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I obtain the effective Kähler potential at three-loop order for a general renormaliz-

able supersymmetric theory containing only chiral supermultiplets. The three-loop

contribution is remarkably simple, consisting of only four terms involving three dis-

tinct renormalized master integrals. In the case of the Wess-Zumino model with a

single chiral superfield, I also obtain the effective auxiliary field potential at three-

loop order, extending previous results at one-loop order. The method used is infer-

ential, relying on existing knowledge of the ordinary scalar effective potential.
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I. INTRODUCTION

Radiative corrections in quantum field theories can be summarized in terms of the effective

action, which can be computed in perturbation theory by summing 1-particle irreducible vacuum

Feynman diagrams in the presence of external background fields. For some purposes, it is suf-

ficient to have the scalar effective potential [1–3], which is the effective action in the case that

the background fields are taken to be independent of spacetime position. At present, the effective

potential is known for a general renormalizable theory through 2-loop order [4, 5] and 3-loop order

[6, 7], including for supersymmetric gauge theories [8], and with leading QCD corrections for the

Standard Model at 4-loop order [9].

Despite increasingly strong constraints from collider and dark matter experiments, supersym-

metry remains a viable possibility for physics beyond the Standard Model, and it arises in string

theories that propose to consistently quantize gravity. It is therefore useful to understand as much

as possible about the form of radiative corrections in the supersymmetric context. In particu-

lar, the Higgs vacuum expectation values in supersymmetric extensions of the Standard Model are

most easily determined from the effective potential, and high-order radiative corrections are clearly

necessary in this regard. The radiative corrections to the effective Lagrangian for supersymmetric

theories have a more constrained structure than in ordinary generic quantum field theories, and

one motivation for the present work is to take a step to learn more about this, although super-

symmetric gauge theories are not treated in the present paper. Indeed, it is found below that the

effective Kähler potential at three-loop order does not include one term that might otherwise be

expected to be present.

For supersymmetric models, the effective action can be written as an integral over superspace

of background superfields. In this paper, I will concentrate on renormalizable models that contain

only chiral superfields. I will also consider only the part of the superfield effective action that

contains no spacetime derivatives, so that the results imply the physical content of the scalar

effective potential. In terms of background chiral superfields ϕi satisfying ∂µϕi = 0, the effective

Lagrangian can be written in the form†

Leff =

∫
d2θd2θ† Leff(ϕi, ϕ

∗i, Dαϕi, D
α̇
ϕ∗i, DDϕi, DDϕ∗i) +

(∫
d2θW (ϕi) + c.c.

)
, (1.1)

where W (ϕi) is the superpotential, and it is conventional to split Leff into two parts,

Leff = Keff + Jeff . (1.2)

Here Keff(ϕi, ϕ
∗i) is called the effective Kähler potential, with a canonical tree-level part ϕ∗iϕi,

and is defined to be the part that contains no chiral superderivatives Dα or D
α̇
. The remaining

part Jeff is thus defined by the property that it vanishes when all chiral superderivatives of ϕi and

ϕ∗i are replaced by 0. It is often called the effective auxiliary field potential [12] because, when

evaluated in terms of constant background bosonic component fields, it contains at least three

† For reviews of supersymmetry using the notations and conventions to be followed in this paper, see refs. [10, 11].
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F -term auxiliary fields. The effective superpotential W (ϕi) is the same as the tree-level one.‡

The effective Kähler potential and the effective auxiliary field potential can be calculated as

loop integrals either in terms of component fields or using superspace methods. The present state

of the art is that the effective Kähler potential is known at 1-loop [17–22] and 2-loop [22] orders

for general supersymmetric gauge theories including non-renormalizable ones, while the effective

auxiliary field potential is known [23, 24] at 1-loop order for the Wess-Zumino model with a single

chiral superfield. In this paper, I will extend these results by computing the 3-loop effective Kähler

potential for a renormalizable theory with an arbitrary number of interacting chiral superfields,

and the 3-loop effective auxiliary field potential for the Wess-Zumino model with a single chiral

superfield. Instead of calculating these superfield effective potentials directly, I will infer them by

leveraging the existing knowledge of the 3-loop ordinary scalar effective potential. As explained

in more detail below, this is done by expanding the scalar effective potential in terms of the

supersymmetry breaking auxiliary fields. The quadratic part of this expansion in auxiliary fields

gives the effective Kähler potential, while the whole scalar effective potential is needed to find the

effective auxiliary field potential. In practical applications, the effective Kähler potential is often

sufficient when loop corrections are important but spontaneous supersymmetry breaking can be

treated as a subdominant effect.

The results below are expressed in the modified minimal subtraction (MS) renormalization

scheme based on dimensional regularization in d = 4− 2ϵ dimensions. (Since no gauge interactions

are involved, it is not necessary to make a distinction between dimensional regularization and

dimensional reduction.) One-loop order radiative corrections result in logarithms, which will be

written as

ln(x) ≡ ln(x/Q2), (1.3)

where x is the squared mass in the loop integration and Q is the MS renormalization scale, which

is related to the loop momentum dimensional regularization mass scale µ by

Q2 = 4πe−γEµ2. (1.4)

At 2-loop order, I make use of the renormalized ϵ-independent master vacuum integral I(x, y, z), as

defined for example in eq. (5.4) of ref. [25] in terms of logarithms and dilogarithms. At three-loop

order, the results below similarly depend on renormalized ϵ-independent master vacuum integrals

F (w, x, y, z), G(v, w, x, y, z), and H(u, v, w, x, y, z), which cannot (in general) be expressed analyt-

ically in terms of classical polylogarithms. It is also convenient to define the integral combinations

I(w, x, y, z) = [I(w, y, z)− I(x, y, z)] /(x− w) (for x ̸= w), (1.5)

I(x, x, y, z) = − ∂

∂x
I(x, y, z), (1.6)

K(u, v, w, x, y, z) = [G(u,w, x, y, z)−G(v, w, x, y, z)] /(v − u) (for u ̸= v), (1.7)

‡ In this paper, I assume that all of the chiral superfields are treated as massive, so that nonrenormalization theorems
[13] apply, forbidding all (even finite) perturbative quantum corrections to the superpotential. For exactly massless
chiral superfields, the proof of the nonrenormalization theorem has a loophole, and there can be nondivergent
perturbative corrections to the effective superpotential starting at 2-loop order, as argued in ref. [14] and shown
explicitly in refs. [15, 16].
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FIG. 1.1: Feynman diagram topologies corresponding to the renormalized ϵ-independent scalar vacuum
integrals used to express the results in this paper, with squared-mass labels u, v, w, x, y, z. Reference
[25] provides the specific definitions of the integral functions, the differential equations that they satisfy,
known analytical results in special cases, and a computer program 3VIL allowing for their fast and
accurate numerical evaluation in general.

K(v, v, w, x, y, z) = − ∂

∂v
G(v, w, x, y, z). (1.8)

All of these integrals functions have an explicit logarithmic dependence on the renormalization

scale Q, although it is not listed explicitly among the arguments because it is always the same

everywhere within a given calculation. The corresponding Feynman diagram topologies are shown

in Figure 1.1, and the precise definitions are found in ref. [25], which also provides the differential

equations that they satisfy, and a computer program 3VIL allowing for their fast and accurate

numerical evaluation. These same master integrals were used to express the closely related results

for the 3-loop effective potential in a general renormalizable theory in ref. [7]. In the special case

that the squared mass arguments are all equal, I(x, x, x), I(x, x, x, x), F (x, x, x, x), G(x, x, x, x, x),

H(x, x, x, x, x, x), and K(x, x, x, x, x, x) can each be expressed analytically in terms of ln(x) and

transcendental constants, as given in ref. [25] and in the next section of the present paper.

II. EFFECTIVE KÄHLER POTENTIAL AT THREE LOOPS

Consider a supersymmetric model with chiral superfields Φi (i = 1, 2, . . . , Ns) with a superpo-

tential

W (Φ) =
1

2
µijΦiΦj +

1

6
λijkΦiΦjΦk, (2.1)

and a canonical tree-level Kähler potential, K = Φ∗iΦi. [Repeated indices in this paper are

implicitly summed over except when they appear on both sides of an equality. Also, flipping the

index heights on a parameter will denote complex conjugation, so that for example µij ≡ (µij)∗.]

Now divide each chiral superfield into a background chiral superfield ϕi and a propagating quantum

chiral superfield part Ai, as

Φi = ϕi +Ai. (2.2)
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To define the effective Kähler potential, the background chiral superfields are taken to obey their

classical equations of motion,

1

4
DDϕ∗i =

∂W

∂ϕi
= µijϕj +

1

2
λijkϕjϕk ≡ wi. (2.3)

Now one can rewrite the mixed terms in the Lagrangian coming from the Kähler potential using∫
d2θd2θ†ϕ∗iAi =

∫
d2θ

(
−1

4
DDϕ∗i

)
Ai, (2.4)

which, applying eq. (2.3), cancels the contribution linear in Ai from the superpotential. Thus the

propagating chiral superfields have a canonical tree-level Kähler potential A∗iAi and superpotential

W (A) =
1

2
mijAiAj +

1

6
λijkAiAjAk, (2.5)

where the background-chiral-superfield-dependent mass matrix is

mij = µij + λijkϕk. (2.6)

For the purposes of calculating or expressing the results of loop corrections in the general case with

Ns > 1, it is convenient to rotate to a new basis such that the propagating superfield squared-mass

matrix is diagonal. Thus, one defines new chiral superfields Ãj according to

Ai = Ui
jÃj , (2.7)

where Ui
j is a unitary matrix chosen so that

(U †)i
kmknm

npUp
j = δji xi, (2.8)

where (U †)i
k = (Uk

i)∗. This is always possible because mknm
np is a Hermitian matrix, with

eigenvalues that we are denoting by xi. One can then write the superpotential for the propagating

superfields as

W (A) =
1

2
M ijÃiÃj +

1

6
Y ijkÃiÃjÃk, (2.9)

where

M ij = mklUk
iUl

j , (2.10)

Y ijk = λnpqUn
iUp

jUq
k. (2.11)

Note that the tree-level Kähler potential for Ãi is still canonical, due to the unitarity of U . In

general (for Ns > 1), U depends on the background chiral superfields in a non-linear way, so
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the field-dependent parameters M ij and Y ijk do also, even though the latter is dimensionless.

The superpotential does not suffer radiative corrections as long as the fields are not massless, but

radiative corrections to the effective Kähler potential are non-trivial and depend on the background

chiral superfields only through the combinations M ij and Y ijk and their complex conjugates Mij

and Yijk. Note that while MikM
kj = δji xi is diagonal (by construction, through the choice of U),

and M ij can also always be made diagonal, it is sometimes convenient to choose M ij non-diagonal

if there are degeneracies. For example, this can occur if two chiral superfields carry opposite

conserved charges that are left unbroken by the background fields.

The effective Kähler potential and the superpotential for the background chiral superfields

encode the information about the part of the ordinary effective potential Veff obtained by expanding

through second order in the supersymmetry-breaking auxiliary fields. To see this, write

Leff =

∫
d2θd2θ†Keff(ϕi, ϕ

∗i) +
(∫

d2θ W (ϕi) + c.c.
)
. (2.12)

After integrating out the auxiliary fields, and dropping terms with fermions and space-time deriva-

tives, one obtains

Veff = −Leff = wi

[(
∂2Keff

∂ϕ∗∂ϕ

)−1
] j

i

w∗
j +O(w3), (2.13)

where the matrix ∂2Keff/∂ϕ
∗i∂ϕj is the effective Kähler metric, and wi is defined by eq. (2.3), and

it is understood that all ϕ∗i and ϕi are replaced by their scalar components. Terms with more than

two of wi or w∗
j in the scalar effective potential Veff arise when the effective Kähler potential term

in eq. (2.12) is augmented to include terms with chiral derivatives D and D; these terms constitute

the effective auxiliary field potential, and will be discussed in the next section.

Consider a loop expansion for the effective Kähler potential,

Keff = ϕ∗iϕi +

∞∑
ℓ=1

κℓK(ℓ), (2.14)

where

κ = 1/16π2 (2.15)

will serve as the loop-counting parameter in the following. Then the inverse Kähler metric can be

constructed iteratively in ℓ, with the result that eq. (2.13) can be written as

Veff = wiw∗
i +

∞∑
ℓ=1

κℓwiV
(ℓ)j
i w∗

j +O(w3), (2.16)

where

V
(1)j
i = −K

(1)j
i , (2.17)
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V
(2)j
i = −K

(2)j
i +K

(1)k
i K

(1)j
k , (2.18)

V
(3)j
i = −K

(3)j
i +K

(2)k
i K

(1)j
k +K

(1)k
i K

(2)j
k −K

(1)k
i K

(1)n
k K(1)j

n , (2.19)

etc., with

K
(ℓ)j
i =

∂2K(ℓ)

∂ϕ∗i∂ϕj
, (2.20)

in which it is again understood that the background chiral superfields are replaced by their scalar

components. Thus, by evaluating the quadratic part of the scalar effective potential in an expan-

sion in wi and w∗
j , one can infer the functional form of the corresponding effective Kähler potential

contributions from their derivatives. Note that this is really equivalent to an expansion in super-

symmetry breaking auxiliary fields, which are proportional to wi and w∗
j . The key point is that the

functions of complex scalars in eqs. (2.17)-(2.19) can be “lifted” to superspace by replacing them

by the corresponding chiral superfields.

It remains to evaluate the scalar effective potential Veff , which I do using a component-field

calculation, taking advantage of the fact that for a general renormalizable theory the results at

3-loop order for

Veff =

∞∑
ℓ=0

κℓV (ℓ), (2.21)

have been given in ref. [7] in the MS scheme. This allows evaluation of eqs. (2.17)-(2.19) by

expanding Veff in wi and w∗
j . To apply the general results to the present case, one starts with the

same superpotential of eq. (2.1), and implements the same shift in eq. (2.2), but with the important

difference that now ϕi is taken to be the background scalar component only, satisfying DDϕ =

DDϕ∗ = 0, rather than a chiral superfield satisfying eq. (2.3). The resulting Lagrangian for the

propagating fields in the presence of the scalar background fields is described by the superpotential

W (A) = wiAi +
1

2
mijAiAj +

1

6
λijkAiAjAk, (2.22)

from which one readily obtains the propagating component-field masses and interactions. Here wi

and mij have exactly the same form as given in eqs. (2.3) and (2.6), but now with ϕi taken to

be complex scalar background fields. By dimensional analysis, it is clear that wi and its complex

conjugate w∗
i have no effect on the field-dependent fermion masses and Yukawa, scalar cubic, and

scalar quartic couplings, and enter only in the squared-mass terms in the tree-level potential for

the complex scalar components ai of the propagating superfields Ai. These squared-mass terms

have the form

1

2

(
a∗i ai

)mikm
kj λijkw

k

λijkw∗
k mikmkj

 aj

a∗j

 . (2.23)

The diagonal blocks in this scalar squared-mass matrix are the same as the propagating fermion
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squared mass matrices, and the off-diagonal blocks involving wk and w∗
k can be treated in a per-

turbative expansion of the general results, using the known derivatives of the master integrals. If

one sets wk = w∗
k = 0, corresponding to the leading term in this expansion, then supersymmetry is

unbroken and the effective potential vanishes at each loop order [26]. Continuing in the expansion

of Veff , terms linear in wk or w∗
k and quadratic terms proportional to wkwn and w∗

kw
∗
n must also

vanish, as can be seen from eq. (2.16). This provided a check of the calculations leading to the

results about to be described.

I used the general form for the effective potential of the theory described by eq. (2.22) in the

special cases Ns = 1 and Ns = 2, as this allowed analytic diagonalization of the superpotential

masses and is sufficient to uniquely fix the coefficients of candidate terms in the effective Kähler

potential. However, the results should be valid for any Ns. Expanding to quadratic order in wk

and w∗
k, I infer that the effective Kähler potential contributions up to 3-loop order are

K(0) = ϕ∗iϕi, (2.24)

K(1) =
∑
i

xi

[
1− 1

2
ln(xi)

]
, (2.25)

K(2) =
1

6
Y ijkYijkI(xi, xj , xk), (2.26)

K(3) = −1

8
Y ijkYilnY

lnpYjkpG(xi, xj , xk, xl, xn)

+
1

4
Y ijlY i′pkYjnkYln′pMii′M

nn′
H(xi, xj , xk, xl, xn, xp)

+
1

8
Y ijkYijl

[
Y lnpYknpxk + Yl′npY

k′npMkk′M
ll′
]
K(xk, xl, xi, xj , xn, xp), (2.27)

in terms of renormalized vacuum integral functions defined in ref. [25]. The result for K(1) agrees

with the calculations of ref. [17–22], and K(2) successfully reproduces the 2-loop result given by

S. Groot Nibbelink and T.S. Nyawelo in ref. [22] using a very different method based on direct

evaluation of supergraphs. The result K(3) is new, and is still remarkably simple, consisting of

only four terms involving three distinct 3-loop renormalized master integrals. Indeed, it seems to

be simpler than naive expectation, as at present I cannot offer an explanation for the absence of

an otherwise-plausible term proportional to Y ijkYijlY
lnpYknpxiK(xk, xl, xi, xj , xn, xp), other than

the empirical fact that its coefficient vanishes. Presumably this could be explained in some elegant

way in a direct superfield 3-loop calculation.

In the special case of the Wess-Zumino model with Ns = 1 and

W =
1

2
µΦ2 +

1

6
λΦ3, (2.28)

the unitary matrix U is simply the number 1, and the 3-loop integrals can be evaluated analyt-

ically [27–30] in terms of logarithms and transcendental constant numbers, and are given in the
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conventions and notations of the present paper in ref. [25]. These integral functions are†

I(x, x, x) = x

[
cI −

15

2
+ 6ln(x)− 3

2
ln

2
(x)

]
, (2.29)

G(x, x, x, x, x) = x

[
4cI + 6ζ3 −

97

3
+ (26− 2cI)ln(x)− 8ln

2
(x) + ln

3
(x)

]
, (2.30)

H(x, x, x, x, x, x) = cH − 6ζ3ln(x), (2.31)

K(x, x, x, x, x, x) =
2

3
cI + 2ζ3 −

5

3
+

2

3
cI ln(x) + ln

2
(x)− 1

3
ln

3
(x), (2.32)

where the transcendental numerical constants are

ζ3 =
∞∑
n=1

1/n3 ≈ 1.2020569031595942854, (2.33)

cI = 3
√
3 Im

[
Li2(e

2πi/3)
]
≈ 3.515860858034188, (2.34)

cH = 16Li4(1/2)−
17π4

90
+

2

3
ln2(2)[ln2(2)− π2] + 6ζ3 −

c2I
3

≈ −10.035278479768789. (2.35)

Thus the specialization of eqs. (2.24)-(2.27) to the 3-loop effective Kähler potential of the Wess-

Zumino model is

K(0) = |ϕ|2, (2.36)

K(1) = x
[
1− 1

2
ln(x)

]
, (2.37)

K(2) = |λ|2x
[
1

6
cI −

5

4
+ ln(x)− 1

4
ln

2
(x)

]
, (2.38)

K(3) = |λ|4x
[
29

8
+

1

4
cH − 1

3
cI −

1

4
ζ3 +

(
5

12
cI −

13

4
− 3

2
ζ3

)
ln(x)

+
5

4
ln

2
(x)− 5

24
ln

3
(x)

]
, (2.39)

where x = |µ + λϕ|2. The 2-loop result K(2) agrees with that found in ref. [22], except that in

eq. (54) of the arXiv version [eq. (5.6) of the journal version] the term 12κ(x̄) with x̄ = 4/
√
3 is

incorrect and should actually be 2cI/3 in the notation of the present paper. In the arXiv version

only, there is also an obvious missing factor of |λ|2. My result for K(2) also agrees with that found

in ref. [24] except that the term −ζ(2) in eq. (3.2.31) of that reference should be absent.

† Note that by definition K(x, x, x, x, x, x) =
[
− ∂

∂y
G(y, x, x, x, x)

]∣∣
y=x

, from which eq. (2.32) can be obtained using

the derivative given for general arguments in the ancillary file derivatives.txt of ref. [25]. The other necessary
results were given in eqs. (5.9), (5.31), (5.51), and (5.61) of that reference.
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III. EFFECTIVE AUXILIARY FIELD POTENTIAL AT THREE LOOPS

The known scalar effective potential Veff can also be used to infer the rest of the effective

superspace Lagrangian that involves superderivatives but not spacetime derivatives acting on chiral

superfields, by expanding beyond second order in wk and w∗
k. For simplicity, I will illustrate this

in the special case of the Wess-Zumino model with one chiral superfield, with the superpotential

given in eq. (2.28). (Although there should be no fundamental obstacle to carrying out the same

procedure for several multiplets, I have not done so, as it becomes considerably more complicated.)

The effective superspace Lagrangian for the chiral superfield ϕ (taken to be constant in spacetime

but not constant in superspace) can be written as

Leff =

∫
d2θd2θ†

[
Keff(ϕ, ϕ

∗) + Jeff(m, m∗, ∆, ∆∗)
]
+

(∫
d2θW (ϕ) + c.c.

)
, (3.1)

where Jeff is the effective auxiliary field potential. This uses the fact that, because of the form of the

propagating superfield superpotential, Jeff can only depend on ϕ and ϕ∗ through the background

chiral superfields

m = µ+ λϕ, ∆∗ = −1

4
DDm∗ (3.2)

and their antichiral superfield conjugates

m∗ = µ∗ + λ∗ϕ∗, ∆ = −1

4
DDm. (3.3)

The effective Kähler potential Keff is defined to include all of the non-zero contributions for van-

ishing chiral derivatives, so that Jeff vanishes for ∆ = ∆∗ = 0. As we have already seen in

eqs. (2.37)-(2.39), the loop corrections to Keff can only depend on ϕ and ϕ∗ through the combina-

tion x = |m|2. Note that it is not necessary to include a dependence on DmDm or Dm∗Dm∗ in

Jeff in the case of the Wess-Zumino model, because of the identities

mn(DmDm)(DDm)p = − 1

n+ 1
mn+1(DDm)p+1 + · · · , (3.4)

(m∗)n(Dm∗Dm∗)(DDm∗)p = − 1

n+ 1
(m∗)n+1(DDm∗)p+1 + · · · , (3.5)

where the ellipses stand for total superderivatives that vanish in the effective action after integrating

over superspace.

It is nevertheless useful to re-express Leff in a form that does involve (DmDm)(Dm∗Dm∗).

Making use of the facts that Dαm
∗ = 0 and Dα̇m = 0 for chiral superfields, and that any product of

three chiral or three anti-chiral derivatives vanish, DαmDβmDγm = 0 and Dα̇m
∗Dβ̇m

∗Dγ̇m
∗ = 0,

it follows from eqs. (3.4) and (3.5) that the effective auxiliary field potential contribution to eq. (3.1)

can be rewritten in the form∫
d2θd2θ†Jeff =

∫
d2θd2θ†

1

16
(DmDm)(Dm∗Dm∗)Geff(m, m∗, ∆, ∆∗), (3.6)
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in which

Geff =
1

|∆|2
∂2

∂m∗∂m
Jeff , (3.7)

with ∆ and ∆∗ treated as constants in taking the partial derivatives. Although Geff and Jeff
contain equivalent information, Geff is much easier to derive in a direct way from the known Veff ,

and as a consequence it is also easier to express Geff in terms of renormalized master integrals. The

complete results for Geff and Jeff for the Wess-Zumino model at 1-loop order have been obtained

by S.M. Kuzenko and S.J. Tyler in refs. [23, 24]. In the following I will provide the 2-loop and

3-loop order extensions of those results.

Writing the loop expansion for the effective auxiliary field potential as

Geff =
∞∑
ℓ=1

κℓG(ℓ), (3.8)

the scalar effective potential can be expressed, using eqs. (2.14) and (3.6) in eq. (3.1), as

Veff = |w|2 − |F + w∗|2 − |λF |2
∞∑
ℓ=1

κℓ

(
∂2K(ℓ)

∂m∗∂m
+ |λF |2G(ℓ)(m,m∗, λF, λ∗F ∗)

)
, (3.9)

where F is the auxiliary field for ϕ, and w = µϕ+ 1
2λϕ

2 as in eq. (2.3), with K(ℓ) known from the

previous section, and ϕ is now taken everywhere to be the complex scalar field. Now one eliminates

F and F ∗ through their algebraic equations of motion ∂Veff/∂F = ∂Veff/∂F
∗ = 0, by expanding

F = −w∗ +
∞∑
ℓ=1

κℓF (ℓ), (3.10)

and then solve for and eliminating the F (ℓ) for ℓ = 1, 2, 3 in turn. Then one can solve eq. (3.9) for

the functions G(ℓ) for ℓ = 1, 2, 3 in turn, using the known results of K(ℓ) from eqs. (2.37)-(2.39)

above, and the known results for Veff from ref. [7]. (Note that the equation determining G(2)

depends on the first derivatives of G(1) with respect to the last two arguments, and similarly the

equation determining G(3) depends on the first derivatives of G(2) and the second derivatives of

G(1).) After doing so, the equivalent description of the effective auxiliary field potential

Jeff =
∞∑
ℓ=1

κℓJ (ℓ), (3.11)

is found by applying eq. (3.7) by integrating G(ℓ) twice, with respect to m and then m∗. The

constants of integration are determined by the requirement that Jeff is zero for vanishing ∆ or ∆∗.

Once their functional forms are known, Geff and Jeff can be reinterpreted as superfield quantities.

In order to express the results succinctly, define real superfield combinations

y = x+ |∆|, z = x− |∆|, (3.12)
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δ = |∆|/x. (3.13)

Now one finds, following the procedure described in the previous paragraph at 1-loop order,

G(1) =
1

|∆|2

(
3

4
+

1

2
ln(x)

)
+

1

|∆|4

(
1

2
x2ln(x)− 1

4
y2ln(y)− 1

4
z2ln(z)

)
(3.14)

=
1

4x2δ4
[
3δ2 − (1 + δ)2 ln(1 + δ)− (1− δ)2 ln(1− δ)

]
, (3.15)

or, expanding in a series in δ,

G(1) =
1

x2

(
1

24
+

δ2

120
+

δ4

336
+

δ6

720
+

δ8

1320
+

δ10

2184
+ · · ·

)
. (3.16)

Applying eq. (3.7) by integrating eq. (3.15) twice, one obtains the equivalent result

J (1) =
x

36

{
4 + 3δ Li2(δ)−

1

δ2
(1 + δ)

(
1 + 7δ/2 + 11δ2/2

)
ln(1 + δ)

}
+ (δ → −δ). (3.17)

Note that J (1) is more complicated than G(1) in the sense that the former necessarily involves

dilogarithms, although they contain the same information. Expanding in a series in δ gives

J (1) = x

(
δ2

24
+

δ4

1080
+

δ6

8400
+

δ8

35280
+

δ10

106920
+

δ12

264264
+ · · ·

)
. (3.18)

Equations (3.15)-(3.18) reproduce the original superfield calculations of refs. [23, 24] for the 1-loop

effective auxiliary field potential. (The first term in the expansion of eq. (3.16) had been given

earlier in ref. [19].)

At 2-loop order, I find that the procedure outlined above gives

G(2) =
λ2m∗2∆∗ + λ∗2m2∆

32|∆|5
(
8I(x, x, z)− 8I(x, x, y) + 3I(y, y, y)− 3I(z, z, z)

+I(y, z, z)− I(y, y, z)
)
+

|λ|2

16|∆|4
(
3xI(y, y, y) + 3xI(z, z, z) + xI(y, y, z)

+xI(y, z, z)− 4zI(x, x, y)− 4yI(x, x, z)− 2
[
2xln(x)− yln(y)− zln(z)

]2)
+

|λ|2

|∆|2

(
−1

4
− 1

6
cI +

1

4
ln

2
(x)

)
, (3.19)

or, after expanding in a series in ∆,∆∗ up to order |∆|7,

G(2) =
λ2m∗2∆∗ + λ∗2m2∆

x4δ2

[
− 1

18
cI + δ2

(
2

27
− 7

162
cI

)
+ δ4

(
11

72
− 1

18
cI

)

+δ6
(
11791

38880
− 137

1458
cI

)
+ δ8

(
68997007

110224800
− 21661

118098
cI

)
+ · · ·

]



13

+
|λ|2

x2

[
1

8
+ δ2

(
539

2160
− 4

81
cI −

1

120
ln(x)

)
+ δ4

(
15313

34020
− 83

729
cI −

1

168
ln(x)

)

+δ6
(
21558767

24494400
− 1577

6561
cI −

1

240
ln(x)

)
+ · · ·

]
. (3.20)

This expansion can be obtained either using the analytical form of the renormalized master integral

I for general arguments, which can be found in eq. (5.4) of ref. [25] for example, or from its

derivatives, which can be found in the ancillary file derivatives.txt accompanying the same

paper.

The integration of eq. (3.19) to obtain the exact form of J (2) is much more complicated, and

will not be attempted here. Instead, I give the series expanded form through order |∆|9, which
can be obtained directly from eq. (3.20) by integrating twice according to eq. (3.7):

J (2) =
λ2m∗2∆∗ + λ∗2m2∆

x

[
1

18
cI + δ2

(
2

81
− 7

486
cI

)
+ δ4

(
11

1080
− 1

270
cI

)

+δ6
(

11791

1360800
− 137

51030
cI

)
+ δ8

(
68997007

6944162400
− 21661

7440174
cI

)
+ · · ·

]

+|λ|2x

[
1

8
δ2 + δ4

(
527

19440
− 4

729
cI −

1

1080
ln(x)

)
+ δ6

(
544

30375
− 83

18225
cI −

1

4200
ln(x)

)

+δ8
(

21529607

1200225600
− 1577

321489
cI −

1

11760
ln(x)

)
+ · · ·

]
. (3.21)

Note that, unlike the 1-loop contribution, the 2-loop effective auxiliary field potential contains odd

powers of ∆, ∆∗. In the J (2) version, the expansion starts from terms linear in ∆ or ∆∗, and each

term contains at most one more power of ∆ than ∆∗ or vice versa. The terms with odd powers do

not contain logarithms of the renormalization scale.

The 3-loop effective auxiliary field potential is much more complicated, but I have obtained it

in the form

G(3) =
|λ|4x2

|∆|4
G(3)

a +
|λ|2
(
λ2m∗2∆∗ + λ∗2m2∆

)
x

|∆|5
G

(3)
b +

λ4m∗4∆∗2 + λ∗4m4∆2

|∆|6
G(3)

c , (3.22)

where the dimensionless functions G
(3)
a,b,c depend only on x, δ, and Q. They are combinations of the

renormalized master integrals ln, I, I, F , G, H, and K defined in ref. [25], which also provides for

their numerical evaluation through known differential equations. The squared-mass arguments of

the master integral functions are always x, y, or z, in a way analogous to eq. (3.19). The explicit

results for G
(3)
a,b,c are too long to show in print here, and so are given in the ancillary file G3abc.txt

distributed with this paper in a form suitable for use in computer programs.

The expansion of eq. (3.22) in a series in |∆| is made slightly trickier by the fact that in

the general expressions for derivatives of the function F (w, x, y, z) found in the ancillary file

derivatives.txt of ref. [25], the numerators and denominators both vanish for w = x = y = z.
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To get around this, first one needs the special values

F (x, x, x, x) = x

[
53

12
+

13

4
ln(x)− 4ln

2
(x) + ln

3
(x)

]
, (3.23)[

∂

∂y
F (y, x, x, x)

] ∣∣∣
y=x

=
26

3
− 7ζ3 −

31

4
ln(x) + 2ln

2
(x), (3.24)[

∂

∂y
F (x, x, x, y)

] ∣∣∣
y=x

= −1

3
+

7

3
ζ3 + ln(x)− ln

2
(x) +

1

3
ln

3
(x), (3.25)

which can all be obtained using the analytical formula for F (x, x, y, y) in eq. (5.66) of ref. [25].

Then arbitrary higher derivatives evaluated for equal squared mass arguments can be obtained by

taking limits of the derivatives evaluated for two different squared mass arguments.

I find for the expansion of eq. (3.22), through order |∆|4,

G(3) =
|λ|4

x2

{
−1

4
+

2

9
cI −

463

864
ζ3 +

3

16
ln(x) + δ2

(
− 83

240
− 21767

6480
cI +

50491

4860
ζ3

+

[
539

4320
− 2

81
cI

]
ln(x)− 1

480
ln

2
(x)

)
+ δ4

(
−62933039

17418240
− 981817

25515
cI

+
7273176425

62705664
ζ3 +

[
−15313

68040
+

83

1458
cI

]
ln(x) +

1

672
ln

2
(x)

)
+ · · ·

}

+
|λ|2
(
λ2m∗2∆∗ + λ∗2m2∆)

x4δ2

{
−1

9
cI +

1

2
ζ3 −

1

9
cI ln(x) + δ2

(
1

36
− 5

6
cI +

1457

648
ζ3

+

[
2

27
− 7

162
cI

]
ln(x)

)
+ δ4

(
−16199

25920
− 19727

2430
cI +

744953

31104
ζ3

)
+ · · ·

}

+
λ4m∗4∆∗2 + λ∗4m4∆2

x6δ2

{
−1

6
cI +

91

144
ζ3 + δ2

(
− 7

72
− 55

81
cI +

8663

3888
ζ3

)

+δ4
(
−711425

995328
− 4279

972
cI +

244176635

17915904
ζ3

)
+ · · ·

}
. (3.26)

Applying eq. (3.7), the first terms in the series expansion of the 3-loop contribution to the alter-

native version Jeff are, through order |∆|6,

J (3) = |λ|4x

{
δ2
(
1

8
+

2

9
cI −

463

864
ζ3 +

3

16
ln(x)

)
+ δ4

(
− 1711

58320
− 65621

174960
cI +

50491

43740
ζ3

+

[
527

38880
− 2

729
cI

]
ln(x)− 1

4320
ln

2
(x)

)
+ δ6

(
− 35830483

241920000
− 981236

637875
cI

+
290927057

62705664
ζ3 +

[
− 272

30375
+

83

36450
cI

]
ln(x) +

1

16800
ln

2
(x)

)
+ · · ·

}

+
|λ|2
(
λ2m∗2∆∗ + λ∗2m2∆)

x

{
1

9
cI −

1

2
ζ3 +

1

9
cI ln(x) + δ2

(
41

972
− 433

1458
cI +

1457

1944
ζ3
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+

[
2

81
− 7

486
cI

]
ln(x)

)
+ δ4

(
− 16199

388800
− 19727

36450
cI +

744953

466560
ζ3

)
+ · · ·

}

+
λ4m∗4∆∗2 + λ∗4m4∆2

x3

{
1

18
cI −

91

432
ζ3 + δ2

(
− 7

360
− 11

81
cI +

8663

19440
ζ3

)

+δ4
(
− 711425

20901888
− 4279

20412
cI +

244176635

376233984
ζ3

)
+ · · ·

}
. (3.27)

Note that the expansion for J (3) again starts from terms linear in ∆ or ∆∗. However, unlike at

2-loop order, G(3) or J (3) contain terms with up to two more powers of ∆ than ∆∗.

IV. RENORMALIZATION GROUP INVARIANCE

The effective action must be invariant with respect to changes in the arbitrary MS renormal-

ization scale Q. This implies that

Q
d

dQ

[∫
d2θd2θ† Leff +

(∫
d2θW + c.c.

)]
= 0, (4.1)

where the differentiation includes both the dependence on Q of the running MS background fields

and coupling parameters and the explicit (though not listed among the function arguments) depen-

dence on Q contained in the loop integral functions ln(x), I(x, y, z), etc. It is useful and instructive

to check this renormalization group invariance, which in superspace is realized separately for each

of the superpotential, the effective Kähler potential, and the effective auxiliary potential. As in the

rest of this paper, I will exclude the parts of the superspace effective action that contain explicit

spacetime derivatives acting on superfields.

The non-renormalization theorem tells us that the perturbative effective superpotential is simply

the tree-level one, and so has no explicit Q dependence from loop corrections. Therefore, for the

superpotential W (ϕi) with the form in eq. (2.1), it must be true that

Q
dW

dQ
=
∑
X

βX
∂W

∂X
= 0, (4.2)

where X runs over the MS background fields and coupling parameters, X = ϕi, µ
ij , λijk, and the

corresponding beta functions are

βX = Q
dX

dQ
=

∞∑
ℓ=1

κℓβ
(ℓ)
X . (4.3)

The vanishing of eq. (4.2) is realized as

βϕi
= −γni ϕn, (4.4)

βµij = γinµ
nj + γjnµ

in, (4.5)
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βλijk = γinλ
njk + γjnλ

ink + γknλ
ijn, (4.6)

where the chiral superfield anomalous dimension can be expanded as

γji =

∞∑
ℓ=1

κℓγ
(ℓ)j
i , (4.7)

γ
(1)j
i =

1

2
λiklλ

jkl, (4.8)

γ
(2)j
i = −1

2
λiklλ

jknλlpqλnpq, (4.9)

γ
(3)j
i = −1

8
λiklλ

jpqλkmnλpmnλ
lrsλqrs −

1

4
λiklλ

jkmλlnpλsnpλ
sqrλmqr

+λiklλ
jkmλlnpλmnqλ

qrsλprs +
3

2
ζ3λiklλ

jpqλkmnλlrsλpmrλqns, (4.10)

at 3-loop order, as found in refs. [31–33].

For the Kähler potential, the renormalization group invariance condition becomes

Q
∂K(ℓ)

∂Q
+

ℓ−1∑
n=0

(∑
X

β
(ℓ−n)
X

∂K(n)

∂X

)
= 0 (4.11)

for each loop order ℓ = 1, 2, 3, and now

X = ϕi, ϕ
∗i, µij , µij , λ

ijk, λijk, (4.12)

and it is important that an integration
∫
d2θd2θ† is understood. The first term in eq. (4.11)

reflects the explicit Q dependence of the Kähler potential coming from the loop integral functions.

To evaluate it, and similar terms below, one needs only the identities

Q
∂

∂Q
ln(x) = −2, (4.13)

Q
∂

∂Q
I(x, y, z) = 2xln(x) + 2yln(y) + 2zln(z)− 4x− 4y − 4z, (4.14)

Q
∂

∂Q
I(x, y, z) = 2− 2ln(x), (4.15)

Q
∂

∂Q
F (w, x, y, z) = 2ln(w)

[
2x+ 2y + 2z − w − xln(x)− yln(y)− zln(z)

]
+2xln(x) + 2yln(y) + 2zln(z)− 4x− 4y − 4z + 11w/2, (4.16)

Q
∂

∂Q
G(v, w, x, y, z) = 2I(v, w, x) + 2I(v, y, z) + 2wln(w) + 2xln(x) + 2yln(y)

+2zln(z) + 2v − 6w − 6x− 6y − 6z, (4.17)

Q
∂

∂Q
H(u, v, w, x, y, z) = 12ζ3, (4.18)

Q
∂

∂Q
K(u, v, w, x, y, z) = 2I(u, v, w, x) + 2I(u, v, y, z)− 2, (4.19)
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as found in ref. [25].

At 1-loop order, we have from eqs. (2.24), (4.4), and (4.8) that

∑
X

β
(1)
X

∂K(0)

∂X
= −ϕ∗iλiklλ

kljϕj , (4.20)

while eqs. (2.25) and (4.13) give

Q
∂K(1)

∂Q
=
∑
k

xk. (4.21)

Equations (4.20) and (4.21) cancel after integrating over superspace, since∫
d2θd2θ† ϕ∗iλiklλ

kljϕj =

∫
d2θd2θ† (µkl + ϕ∗iλikl)(µ

kl + λkljϕj) =

∫
d2θd2θ†mklm

lk

=

∫
d2θd2θ†

∑
k

xk, (4.22)

where the first equality follows because the terms involving µkl and µkl do not contribute. This

verifies eq. (4.11) with ℓ = 1.

At 2-loop order, eqs. (2.24), (4.4), and (4.9) yield

∑
X

β
(2)
X

∂K(0)

∂X
= ϕ∗iλiklλ

jknλlpqλnpqϕj = mklm
knλlpqλnpq = xnY

npqYnpq, (4.23)

where the second equality again relies on the implicit integration over superspace, and the last

equality follows from appropriate insertions of U and U † as defined by eq. (2.7)-(2.11). Also, from

eqs. (2.25), (4.4)-(4.6), and (4.8), one finds

∑
X

β
(1)
X

∂K(1)

∂X
= xi

[
1− ln(xi)

]
Y ijkYijk. (4.24)

Finally, eqs. (2.26) and (4.14) yield

Q
∂K(2)

∂Q
= xi

[
ln(xi)− 2

]
Y ijkYijk. (4.25)

The sum of eqs. (4.23)-(4.25) vanishes as required by eq. (4.11) with ℓ = 2.

Moving on to the 3-loop order check, eqs. (2.24), (4.4), and (4.10) yield, after once again using

the implicit integration over superspace and inserting U and U † appropriately,

∑
X

β
(3)
X

∂K(0)

∂X
=

1

4
Y iklYjklY

i′npYj′npMii′M
jj′ + Y iklYjklYinpY

jnp

(
1

2
xi − 2xk

)



18

−3ζ3Y
ijlYjknY

i′kpYln′pMii′M
nn′

, (4.26)

while eqs. (2.25), (4.4)-(4.6), and (4.9) give

∑
X

β
(2)
X

∂K(1)

∂X
= xi

[
ln(xi)− 1

]
Y ijkYijlY

lnpYknp, (4.27)

and eqs. (2.26), (4.4)-(4.6), and (4.8) result in

∑
X

β
(1)
X

∂K(2)

∂X
= −1

4
I(xi, xj , xk, xl)Y

iklYjkl

[
(xi + xj)YinpY

jnp + 2Mii′M
jj′Y i′npYj′np

]
+
1

4
I(xi, xj , xk)

[
Y ijkYijlY

lnpYknp + YijkY
ijlYlnpY

knp
]
. (4.28)

As required by eq. (4.11) with ℓ = 3, the sum of eqs. (4.26)-(4.28) cancels against Q ∂
∂QK(3), which

is obtained immediately by applying eqs. (4.17)-(4.19) to eq. (2.27).

In a similar way, one can check the renormalization group invariance of the effective auxiliary

field potential for the Wess-Zumino model, in both the Jeff and Geff incarnations. The necessary

conditions can be written as

0 = Q
∂J (ℓ)

∂Q
+

ℓ−1∑
n=1

∑
X

β
(ℓ−n)
X

∂J (n)

∂X
, (4.29)

0 = Q
∂G(ℓ)

∂Q
+

ℓ−1∑
n=1

[
8γ(ℓ−n) +

∑
X

β
(ℓ−n)
X

∂

∂X

]
G(n), (4.30)

where the MS running parameters are X = ϕ, ϕ∗,m,m∗, λ, λ∗, x,∆,∆∗, δ. The beta functions for

them are

−
β
(ℓ)
ϕ

ϕ
=

β
(ℓ)
m

2m
=

β
(ℓ)
λ

3λ
=

β
(ℓ)
x

4x
=

β
(ℓ)
∆

2∆
= −

β
(ℓ)
δ

2δ
= γ(ℓ), (4.31)

where the 3-loop contributions to the superfield anomalous dimension are

γ(1) =
1

2
|λ|2, (4.32)

γ(2) = −1

2
|λ|4, (4.33)

γ(3) =

(
3

2
ζ3 +

5

8

)
|λ|6. (4.34)

Note that the sums in eqs. (4.29) and (4.30) start from n = 1, because by assumption there is no

tree-level part of Jeff or Geff . This explains why the expressions for G(1) and J (1) in eqs. (3.15)-

(3.18) have no explicit dependence on Q, since the ℓ = 1 cases for eqs. (4.29) and (4.30) are trivial

except for the first term. It is more complicated but straightforward to check eq. (4.30) in the
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ℓ = 2 and ℓ = 3 cases as well, using the exact forms for G(1) and G(2) in eqs. (3.15) and (3.19) and

G(3) in the ancillary file G3abc.txt, together with the identities in eqs. (4.13)-(4.19) above, and

derivative formulas in the ancillary file derivatives.txt of ref. [25]. The check is even easier to

do for the series expanded forms in eqs. (3.16), (3.20) and (3.26), where all explicit Q dependence

is due to the ln(x) function. Similarly, it is easy to check eq. (4.29) using the series expanded forms

for Jeff found in eqs. (3.18), (3.21), and (3.27).

V. OUTLOOK

I have obtained the three-loop contribution to the Kähler effective potential for a renormalizable

theory with only chiral supermultiplets, in eq. (2.27). The simplicity of the result highlights the

usefulness of renormalized ϵ-finite master loop integrals, which contain the subtractions of all

sub-divergences in a particular way (see [34] for a more general discussion). The renormalized

integral I(x, y, z) introduced first in eq. (4.27) of ref. [4] (where it was called Î(x, y, z)) allows the

2-loop Kähler potential to be written as a single term, and similarly the 3-loop contribution can

be written in terms of just four terms involving the three renormalized integrals G(v, w, x, y, z),

H(u, v, w, x, y, z), and K(u, v, w, x, y, z). However, the simplicity of the result for the 3-loop Kähler

potential seems to require further explanation, as eq. (2.27) does not include all terms that one

could have imagined including. It might be useful and interesting to understand this by revisiting

the calculation directly in terms of superfields, rather than the indirect method of inference used

here based on expansion of the scalar component potential to quadratic order in the auxiliary fields.

In order to obtain the complete scalar effective potential from superspace, it is also necessary

to have the effective auxiliary field potential, which contains superderivatives but not spacetime

derivatives. This was obtained at 2-loop and 3-loop orders for the special case of the Wess-

Zumino model for a single chiral superfield in eqs. (3.19) and (3.22) and the ancillary electronic

file G3abc.txt. Here the results are again most neatly written in terms of renormalized ϵ-finite

master integrals, but are significantly more complicated than for the Kähler potential, with a

structure comparable to the full scalar effective potential from which they were inferred. The

general structure is perhaps of greater interest than the numerical coefficients. In this regard, the

2-loop and 3-loop order contributions have terms linear in ∆ and ∆∗ which are absent in the 1-loop

part as found originally in refs. [23, 24]. More generally, it seems that at ℓ-loop order, the effective

auxiliary field potential contains terms with up to (ℓ − 1) more powers of ∆ than ∆∗ and vice

versa. Again, it would be interesting to elucidate these properties using a more direct superspace

calculation.

The same method used in this paper should work at any loop order, in principle. However,

the most important practical obstacle is that the 4-loop scalar effective potential (which would be

necessary as an input for the calculation) is not yet known, even for the Wess-Zumino model with

only one chiral superfield.

In this paper, I have not attempted to find comparable results for supersymmetric gauge theo-

ries, which of course are highly relevant for attempts to explain the real world, as well as applications

to extended supersymmetric models. The method used here runs into the problem that existing

results for the scalar effective potential are based on the non-supersymmetric Landau gauge fixing,

while the manifestly supersymmetric effective Kähler potential should make use of some super-

symmetric gauge-fixing procedure. It would be interesting to generalize the 3-loop results here to
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the case of supersymmetric gauge theories by conquering these gauge-fixing issues. Once again a

direct superspace calculation seems in order.
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