrections to the effective Lagrangian for supersymmetric
theories have a more constrained structure than in ordinary generic quantum field theories, and
one motivation for the present work is to take a step to learn more about this, although super-
symmetric gauge theories are not treated in the present paper. Indeed, it is found below that the
effective Kéahler potential at three-loop order does not include one term that might otherwise be
expected to be present.

For supersymmetric models, the effective action can be written as an integral over superspace
of background superfields. In this paper, I will concentrate on renormalizable models that contain
only chiral superfields. I will also consider only the part of the superfield effective action that
contains no spacetime derivatives, so that the results imply the physical content of the scalar
effective potential. In terms of background chiral superfields ¢; satisfying 0,¢; = 0, the effective
Lagrangian can be written in the form!

Lot = / 200" Lt (65, 6, Dadhi, D', DD¢;, DD™) + ( / d*0W () + c.c.) , (L1)
where W(¢;) is the superpotential, and it is conventional to split Leg into two parts,

Leff = Keff + Jeff- (12)

Here Kg(¢;, ¢*) is called the effective Kihler potential, with a canonical tree-level part ¥,

and is defined to be the part that contains no chiral superderivatives D, or D". The remaining

part Jeg is thus defined by the property that it vanishes when all chiral superderivatives of ¢; and

¢*" are replaced by 0. It is often called the effective auxiliary field potential [12] because, when
evaluated in terms of constant background bosonic component fields, it contains at least three

t For reviews of supersymmetry using the notations and conventions to be followed in this paper, see refs. [10, 11].



F-term auxiliary fields. The effective superpotential W (¢;) is the same as the tree-level one.t

The effective Kéhler potential and the effective auxiliary field potential can be calculated as
loop integrals either in terms of component fields or using superspace methods. The present state
of the art is that the effective Kéhler potential is known at 1-loop [17-22] and 2-loop [22] orders
for general supersymmetric gauge theories including non-renormalizable ones, while the effective
auxiliary field potential is known [23, 24] at 1-loop order for the Wess-Zumino model with a single
chiral superfield. In this paper, I will extend these results by computing the 3-loop effective Kahler
potential for a renormalizable theory with an arbitrary number of interacting chiral superfields,
and the 3-loop effective auxiliary field potential for the Wess-Zumino model with a single chiral
superfield. Instead of calculating these superfield effective potentials directly, I will infer them by
leveraging the existing knowledge of the 3-loop ordinary scalar effective potential. As explained
in more detail below, this is done by expanding the scalar effective potential in terms of the
supersymmetry breaking auxiliary fields. The quadratic part of this expansion in auxiliary fields
gives the effective Kéhler potential, while the whole scalar effective potential is needed to find the
effective auxiliary field potential. In practical applications, the effective Kahler potential is often
sufficient when loop corrections are important but spontaneous supersymmetry breaking can be
treated as a subdominant effect.

The results below are expressed in the modified minimal subtraction (MS) renormalization
scheme based on dimensional regularization in d = 4 — 2e dimensions. (Since no gauge interactions
are involved, it is not necessary to make a distinction between dimensional regularization and
dimensional reduction.) One-loop order radiative corrections result in logarithms, which will be
written as

In(z) = In(z/Q?), (1.3)

where z is the squared mass in the loop integration and @ is the MS renormalization scale, which
is related to the loop momentum dimensional regularization mass scale p by

Q% = 4dme EL2 (1.4)

At 2-loop order, T make use of the renormalized e-independent master vacuum integral I(x, vy, z), as
defined for example in eq. (5.4) of ref. [25] in terms of logarithms and dilogarithms. At three-loop
order, the results below similarly depend on renormalized e-independent master vacuum integrals
F(w,z,y,z2), G(v,w,x,y, z), and H(u,v,w,z,y, z), which cannot (in general) be expressed analyt-
ically in terms of classical polylogarithms. It is also convenient to define the integral combinations

Hw,z,y,2) = [[(w,y,2) —I(x,y,2)] /(z —w) (for x # w), (1.5)
I(z,2,y,2) = —%I(w,y,z), (1.6)

K(u,v,w,x,y,2z) = [Gu,w,z,y,2) — G(v,w,x,y, 2)] /(v —u) (for u # v), (1.7)

! In this paper, I assume that all of the chiral superfields are treated as massive, so that nonrenormalization theorems
[13] apply, forbidding all (even finite) perturbative quantum corrections to the superpotential. For exactly massless
chiral superfields, the proof of the nonrenormalization theorem has a loophole, and there can be nondivergent
perturbative corrections to the effective superpotential starting at 2-loop order, as argued in ref. [14] and shown
explicitly in refs. [15, 16].
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FIG. 1.1: Feynman diagram topologies corresponding to the renormalized e-independent scalar vacuum
integrals used to express the results in this paper, with squared-mass labels u, v, w,z,y, z. Reference
[25] provides the specific definitions of the integral functions, the differential equations that they satisfy,
known analytical results in special cases, and a computer program 3VIL allowing for their fast and
accurate numerical evaluation in general.

K(v,v,w,z,y,2) = f%G(v,w,x,y,z). (1.8)

All of these integrals functions have an explicit logarithmic dependence on the renormalization
scale @), although it is not listed explicitly among the arguments because it is always the same
everywhere within a given calculation. The corresponding Feynman diagram topologies are shown
in Figure 1.1, and the precise definitions are found in ref. [25], which also provides the differential
equations that they satisfy, and a computer program 3VIL allowing for their fast and accurate
numerical evaluation. These same master integrals were used to express the closely related results
for the 3-loop effective potential in a general renormalizable theory in ref. [7]. In the special case
that the squared mass arguments are all equal, I(z,z,z), I(x,z,2z,2), F(x,z,z,2), G(z, 7, 2,2, 7),
H(z,r,z,z,2,7), and K(x,r,z,2,2,7) can each be expressed analytically in terms of In(z) and
transcendental constants, as given in ref. [25] and in the next section of the present paper.

II. EFFECTIVE KAHLER POTENTIAL AT THREE LOOPS

Consider a supersymmetric model with chiral superfields ®; (i = 1,2,..., N,) with a superpo-
tential
L L ik
and a canonical tree-level Kihler potential, K = ®*'®;. [Repeated indices in this paper are

implicitly summed over except when they appear on both sides of an equality. Also, flipping the
index heights on a parameter will denote complex conjugation, so that for example p;; = (ui9)* ]
Now divide each chiral superfield into a background chiral superfield ¢; and a propagating quantum
chiral superfield part A;, as

®; = ¢+ Ai (2.2)



To define the effective Kéahler potential, the background chiral superfields are taken to obey their
classical equations of motion,

11— . oW . 1 .. .
- * — . S ijk 4 — A
(DD = 5o = g+ a0 = w' (2:3)

Now one can rewrite the mixed terms in the Lagrangian coming from the Kahler potential using
/ d20d%0T ¥ A; = / 2 (—%Dw*i) Ay, (2.4)

which, applying eq. (2.3), cancels the contribution linear in A; from the superpotential. Thus the
propagating chiral superfields have a canonical tree-level Kihler potential A*' A; and superpotential

W(A) = %m”A,A] + %)\ijkAiAjAk, (25)

where the background-chiral-superfield-dependent mass matrix is
mi = 4 N, (2.6)
For the purposes of calculating or expressing the results of loop corrections in the general case with

Ng > 1, it is convenient to rotate to a new basis such that the propagating superfield squared-mass
matrix is diagonal. Thus, one defines new chiral superfields A; according to

A; = UZA;, (2.7)

where U7 is a unitary matrix chosen so that
U Fmpm™U, = 6y, (2.8)
where (UT);* = (U.")*. This is always possible because my,m™ is a Hermitian matrix, with

eigenvalues that we are denoting by z;. One can then write the superpotential for the propagating
superfields as

1 .. - 1 0~ -
W(A) = 5M”A¢Aj+6Y”kAiAjAk, (2.9)
where
MY = mMuiud, (2.10)
Yk = ey iu iUk, (2.11)

Note that the tree-level Kihler potential for A; is still canonical, due to the unitarity of U. In
general (for Ny > 1), U depends on the background chiral superfields in a non-linear way, so



the field-dependent parameters M* and Y*“* do also, even though the latter is dimensionless.
The superpotential does not suffer radiative corrections as long as the fields are not massless, but
radiative corrections to the effective Kéhler potential are non-trivial and depend on the background
chiral superfields only through the combinations M% and Y** and their complex conjugates M;;
and Yj;,. Note that while M Mk = 551:1 is diagonal (by construction, through the choice of U),
and M% can also always be made diagonal, it is sometimes convenient to choose M* non-diagonal
if there are degeneracies. For example, this can occur if two chiral superfields carry opposite
conserved charges that are left unbroken by the background fields.

The effective Kéahler potential and the superpotential for the background chiral superfields
encode the information about the part of the ordinary effective potential Vg obtained by expanding
through second order in the supersymmetry-breaking auxiliary fields. To see this, write

Lo = /d29d29T Ko (i, 6*) + (/ 420 W (¢;) +c.c.). (2.12)

After integrating out the auxiliary fields, and dropping terms with fermions and space-time deriva-
tives, one obtains

J

. 2 -1

where the matrix 9% Koz /0¢*0¢; is the effective Kéhler metric, and w’ is defined by eq. (2.3), and
it is understood that all ¢** and ¢; are replaced by their scalar components. Terms with more than

*
J —
in eq. (2.12) is augmented to include terms with chiral derivatives D and D; these terms constitute

two of w® or w* in the scalar effective potential Vog arise when the effective Kahler potential term

the effective auxiliary field potential, and will be discussed in the next section.
Consider a loop expansion for the effective Kahler potential,

o0
Keg = &y + ZFJZK(‘), (2.14)
(=1
where
K =1/167" (2.15)

will serve as the loop-counting parameter in the following. Then the inverse Kéhler metric can be
constructed iteratively in ¢, with the result that eq. (2.13) can be written as

Ver = whwi + Y kw'V Pl + 0w?), (2.16)
/=1

where

AR (2.17)



VI g Ok i 2.18)
VT = k@ kPR kO - kORI (2.19)
etc., with
. 2 (0)
i _ O°K
g = OET (2.20)
0P* ¢

in which it is again understood that the background chiral superfields are replaced by their scalar
components. Thus, by evaluating the quadratic part of the scalar effective potential in an expan-
sion in w* and w;'f, one can infer the functional form of the corresponding effective Kahler potential
contributions from their derivatives. Note that this is really equivalent to an expansion in super-
symmetry breaking auxiliary fields, which are proportional to w’ and wj;. The key point is that the
functions of complex scalars in egs. (2.17)-(2.19) can be “lifted” to superspace by replacing them
by the corresponding chiral superfields.

It remains to evaluate the scalar effective potential Veg, which I do using a component-field
calculation, taking advantage of the fact that for a general renormalizable theory the results at
3-loop order for

Ver = » sV, (2.21)
£=0

have been given in ref. [7] in the MS scheme. This allows evaluation of egs. (2.17)-(2.19) by
expanding Vg in w® and w;f. To apply the general results to the present case, one starts with the
same superpotential of eq. (2.1), and implements the same shift in eq. (2.2), but with the important
difference that now ¢; is taken to be the background scalar component only, satisfying DD¢ =
DD¢* = 0, rather than a chiral superfield satisfying eq. (2.3). The resulting Lagrangian for the
propagating fields in the presence of the scalar background fields is described by the superpotential

W(A) = w'd; + %m”AiAj + é”jkAiAjAm (2.22)

from which one readily obtains the propagating component-field masses and interactions. Here w?
and m% have exactly the same form as given in eqs. (2.3) and (2.6), but now with ¢; taken to
be complex scalar background fields. By dimensional analysis, it is clear that w® and its complex
conjugate w; have no effect on the field-dependent fermion masses and Yukawa, scalar cubic, and
scalar quartic couplings, and enter only in the squared-mass terms in the tree-level potential for
the complex scalar components a; of the propagating superfields A;. These squared-mass terms
have the form

kj k

, miEm AijrWw a;

(i a) | ’ ) (2.23)
Nidkws mFmys |\ a*

The diagonal blocks in this scalar squared-mass matrix are the same as the propagating fermion



squared mass matrices, and the off-diagonal blocks involving w* and wy, can be treated in a per-
turbative expansion of the general results, using the known derivatives of the master integrals. If
one sets w* = wy, = 0, corresponding to the leading term in this expansion, then supersymmetry is

unbroken and the effective potential vanishes at each loop order [26]. Continuing in the expansion

of Vg, terms linear in w® or wy, and quadratic terms proportional to wFw™ and wiw,, must also
vanish, as can be seen from eq. (2.16). This provided a check of the calculations leading to the
results about to be described.

I used the general form for the effective potential of the theory described by eq. (2.22) in the
special cases Ny = 1 and Ny = 2, as this allowed analytic diagonalization of the superpotential
masses and is sufficient to uniquely fix the coefficients of candidate terms in the effective Kéhler
potential. However, the results should be valid for any N,. Expanding to quadratic order in w”

and wy, I infer that the effective Kahler potential contributions up to 3-loop order are

KO = g¢rig;, (2.24)
1—
i
1. .
K® = EYZJkEjkI(fUi,JJij), (2.26)
1. ..
K(g) = *éyl]knlnylnpyjk:pG(xi)xjakaxlvxn)

1. .. :/ ’
l k
+1Y” Y ' PY 0k Y p My M™ H (4, f, Tk, X1, Ty, Tp)

1. .. ’ /
+5Y Y [Ylnpyknpxk + Yirp VP My MY ] K (2, 21, 34, 35, Tn, 1p), (2.27)

in terms of renormalized vacuum integral functions defined in ref. [25]. The result for K(!) agrees
with the calculations of ref. [17-22], and K @) successfully reproduces the 2-loop result given by
S. Groot Nibbelink and T.S. Nyawelo in ref. [22] using a very different method based on direct
evaluation of supergraphs. The result K () is new, and is still remarkably simple, consisting of
only four terms involving three distinct 3-loop renormalized master integrals. Indeed, it seems to
be simpler than naive expectation, as at present I cannot offer an explanation for the absence of
an otherwise-plausible term proportional to Yijk}/;jlYl”kanpxiK (g, z1, T, Tj, T, Tp), other than
the empirical fact that its coefficient vanishes. Presumably this could be explained in some elegant
way in a direct superfield 3-loop calculation.
In the special case of the Wess-Zumino model with N; = 1 and

1 1
W= 5/@2 + 6A<1>3, (2.28)

the unitary matrix U is simply the number 1, and the 3-loop integrals can be evaluated analyt-
ically [27-30] in terms of logarithms and transcendental constant numbers, and are given in the



conventions and notations of the present paper in ref. [25]. These integral functions arel

I(z,z,z) = [cl - % + 6In(x) — %Ez(x) , (2.29)
G(z,xz,z,z,x) = x [401 + 6¢3 — 9—37 + (26 — 2¢j)In(z) — 8E2(:U) + E?’(a:) , (2.30)
H(z,x,z,r,2,7) = cy — 6(3In(x), (2.31)
K(z,z,x,z,x,2) = %cl +2@3 — g + %c;ﬁ(az) + 52@) - éﬁg(m’), (2.32)

where the transcendental numerical constants are

(s = > _1/n® ~ 1.2020569031595942854, (2.33)
n=1
¢; = 3v3Im [Lig(e%i/?’)} ~ 3.515860858034188, (2.34)
. et 2, 2 2 c
en = 16Lia(1/2) — =5+ - n?(2)In*(2) — 77 + 63 — L ~ —10.085278479768780. (2.35)

Thus the specialization of egs. (2.24)-(2.27) to the 3-loop effective Ké&hler potential of the Wess-

Zumino model is

where z = |u + A\|?
eq. (54) of the arXiv
incorrect and should

=[], (2.36)
- x[l - fln(x)], (2.37)
~ A2 [écl _ % +Tn(z) — ilnz(x)] , (2.38)
= Mz {289 + iCH = %cl - %(3 + <152(:1 - 14—3 - ;§3> In(x)

+ZE2(;E) . 2541]03(9;)} : (2.39)

. The 2-loop result K3 agrees with that found in ref. [22], except that in

version [eq. (5.6) of the journal version] the term 12x(z) with z = 4//3 is
actually be 2¢;/3 in the notation of the present paper. In the arXiv version

only, there is also an obvious missing factor of |A\|2. My result for K (2) also agrees with that found
in ref. [24] except that the term —((2) in eq. (3.2.31) of that reference should be absent.

t Note that by definition K (z, z,z, 2, z, ) = [faa—yG(y, T,X,T, m)] ’yzz, from which eq. (2.32) can be obtained using

the derivative given for general arguments in the ancillary file derivatives.txt of ref. [25]. The other necessary
results were given in egs. (5.9), (5.31), (5.51), and (5.61) of that reference.
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III. EFFECTIVE AUXILIARY FIELD POTENTIAL AT THREE LOOPS

The known scalar effective potential Vog can also be used to infer the rest of the effective
superspace Lagrangian that involves superderivatives but not spacetime derivatives acting on chiral
superfields, by expanding beyond second order in w* and wy,. For simplicity, I will illustrate this
in the special case of the Wess-Zumino model with one chiral superfield, with the superpotential
given in eq. (2.28). (Although there should be no fundamental obstacle to carrying out the same
procedure for several multiplets, I have not done so, as it becomes considerably more complicated.)
The effective superspace Lagrangian for the chiral superfield ¢ (taken to be constant in spacetime
but not constant in superspace) can be written as

‘Ceff = /‘d29d29T |:Kef‘f(¢7 (b*) + ']eff(mv m*v A7 A*):| + </ d20 W(¢) +C'C'> ) (31)

where Jeg is the effective auxiliary field potential. This uses the fact that, because of the form of the
propagating superfield superpotential, Jog can only depend on ¢ and ¢* through the background
chiral superfields

1
m = p+ Ao, A* = —EDDm* (3.2)

and their antichiral superfield conjugates

m* =t A A= —%DDm. (3.3)
The effective Kahler potential K.g is defined to include all of the non-zero contributions for van-
ishing chiral derivatives, so that Jeg vanishes for A = A* = 0. As we have already seen in
egs. (2.37)-(2.39), the loop corrections to Keg can only depend on ¢ and ¢* through the combina-
tion z = |m|%. Note that it is not necessary to include a dependence on DmDm or Dm*Dm* in
Jor in the case of the Wess-Zumino model, because of the identities

1
m™(DmDm)(DDm)P = —?m"H(DDm)pH o (3.4)
n
_ _ 1 _
(m*)"(Dm*Dm*)(DDm*)P = —ni_i_l(m*)”“(DDm*)p“ T (3.5)

where the ellipses stand for total superderivatives that vanish in the effective action after integrating
over superspace.

It is nevertheless useful to re-express Log in a form that does involve (DmDm)(Dm*Dm*).
Making use of the facts that Dom* = 0 and D%m = 0 for chiral superfields, and that any product of
three chiral or three anti-chiral derivatives vanish, D,mDgmD.m = 0 and Edm*ﬁﬁm*ﬁ:ym* =0,
it follows from eqgs. (3.4) and (3.5) that the effective auxiliary field potential contribution to eq. (3.1)
can be rewritten in the form

1 .
/ d?0d?0" J.g = / d29d29TE(DmDm)(Dm*Dm*)Geff(m, m*, A, A¥), (3.6)
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in which

1 92

Geff = meeffa

(3.7)

with A and A* treated as constants in taking the partial derivatives. Although Geg and Jog
contain equivalent information, Geg is much easier to derive in a direct way from the known Vg,
and as a consequence it is also easier to express Geg in terms of renormalized master integrals. The
complete results for Geg and Jog for the Wess-Zumino model at 1-loop order have been obtained
by S.M. Kuzenko and S.J. Tyler in refs. [23, 24]. In the following I will provide the 2-loop and
3-loop order extensions of those results.

Writing the loop expansion for the effective auxiliary field potential as

Geg = » K'GY, (3.8)
/=1

the scalar effective potential can be expressed, using eqs. (2.14) and (3.6) in eq. (3.1), as

<, ( @KO
v;ffz|w|2—|F+w*\2—|AF|2§:M< N RGO (mmt AENFY) ) (3.9)
— om*om

where F' is the auxiliary field for ¢, and w = u¢ + %)\qﬁ2 as in eq. (2.3), with K known from the
previous section, and ¢ is now taken everywhere to be the complex scalar field. Now one eliminates
F and F* through their algebraic equations of motion Veg/OF = OVeg /OF* = 0, by expanding

F = -w'+) &'FO, (3.10)
/=1

and then solve for and eliminating the F® for £ = 1,2, 3 in turn. Then one can solve eq. (3.9) for
the functions G for ¢ = 1,2,3 in turn, using the known results of K from eqs. (2.37)-(2.39)
above, and the known results for Veg from ref. [7]. (Note that the equation determining G2
depends on the first derivatives of G(!) with respect to the last two arguments, and similarly the
equation determining G®) depends on the first derivatives of G?) and the second derivatives of
G(l).) After doing so, the equivalent description of the effective auxiliary field potential

Jeg = » s, (3.11)
/=1

is found by applying eq. (3.7) by integrating GO twice, with respect to m and then m*. The

constants of integration are determined by the requirement that Jog is zero for vanishing A or A*.

Once their functional forms are known, G and Jeg can be reinterpreted as superfield quantities.
In order to express the results succinctly, define real superfield combinations

y = x+ Al z = x—|A (3.12)
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§ = |Al/z. (3.13)

Now one finds, following the procedure described in the previous paragraph at 1-loop order,

¢ = ]A1|2 (z + ;ln(:c)> + ]A1|4 (;172111(@ — inE(y) - iz%n(z)) (3.14)
:AQL{%?—u+5ﬁmu+5y41—®%m1—®L (3.15)

42204
or, expanding in a series in d,

1 /1 52 54 &6 &8 510
GV — —(— 4 4~ 4+~ 4 = ) 3.16
z? <24 + 120 * 336 * 720 + 1320 * 2184 * ) ( )

Applying eq. (3.7) by integrating eq. (3.15) twice, one obtains the equivalent result

X

Jn -
36

{4435 Lin(s) - 5% (148) (14+75/2+116%/2) (1 +8)} + (5 ). (3.17)

Note that J() is more complicated than G in the sense that the former necessarily involves
dilogarithms, although they contain the same information. Expanding in a series in § gives

) 52 54 56 58 510 512
J = — s ). 3.18
o <24 + 1080 + 8400 + 35280 + 106920 + 264264 + ) ( )

Equations (3.15)-(3.18) reproduce the original superfield calculations of refs. [23, 24] for the 1-loop
effective auxiliary field potential. (The first term in the expansion of eq. (3.16) had been given
earlier in ref. [19].)

At 2-loop order, I find that the procedure outlined above gives

)\Zm*QA* + )\*2m2A

@ _
¢ 32| A5

(8[(.%’,1’,2) - SI(LU,J),y) + 3I(ya y7y) - 3[(2,2, Z)
A2
16]A]
—l—xI(y,z,z) - 42[(.’1;,1],:[/) - 4:1/[(1’,[13,2) - 2[2$E(1‘) - yE(y) - ZB(Z>]2)

F1(y,22) = 1(5:9,2)) + 77t (321 (0:9.9) + 321 (2,2, 2) + w1y, 2)

A? /1 1 1o
L e g 3.19
g (3 5ot @), (319)
or, after expanding in a series in A, A* up to order |Al”,

1 2 7 11 1
— 2= - s = - —

;87T (27 162”)’Jr (72 18CI>

56(11791 137 ) 8(68997007 21661 ) ]

)\Qm*QA* 4 )\*2m2A
452

G2 —

38880 14587 110224800 1180987
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A2
+?

1 539 4 1 15313 83 1 —
S (2 S g2 o T
5" (2160 8177 120 n(a:)) * (34020 7297 168 n@))

6 <21558767 1577 1 — > L

54494400 6561 ~ 220 ™) (3.20)

This expansion can be obtained either using the analytical form of the renormalized master integral
I for general arguments, which can be found in eq. (5.4) of ref. [25] for example, or from its
derivatives, which can be found in the ancillary file derivatives.txt accompanying the same
paper.

The integration of eq. (3.19) to obtain the exact form of J(® is much more complicated, and
will not be attempted here. Instead, I give the series expanded form through order |A|°, which
can be obtained directly from eq. (3.20) by integrating twice according to eq. (3.7):
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(3.21)

Note that, unlike the 1-loop contribution, the 2-loop effective auxiliary field potential contains odd
powers of A, A*. In the J2 version, the expansion starts from terms linear in A or A*, and each
term contains at most one more power of A than A* or vice versa. The terms with odd powers do
not contain logarithms of the renormalization scale.

The 3-loop effective auxiliary field potential is much more complicated, but I have obtained it
in the form

4.2 2( )2, *¥2 A\ * *2,,2 4, %4 A *2 *4, 4 A2

(3

a,b,c

=

where the dimensionless functions G depend only on x, 4, and ). They are combinations of the
renormalized master integrals In, I, I, F, G, H, and K defined in ref. [25], which also provides for
their numerical evaluation through known differential equations. The squared-mass arguments of
the master integral functions are always z, y, or z, in a way analogous to eq. (3.19). The explicit
results for Gg’; . are too long to show in print here, and so are given in the ancillary file G3abc. txt
distributed with this paper in a form suitable for use in computer programs.

The expansion of eq. (3.22) in a series in |A| is made slightly trickier by the fact that in
the general expressions for derivatives of the function F(w,z,y,z) found in the ancillary file
derivatives.txt of ref. [25], the numerators and denominators both vanish for w =z =y = 2.



To get around this, first one needs the special values
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(3.23)
(3.24)

(3.25)

which can all be obtained using the analytical formula for F(x,z,y,y) in eq. (5.66) of ref. [25].

Then arbitrary higher derivatives evaluated for equal squared mass arguments can be obtained by

taking limits of the derivatives evaluated for two different squared mass arguments.
I find for the expansion of eq. (3.22), through order |A[*,
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Applying eq. (3.7), the first terms in the series expansion of the 3-loop contribution to the alter-

native version Jug are, through order |Al%,
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Note that the expansion for J(®) again starts from terms linear in A or A*. However, unlike at
2-loop order, G®) or J®) contain terms with up to two more powers of A than A*.

IV. RENORMALIZATION GROUP INVARIANCE

The effective action must be invariant with respect to changes in the arbitrary MS renormal-
ization scale (). This implies that

Qd(é) [/ d20d0" Leg + (/ d20W + C.c.)] =0, (4.1)

where the differentiation includes both the dependence on @Q of the running MS background fields
and coupling parameters and the explicit (though not listed among the function arguments) depen-
dence on @ contained in the loop integral functions In(z), I(z, ¥, 2), etc. It is useful and instructive
to check this renormalization group invariance, which in superspace is realized separately for each
of the superpotential, the effective Kahler potential, and the effective auxiliary potential. As in the
rest of this paper, I will exclude the parts of the superspace effective action that contain explicit
spacetime derivatives acting on superfields.

The non-renormalization theorem tells us that the perturbative effective superpotential is simply
the tree-level one, and so has no explicit () dependence from loop corrections. Therefore, for the
superpotential W (¢;) with the form in eq. (2.1), it must be true that

aw ow

where X runs over the MS background fields and coupling parameters, X = ¢;, 4, A% and the
corresponding beta functions are

RPN QR S IN()
Bx = Qg5 —;ﬁﬁx- (43)

The vanishing of eq. (4.2) is realized as

Buii = Y™ + ™, (4.5)
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where the chiral superfield anomalous dimension can be expanded as
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at 3-loop order, as found in refs. [31-33].
For the Kéahler potential, the renormalization group invariance condition becomes

() /—1
o+ 5 (%) -

for each loop order £ = 1,2, 3, and now

X = ¢i, 0™ 19, pig, N9F N

(4.11)

(4.12)

and it is important that an integration [ d?0d?07 is understood. The first term in eq. (4.11)
reflects the explicit () dependence of the Kéhler potential coming from the loop integral functions.

To evaluate it, and similar terms below, one needs only the identities

0
Q%ln( ) = _27
QaaQI(:B, y,2) = 2xln(z) + 2yln(y) + 22In(z) — 4z — 4y — 4z,
g _ _
Q@I(m,y,z) = 2—21n(x),

Q F(w, z,y,2) = 2In(w) [2z + 2y + 2z — w — zln(z) — yIn(y) — zIn(z)]

oQ

+2zIn(z) + 2yIn(y) + 22In(2) — 4o — 4y — 4z + 11w/2,

0
“oq
+2zIn(z) + 2v — 6w — 6x — 6y — 62,

Qo K (0,02, 2)

20 21 (u,v,w, ) + 21 (u,v,y, z) — 2,

Glo,w,a,y,2) = 2(v,w,) +21(v,y, ) + 2wln(w) + 2aIn(x) + 2yln(y)

(4.13)
(4.14)

(4.15)

(4.16)

(4.17)
(4.18)

(4.19)
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as found in ref. [25].
At 1-loop order, we have from eqgs. (2.24), (4.4), and (4.8) that

oK) y .
DB S =~ A, (4.20)
X

while egs. (2.25) and (4.13) give

aK 1)
Z T (4.21)
Equations (4.20) and (4.21) cancel after integrating over superspace, since

[ #oee inio; = [ 00 Gui+ 6@+ X005) = [ a0t mym

= /d20d20T > g, (4.22)
k

where the first equality follows because the terms involving uz and p* do not contribute. This
verifies eq. (4.11) with ¢ = 1.
At 2-loop order, eqs. (2.24), (4.4), and (4.9) yield

8[( . .
Zﬁg) 0xX ¢*1)\ikl)\]kn)\lpq)\npq¢j = mklmkn)\lpq)\npq = 2nY P Y g, (4.23)

where the second equality again relies on the implicit integration over superspace, and the last
equality follows from appropriate insertions of U and U' as defined by eq. (2.7)-(2.11). Also, from
egs. (2.25), (4.4)-(4.6), and (4.8), one finds

oK _ g
>V = i (1= ()] VY. (4.24)
X
Finally, egs. (2.26) and (4.14) yield
OK® ik
Q 50 — [In(z;) — 2] Y7*Yp. (4.25)

The sum of egs. (4.23)-(4.25) vanishes as required by eq. (4.11) with ¢ = 2.
Moving on to the 3-loop order check, egs. (2.24), (4.4), and (4.10) yield, after once again using
the implicit integration over superspace and inserting U and UT appropriately,

IK©) 1. y . 1
DSBS = 1Y Y Y M M Y MY Y Y (Qxim)
X
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—3C3Y Y, YIRPY, i, My M (4.26)
while egs. (2.25), (4.4)-(4.6), and (4.9) give

K@) _ g
Zﬁﬁ?) aaX = z; [In(z;) — 1] Y%V, Y'Yy, (4.27)
X

and egs. (2.26), (4.4)-(4.6), and (4.8) result in

OK®) 1- : , o
Eﬁ?@f*:—f@ww%memﬂ%+%mmww+MmM”WWWM
X
1 L |
@iz, ) [Y”kyiﬂylnpyknp + YijkY”’Ylan’mp] . (4.28)

As required by eq. (4.11) with ¢ = 3, the sum of egs. (4.26)-(4.28) cancels against Q%K(S), which
is obtained immediately by applying egs. (4.17)-(4.19) to eq. (2.27).

In a similar way, one can check the renormalization group invariance of the effective auxiliary
field potential for the Wess-Zumino model, in both the J.g and Geg incarnations. The necessary
conditions can be written as

(0 -1 n)
- 3‘] S 8‘] (4.29)
n=1 X
=Y (e n) a
0 = 30 + ) syt +Zﬂ G, (4.30)
n=1

where the MS running parameters are X = ¢, ¢*,m, m*, \, \*, z, A, A*, 6. The beta functions for
them are

(®
B G S G S

¥, (4.31)

¢  2m 3\ 4z 2A 20

where the 3-loop contributions to the superfield anomalous dimension are

1
A0 = g (132)
1
2@ = I, (4.33)
1 = (3a+2)ne (434)

Note that the sums in eqs. (4.29) and (4.30) start from n = 1, because by assumption there is no
tree-level part of Jeg or Geg. This explains why the expressions for G and JM) in egs. (3.15)-
(3.18) have no explicit dependence on @), since the £ = 1 cases for egs. (4.29) and (4.30) are trivial
except for the first term. It is more complicated but straightforward to check eq. (4.30) in the
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¢ =2 and £ = 3 cases as well, using the exact forms for G and G(? in egs. (3.15) and (3.19) and
G®) in the ancillary file G3abc.txt, together with the identities in eqs. (4.13)-(4.19) above, and
derivative formulas in the ancillary file derivatives.txt of ref. [25]. The check is even easier to
do for the series expanded forms in egs. (3.16), (3.20) and (3.26), where all explicit ) dependence
is due to the In(z) function. Similarly, it is easy to check eq. (4.29) using the series expanded forms

for Jog found in egs. (3.18), (3.21), and (3.27).

V. OUTLOOK

I have obtained the three-loop contribution to the Kéhler effective potential for a renormalizable
theory with only chiral supermultiplets, in eq. (2.27). The simplicity of the result highlights the
usefulness of renormalized e-finite master loop integrals, which contain the subtractions of all
sub-divergences in a particular way (see [34] for a more general discussion). The renormalized
integral I(x,y, z) introduced first in eq. (4.27) of ref. [4] (where it was called I(z,y, z)) allows the
2-loop Kahler potential to be written as a single term, and similarly the 3-loop contribution can
be written in terms of just four terms involving the three renormalized integrals G(v,w,z,y, 2),
H(u,v,w,x,y, z), and K (u,v,w,z,y, z). However, the simplicity of the result for the 3-loop K&hler
potential seems to require further explanation, as eq. (2.27) does not include all terms that one
could have imagined including. It might be useful and interesting to understand this by revisiting
the calculation directly in terms of superfields, rather than the indirect method of inference used
here based on expansion of the scalar component potential to quadratic order in the auxiliary fields.

In order to obtain the complete scalar effective potential from superspace, it is also necessary
to have the effective auxiliary field potential, which contains superderivatives but not spacetime
derivatives. This was obtained at 2-loop and 3-loop orders for the special case of the Wess-
Zumino model for a single chiral superfield in egs. (3.19) and (3.22) and the ancillary electronic
file G3abc.txt. Here the results are again most neatly written in terms of renormalized e-finite
master integrals, but are significantly more complicated than for the Kahler potential, with a
structure comparable to the full scalar effective potential from which they were inferred. The
general structure is perhaps of greater interest than the numerical coefficients. In this regard, the
2-loop and 3-loop order contributions have terms linear in A and A* which are absent in the 1-loop
part as found originally in refs. [23, 24]. More generally, it seems that at ¢-loop order, the effective
auxiliary field potential contains terms with up to (¢ — 1) more powers of A than A* and vice
versa. Again, it would be interesting to elucidate these properties using a more direct superspace
calculation.

The same method used in this paper should work at any loop order, in principle. However,
the most important practical obstacle is that the 4-loop scalar effective potential (which would be
necessary as an input for the calculation) is not yet known, even for the Wess-Zumino model with
only one chiral superfield.

In this paper, I have not attempted to find comparable results for supersymmetric gauge theo-
ries, which of course are highly relevant for attempts to explain the real world, as well as applications
to extended supersymmetric models. The method used here runs into the problem that existing
results for the scalar effective potential are based on the non-supersymmetric Landau gauge fixing,
while the manifestly supersymmetric effective Kahler potential should make use of some super-
symmetric gauge-fixing procedure. It would be interesting to generalize the 3-loop results here to
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the case of supersymmetric gauge theories by conquering these gauge-fixing issues. Once again a

direct superspace calculation seems in order.
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