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Abstract—High-fidelity general-purpose numerical methods
are increasingly needed to improve superconducting circuit
quantum information processor performance. One challenge in
developing such numerical methods is the lack of reference
data to validate them. To address this, we have designed a 3D
system where all electromagnetic properties needed in a quantum
analysis can be evaluated using analytical techniques from
classical electromagnetic theory. Here, we review the basics of our
field-based quantization method and then use these techniques to
create the first-ever analytical quantum full-wave solution for a
superconducting circuit quantum device. Specifically, we analyze
a coaxial-fed 3D waveguide cavity with and without transmon
quantum bits inside the cavity. We validate our analytical
solutions by comparing them to numerical methods in evaluating
single photon interference and computing key system parameters
related to controlling quantum bits. In the future, our analytical
solutions can be used to validate numerical methods, as well as
build intuition about important quantum effects in realistic 3D
devices.

Index Terms—Circuit quantum electrodynamics, transmon
qubit, quantum theory, microwave resonators, cavity perturba-
tion theory, and antenna theory.

I. INTRODUCTION

HE superconducting circuit platform is a leading ap-

proach for developing quantum computers [1], [2] and
other quantum information processing technologies [3]-[5]
that are expected to revolutionize many areas of science and
technology. Typically referred to as circuit quantum electrody-
namics (cQED) devices, these systems utilize the interactions
between microwave electromagnetic (EM) fields and supercon-
ducting circuits to generate and process quantum information.
Despite significant experimental progress, substantial improve-
ments are still needed for these technologies to be useful in
practice. For instance, quantum computers have achieved a
quantum advantage over classical supercomputers [1], [2], but
for such an advantage to be realized on realistic problems
requires improving the performance of most components while
massively scaling the number of quantum bits (qubits) in the
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system [6], [7]. To overcome these engineering challenges,
general-purpose and high-fidelity numerical analysis tools are
becoming increasingly important [8]-[11].

Unfortunately, there are currently only a few general-
purpose numerical methods available for modeling cQED
devices and they suffer from significant inefficiencies. Some of
the first general-purpose numerical approaches were blackbox
circuit quantization methods [8], [9], which use full-wave EM
simulations of all linear components to compute the impedance
matrix that is then used to build an equivalent Foster circuit
network. This equivalent circuit is then quantized in conjunc-
tion with the remaining nonlinear aspects of the qubits to
characterize the full system. In practice, these methods often
require an inconvenient trade-off between accuracy and user-
intensive curve-fitting procedures that can require performing
refined simulations around any resonant peaks in the multi-
port impedance matrix. More recently, the energy participation
ratio (EPR) quantization method [10] was introduced as an
alternative to blackbox circuit quantization. This approach
recasts the theoretical description of the system so that instead
of performing impedance matrix simulations the results of full-
wave EM eigenmode decompositions of the linear part of a
cQED device are used to quantize the system. As a result, this
method avoids user-intensive curve-fitting procedures.

Regardless of whether blackbox circuit or EPR quantization
is used, the manner in which the linear and nonlinear parts of
the qubits in the cQED system are subdivided requires the use
of many quantum states per resonant mode to reach numerical
convergence, as will be shown later. This severely limits
the size of cQED system that can be analyzed because the
dimension of the matrix needed to characterize the quantum
aspects of the system grows exponentially with respect to the
number of quantum states per resonant mode.

An alternative method to these quantization approaches
is our macroscopic cQED formalism proposed in [11] that
utilizes a field theory description of a system. In this approach,
key parameters in the quantum description of a system can also
be evaluated in terms of the results of a linear EM eigenmode
analysis. However, due to how the nonlinearity of qubits are
incorporated into this formalism, a much smaller number of
quantum states per mode can be used to reach numerical
convergence for an accurate solution.

However, for both EPR and our field-based quantization
methods, EM eigenmodes must be found numerically which
becomes computationally prohibitive for large devices. As
a result, there is a need for more efficient methods to be
formulated. Unfortunately, validating new numerical methods
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in this field is a challenge itself due to the lack of reference
data. In the case of measured data, the manufacturing precision
and presence of other uncontrolled factors in experiments
limits the achievable level of quantitative validation [10].
Further, access to measured data is much more limited than
for traditional EM applications. Another main avenue for val-
idation in typical computational electromagnetics applications
is the use of analytical solutions, such as the Mie series for
spherical scattering. However, a similar analytical solution is
not currently available for cQED systems. To help address this,
we have designed a simple geometry for which all field-based
aspects of the quantum Hamiltonian proposed in [11] can be
evaluated analytically using results from cavity perturbation
theory [12] and antenna theory [13]. In the future, these
analytical solutions can be used to validate new numerical
methods, as well as build intuition about important quantum
effects that occur in realistic cCQED devices.

More specifically, we consider a system inspired by 3D
transmons [14]. These consist of a transmon qubit [15], [16]
formed by a small planar dipole antenna that is embedded
in a waveguide cavity. We consider a similar system with
and without transmon qubits inside a coaxially-fed rectangular
waveguide cavity to develop analytical solutions. For the
case without transmon qubits, we construct our analytical
solution in the context of quantum input-output theory [17]
to consider how different quantum input states are scattered
through the system. We use this solution to analyze the Hong-
Ou-Mandel (HOM) effect [18], [19] between single photons
scattering through the cavity system, which is often used to
qualitatively validate computational quantum electromagnetics
methods [20]-[22]. For the case with transmon qubits present,
we calculate key system parameters that are important for
the control and measurement of qubit states. We validate our
analytical solutions by comparing our results to our formalism
using numerical EM eigenmodes, to EPR quantization, or
other impedance-based analysis methods [23], [24].

Preliminary results on these analytical solutions were re-
ported in [25]-[27]. This work expands on [25], [26] by gen-
eralizing the analysis to a fully-quantum setting. We provide
additional details on the quantum input-output theory method,
discuss how to compute the relevant parameters analytically
for our geometry, and present how to use the quantum input-
output theory results to compute Hong-Ou-Mandel interfer-
ence curves. This work expands on [27] by providing more
details on the derivation of the analytical solution, considers
the multi-qubit case, and presents new numerical results.

The remainder of this work is organized in the following
manner. In Section II, we review our macroscopic cQED
approach in the context of the system geometries analyzed
here. Then, in Section III we discuss how to use quantum
input-output theory and traditional EM methods to analytically
model HOM interference effects in a port-fed cavity. Next,
we discuss in Section IV how to use traditional EM methods
to evaluate all the field-based parameters in our Hamiltonian
characterizing transmon qubits placed inside a closed cavity.
Results are presented at the ends of Sections III and IV to
validate the respective analytical solutions. Finally, we discuss
conclusions and future work in Section V.

II. MACROSCOPIC CIRCUIT QUANTUM
ELECTRODYNAMICS

Before presenting our analytical solutions, it is necessary to
discuss how to apply the macroscopic cQED formalism of [11]
to the systems considered in this work. In this approach, field
quantization is performed in the framework of macroscopic
quantum electrodynamics [28] where lossless, non-dispersive
media are considered in terms of macroscopic quantities
like permittivity rather than through microscopic descriptions
(introductions to field quantization in the macroscopic con-
text can be found in [29]-[31]). Further, as is common in
cQED systems, [11] treats properties of the qubits in terms
of macroscopic degrees of freedom rather than utilizing a
full microscopic description of the superconducting materials.
Finally, because cQED systems are operated at ~10 mK
with low-power microwave drives, many non-ideal or more
intricate properties of superconducting materials like London
penetration depth, quasiparticle excitation [32], and kinetic
inductance (to name a few) are also generally neglected [8],
[33]. For example, for the 3D cavities analyzed in [8], the
effect of the London penetration depth was estimated to shift
the ~8 GHz cavity resonant frequency by 10 kHz. Considering
this, we will neglect such minor corrections and non-ideal
effects here and treat all superconducting materials as perfect
electric conductors (PEC); however, these assumptions should
be reassessed when modeling real cQED devices.

In this section, we discuss two cases relevant to the analyti-
cal solutions developed here. In Section II-A, we consider the
quantum description of an empty cavity fed by waveguiding
ports. In Section II-B, we consider a transmon qubit located
inside a closed cavity. These cases can be combined for a more
complete description of a general system [11], but this then
requires a numerical solution to analyze specific dynamical
scenarios, which is outside of the scope of this work.

A. Port-Fed Empty Cavity

Here, we consider an empty cavity that is fed by multiple
waveguiding ports that are assumed to be semi-infinite in
length while maintaining a constant cross-sectional shape (fi-
nite length interfaces to other quantum devices can be handled
with modifications using, e.g., the SLH framework [34]). Sys-
tems with such semi-infinite ports can be most easily analyzed
using a mode-matching (or projector-based) field quantization
method [11], [35] that enables domain decomposition concepts
to be rigorously used in the quantization. The basic process
of this domain decomposition is illustrated in Fig. 1 for a
waveguide cavity fed by two coaxial ports.

In the mode-matching quantization approach, the system is
divided into smaller subdomains so that each can be treated
as a separate eigenvalue problem. To separate the subdomains,
artificial boundary conditions are introduced at the interface
of each set of subdomains. To maintain the hermiticity of
the subdomain eigenvalue problems, complementary PEC and
perfect magnetic conductor (PMC) conditions are assigned on
either side of the subdomain interface, as in Fig. 1(b). A
complete set of orthonormal eigenmodes can now be found
in each subdomain that are then quantized. To recover the
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Fig. 1. Illustration of the subdomains for the mode-matching field quan-
tization. In (a), the reference planes and subdomains are identified, while
in (b) artificial boundaries have been introduced to separate the subdomain
eigenvalue problems.

complete system description, the dynamics of the quantum
operators in the subdomains are tied together through in-
teractions facilitated at the subdomain interfaces. Physically,
these interactions can be viewed as being due to the interplay
between equivalent electric or magnetic currents expanded
in terms of the eigenmodes from one subdomain and the
magnetic or electric vector potentials expanded in terms of
the eigenmodes from the other subdomain [11].

Now, we consider the mathematical description of this
procedure for the system shown in Fig. 1(b) that closes the
waveguide cavity region with PEC boundary conditions and
all ports with PMC boundary conditions. In each subdomain,
the electric field operator E must satisfy the wave equation

V x V x B(r,t) + poed?E(r, t) = 0, (1)

where we assume for simplicity an inhomogeneous permittiv-
ity €(r) but that the permeability u(r) = o everywhere. This
wave equation can be solved using a separation of variables
approach to decompose the field operator into a spatial part
that is a vector field eigenmode and a temporal part that
is a quantum operator. In the cavity subdomain, the electric
and magnetic field operators can then be expressed using an
eigenmode expansion as

Br0) =3 ﬁ@(tmk(r), @
i =3 \/fm@)Hk(r), 3

where Ej(r) and Hy(r) are the spatial eigenmode of the elec-
tric field and magnetic field associated with the eigenvalue wy,
and §j, and py are canonically conjugate Hermitian quantum

operators with commutation relation [k, , Pr,| = thdg, k, (@ is
the imaginary unit throughout this work). Note &k here is an
integer index unrelated to the EM wavenumber. The spatial
eigenmodes are orthonormal in the sense of

Jff ctome B s,

where 0y, %, is a Kronecker delta and a similar relation to (4)
also holds for the Hj,’s. Typically, the operators g, and pj, are
combined to form bosonic annihliation and creation operators
for the kth field mode as

ax(t) = \%@(t) +ipr(t)), )
al(t) = J%@k(w —ip(t)), ©)

respectively. When these operators act on a quantum state
they either decrease or increase the number of photons in
the kth field mode by one, depending on if the annihilation
or creation operator was applied [36]. Hence, these operators
are useful in understanding how individual quanta are manip-
ulated in quantum processes. Finally, these operators satisfy
[Gk, &LQ] = Ok, ko> Which is often used to simplify expressions.

Using these operators, we can rewrite (2) and (3) as

Bo(r,t) = 2}; , /Z%“(&k(t) Cal0)E), (D)

hwy,

2 (@0 — @) H ). @)

H(r,t) = —iy

k

For the fields in the pth coaxial port subdomain, there is
a continuum of modes due to its semi-infinite length so the
expansion becomes

By = 3 [ 5o nlon 048, 0)

X E)xp (W)\py I') dwkpa (9)

H,(r,t) = —ZEA:/O ,/%(dxp(wmt)—&h(mp,t))

X H,\p(w,\p, I‘) d(.U)\p, (10)

where p indexes the coaxial subdomains and A differentiates
between transverse mode profiles with corresponding eigen-
values wy,. Further, ay, and dip have similar relationships
to those defined in (5) and (6). In the continuum case, these
operators have commutation relation

[d)qm ("‘»\1?1 ) t)’ di\gm (wi\zpz ) t)] = 6>\1/\26p1172

X O(Wrypy — w;2p2). (1D

We can now consider the complete Hamiltonian for the
system in Fig. 1. This characterizes the total energy in the
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system, which for this case is given by

fftouCP = He+ Hp + Hep, (12)
where
He = %/// (€E? + poHZ?)dV (13)
is the EM energy integrated over the cavity subdomain,
(14)

N 1 N A
e =35 [[[ (@8 + a2} av
P
is the EM energy integrated over the port subdomains, and

Hep = — Z//

corresponds to the interaction Hamiltonian describing the
coupling between the cavity and port fields. In (15), the surface
integration occurs over the interface between subdomains, 7,
is the unit normal pointing into the cavity, and

>

is the electric vector potential in the cavity region. As
mentioned previously, (15) can be viewed as the interaction
between an equivalent magnetic current and the electric vector
potential. If all cavity-side interfaces had not been closed with
a PEC condition in our mode matching quantization, we would
also need to include an interaction term between an equivalent
electric current and magnetic vector potential as in [11].

Using the eigenmode orthonormality, the spatial integrals in
(12) can be evaluated. Performing this, H simplifies to

Hiocp = Z hwkd;t&k
%

+Z / hw)\pdip(w/\p)&/\p(w)\p)dw)\p_‘_

(E, x f1,)dS (15)

aR(t) +al (1) Hy(r)  (16)

QWWO

/ higk ap (ak+ak) (akp(wkp)+a,\p(wz\p))dw>\p, (17)
k,p,A

where
Co [Wx -
gk)\p = // 5 T: [Hk . (E)\p X np)] dS (18)

This Hamiltonian formalism has been validated in the clas-
sical regime in [25], [26] by computing scattering parameters
and comparing to traditional finite element simulations. This
also validates this quantum Hamiltonian since the field-based
aspects of it are identical to the classical case. In Section
III, equations of motion will be derived from (17) and subse-
quently solved using quantum input-output theory to develop
an analytical solution for the port-fed empty cavity case.

B. Closed Cavity and Qubit

Next, we consider the case with a transmon qubit embedded
into a closed cavity as shown in Fig. 2. Here, the transmon
qubit is formed by a Josephson junction and additional capaci-
tive load connected across the terminals of a small linear dipole

| |
~— Coaxial probes -

Transmon qubit Josephson
[not to scale] £ k Junction
Capacitive

Load

€0, Ho

Fig. 2. Schematic illustration of a transmon embedded in a rectangular
waveguide cavity structure that is analytically solvable for all field-based
aspects of the quantum full-wave Hamiltonian analysis.

antenna. To keep our later analytical solution more amenable
to extensions, we retain the probes in our closed region that
would connect to coaxial ports, although these do not serve a
strictly necessary purpose here and can be omitted if desired.
The total Hamiltonian for Fig. 2 is then

Hiot.or = Ho + Hr + Her, (19)

where He is the cavity energy given in (13), Hp is the
transmon energy, and Her is the interaction energy due to
the coupling of the transmon and cavity fields.

More specifically, the transmon Hamiltonian is

Hp =4Ech? — Ejcos @, (20)

which from a circuit theory perspective corresponds to a linear
capacitor in parallel with a nonlinear inductor. Here, 7 and
¢ are the qubit charge and phase operators that serve as
(dimensionless) canonically conjugate operators for the qubit
[15], [16]. Further, Ec = €2/(2C%) is the charging energy of
the total qubit capacitance C'y,, where e is the electron charge.
We also have that the Josephson energy is E; = (h/2¢)?/L,
where L; is the Josephon inductance. For a transmon, the
energy parameters are designed such that E;/Ec > 1 to
minimize the qubit sensitivty to a common form of noise [15],
[16]. Meanwhile, the interaction Hamiltonian is

Her = 2e / E. - d(r)adr, @1
where d parameterizes a line integration path so that its
integral with E. computes the voltage seen by the Josephson
junction in the transmon qubit [11]. In the case of Fig. 2, this
would correspond to the voltage induced across the terminals
of the dipole forming the transmon qubit. If there is more than
one qubit in the cavity, one simply sums over independent
qubits in the expressions of (20) and (21) to generalize the
mathematical description to this case.

Now, we can simplify (19) by substituting in the cavity field
expressions from (7) and (8), using the EM eigenmode or-
thonormality to evaluate the spatial integrals, and re-expressing
the transmon operators in terms of the energy eigenstates of
HT denoted by |j) in Dirac bra-ket notation by simplifying
I Htot o1l with identity operators [ = > 17)(j]- This gives

ﬁtot,CT = Z hwk&l;&k + Z b1 7) (]
k J
+ ) (hgral 1) G + 1 + hgi ja, |5 + D)), 22)
k.j
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where w; is the energy eigenvalue of (20) and we have also
applied the rotating wave approximation to the interaction
terms of ﬁCT [15]. Further, gy, ; is the coupling rate between
specific field and transmon modes given by

PN w
kg = 2e(j|Alj + 1>\/E/Ek(r) -d(r)dr.

It should be noted that we have also applied the approximation
that the charge operator n only allows transitions between
nearest-neighbor energy eigenstates for transmon qubits [15].
We will utilize this approximation to simplify our analytical
solution; however, if the more general interactions are needed
these can be computed analytically as well using the details of
[15] or numerically using a simple method like in [37], [38].

(23)

III. PORT-FED EMPTY CAVITY ANALYTICAL SOLUTION

In this section, we develop an analytical solution for an
empty cavity fed by ports. We discuss in Section III-A how
to apply quantum input-output theory to the Hamiltonian of
Section II-A. This results in a set of transfer functions that
we can compute using analytical methods from EM theory.
We then discuss in Section III-B how to use these transfer
functions to compute HOM interference curves. We present
results in Section III-C to validate the analytical solution.

A. Quantum Input-Output Theory

First, we need to simplify the mode-matching Hamiltonian
developed in Section II-A to make it analytically tractable
[17]. To do this, we apply the rotating wave approximation
and restrict our analysis to a single cavity mode (with anni-
hilation operator ay) whose resonance frequency we wish to
compute transfer functions nearby (here we will consider the
fundamental cavity mode) and the continuum of TEM modes
in the coaxial ports (with annihilation operators a,). Applying
these simplifications, the total Hamiltonian in (17) reduces to

H=hwodhao +» / Tyl (wp )y (wp) dw, +
0
p

> /0 hgp (adip(wp) +aoal (wp))dw,,  (24)
p

where g, is the restriction of (18) to the modes specified above
(the index A has been omitted as it no longer serves a purpose).
Now, to begin the analysis, we need the equations of motion
for the cavity and port field operators. An equation of motion
for an arbitrary quantum operator X can be found in the
Heisenberg picture of quantum mechanics as [36]
0,.X = 11X, A). 25)
ih

Using the commutators for the annihilation and creation op-
erators presented in Section II-A, we can determine that the

equations of motion for ag and an a,, are

Orao(t) = —iwobo(t) — iy / Gpip(t,wp)dw,,  (26)
P — 00

Oy (t,wp) = —iwpap(t, wp) — igpto(t). 27

In deriving these, we have also assumed that the port fields
are narrowband relative to their center frequency such that the
frequency integration range can be extended from 0 to —oo
(this will allow Fourier theory to be used later) [17].

The next step in quantum input-output theory is to integrate
the equations of motion in the port subdomains in terms of
initial and final conditions, which are taken to be well before
and well after the interaction with the cavity has occurred
so that they can be considered to be the “input” and “output”
fields, respectively. Considering this, the integration of the port
subdomain equations yields

—iwp(t—t()) ~

ap(t,wp) = e ap(to,wp)

t
—igp / e (a0 (¢)dt, for t > ty, (28)

to

—iwp (t—1t1) A

dp<tawp) =€ ap(tl,wp)

tl ) ,
+z‘g,,/ e a (¢ dt!, for t < ty, (29)
t

where ty (¢1) is the initial (final) condition time. These can
then be substituted into (26) to get

Optio(t) = —iwoao(t)

o
SR [ e gt )
p —o0

o t
—Z/ gf,/ e‘mp(t_t/)do(t’)dt'dwp, (30)
P —00 to

Opto(t) = —iwoao(t)

o0
- ZZ/ gpe_iwp(t_tl)&p(tla wp)dwy,
P — 0o

o0 tl . ,
+° / 97 / e~ wrt=g (¢ dt dw,.  (31)
P —00 t

Next, we can apply standard Fourier transform identities to
simplify the final terms in (30) and (31). To do this, we first
make the Markov approximation by assuming that g, varies
slowly enough over the frequency range of interest (nominally,
the cavity resonance bandwidth) so that it can be factored out
of the frequency integrals [17]. Doing this and switching the
order of integration in the final term of (30), we get

e} t
/ 9; / e_i“”(t_tl)do(t')dt’dwp
—00 to

t o7}
~ g,(wo) / [ / ei“’P<”'>dw,,]&o(t’)dt/. 32)
to

— 00

Noting the term inside the brackets equals 27d(t —t'), we get

o5} t
/ gi/ efiwp(tft/)do(t')dt’dwp
—0o0 t
’ t
5(t —tao(t")dt'.

to

~ 271'912)((4)0) (33)

Since the integration range in (33) only covers half of the
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Dirac delta, the Fourier theory result of
t

/MFﬂ ﬁ—/5t4
to

5&0( ) for tg <t <ty
can be used (where the identity involving ¢; is used to
simplify the synonymous term in (31)) [17]. Combining these
simplifications, we finally have that (30) and (31) become

(t))dt!

(34)

Opao(t) = —iwoao(t)

= (iV27gptin (1) + wgla0 (1)), (35)

p

Orag(t) = —iwoao(t)
— Z (i\/%gpdout,p(t) - ngdo(t)) (36)

p

where we have simplified the notation by defining @i, ,(t) and
Gout,p(t) as

o 1 —iw — ~

Qin,p(t) = \/72?/ e ten(t tO)ap(t07wp)dwp, 37
o 1 —iw —

Gout,p(t) = \/727/ e (=g, (ty, wp)dw,.  (38)

At this point, it is convenient to exploit the linearity of
the system to perform a time-harmonic analysis. Taking the
Fourier transform of (35) and (36), we arrive at

— iwdg(w) = —iwgag(w)

- Z(i\/ﬂgp&in’p(u}) + ngz,flo(w)), (39
P

— iwap(w) = —iwpag(w)

_ Z(i\/ﬂgpéouw,(w) — ﬂggdo(w)). (40)
P

Subtracting (40) from (39) results in what is referred to as a
“boundary condition” in quantum input-output theory at each
port [17], which in the frequency domain is

Gin,p (W) — Gout,p(w) = V27 gpao(w). (41)

To find the cavity transfer functions within this formalism,
we first eliminate the cavity mode in (39) by substituting into
this equation using (41) evaluated for the first port. This yields

Gout,1 (W) = R1(w)ain 1 (w) + Th2(w)ain2(w), (42)
793 — g7) —i(w — wo)

SR e N

Tio(w) = ——— 92 (44)

(97 + 93) — i(w — wo)

6
A similar procedure for the second port yields
Gout,2(w) = Ro(w)ain,2(w) + To1(w)ain,1 (w), (45)
(g3 — g3) —i(w — w
m(91 +93) — i(w — wo)
and Ty (w) = T12(w). These correspond to Lorentzian transfer

functions, which match what would be expected for a classical
analysis [25]. However, it must be noted that in the quantum
domain it is impossible to “turn off” the input at one of the
ports and retain a valid quantum description. This is a result
of vacuum fluctuations, which have important consequences
for describing the correct behavior of such a system when
considering input states that are not “sufficiently classical”
(such as few-photon inputs) [39]. We will use these transfer
functions in Section III-B to compute HOM interference
curves, which require this correct quantum treatment [19].

Before continuing, it is worth commenting on some of the
limitations of quantum input-output theory. Due to the approx-
imations, it is useful for analyzing “near-resonant” scattering
properties of high-() cavities with all other modes located
at “far away” frequencies. Further, it should be recognized
that the “boundary condition” given in (41) is not a true
boundary condition; e.g., the single cavity and transverse
port mode approximations used here mean the tangential
EM fields are not continuous across the cavity-coaxial port
interface. We have carefully designed our system so that these
“pathological” aspects of quantum input-output theory are not
problematic here [25], [26], but as more complicated devices
are engineered these and other pathologies of quantum input-
output theory are expected to become increasingly problematic
so that more sophisticated methods will be needed.

We now turn to evaluating the quantum input-output transfer
functions using analytical methods from EM theory. For sim-
plicity, we will keep the length of the coaxial probes protruding
into the cavity to be small so that their impact can be accounted
for using microwave cavity perturbation theory for ‘“shape
perturbations” [12]. In this case, the resonant frequency of the
dominant cavity mode including the effect of the perturbations

is evaluated as
] ulttol = cmofyav
w0~w0+ 0 s
J[ [ i+ cgo)av

where wy is the perturbed resonant frequency, w( is the
unperturbed resonant frequency (i.e., of the empty cavity), V is
the volume of the unperturbed cavity, AV is the volume of the
perturbation corresponding to the coaxial probes, Eq and Hy
are the EM fields of the unperturbed cavity for the dominant
field mode, and p and € are the constitutive parameters of the
material inside the cavity (free space in the case considered
here). Here, we integrate the EM energy over the coaxial
probes by sampling the EM field at the tips of the coaxial
probes and multiplying by the volume of the probe [12], which
is reasonable for the dominant cavity mode as it does not vary
along the length of the coaxial probes.

We can also use the basic concept of cavity perturbation

(47)
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theory to evaluate g; and g2, however, more care is needed
here on the model settings for this approximation to be reason-
able. In particular, we assume in the evaluation of (18) that we
can use the unperturbed magnetic field Hy. Near the probe,
the magnetic field is obviously perturbed and the true field
mode Hj, will deviate from the unperturbed field distribution.
However, we have found this change to the field distribution of
H;, to be very localized to the region immediately surrounding
the probe. As a result, if the integration region dS is taken over
a reasonably large radius the error from the perturbation theory
assumption can be kept at a tolerable level. Sample settings
to achieve this will be shown in Section III-C.

B. Hong-Ou-Mandel Interference

The HOM effect is a quantum optical phenomena commonly
used to test the quality of single photon sources [40], [41]. In
a HOM experiment, two different input EM fields are directed
at a 50/50 “beam splitter” that produces a 90° phase shift
between reflected and transmitted fields. If these EM fields
correspond to indistinguishable single photons (i.e., they have
identical properties except that they are incident on the beam
splitter from different ports/directions), then a photon bunching
effect occurs wherein the two photons will always exit one
of the two output ports of the beam splitter together. To
experimentally observe this effect, photon counting detectors
are placed in the two output ports of the beam splitter and
coincidences (i.e., when both photon detectors trigger) are
recorded. To generate a HOM interference curve, these exper-
iments are repeated with different delays between the incident
photons. If the incident photons are not indistinguishable
or the beam splitter does not possess the necessary ideal
properties, the quality of the HOM interference curve will
degrade. Although for microwave systems photon detectors are
an area of research [42]-[44], mature approaches still exist to
measure the necessary quantum correlations to observe HOM
interference in these systems [45], [46].

Mathematically, a HOM interference curve corresponds to
calculating the second-order correlation function given by [39]

A
(2) _
(GBS (1) B (to+7) EST (to +7) BV (1) [4)

(W B (1) B <to>\w><w|E§*><to+T>E§*><to+T>|w>;g
(48)

where 7 is the delay between incident photons, E;i)(t) is
the positive (negative) frequency component of the electric
field operator in output port j evaluated at time ¢ and |¢)) is
the initial joint quantum state of the system. If the two input
photons are indistinguishable, then ¢(*)(0) = 0. In general, a
value of g(®)(7) < 0.5 is taken to be a signature of a quantum
EM field source, as typical classical states of EM fields cannot
achieve these values [47]-[49].

Now, we specialize our discussion to how to use the results
of Section III-A to compute a HOM interference curve. In
this case, our cavity acts as the “beam splitter” where the two
coaxial ports serve both as input and output ports. The electric

field operators in the output ports are then proportional to the
output creation and annihilation operators as

2 (1) o douej (1), ES() cal, (1), (49)

where the remaining proportionality constants will cancel in
the evaluation of ¢(* and so are omitted for simplicity. It
is now necessary to express Gout ;(t) in terms of the input
bosonic operators using (42) and (45) since the quantum state
|1} will be specified in terms of the initial conditions of the
input photon states. Further, we must take the inverse Fourier
transform of these expressions to write our operators in the
time domain to evaluate the ¢(® function. Again dropping
constant terms that will cancel, we can approximate the inverse
Fourier transform through a discrete summation as

CAlout,l(t) = Z I:Rl (Wm)diml(wm)

m

+ T12(Wm)din,2 (Wm):| efiwmt’ (50

CA”Zut,l (t) = Z |:1%31F (wm)&:ml (wm)

+ T, (wm)djng(wm)} ewmt (51)

with a synonymous set of results also for the second port.
By inspecting (43), (44), and (46), it is seen that if g7 = g3
then the reflected and transmitted fields will exhibit a 90°
phase shift and equal amplitude to one another (over a narrow
frequency band); which are the properties needed to create the
destructive interference between the corresponding quantum
amplitudes to observe a high-quality HOM interference curve.

Finally, we must specify the initial state of the system |¢)
to be able to compute the ¢(?) function. Here, we will only
consider unentangled single photon states in both input ports,
but other input states can also be analyzed (e.g., multi-photon
or thermal states). To describe a single photon state, we operate
on the vacuum state of a particular port with a linear expansion
of the input creation operators from that port. Considering this,
the joint input state is given by

1) = (;Win,mwmmfmlwm)) ),
9 (3 Winalon) o) 012, 52)

n

where |0); is the vacuum state in input port j and Wiy, ;(wp,)
is a corresponding spectral weight that defines the temporal
shape of the input photons. These spectral weighting coeffi-
cients can be easily computed from the Fourier transform of
the desired temporal shape of the single photons. Here we
will take these to be modulated Gaussian functions, so that
the spectral weights are

1
Wiml(u}) = ﬁ@

—(o1(w—win,1))?/2 etwio
)

(53)
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Wina(w) = L (erwwin2)?2 gwltot) (54
where ¢ is the temporal standard deviation of the modulated
Gaussian pulse in port j and wj, ; is the corresponding center
frequency, and NN is a normalization constant so that the overall
quantum state in (52) is normalized.

With all expressions appropriately defined, we can now
evaluate the g(®) (7) function. Due to their size, the complete
expressions are given in (64) to (66) in Appendix A. The
key result is that the only geometry-dependent parameters
are the values of the transfer functions that were analyti-
cally computed using quantum input-output theory and cavity
perturbation theory in Section III-A. Hence, we can now
analytically calculate the HOM interference curves for this
port-fed empty cavity system.

C. Results

To compute results, we consider a geometry as in Fig. 1
that is composed of a rectangular waveguide cavity with two
coaxial lines coupled to it. The dimension of the cavity is
22.86 x 10.16 x 40 mm?. The coaxial probes are located along
the center of the transverse dimension of the cavity, are both
offset 10 mm from the ends of the cavity along the longitudinal
dimension, and have an inner conductor radius of 0.05 mm.
Due to the symmetric positions of the coaxial probes and that
the magnetic field of the dominant cavity mode is an odd
function, we can conclude that g; = —go for this system.

To begin validating our analytical formulation, we first
consider the error in the perturbation theory when the length
the inner conductor protrudes into the cavity is varied from
0.05mm to 1.5 mm. As a reference, we perform an eigenmode
analysis of the cavity region including the perturbing coaxial
inner conductors using the finite element method (FEM). To
not bias the error calculation of the perturbation theory ap-
proximation due to numerical errors from FEM, we use as our
unperturbed resonant frequency the FEM-computed eigenvalue
for the cavity with no coaxial probes present in (47). We then
compute the relative error between the perturbation theory and
FEM resonant frequencies for the lowest five cavity modes
as a function of coaxial probe length (although not needed
here, higher-order modes will be included in the calculations in
Section IV). These results are shown in Fig. 3, where it is seen
that the relative error can be quite low for small perturbations.

Next, we perform a similar analysis, but for the computation
of the g; value. This depends on the overlap integral between
cavity and coaxial subdomains in the form of Hj - (Ep X ﬁp),
where Hj, is the cavity magnetic field mode and E, is the
TEM mode of the coaxial line. To evaluate this overlap inte-
gral, we apply a trapezoidal integration rule in the radial and
azimuthal directions over an annular region centered around
the inner conductor of the coaxial line. As mentioned earlier,
the accuracy of the perturbation theory approximation can be
improved if the surface the overlap integral is evaluated over
is made larger (i.e., increasing the outer radius of the coaxial
line). To show the impact of this, we compute the relative
error in the calculation of g; when using perturbation theory
or the eigenmodes from FEM in the cavity region for various
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Fig. 3. Relative error in the perturbation theory calculation of the cavity
resonant frequency for the lowest five modes.
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Fig. 4. Relative error in the perturbation theory calculation of g; for the
dominant cavity mode for different coaxial outer radii.

coaxial probe lengths. As seen in Fig. 4, by careful selection
of design parameters this error can also be kept small.

We now show how these errors in the perturbation theory
approach impact the calculation of a HOM interference curve
for various scenarios. To begin, we isolate the impact of the
error in the computation of g; by allowing the center frequen-
cies of the single photons to be independently optimized for
the Lorentzian transfer functions at various probe lengths for
the analytical and numerical eigenmode computations when
the coaxial outer radius is set to 2.5 mm. The results of this
are shown in Fig. 5 for 0y = 02 = 2.5us and 1 us. For
the narrower photon bandwidth shown in Fig. 5(a), it is seen
that the error in g; has a small impact on the overall HOM
interference curve and that high-quality interference is always
achieved. For the wider photon bandwidth shown in Fig. 5(b),
the quality of the HOM curve is degraded for shorter probe
lengths due to the higher ) of the resonator. As the probe
is made longer, the @@ lowers and a higher-quality HOM
interference is then achieved again.

Next, we repeat these calculations but do not allow the
center frequencies of the single photons to be independently
optimized for the numerical eigenmode computations. Instead,
we use fixed parameters based off of the transfer functions
computed using perturbation theory. The results are shown in
Fig. 6, where it is seen that the error in the computation of
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Fig. 5. HOM interference curves with individually-optimized photon center
frequencies for analytical and numerical eigenmode calculations with different
coaxial probe lengths and a coaxial outer radius of 2.5 mm. Standard deviation
of the Gaussian pulses are (a) 01 = o2 = 2.5 us and (b) 01 = 02 = 1 us.

the cavity resonant frequency quickly degrades the accuracy
of the analytical solution as the probe length is increased.
However, if the probe length is kept small, good agreement
is still achievable. Overall, a more sophisticated classical EM
analytical solution for the effect of the coaxial probe on the
cavity field modes could extend the range of parameters our
analytical quantum full-wave solution can be applied over.

IV. CLOSED CAVITY AND QUBIT ANALYTICAL SOLUTION

In this section, we develop an analytical solution for one or
more transmon qubits inside a closed rectangular waveguide
cavity. We discuss in Section IV-A how to use analytical meth-
ods from EM theory to evaluate the parameters comprising
the Hamiltonian discussed in Section II-B. Next, we discuss
in Section IV-B how to utilize a matrix representation of
the system Hamiltonian to compute experimentally-relevant
system parameters that are important for the control and
measurement of qubit states. We then present results in Section
IV-C to validate our analytical solution.

A. Analytical Evaluation of Hamiltonian Parameters

As mentioned previously, the basic system geometry we
will consider here corresponds to that shown in Fig. 2 which

Analytical
= = 0.l mm
ceessren 0.2 mm

1 EROE-OE-OE

Analytical
= = 0.1l mm
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7 (ns)
(®)
Fig. 6. HOM interference curves with fixed single photon center frequencies
for analytical and numerical eigenmode calculations with different coaxial

probe lengths and a coaxial outer radius of 2.5 mm. Standard deviation of
the Gaussian pulses are (a) o1 = 02 = 2.5 us and (b) 01 = 02 = 1 us.

is inspired by 3D transmons that have been studied experimen-
tally [14]. We have made the cavity a rectangular waveguide
and include one or two transmons inside made from small
linear dipole antennas so that typical EM and antenna theory
techniques can be leveraged in our analytical solution [13].
In our system, we keep the length of the dipoles electrically
small compared to the spatial variation of the relevant cavity
field modes. This makes the cavity field mode profiles appear
effectively like plane waves from the perspective of the dipoles
so that typical antenna theory formulas for free space operation
can be applied in the cavity, as will be substantiated in
Section IV-C. When considering two transmons, we keep the
dipoles of different transmons located far enough away from
each other to minimize mutual coupling that would invalidate
approximations made in our analytical solution.

We now consider evaluating all the parameters in the total
Hamiltonian of (22). To begin, we will compute the cavity
resonant frequency wy using cavity perturbation theory. Based
on the field quantization process used for our analytical solu-
tion, we need to determine wy, in the absence of the transmons,
which leaves only the perturbation due to the coaxial probes
to be accounted for. Given this, wy can be computed using the
simple generalization of (47) to the kth field mode.
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Next, the eigenfrequencies of the transmons w; in (22) will
be considered. In typical scenarios, E'; is a given parameter
that depends on the microscopic structure of the Josephson
junction and is not influenced by the surrounding geometry.
Hence, the only other parameter needed to characterize a
particular transmon is E¢, which is a function of the total
capacitance in parallel to the Josephson junction. Here, this is

CZ = Cant + C’L (55)

where C,,,,; is the geometric capacitance of the dipole and C,
is the total load capacitance due the linear Josephson junction
capacitance and a lumped element placed across the dipole
terminals. This additional lumped capacitance is needed to
boost the total qubit capacitance so that the qubit operates
in the “transmon regime” where F;/FE¢c > 1. Since Cp, is a
given parameter in a design, the only capacitance that needs
to be determined from the geometry of the system is Cypt.
For a small dipole, this capacitance can be computed using

tan(kl/2)
120wo(In(€/(27)) — 1)’

where ¢ is the length of the dipole, r is the radius of the cylin-
der of the dipole, k is the wavenumber of the homogeneous
medium filling the cavity, and wy is the operating frequency
of the fundamental mode of the cavity [13]. With E- and Ey
determined, they can be used to calculate the eigenfrequencies
of the transmon either analytically [15] or numerically. In our
work, we have used a simple finite element method to compute
the eigenfrequencies of the transmon as described in [37], [38].
Also, note that C,,; computed from (56) is the main error
source in our analytical solution. To improve the accuracy,
a more sophisticated analytical formula for C,,; could be
developed or the capacitance could be estimated numerically
from a classical simulation of a dipole in free space.

Cant = (56)

Lastly, the coupling rate g, ; in (23) needs to be evaluated.
Beginning with the qubit-related properties, the transition
matrix element of the charge operator (j|7|j 4+ 1) is needed.
This can be computed numerically as in [37], [38], or can be
approximated analytically as [15]

j+1
8E¢ '

: (57)

Gl + 1) ~ =i
The spatial integral in (23) also must be evaluated, and
corresponds to computing the voltage induced over the capac-
itance connected across the dipole terminals in the absence
of the nonlinear inductance of the Josephson junction. This
can be found using the theory of [50], [51], which rigorously
establishes the Thévinin equivalent circuit model of a receiving
wire antenna with an arbitrary load, as shown in Fig. 7. In
this approach, the amplitude of the equivalent voltage source
is given by

£/2
VRX = / fo(I‘)Ek(I‘) . d(I‘)dI‘, (58)

—¢/2
where ¢ is the length of the dipole and frx(r) is the
normalized current distribution of the wire antenna in trans-
mitting mode. For an electrically small dipole, the transmitting
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Fig. 7. Schematic illustration of the Thévinin equivalent circuit model of
a receiving wire antenna for our case of a transmon formed with a load
capacitance connected across the dipole terminals.

mode current distribution can be approximated as a triangular

function [13]. If we assume that E; does not vary over the

length of the small dipole antenna, we can evaluate (58) to get
1.

Vix = 50 Bi(ro)l, (59)
where / is a unit vector pointing along the length of the dipole
and rq is the position at the center of the dipole. Then, using
the equivalent circuit in Fig. 7, the needed voltage induced
across the load capacitance is simply

Cant

V, = et
K Cant+CL

Vex. (60)

B. Evaluation of Dispersive Regime System Parameters

With all the parameters in the Hamiltonian operator now
determined, a matrix representation of it can be found in
terms of a suitable basis [36]. This “Hamiltonian matrix”
can then be used in various calculations to compute different
parameters of interest. Here, we will focus on computing
system parameters needed for cQED devices operated in the
dispersive regime of cavity quantum electrodynamics, which
is the most common operating regime in practice [3]-[5].
This operating regime is achieved when the cavity resonant
frequencies wy, are strongly detuned from the qubit transition
frequencies w; j+1 = wj4+1 — wj relative to the coupling
strength gy, ;; i.e., gk.yj/|wk 7Wj7j/| < 1. When this is the case,
there is low hybridization between the qubit and cavity modes
that allows sufficient qubit controllability without resulting
in excessive decay through effects like spontaneous emission
[52], [53] or unwanted dynamics due to effects like vacuum
Rabi oscillations [17].

Considering this, the particular experimentally-relevant pa-
rameters that we have computed to test our method are the
first qubit transition frequency wgi, the qubit anharmonicity
a = wis — wo1, the cavity resonant frequencies wy, the AC-
Stark shift y, and the ZZ-interaction rate ( [4], [5]. The
AC-Stark shift characterizes the interaction strength between
a specific pair of qubit and cavity modes in the dispersive
regime, and is important for designing qubit state measurement
protocols. The Z Z-interaction rate is similar, but describes the
dispersive coupling strength between a pair of qubit modes,
and is important for designing multi-qubit gates (but also
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contributes to deleterious quantum crosstalk effects). Each
of these parameters can be computed in terms of low-lying
eigenvalues of the total system Hamiltonian given in (22), with
example formulas given later in this section for clarity.

To find these eigenvalues, we first compute the Hamiltonian
matrix for a particular system using a basis composed of
tensor product states between the “natural” basis of each
of the constituent parts of the system. For the qubit, this
corresponds to its free energy eigenstates that are solutions to
(20). Similarly, each cavity mode is expressed in terms of its
own eigenstates that correspond to a fixed number of photons
in the mode (typically referred to as Fock states). The matrix
representation of H is then found by evaluating

Hpr = (m|H|n), 61)

where H,,, is the element in the mth row and nth column of
the Hamiltonian matrix and |m) and |n) are two states of the
tensor product basis being used.

Now, many of the dispersive regime parameters of interest
can be immediately deduced from the eigenvalues of the
Hamiltonian matrix, but the calculations of x and ( require
slightly more processing. To be concrete in our discussion,
assume that we are considering a simulation with two qubit
and two cavity modes. In the dispersive regime, the low
amount of mode hybridization makes it possible to use the
same labeling of our original basis states for the eigenvectors
of the coupled system. We can then denote a particular
eigenvalue of the Hamiltonian matrix as F;;i,, where all
subscripts will take on integer values denoting the number
of photons in a particular mode and the ordering is such
that ¢ (j) corresponds to the first (second) qubit mode and
k (£) corresponds to the first (second) cavity mode. One can
then inspect the effective dispersive regime Hamiltonian of the
complete system to determine procedures for computing x or
¢ between particular sets of modes. For instance, to compute
the AC-Stark shift due to the first qubit mode on the first cavity
mode, we would need to populate both of these modes and
then subtract out the energies due to the individual excitation
energies. Mathematically, this is

X = E1010 — E1000 — Eoo1o — Eoooo, (62)

where we also subtract out Eypgp so that our effective ground
energy is zero. Similarly, we can compute the ZZ-interaction
rate between the two qubit modes as

¢ = E1100 — E1000 — Eo100 — Eoooo- (63)

These formulas can be adjusted easily to compute the x or ¢
between other modes as needed.

In any calculation, it is imperative that a sufficiently large
basis is used to achieve numerically converged results for
the system parameters of interest. However, the size of the
Hamiltonian matrix grows exponentially as the number of
modes or number of quantum states per mode are increased.
For instance, if the same number of quantum states is used
irrespective of the type of mode (e.g., qubit or cavity), then
the Hamiltonian matrix will have dimension of M~ where N
is the number of modes and M is the number of quantum
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Fig. 8. Numerical convergence of the different computation methods for (a)
the qubit anharmonicity « and (b) the first qubit transition frequency woji.
The reference solution for each computation method is its own results using
15 Fock states for each mode in the basis.

states per mode. Due to this exponential growth, being able to
achieve accurate numerical results with a lower value of M
is essential. As we will see in Section IV-C, our approach
will be able to use a much smaller value of M than the
EPR method, leading to an exponentially smaller Hamiltonian
matrix to achieve the same level of accuracy.

C. Results

To compute results, we consider a system geometry like
that illustrated in Fig. 2 that is composed of a rectangular
waveguide cavity with two coaxial probes and one or two
transmon qubits. The dimensions of the cavity and coaxial
probes are the same as those in Section III-C with the coaxial
probe length fixed to a value of 0.75mm. Each transmon
consists of a linear dipole antenna with length 1 mm, radius
0.04 mm, terminal gap size of 0.102 mm, and is oriented along
the electric field direction of the dominant cavity modes. A
total load capacitance of C', = 50.34fF is also always used
for each qubit. Further, the qubits are kept located at the central
plane of the cavity along its smallest dimension. Through
numerical experiments, we found that mutual coupling effects
had a negligible impact on the accuracy of our analytical
solution if the dipoles were separated by >2mm.

As an initial test, we consider the numerical convergence
of typical system parameters as a function of the number of
basis states used for the qubit and cavity modes when there is
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Fig. 9. AC-Stark shift x computed while moving the transmon over one
quadrant of the cross-sectional plane at a fixed vertical position in the cavity
center for (a) analytical, (b) numerical eigenmode, and (c) EPR solutions.

only one qubit present, located at the center of the cavity, and
only the first two cavity modes are included. For these tests,
the Josephson junction of the transmon has L; = 9.4nH.
Convergence plots are shown in Fig. 8 for o and wpy; computed
using three different methods. In particular, for our analytical
solution, our method but using numerical EM eigenmodes,
and the EPR method. The relative error is computed for each
method by comparing to the results of its own calculation
using 15 Fock states for each mode in the basis. From the
results, it is clear that the field-based approach described here
converges immediately with the lowest number of possible
Fock states while the EPR method requires a substantial
number of Fock states to converge.

We attribute our formulation’s quick convergence to explic-
itly incorporating the nonlinearity of the qubit in the analysis
of the qubit subsystem in formulating our Hamiltonian matrix.
In contrast, the EPR method treats the nonlinear effects as a
perturbation to the linear effects, which then requires a large
number of Fock states to be considered to achieve convergence
even in the properties of the lowest energy levels of the system.
Since the size of the Hamiltonian matrix grows exponentially
with the number of Fock states considered, achieving fast
numerical convergence is a key property.

Next, we show the effect of moving the transmon in the
cavity on x in Fig. 9 when all methods use 8 Fock states
per mode. Due to the similarity in frequencies, we compute
the x between the qubit and TE;3; modes. Similar results
are seen for all methods, highlighting that the approximations
in our analytical solution do not break down so long as the
dipole is kept a few millimeters from the cavity walls. We
also summarize the relative error of all computed dispersive
regime parameters in Table 1. Here, the system parameters are
averaged as a function of the transmon location in the cavity.
Relative errors are also computed between the methods as
compared to the numerical EM eigenmode solution, which are
shown in parentheses in Table 1. Given the typical experimen-

TABLE I
AVERAGE SYSTEM PARAMETERS AND RELATIVE PERCENT ERRORS WITH
RESPECT TO THE NUMERICAL EIGENMODE DATA

System Numerical EPR Analytical

Parameter Eigenmode Solution

wo1/2m (GHz) 6.44 6.43 (0.21) 6.39 (0.84)
w1 /2w (GHz) 7.55 7.55 (8.82¢-5) 7.55 (1.5e-2)
w2 /27 (GHz) 9.96 9.96 (8.88¢-5) 9.96 (2.6e-2)
/2w (MHz) -379.00 -360.78 (-4.81) | -371.72 (-1.92)
x/2m (MHz) -0.025 -0.026 (-2.23) -0.028 (-10.38)

tal precision, the relative errors are all within reasonable ranges
[10]. The main error source in our analytical solution is due
to the dipole antenna capacitance computed from (56). With a
better capacitance estimation, the analytical solution accuracy
can be significantly improved, as will be shown shortly.

We now reconfigure the system to include two qubits that
are located in the central plane of the cavity and are positioned
underneath the coaxial probes. In these examples, we will
compute the AC-Stark shift and ZZ-interaction rate as a
function of one of the qubit frequencies by changing the
value of L; while holding the other qubit’s parameters fixed.
Since our method does not explicitly include L ;’s in our EM
eigenmode calculations, we only need to perform a single 3D
FEM eigenmode analysis. In contrast to this, the EPR method
includes L;’s directly in the EM eigenmode calculations,
and so requires running a new 3D FEM eigenmode analysis
for every frequency point. This is often inconvenient and
computationally costly; however, it does cause the qubits to
appear as resonant modes in the EM solver so that modeling
other devices with qubits directly capacitively coupled can
be easily done. Our method would require performing a
separate simulation to extract the coupling capacitances and
the addition of a simple direct qubit-qubit interaction term
in our Hamiltonian. Finally, to achieve acceptable numerical
convergence we needed to use seven Fock states for each mode
in the EPR calculation, while our method only required three
Fock states per mode. In both calculations, we use two qubit
and three cavity modes.

We now sweep one qubit frequency from 7.3 to 8.3 GHz by
varying it’s L from 7.420 to 5.806 nH. We keep the second
qubit fixed at a frequency of 6 GHz by setting it’s L; to
10.756 nH. We then compute the AC-Stark shift between the
qubit with varying frequency and the TE;p; mode for each
method discussed in this work. These are compared in Fig.
10, where it is seen that good agreement is obtained across
the full frequency range. We also show that by improving
the accuracy of the dipole antenna capacitance the error in
our analytical solution can be greatly reduced. In particular,
here we use a capacitance value computed via FEM for
a dipole of the same characteristics located in free space
(this modifies the capacitance from 9.091 to 8.035f{F). In
the results of Fig. 10, we also see “resonant spikes” in the
AC-Stark shift that occur due to the qubit and cavity modes
becoming resonant with one another. When this occurs, the
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Fig. 10. AC-Stark shift x between one qubit and the TEjg9; mode as a
function of qubit frequency using various methods, including an analytical
calculation using a corrected dipole capacitance.

dispersive regime approximations break down and the data can
no longer be safely interpreted as an AC-Stark shift (gaps in
the curves are due to this making identification of eigenvalues
to calculate x unreliable). However, nearby these resonant
spikes do correspond to useful operating regimes, such as the
“straddling regime” discussed in [15] that occurs between the
two resonant spikes.

For these simulations, all methods performed their analysis
for 51 frequency points. For our field-based approach using
numerical eigenmode data, a single 3D FEM eigenmode
calculation was required which took ~320 seconds. This data
was then used to generate 51 Hamiltonian matrices whose
eigenvalues and eigenvectors were then computed to evaluate
the desired dispersive regime parameters, taking a total time of
~50 seconds. Hence, the total simulation time for our method
took ~6 minutes. For the EPR method, 51 3D FEM eigenmode
calculations were required which took ~320 minutes and the
corresponding 51 Hamiltonian generation and eigenproblem
solutions took ~1372 minutes, leading to a total simulation
time of over 28 hours.

Finally, we repeat a similar analysis but for computing
the ZZ-interaction rate between the two qubits. To lead to
a larger interaction strength, we fix one qubit frequency to
11.5 GHz by setting L; to 3.095nH while varying the other
qubit frequency from 11 to 12 GHz (L ; ranging from 3.374
to 2.850nH). We set the frequencies in this way so that
the ZZ-interaction can be facilitated primarily through the
TE 02 mode which has peaks at the locations of both qubits.
To validate our analytical solution, we compare against our
method using numerical EM eigenmodes and the impedance-
based method of [23], [24]. From a theoretical analysis [54],
we expect to see a similar shape to that seen in Fig. 10 for the
AC-Stark effect. As shown in Fig. 11, we do see this expected
behavior and also see that all our calculation approaches agree
well. Again, by improving the accuracy of the dipole antenna
capacitance value we see that the accuracy of our analytical
solution can be improved.

60 - i —— Numerical Eigenmode
i )
E ------ Analytical

40 + E — = Analytical with Corr. 3
|- Impedance Method -

ZZ-Interaction Rate (kHz)

11.4 11.6 11.8 12
Frequency (GHz)

11 11.2

Fig. 11. ZZ-interaction rate ¢ between two qubits as a function of one qubit
frequency computed using various methods, including an analytical calculation
using a corrected dipole capacitance.

V. CONCLUSION

In this work, a 3D geometry was designed that could
have all EM aspects needed in a quantum full-wave analy-
sis evaluated using analytical techniques from classical EM
theory. We first considered the analysis of an empty coaxial-
fed rectangular waveguide cavity and showed how an analyt-
ical solution could be developed using quantum input-output
theory. We then used this solution to calculate HOM inter-
ference curves, validating our approach by comparing it to a
similar approach using numerical EM eigenmodes. Following
this, we developed an analytical solution for a rectangular
waveguide cavity with multiple transmon qubits embedded
inside it. We validated our approach by computing key system
parameters related to controlling qubits and compared them
to our approach using numerical EM eigenmodes, as well
as the independent EPR and impedance-based methods. This
calculation also showed that our field-based formalism can
be substantially more efficient than the EPR method in many
commonly occurring situations.

Future work can improve the accuracy of our analytical
quantum full-wave solutions by using more sophisticated
classical EM techniques and expanding our solution approach
to other geometries. Our field-based formalism can also be
used to create a more complete numerical method to analyze
complex dynamical effects in cQED systems. Generalizing
our approach to consider quantized quasinormal modes with
complex eigenvalues could also provide an elegant approach
to include dissipative effects into our analysis [55], [56].

APPENDIX A
SECOND-ORDER CORRELATION FUNCTION

Here, we give the full expressions to evaluate the second-
order correlation function given in (48). The algebra of the
derivation is rather tedious, so we have omitted the details for
brevity. The key aspect is that the properties of the creation
and annihilation operators can be utilized to greatly reduce the
expressions until one can find that the individual expressions
simplify to (64) to (66), shown at the top of the next page.
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