
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 1

Analytical Quantum Full-Wave Solutions for a 3D

Circuit Quantum Electrodynamics System
Soomin Moon, Graduate Student Member, IEEE, Dong-Yeop Na, Member, IEEE,

and Thomas E. Roth, Member, IEEE

Abstract—High-fidelity general-purpose numerical methods
are increasingly needed to improve superconducting circuit
quantum information processor performance. One challenge in
developing such numerical methods is the lack of reference
data to validate them. To address this, we have designed a 3D
system where all electromagnetic properties needed in a quantum
analysis can be evaluated using analytical techniques from
classical electromagnetic theory. Here, we review the basics of our
field-based quantization method and then use these techniques to
create the first-ever analytical quantum full-wave solution for a
superconducting circuit quantum device. Specifically, we analyze
a coaxial-fed 3D waveguide cavity with and without transmon
quantum bits inside the cavity. We validate our analytical
solutions by comparing them to numerical methods in evaluating
single photon interference and computing key system parameters
related to controlling quantum bits. In the future, our analytical
solutions can be used to validate numerical methods, as well as
build intuition about important quantum effects in realistic 3D
devices.

Index Terms—Circuit quantum electrodynamics, transmon
qubit, quantum theory, microwave resonators, cavity perturba-
tion theory, and antenna theory.

I. INTRODUCTION

THE superconducting circuit platform is a leading ap-

proach for developing quantum computers [1], [2] and

other quantum information processing technologies [3]–[5]

that are expected to revolutionize many areas of science and

technology. Typically referred to as circuit quantum electrody-

namics (cQED) devices, these systems utilize the interactions

between microwave electromagnetic (EM) fields and supercon-

ducting circuits to generate and process quantum information.

Despite significant experimental progress, substantial improve-

ments are still needed for these technologies to be useful in

practice. For instance, quantum computers have achieved a

quantum advantage over classical supercomputers [1], [2], but

for such an advantage to be realized on realistic problems

requires improving the performance of most components while

massively scaling the number of quantum bits (qubits) in the
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system [6], [7]. To overcome these engineering challenges,

general-purpose and high-fidelity numerical analysis tools are

becoming increasingly important [8]–[11].

Unfortunately, there are currently only a few general-

purpose numerical methods available for modeling cQED

devices and they suffer from significant inefficiencies. Some of

the first general-purpose numerical approaches were blackbox

circuit quantization methods [8], [9], which use full-wave EM

simulations of all linear components to compute the impedance

matrix that is then used to build an equivalent Foster circuit

network. This equivalent circuit is then quantized in conjunc-

tion with the remaining nonlinear aspects of the qubits to

characterize the full system. In practice, these methods often

require an inconvenient trade-off between accuracy and user-

intensive curve-fitting procedures that can require performing

refined simulations around any resonant peaks in the multi-

port impedance matrix. More recently, the energy participation

ratio (EPR) quantization method [10] was introduced as an

alternative to blackbox circuit quantization. This approach

recasts the theoretical description of the system so that instead

of performing impedance matrix simulations the results of full-

wave EM eigenmode decompositions of the linear part of a

cQED device are used to quantize the system. As a result, this

method avoids user-intensive curve-fitting procedures.

Regardless of whether blackbox circuit or EPR quantization

is used, the manner in which the linear and nonlinear parts of

the qubits in the cQED system are subdivided requires the use

of many quantum states per resonant mode to reach numerical

convergence, as will be shown later. This severely limits

the size of cQED system that can be analyzed because the

dimension of the matrix needed to characterize the quantum

aspects of the system grows exponentially with respect to the

number of quantum states per resonant mode.

An alternative method to these quantization approaches

is our macroscopic cQED formalism proposed in [11] that

utilizes a field theory description of a system. In this approach,

key parameters in the quantum description of a system can also

be evaluated in terms of the results of a linear EM eigenmode

analysis. However, due to how the nonlinearity of qubits are

incorporated into this formalism, a much smaller number of

quantum states per mode can be used to reach numerical

convergence for an accurate solution.

However, for both EPR and our field-based quantization

methods, EM eigenmodes must be found numerically which

becomes computationally prohibitive for large devices. As

a result, there is a need for more efficient methods to be

formulated. Unfortunately, validating new numerical methods
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in this field is a challenge itself due to the lack of reference

data. In the case of measured data, the manufacturing precision

and presence of other uncontrolled factors in experiments

limits the achievable level of quantitative validation [10].

Further, access to measured data is much more limited than

for traditional EM applications. Another main avenue for val-

idation in typical computational electromagnetics applications

is the use of analytical solutions, such as the Mie series for

spherical scattering. However, a similar analytical solution is

not currently available for cQED systems. To help address this,

we have designed a simple geometry for which all field-based

aspects of the quantum Hamiltonian proposed in [11] can be

evaluated analytically using results from cavity perturbation

theory [12] and antenna theory [13]. In the future, these

analytical solutions can be used to validate new numerical

methods, as well as build intuition about important quantum

effects that occur in realistic cQED devices.

More specifically, we consider a system inspired by 3D

transmons [14]. These consist of a transmon qubit [15], [16]

formed by a small planar dipole antenna that is embedded

in a waveguide cavity. We consider a similar system with

and without transmon qubits inside a coaxially-fed rectangular

waveguide cavity to develop analytical solutions. For the

case without transmon qubits, we construct our analytical

solution in the context of quantum input-output theory [17]

to consider how different quantum input states are scattered

through the system. We use this solution to analyze the Hong-

Ou-Mandel (HOM) effect [18], [19] between single photons

scattering through the cavity system, which is often used to

qualitatively validate computational quantum electromagnetics

methods [20]–[22]. For the case with transmon qubits present,

we calculate key system parameters that are important for

the control and measurement of qubit states. We validate our

analytical solutions by comparing our results to our formalism

using numerical EM eigenmodes, to EPR quantization, or

other impedance-based analysis methods [23], [24].

Preliminary results on these analytical solutions were re-

ported in [25]–[27]. This work expands on [25], [26] by gen-

eralizing the analysis to a fully-quantum setting. We provide

additional details on the quantum input-output theory method,

discuss how to compute the relevant parameters analytically

for our geometry, and present how to use the quantum input-

output theory results to compute Hong-Ou-Mandel interfer-

ence curves. This work expands on [27] by providing more

details on the derivation of the analytical solution, considers

the multi-qubit case, and presents new numerical results.

The remainder of this work is organized in the following

manner. In Section II, we review our macroscopic cQED

approach in the context of the system geometries analyzed

here. Then, in Section III we discuss how to use quantum

input-output theory and traditional EM methods to analytically

model HOM interference effects in a port-fed cavity. Next,

we discuss in Section IV how to use traditional EM methods

to evaluate all the field-based parameters in our Hamiltonian

characterizing transmon qubits placed inside a closed cavity.

Results are presented at the ends of Sections III and IV to

validate the respective analytical solutions. Finally, we discuss

conclusions and future work in Section V.

II. MACROSCOPIC CIRCUIT QUANTUM

ELECTRODYNAMICS

Before presenting our analytical solutions, it is necessary to

discuss how to apply the macroscopic cQED formalism of [11]

to the systems considered in this work. In this approach, field

quantization is performed in the framework of macroscopic

quantum electrodynamics [28] where lossless, non-dispersive

media are considered in terms of macroscopic quantities

like permittivity rather than through microscopic descriptions

(introductions to field quantization in the macroscopic con-

text can be found in [29]–[31]). Further, as is common in

cQED systems, [11] treats properties of the qubits in terms

of macroscopic degrees of freedom rather than utilizing a

full microscopic description of the superconducting materials.

Finally, because cQED systems are operated at ~10 mK

with low-power microwave drives, many non-ideal or more

intricate properties of superconducting materials like London

penetration depth, quasiparticle excitation [32], and kinetic

inductance (to name a few) are also generally neglected [8],

[33]. For example, for the 3D cavities analyzed in [8], the

effect of the London penetration depth was estimated to shift

the ~8 GHz cavity resonant frequency by 10 kHz. Considering

this, we will neglect such minor corrections and non-ideal

effects here and treat all superconducting materials as perfect

electric conductors (PEC); however, these assumptions should

be reassessed when modeling real cQED devices.

In this section, we discuss two cases relevant to the analyti-

cal solutions developed here. In Section II-A, we consider the

quantum description of an empty cavity fed by waveguiding

ports. In Section II-B, we consider a transmon qubit located

inside a closed cavity. These cases can be combined for a more

complete description of a general system [11], but this then

requires a numerical solution to analyze specific dynamical

scenarios, which is outside of the scope of this work.

A. Port-Fed Empty Cavity

Here, we consider an empty cavity that is fed by multiple

waveguiding ports that are assumed to be semi-infinite in

length while maintaining a constant cross-sectional shape (fi-

nite length interfaces to other quantum devices can be handled

with modifications using, e.g., the SLH framework [34]). Sys-

tems with such semi-infinite ports can be most easily analyzed

using a mode-matching (or projector-based) field quantization

method [11], [35] that enables domain decomposition concepts

to be rigorously used in the quantization. The basic process

of this domain decomposition is illustrated in Fig. 1 for a

waveguide cavity fed by two coaxial ports.

In the mode-matching quantization approach, the system is

divided into smaller subdomains so that each can be treated

as a separate eigenvalue problem. To separate the subdomains,

artificial boundary conditions are introduced at the interface

of each set of subdomains. To maintain the hermiticity of

the subdomain eigenvalue problems, complementary PEC and

perfect magnetic conductor (PMC) conditions are assigned on

either side of the subdomain interface, as in Fig. 1(b). A

complete set of orthonormal eigenmodes can now be found

in each subdomain that are then quantized. To recover the



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 3

(a)

(b)

Fig. 1. Illustration of the subdomains for the mode-matching field quan-
tization. In (a), the reference planes and subdomains are identified, while
in (b) artificial boundaries have been introduced to separate the subdomain
eigenvalue problems.

complete system description, the dynamics of the quantum

operators in the subdomains are tied together through in-

teractions facilitated at the subdomain interfaces. Physically,

these interactions can be viewed as being due to the interplay

between equivalent electric or magnetic currents expanded

in terms of the eigenmodes from one subdomain and the

magnetic or electric vector potentials expanded in terms of

the eigenmodes from the other subdomain [11].

Now, we consider the mathematical description of this

procedure for the system shown in Fig. 1(b) that closes the

waveguide cavity region with PEC boundary conditions and

all ports with PMC boundary conditions. In each subdomain,

the electric field operator Ê must satisfy the wave equation

∇×∇× Ê(r, t) + µ0ε∂
2
t Ê(r, t) = 0, (1)

where we assume for simplicity an inhomogeneous permittiv-

ity ε(r) but that the permeability µ(r) = µ0 everywhere. This

wave equation can be solved using a separation of variables

approach to decompose the field operator into a spatial part

that is a vector field eigenmode and a temporal part that

is a quantum operator. In the cavity subdomain, the electric

and magnetic field operators can then be expressed using an

eigenmode expansion as

Êc(r, t) =
∑

k

√

ωk

ε0
q̂k(t)Ek(r), (2)

Ĥc(r, t) =
∑

k

√

ωk

µ0
p̂k(t)Hk(r), (3)

where Ek(r) and Hk(r) are the spatial eigenmode of the elec-

tric field and magnetic field associated with the eigenvalue ωk,

and q̂k and p̂k are canonically conjugate Hermitian quantum

operators with commutation relation [q̂k1
, p̂k2

] = i~δk1k2
(i is

the imaginary unit throughout this work). Note k here is an

integer index unrelated to the EM wavenumber. The spatial

eigenmodes are orthonormal in the sense of
∫∫∫

εr(r)Ek1
(r) ·Ek2

(r)dr = δk1k2
, (4)

where δk1k2
is a Kronecker delta and a similar relation to (4)

also holds for the Hk’s. Typically, the operators q̂k and p̂k are

combined to form bosonic annihliation and creation operators

for the kth field mode as

âk(t) =
1√
2~

(q̂k(t) + ip̂k(t)), (5)

â†k(t) =
1√
2~

(q̂k(t)− ip̂k(t)), (6)

respectively. When these operators act on a quantum state

they either decrease or increase the number of photons in

the kth field mode by one, depending on if the annihilation

or creation operator was applied [36]. Hence, these operators

are useful in understanding how individual quanta are manip-

ulated in quantum processes. Finally, these operators satisfy

[âk1
, â†k2

] = δk1k2
, which is often used to simplify expressions.

Using these operators, we can rewrite (2) and (3) as

Êc(r, t) =
∑

k

√

~ωk

2ε0

(

âk(t) + â†k(t)
)

Ek(r), (7)

Ĥc(r, t) = −i
∑

k

√

~ωk

2µ0

(

âk(t)− â†k(t)
)

Hk(r). (8)

For the fields in the pth coaxial port subdomain, there is

a continuum of modes due to its semi-infinite length so the

expansion becomes

Êp(r, t) =
∑

λ

∫ ∞

0

√

~ωλp

2ε0

(

âλp(ωλp, t)+â
†
λp(ωλp, t)

)

×Eλp(ωλp, r) dωλp, (9)

Ĥp(r, t) = −i
∑

λ

∫ ∞

0

√

~ωλp

2µ0

(

âλp(ωλp, t)−â†λp(ωλp, t)
)

×Hλp(ωλp, r) dωλp, (10)

where p indexes the coaxial subdomains and λ differentiates

between transverse mode profiles with corresponding eigen-

values ωλp. Further, âλp and â†λp have similar relationships

to those defined in (5) and (6). In the continuum case, these

operators have commutation relation

[âλ1p1
(ωλ1p1

, t), â†λ2p2
(ω′

λ2p2
, t)] = δλ1λ2

δp1p2

× δ(ωλ1p1
− ω′

λ2p2
). (11)

We can now consider the complete Hamiltonian for the

system in Fig. 1. This characterizes the total energy in the
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system, which for this case is given by

Ĥtot,CP = ĤC + ĤP + ĤCP , (12)

where

ĤC =
1

2

∫∫∫

(

εÊ2
c + µ0Ĥ

2
c

)

dV (13)

is the EM energy integrated over the cavity subdomain,

ĤP =
∑

p

1

2

∫∫∫

(

εpÊ
2
p + µ0Ĥ

2
p

)

dV (14)

is the EM energy integrated over the port subdomains, and

ĤCP = −
∑

p

∫∫

F̂c ·
(

Êp × ñp

)

dS (15)

corresponds to the interaction Hamiltonian describing the

coupling between the cavity and port fields. In (15), the surface

integration occurs over the interface between subdomains, ñp
is the unit normal pointing into the cavity, and

F̂c(r, t) = −
∑

k

√

~

2ωkµ0

(

âk(t) + â†k(t)
)

Hk(r) (16)

is the electric vector potential in the cavity region. As

mentioned previously, (15) can be viewed as the interaction

between an equivalent magnetic current and the electric vector

potential. If all cavity-side interfaces had not been closed with

a PEC condition in our mode matching quantization, we would

also need to include an interaction term between an equivalent

electric current and magnetic vector potential as in [11].

Using the eigenmode orthonormality, the spatial integrals in

(12) can be evaluated. Performing this, Ĥ simplifies to

Ĥtot,CP =
∑

k

~ωkâ
†
kâk

+
∑

λ,p

∫ ∞

0

~ωλpâ
†
λp(ωλp)âλp(ωλp)dωλp+

∑

k,p,λ

∫ ∞

0

~gk,λp
(

âk+â
†
k

)(

âλp(ωλp)+â
†
λp(ωλp)

)

dωλp, (17)

where

gk,λp =

∫∫

c0
2

√

ωλp

ωk

[

Hk · (Eλp × ñp)
]

dS. (18)

This Hamiltonian formalism has been validated in the clas-

sical regime in [25], [26] by computing scattering parameters

and comparing to traditional finite element simulations. This

also validates this quantum Hamiltonian since the field-based

aspects of it are identical to the classical case. In Section

III, equations of motion will be derived from (17) and subse-

quently solved using quantum input-output theory to develop

an analytical solution for the port-fed empty cavity case.

B. Closed Cavity and Qubit

Next, we consider the case with a transmon qubit embedded

into a closed cavity as shown in Fig. 2. Here, the transmon

qubit is formed by a Josephson junction and additional capaci-

tive load connected across the terminals of a small linear dipole

Fig. 2. Schematic illustration of a transmon embedded in a rectangular
waveguide cavity structure that is analytically solvable for all field-based
aspects of the quantum full-wave Hamiltonian analysis.

antenna. To keep our later analytical solution more amenable

to extensions, we retain the probes in our closed region that

would connect to coaxial ports, although these do not serve a

strictly necessary purpose here and can be omitted if desired.

The total Hamiltonian for Fig. 2 is then

Ĥtot,CT = ĤC + ĤT + ĤCT , (19)

where ĤC is the cavity energy given in (13), ĤT is the

transmon energy, and ĤCT is the interaction energy due to

the coupling of the transmon and cavity fields.

More specifically, the transmon Hamiltonian is

ĤT = 4EC n̂
2 − EJ cos ϕ̂, (20)

which from a circuit theory perspective corresponds to a linear

capacitor in parallel with a nonlinear inductor. Here, n̂ and

ϕ̂ are the qubit charge and phase operators that serve as

(dimensionless) canonically conjugate operators for the qubit

[15], [16]. Further, EC = e2/(2CΣ) is the charging energy of

the total qubit capacitance CΣ, where e is the electron charge.

We also have that the Josephson energy is EJ = (~/2e)2/LJ ,

where LJ is the Josephon inductance. For a transmon, the

energy parameters are designed such that EJ/EC � 1 to

minimize the qubit sensitivty to a common form of noise [15],

[16]. Meanwhile, the interaction Hamiltonian is

ĤCT = 2e

∫

Êc · d(r)n̂dr, (21)

where d parameterizes a line integration path so that its

integral with Êc computes the voltage seen by the Josephson

junction in the transmon qubit [11]. In the case of Fig. 2, this

would correspond to the voltage induced across the terminals

of the dipole forming the transmon qubit. If there is more than

one qubit in the cavity, one simply sums over independent

qubits in the expressions of (20) and (21) to generalize the

mathematical description to this case.

Now, we can simplify (19) by substituting in the cavity field

expressions from (7) and (8), using the EM eigenmode or-

thonormality to evaluate the spatial integrals, and re-expressing

the transmon operators in terms of the energy eigenstates of

ĤT denoted by |j〉 in Dirac bra-ket notation by simplifying

ÎĤtot,CT Î with identity operators Î =
∑

j |j〉〈j|. This gives

Ĥtot,CT =
∑

k

~ωkâ
†
kâk +

∑

j

~ωj |j〉〈j|

+
∑

k,j

(

~gk,j â
†
k|j〉〈j + 1|+ ~g∗k,j âk|j + 1〉〈j|

)

, (22)
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where ωj is the energy eigenvalue of (20) and we have also

applied the rotating wave approximation to the interaction

terms of ĤCT [15]. Further, gk,j is the coupling rate between

specific field and transmon modes given by

gk,j = 2e〈j|n̂|j + 1〉
√

ωk

2ε0~

∫

Ek(r) · d(r)dr. (23)

It should be noted that we have also applied the approximation

that the charge operator n̂ only allows transitions between

nearest-neighbor energy eigenstates for transmon qubits [15].

We will utilize this approximation to simplify our analytical

solution; however, if the more general interactions are needed

these can be computed analytically as well using the details of

[15] or numerically using a simple method like in [37], [38].

III. PORT-FED EMPTY CAVITY ANALYTICAL SOLUTION

In this section, we develop an analytical solution for an

empty cavity fed by ports. We discuss in Section III-A how

to apply quantum input-output theory to the Hamiltonian of

Section II-A. This results in a set of transfer functions that

we can compute using analytical methods from EM theory.

We then discuss in Section III-B how to use these transfer

functions to compute HOM interference curves. We present

results in Section III-C to validate the analytical solution.

A. Quantum Input-Output Theory

First, we need to simplify the mode-matching Hamiltonian

developed in Section II-A to make it analytically tractable

[17]. To do this, we apply the rotating wave approximation

and restrict our analysis to a single cavity mode (with anni-

hilation operator â0) whose resonance frequency we wish to

compute transfer functions nearby (here we will consider the

fundamental cavity mode) and the continuum of TEM modes

in the coaxial ports (with annihilation operators âp). Applying

these simplifications, the total Hamiltonian in (17) reduces to

Ĥ=~ω0â
†
0â0 +

∑

p

∫ ∞

0

~ωpâ
†
p(ωp)âp(ωp)dωp +

∑

p

∫ ∞

0

~gp
(

â†0âp(ωp)+â0â
†
p(ωp)

)

dωp, (24)

where gp is the restriction of (18) to the modes specified above

(the index λ has been omitted as it no longer serves a purpose).

Now, to begin the analysis, we need the equations of motion

for the cavity and port field operators. An equation of motion

for an arbitrary quantum operator X̂ can be found in the

Heisenberg picture of quantum mechanics as [36]

∂tX̂ =
1

i~
[X̂, Ĥ]. (25)

Using the commutators for the annihilation and creation op-

erators presented in Section II-A, we can determine that the

equations of motion for â0 and an âp are

∂tâ0(t) = −iω0â0(t)− i
∑

p

∫ ∞

−∞

gpâp(t, ωp)dωp, (26)

∂tâp(t, ωp) = −iωpâp(t, ωp)− igpâ0(t). (27)

In deriving these, we have also assumed that the port fields

are narrowband relative to their center frequency such that the

frequency integration range can be extended from 0 to −∞
(this will allow Fourier theory to be used later) [17].

The next step in quantum input-output theory is to integrate

the equations of motion in the port subdomains in terms of

initial and final conditions, which are taken to be well before

and well after the interaction with the cavity has occurred

so that they can be considered to be the “input” and “output”

fields, respectively. Considering this, the integration of the port

subdomain equations yields

âp(t, ωp) = e−iωp(t−t0)âp(t0, ωp)

− igp

∫ t

t0

e−iωp(t−t′)â0(t
′)dt′, for t > t0, (28)

âp(t, ωp) = e−iωp(t−t1)âp(t1, ωp)

+ igp

∫ t1

t

e−iωp(t−t′)â0(t
′)dt′, for t < t1, (29)

where t0 (t1) is the initial (final) condition time. These can

then be substituted into (26) to get

∂tâ0(t) = −iω0â0(t)

− i
∑

p

∫ ∞

−∞

gpe
−iωp(t−t0)âp(t0, ωp)dωp

−
∑

p

∫ ∞

−∞

g2p

∫ t

t0

e−iωp(t−t′)â0(t
′)dt′dωp, (30)

∂tâ0(t) = −iω0â0(t)

− i
∑

p

∫ ∞

−∞

gpe
−iωp(t−t1)âp(t1, ωp)dωp

+
∑

p

∫ ∞

−∞

g2p

∫ t1

t

e−iωp(t−t′)â0(t
′)dt′dωp. (31)

Next, we can apply standard Fourier transform identities to

simplify the final terms in (30) and (31). To do this, we first

make the Markov approximation by assuming that gp varies

slowly enough over the frequency range of interest (nominally,

the cavity resonance bandwidth) so that it can be factored out

of the frequency integrals [17]. Doing this and switching the

order of integration in the final term of (30), we get

∫ ∞

−∞

g2p

∫ t

t0

e−iωp(t−t′)â0(t
′)dt′dωp

≈ g2p(ω0)

∫ t

t0

[
∫ ∞

−∞

e−iωp(t−t′)dωp

]

â0(t
′)dt′. (32)

Noting the term inside the brackets equals 2πδ(t− t′), we get

∫ ∞

−∞

g2p

∫ t

t0

e−iωp(t−t′)â0(t
′)dt′dωp

≈ 2πg2p(ω0)

∫ t

t0

δ(t− t′)â0(t
′)dt′. (33)

Since the integration range in (33) only covers half of the
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Dirac delta, the Fourier theory result of

∫ t

t0

δ(t− t′)â0(t
′)dt′ =

∫ t1

t

δ(t− t′)â0(t
′)dt′

=
1

2
â0(t

′) for t0 < t < t1 (34)

can be used (where the identity involving t1 is used to

simplify the synonymous term in (31)) [17]. Combining these

simplifications, we finally have that (30) and (31) become

∂tâ0(t) = −iω0â0(t)

−
∑

p

(

i
√
2πgpâin,p(t) + πg2pâ0(t)

)

, (35)

∂tâ0(t) = −iω0â0(t)

−
∑

p

(

i
√
2πgpâout,p(t)− πg2pâ0(t)

)

(36)

where we have simplified the notation by defining âin,p(t) and

âout,p(t) as

âin,p(t) =
1√
2π

∫ ∞

−∞

e−iωp(t−t0)âp(t0, ωp)dωp, (37)

âout,p(t) =
1√
2π

∫ ∞

−∞

e−iωp(t−t1)ap(t1, ωp)dωp. (38)

At this point, it is convenient to exploit the linearity of

the system to perform a time-harmonic analysis. Taking the

Fourier transform of (35) and (36), we arrive at

− iωâ0(ω) = −iω0â0(ω)

−
∑

p

(i
√
2πgpâin,p(ω) + πg2pâ0(ω)), (39)

− iωâ0(ω) = −iω0â0(ω)

−
∑

p

(i
√
2πgpâout,p(ω)− πg2pâ0(ω)). (40)

Subtracting (40) from (39) results in what is referred to as a

“boundary condition” in quantum input-output theory at each

port [17], which in the frequency domain is

âin,p(ω)− âout,p(ω) = i
√
2πgpâ0(ω). (41)

To find the cavity transfer functions within this formalism,

we first eliminate the cavity mode in (39) by substituting into

this equation using (41) evaluated for the first port. This yields

âout,1(ω) = R1(ω)âin,1(ω) + T12(ω)âin,2(ω), (42)

R1(ω) =
π(g22 − g21)− i(ω − ω0)

π(g21 + g22)− i(ω − ω0)
, (43)

T12(ω) = − 2πg1g2
π(g21 + g22)− i(ω − ω0)

. (44)

A similar procedure for the second port yields

âout,2(ω) = R2(ω)âin,2(ω) + T21(ω)âin,1(ω), (45)

R2(ω) =
π(g21 − g22)− i(ω − ω0)

π(g21 + g22)− i(ω − ω0)
, (46)

and T21(ω) = T12(ω). These correspond to Lorentzian transfer

functions, which match what would be expected for a classical

analysis [25]. However, it must be noted that in the quantum

domain it is impossible to “turn off” the input at one of the

ports and retain a valid quantum description. This is a result

of vacuum fluctuations, which have important consequences

for describing the correct behavior of such a system when

considering input states that are not “sufficiently classical”

(such as few-photon inputs) [39]. We will use these transfer

functions in Section III-B to compute HOM interference

curves, which require this correct quantum treatment [19].

Before continuing, it is worth commenting on some of the

limitations of quantum input-output theory. Due to the approx-

imations, it is useful for analyzing “near-resonant” scattering

properties of high-Q cavities with all other modes located

at “far away” frequencies. Further, it should be recognized

that the “boundary condition” given in (41) is not a true

boundary condition; e.g., the single cavity and transverse

port mode approximations used here mean the tangential

EM fields are not continuous across the cavity-coaxial port

interface. We have carefully designed our system so that these

“pathological” aspects of quantum input-output theory are not

problematic here [25], [26], but as more complicated devices

are engineered these and other pathologies of quantum input-

output theory are expected to become increasingly problematic

so that more sophisticated methods will be needed.

We now turn to evaluating the quantum input-output transfer

functions using analytical methods from EM theory. For sim-

plicity, we will keep the length of the coaxial probes protruding

into the cavity to be small so that their impact can be accounted

for using microwave cavity perturbation theory for “shape

perturbations” [12]. In this case, the resonant frequency of the

dominant cavity mode including the effect of the perturbations

is evaluated as

ω0 ≈ ω′
0 + ω′

0

∫∫∫

∆V

(µ|H0|2 − ε|E0|2)dV
∫∫∫

V

(µ|H0|2 + ε|E0|2)dV
, (47)

where ω0 is the perturbed resonant frequency, ω′
0 is the

unperturbed resonant frequency (i.e., of the empty cavity), V is

the volume of the unperturbed cavity, ∆V is the volume of the

perturbation corresponding to the coaxial probes, E0 and H0

are the EM fields of the unperturbed cavity for the dominant

field mode, and µ and ε are the constitutive parameters of the

material inside the cavity (free space in the case considered

here). Here, we integrate the EM energy over the coaxial

probes by sampling the EM field at the tips of the coaxial

probes and multiplying by the volume of the probe [12], which

is reasonable for the dominant cavity mode as it does not vary

along the length of the coaxial probes.

We can also use the basic concept of cavity perturbation
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theory to evaluate g1 and g2, however, more care is needed

here on the model settings for this approximation to be reason-

able. In particular, we assume in the evaluation of (18) that we

can use the unperturbed magnetic field H0. Near the probe,

the magnetic field is obviously perturbed and the true field

mode Hk will deviate from the unperturbed field distribution.

However, we have found this change to the field distribution of

Hk to be very localized to the region immediately surrounding

the probe. As a result, if the integration region dS is taken over

a reasonably large radius the error from the perturbation theory

assumption can be kept at a tolerable level. Sample settings

to achieve this will be shown in Section III-C.

B. Hong-Ou-Mandel Interference

The HOM effect is a quantum optical phenomena commonly

used to test the quality of single photon sources [40], [41]. In

a HOM experiment, two different input EM fields are directed

at a 50/50 “beam splitter” that produces a 90◦ phase shift

between reflected and transmitted fields. If these EM fields

correspond to indistinguishable single photons (i.e., they have

identical properties except that they are incident on the beam

splitter from different ports/directions), then a photon bunching

effect occurs wherein the two photons will always exit one

of the two output ports of the beam splitter together. To

experimentally observe this effect, photon counting detectors

are placed in the two output ports of the beam splitter and

coincidences (i.e., when both photon detectors trigger) are

recorded. To generate a HOM interference curve, these exper-

iments are repeated with different delays between the incident

photons. If the incident photons are not indistinguishable

or the beam splitter does not possess the necessary ideal

properties, the quality of the HOM interference curve will

degrade. Although for microwave systems photon detectors are

an area of research [42]–[44], mature approaches still exist to

measure the necessary quantum correlations to observe HOM

interference in these systems [45], [46].

Mathematically, a HOM interference curve corresponds to

calculating the second-order correlation function given by [39]

g(2)(τ) =
A

BC
=

〈ψ|Ê(−)
1 (t0)Ê

(−)
2 (t0+τ)Ê

(+)
2 (t0+τ)Ê

(+)
1 (t0)|ψ〉

〈ψ|Ê(−)
1 (t0)Ê

(+)
1 (t0)|ψ〉〈ψ|Ê(−)

2 (t0+τ)Ê
(+)
2 (t0+τ)|ψ〉

,

(48)

where τ is the delay between incident photons, Ê
(±)
j (t) is

the positive (negative) frequency component of the electric

field operator in output port j evaluated at time t and |ψ〉 is

the initial joint quantum state of the system. If the two input

photons are indistinguishable, then g(2)(0) = 0. In general, a

value of g(2)(τ) < 0.5 is taken to be a signature of a quantum

EM field source, as typical classical states of EM fields cannot

achieve these values [47]–[49].

Now, we specialize our discussion to how to use the results

of Section III-A to compute a HOM interference curve. In

this case, our cavity acts as the “beam splitter” where the two

coaxial ports serve both as input and output ports. The electric

field operators in the output ports are then proportional to the

output creation and annihilation operators as

Ê
(+)
j (t) ∝ âout,j(t), Ê

(−)
j (t) ∝ â†out,j(t), (49)

where the remaining proportionality constants will cancel in

the evaluation of g(2) and so are omitted for simplicity. It

is now necessary to express âout,j(t) in terms of the input

bosonic operators using (42) and (45) since the quantum state

|ψ〉 will be specified in terms of the initial conditions of the

input photon states. Further, we must take the inverse Fourier

transform of these expressions to write our operators in the

time domain to evaluate the g(2) function. Again dropping

constant terms that will cancel, we can approximate the inverse

Fourier transform through a discrete summation as

âout,1(t) =
∑

m

[

R1(ωm)âin,1(ωm)

+ T12(ωm)âin,2(ωm)

]

e−iωmt, (50)

â†out,1(t) =
∑

m

[

R∗
1(ωm)â†in,1(ωm)

+ T ∗
12(ωm)â†in,2(ωm)

]

eiωmt, (51)

with a synonymous set of results also for the second port.

By inspecting (43), (44), and (46), it is seen that if g21 = g22
then the reflected and transmitted fields will exhibit a 90◦

phase shift and equal amplitude to one another (over a narrow

frequency band); which are the properties needed to create the

destructive interference between the corresponding quantum

amplitudes to observe a high-quality HOM interference curve.

Finally, we must specify the initial state of the system |ψ〉
to be able to compute the g(2) function. Here, we will only

consider unentangled single photon states in both input ports,

but other input states can also be analyzed (e.g., multi-photon

or thermal states). To describe a single photon state, we operate

on the vacuum state of a particular port with a linear expansion

of the input creation operators from that port. Considering this,

the joint input state is given by

|ψ〉 =
(

∑

m

Win,1(ωm) â†in,1(ωm)

)

|0〉1

⊗
(

∑

n

Win,2(ωn) â
†
in,2(ωn)

)

|0〉2, (52)

where |0〉j is the vacuum state in input port j and Win,j(ωm)
is a corresponding spectral weight that defines the temporal

shape of the input photons. These spectral weighting coeffi-

cients can be easily computed from the Fourier transform of

the desired temporal shape of the single photons. Here we

will take these to be modulated Gaussian functions, so that

the spectral weights are

Win,1(ω) =
1√
N
e−(σ1(ω−ωin,1))

2/2 eiωt0 , (53)
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Win,2(ω) =
1√
N
e−(σ2(ω−ωin,2))

2/2 eiω(t0+τ), (54)

where σj is the temporal standard deviation of the modulated

Gaussian pulse in port j and ωin,j is the corresponding center

frequency, and N is a normalization constant so that the overall

quantum state in (52) is normalized.

With all expressions appropriately defined, we can now

evaluate the g(2)(τ) function. Due to their size, the complete

expressions are given in (64) to (66) in Appendix A. The

key result is that the only geometry-dependent parameters

are the values of the transfer functions that were analyti-

cally computed using quantum input-output theory and cavity

perturbation theory in Section III-A. Hence, we can now

analytically calculate the HOM interference curves for this

port-fed empty cavity system.

C. Results

To compute results, we consider a geometry as in Fig. 1

that is composed of a rectangular waveguide cavity with two

coaxial lines coupled to it. The dimension of the cavity is

22.86×10.16×40mm3. The coaxial probes are located along

the center of the transverse dimension of the cavity, are both

offset 10mm from the ends of the cavity along the longitudinal

dimension, and have an inner conductor radius of 0.05mm.

Due to the symmetric positions of the coaxial probes and that

the magnetic field of the dominant cavity mode is an odd

function, we can conclude that g1 = −g2 for this system.

To begin validating our analytical formulation, we first

consider the error in the perturbation theory when the length

the inner conductor protrudes into the cavity is varied from

0.05mm to 1.5mm. As a reference, we perform an eigenmode

analysis of the cavity region including the perturbing coaxial

inner conductors using the finite element method (FEM). To

not bias the error calculation of the perturbation theory ap-

proximation due to numerical errors from FEM, we use as our

unperturbed resonant frequency the FEM-computed eigenvalue

for the cavity with no coaxial probes present in (47). We then

compute the relative error between the perturbation theory and

FEM resonant frequencies for the lowest five cavity modes

as a function of coaxial probe length (although not needed

here, higher-order modes will be included in the calculations in

Section IV). These results are shown in Fig. 3, where it is seen

that the relative error can be quite low for small perturbations.

Next, we perform a similar analysis, but for the computation

of the gj value. This depends on the overlap integral between

cavity and coaxial subdomains in the form of Hk ·
(

Ep× ñp

)

,

where Hk is the cavity magnetic field mode and Ep is the

TEM mode of the coaxial line. To evaluate this overlap inte-

gral, we apply a trapezoidal integration rule in the radial and

azimuthal directions over an annular region centered around

the inner conductor of the coaxial line. As mentioned earlier,

the accuracy of the perturbation theory approximation can be

improved if the surface the overlap integral is evaluated over

is made larger (i.e., increasing the outer radius of the coaxial

line). To show the impact of this, we compute the relative

error in the calculation of gj when using perturbation theory

or the eigenmodes from FEM in the cavity region for various

Fig. 3. Relative error in the perturbation theory calculation of the cavity
resonant frequency for the lowest five modes.

Fig. 4. Relative error in the perturbation theory calculation of gj for the
dominant cavity mode for different coaxial outer radii.

coaxial probe lengths. As seen in Fig. 4, by careful selection

of design parameters this error can also be kept small.

We now show how these errors in the perturbation theory

approach impact the calculation of a HOM interference curve

for various scenarios. To begin, we isolate the impact of the

error in the computation of gj by allowing the center frequen-

cies of the single photons to be independently optimized for

the Lorentzian transfer functions at various probe lengths for

the analytical and numerical eigenmode computations when

the coaxial outer radius is set to 2.5mm. The results of this

are shown in Fig. 5 for σ1 = σ2 = 2.5µs and 1µs. For

the narrower photon bandwidth shown in Fig. 5(a), it is seen

that the error in gj has a small impact on the overall HOM

interference curve and that high-quality interference is always

achieved. For the wider photon bandwidth shown in Fig. 5(b),

the quality of the HOM curve is degraded for shorter probe

lengths due to the higher Q of the resonator. As the probe

is made longer, the Q lowers and a higher-quality HOM

interference is then achieved again.

Next, we repeat these calculations but do not allow the

center frequencies of the single photons to be independently

optimized for the numerical eigenmode computations. Instead,

we use fixed parameters based off of the transfer functions

computed using perturbation theory. The results are shown in

Fig. 6, where it is seen that the error in the computation of
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(a)

(b)

Fig. 5. HOM interference curves with individually-optimized photon center
frequencies for analytical and numerical eigenmode calculations with different
coaxial probe lengths and a coaxial outer radius of 2.5mm. Standard deviation
of the Gaussian pulses are (a) σ1 = σ2 = 2.5µs and (b) σ1 = σ2 = 1µs.

the cavity resonant frequency quickly degrades the accuracy

of the analytical solution as the probe length is increased.

However, if the probe length is kept small, good agreement

is still achievable. Overall, a more sophisticated classical EM

analytical solution for the effect of the coaxial probe on the

cavity field modes could extend the range of parameters our

analytical quantum full-wave solution can be applied over.

IV. CLOSED CAVITY AND QUBIT ANALYTICAL SOLUTION

In this section, we develop an analytical solution for one or

more transmon qubits inside a closed rectangular waveguide

cavity. We discuss in Section IV-A how to use analytical meth-

ods from EM theory to evaluate the parameters comprising

the Hamiltonian discussed in Section II-B. Next, we discuss

in Section IV-B how to utilize a matrix representation of

the system Hamiltonian to compute experimentally-relevant

system parameters that are important for the control and

measurement of qubit states. We then present results in Section

IV-C to validate our analytical solution.

A. Analytical Evaluation of Hamiltonian Parameters

As mentioned previously, the basic system geometry we

will consider here corresponds to that shown in Fig. 2 which

(a)

(b)

Fig. 6. HOM interference curves with fixed single photon center frequencies
for analytical and numerical eigenmode calculations with different coaxial
probe lengths and a coaxial outer radius of 2.5mm. Standard deviation of
the Gaussian pulses are (a) σ1 = σ2 = 2.5µs and (b) σ1 = σ2 = 1µs.

is inspired by 3D transmons that have been studied experimen-

tally [14]. We have made the cavity a rectangular waveguide

and include one or two transmons inside made from small

linear dipole antennas so that typical EM and antenna theory

techniques can be leveraged in our analytical solution [13].

In our system, we keep the length of the dipoles electrically

small compared to the spatial variation of the relevant cavity

field modes. This makes the cavity field mode profiles appear

effectively like plane waves from the perspective of the dipoles

so that typical antenna theory formulas for free space operation

can be applied in the cavity, as will be substantiated in

Section IV-C. When considering two transmons, we keep the

dipoles of different transmons located far enough away from

each other to minimize mutual coupling that would invalidate

approximations made in our analytical solution.

We now consider evaluating all the parameters in the total

Hamiltonian of (22). To begin, we will compute the cavity

resonant frequency ωk using cavity perturbation theory. Based

on the field quantization process used for our analytical solu-

tion, we need to determine ωk in the absence of the transmons,

which leaves only the perturbation due to the coaxial probes

to be accounted for. Given this, ωk can be computed using the

simple generalization of (47) to the kth field mode.
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Next, the eigenfrequencies of the transmons ωj in (22) will

be considered. In typical scenarios, EJ is a given parameter

that depends on the microscopic structure of the Josephson

junction and is not influenced by the surrounding geometry.

Hence, the only other parameter needed to characterize a

particular transmon is EC , which is a function of the total

capacitance in parallel to the Josephson junction. Here, this is

CΣ = Cant + CL (55)

where Cant is the geometric capacitance of the dipole and CL

is the total load capacitance due the linear Josephson junction

capacitance and a lumped element placed across the dipole

terminals. This additional lumped capacitance is needed to

boost the total qubit capacitance so that the qubit operates

in the “transmon regime” where EJ/EC � 1. Since CL is a

given parameter in a design, the only capacitance that needs

to be determined from the geometry of the system is Cant.

For a small dipole, this capacitance can be computed using

Cant =
tan(k`/2)

120ω0(ln(`/(2r))− 1)
, (56)

where ` is the length of the dipole, r is the radius of the cylin-

der of the dipole, k is the wavenumber of the homogeneous

medium filling the cavity, and ω0 is the operating frequency

of the fundamental mode of the cavity [13]. With EC and EJ

determined, they can be used to calculate the eigenfrequencies

of the transmon either analytically [15] or numerically. In our

work, we have used a simple finite element method to compute

the eigenfrequencies of the transmon as described in [37], [38].

Also, note that Cant computed from (56) is the main error

source in our analytical solution. To improve the accuracy,

a more sophisticated analytical formula for Cant could be

developed or the capacitance could be estimated numerically

from a classical simulation of a dipole in free space.

Lastly, the coupling rate gk,j in (23) needs to be evaluated.

Beginning with the qubit-related properties, the transition

matrix element of the charge operator 〈j|n̂|j + 1〉 is needed.

This can be computed numerically as in [37], [38], or can be

approximated analytically as [15]

〈j|n̂|j + 1〉 ≈ −i
(

EJ

8EC

)1/4
√

j + 1

2
. (57)

The spatial integral in (23) also must be evaluated, and

corresponds to computing the voltage induced over the capac-

itance connected across the dipole terminals in the absence

of the nonlinear inductance of the Josephson junction. This

can be found using the theory of [50], [51], which rigorously

establishes the Thévinin equivalent circuit model of a receiving

wire antenna with an arbitrary load, as shown in Fig. 7. In

this approach, the amplitude of the equivalent voltage source

is given by

VRX =

∫ `/2

−`/2

fTX(r)Ek(r) · d(r)dr, (58)

where ` is the length of the dipole and fTX(r) is the

normalized current distribution of the wire antenna in trans-

mitting mode. For an electrically small dipole, the transmitting

Fig. 7. Schematic illustration of the Thévinin equivalent circuit model of
a receiving wire antenna for our case of a transmon formed with a load
capacitance connected across the dipole terminals.

mode current distribution can be approximated as a triangular

function [13]. If we assume that Ek does not vary over the

length of the small dipole antenna, we can evaluate (58) to get

VRX =
1

2
ˆ̀·Ek(r0)`, (59)

where ˆ̀ is a unit vector pointing along the length of the dipole

and r0 is the position at the center of the dipole. Then, using

the equivalent circuit in Fig. 7, the needed voltage induced

across the load capacitance is simply

Vt =
Cant

Cant + CL
VRX . (60)

B. Evaluation of Dispersive Regime System Parameters

With all the parameters in the Hamiltonian operator now

determined, a matrix representation of it can be found in

terms of a suitable basis [36]. This “Hamiltonian matrix”

can then be used in various calculations to compute different

parameters of interest. Here, we will focus on computing

system parameters needed for cQED devices operated in the

dispersive regime of cavity quantum electrodynamics, which

is the most common operating regime in practice [3]–[5].

This operating regime is achieved when the cavity resonant

frequencies ωk are strongly detuned from the qubit transition

frequencies ωj,j+1 = ωj+1 − ωj relative to the coupling

strength gk,j ; i.e., gk,j/|ωk−ωj,j′ | � 1. When this is the case,

there is low hybridization between the qubit and cavity modes

that allows sufficient qubit controllability without resulting

in excessive decay through effects like spontaneous emission

[52], [53] or unwanted dynamics due to effects like vacuum

Rabi oscillations [17].

Considering this, the particular experimentally-relevant pa-

rameters that we have computed to test our method are the

first qubit transition frequency ω01, the qubit anharmonicity

α = ω12 − ω01, the cavity resonant frequencies ωk, the AC-

Stark shift χ, and the ZZ-interaction rate ζ [4], [5]. The

AC-Stark shift characterizes the interaction strength between

a specific pair of qubit and cavity modes in the dispersive

regime, and is important for designing qubit state measurement

protocols. The ZZ-interaction rate is similar, but describes the

dispersive coupling strength between a pair of qubit modes,

and is important for designing multi-qubit gates (but also
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contributes to deleterious quantum crosstalk effects). Each

of these parameters can be computed in terms of low-lying

eigenvalues of the total system Hamiltonian given in (22), with

example formulas given later in this section for clarity.

To find these eigenvalues, we first compute the Hamiltonian

matrix for a particular system using a basis composed of

tensor product states between the “natural” basis of each

of the constituent parts of the system. For the qubit, this

corresponds to its free energy eigenstates that are solutions to

(20). Similarly, each cavity mode is expressed in terms of its

own eigenstates that correspond to a fixed number of photons

in the mode (typically referred to as Fock states). The matrix

representation of Ĥ is then found by evaluating

Hmn = 〈m|Ĥ|n〉, (61)

where Hmn is the element in the mth row and nth column of

the Hamiltonian matrix and |m〉 and |n〉 are two states of the

tensor product basis being used.

Now, many of the dispersive regime parameters of interest

can be immediately deduced from the eigenvalues of the

Hamiltonian matrix, but the calculations of χ and ζ require

slightly more processing. To be concrete in our discussion,

assume that we are considering a simulation with two qubit

and two cavity modes. In the dispersive regime, the low

amount of mode hybridization makes it possible to use the

same labeling of our original basis states for the eigenvectors

of the coupled system. We can then denote a particular

eigenvalue of the Hamiltonian matrix as Eijk`, where all

subscripts will take on integer values denoting the number

of photons in a particular mode and the ordering is such

that i (j) corresponds to the first (second) qubit mode and

k (`) corresponds to the first (second) cavity mode. One can

then inspect the effective dispersive regime Hamiltonian of the

complete system to determine procedures for computing χ or

ζ between particular sets of modes. For instance, to compute

the AC-Stark shift due to the first qubit mode on the first cavity

mode, we would need to populate both of these modes and

then subtract out the energies due to the individual excitation

energies. Mathematically, this is

χ = E1010 − E1000 − E0010 − E0000, (62)

where we also subtract out E0000 so that our effective ground

energy is zero. Similarly, we can compute the ZZ-interaction

rate between the two qubit modes as

ζ = E1100 − E1000 − E0100 − E0000. (63)

These formulas can be adjusted easily to compute the χ or ζ
between other modes as needed.

In any calculation, it is imperative that a sufficiently large

basis is used to achieve numerically converged results for

the system parameters of interest. However, the size of the

Hamiltonian matrix grows exponentially as the number of

modes or number of quantum states per mode are increased.

For instance, if the same number of quantum states is used

irrespective of the type of mode (e.g., qubit or cavity), then

the Hamiltonian matrix will have dimension of MN where N
is the number of modes and M is the number of quantum

(a)

(b)

Fig. 8. Numerical convergence of the different computation methods for (a)
the qubit anharmonicity α and (b) the first qubit transition frequency ω01.
The reference solution for each computation method is its own results using
15 Fock states for each mode in the basis.

states per mode. Due to this exponential growth, being able to

achieve accurate numerical results with a lower value of M
is essential. As we will see in Section IV-C, our approach

will be able to use a much smaller value of M than the

EPR method, leading to an exponentially smaller Hamiltonian

matrix to achieve the same level of accuracy.

C. Results

To compute results, we consider a system geometry like

that illustrated in Fig. 2 that is composed of a rectangular

waveguide cavity with two coaxial probes and one or two

transmon qubits. The dimensions of the cavity and coaxial

probes are the same as those in Section III-C with the coaxial

probe length fixed to a value of 0.75mm. Each transmon

consists of a linear dipole antenna with length 1mm, radius

0.04mm, terminal gap size of 0.102mm, and is oriented along

the electric field direction of the dominant cavity modes. A

total load capacitance of CL = 50.34 fF is also always used

for each qubit. Further, the qubits are kept located at the central

plane of the cavity along its smallest dimension. Through

numerical experiments, we found that mutual coupling effects

had a negligible impact on the accuracy of our analytical

solution if the dipoles were separated by >2mm.

As an initial test, we consider the numerical convergence

of typical system parameters as a function of the number of

basis states used for the qubit and cavity modes when there is
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(a) (b)

(c)

Fig. 9. AC-Stark shift χ computed while moving the transmon over one
quadrant of the cross-sectional plane at a fixed vertical position in the cavity
center for (a) analytical, (b) numerical eigenmode, and (c) EPR solutions.

only one qubit present, located at the center of the cavity, and

only the first two cavity modes are included. For these tests,

the Josephson junction of the transmon has LJ = 9.4 nH.

Convergence plots are shown in Fig. 8 for α and ω01 computed

using three different methods. In particular, for our analytical

solution, our method but using numerical EM eigenmodes,

and the EPR method. The relative error is computed for each

method by comparing to the results of its own calculation

using 15 Fock states for each mode in the basis. From the

results, it is clear that the field-based approach described here

converges immediately with the lowest number of possible

Fock states while the EPR method requires a substantial

number of Fock states to converge.

We attribute our formulation’s quick convergence to explic-

itly incorporating the nonlinearity of the qubit in the analysis

of the qubit subsystem in formulating our Hamiltonian matrix.

In contrast, the EPR method treats the nonlinear effects as a

perturbation to the linear effects, which then requires a large

number of Fock states to be considered to achieve convergence

even in the properties of the lowest energy levels of the system.

Since the size of the Hamiltonian matrix grows exponentially

with the number of Fock states considered, achieving fast

numerical convergence is a key property.

Next, we show the effect of moving the transmon in the

cavity on χ in Fig. 9 when all methods use 8 Fock states

per mode. Due to the similarity in frequencies, we compute

the χ between the qubit and TE101 modes. Similar results

are seen for all methods, highlighting that the approximations

in our analytical solution do not break down so long as the

dipole is kept a few millimeters from the cavity walls. We

also summarize the relative error of all computed dispersive

regime parameters in Table I. Here, the system parameters are

averaged as a function of the transmon location in the cavity.

Relative errors are also computed between the methods as

compared to the numerical EM eigenmode solution, which are

shown in parentheses in Table I. Given the typical experimen-

TABLE I
AVERAGE SYSTEM PARAMETERS AND RELATIVE PERCENT ERRORS WITH

RESPECT TO THE NUMERICAL EIGENMODE DATA

System

Parameter

Numerical

Eigenmode
EPR

Analytical

Solution

ω01/2π (GHz) 6.44 6.43 (0.21) 6.39 (0.84)

ω1/2π (GHz) 7.55 7.55 (8.82e-5) 7.55 (1.5e-2)

ω2/2π (GHz) 9.96 9.96 (8.88e-5) 9.96 (2.6e-2)

α/2π (MHz) -379.00 -360.78 (-4.81) -371.72 (-1.92)

χ/2π (MHz) -0.025 -0.026 (-2.23) -0.028 (-10.38)

tal precision, the relative errors are all within reasonable ranges

[10]. The main error source in our analytical solution is due

to the dipole antenna capacitance computed from (56). With a

better capacitance estimation, the analytical solution accuracy

can be significantly improved, as will be shown shortly.

We now reconfigure the system to include two qubits that

are located in the central plane of the cavity and are positioned

underneath the coaxial probes. In these examples, we will

compute the AC-Stark shift and ZZ-interaction rate as a

function of one of the qubit frequencies by changing the

value of LJ while holding the other qubit’s parameters fixed.

Since our method does not explicitly include LJ ’s in our EM

eigenmode calculations, we only need to perform a single 3D

FEM eigenmode analysis. In contrast to this, the EPR method

includes LJ ’s directly in the EM eigenmode calculations,

and so requires running a new 3D FEM eigenmode analysis

for every frequency point. This is often inconvenient and

computationally costly; however, it does cause the qubits to

appear as resonant modes in the EM solver so that modeling

other devices with qubits directly capacitively coupled can

be easily done. Our method would require performing a

separate simulation to extract the coupling capacitances and

the addition of a simple direct qubit-qubit interaction term

in our Hamiltonian. Finally, to achieve acceptable numerical

convergence we needed to use seven Fock states for each mode

in the EPR calculation, while our method only required three

Fock states per mode. In both calculations, we use two qubit

and three cavity modes.

We now sweep one qubit frequency from 7.3 to 8.3GHz by

varying it’s LJ from 7.420 to 5.806 nH. We keep the second

qubit fixed at a frequency of 6GHz by setting it’s LJ to

10.756 nH. We then compute the AC-Stark shift between the

qubit with varying frequency and the TE101 mode for each

method discussed in this work. These are compared in Fig.

10, where it is seen that good agreement is obtained across

the full frequency range. We also show that by improving

the accuracy of the dipole antenna capacitance the error in

our analytical solution can be greatly reduced. In particular,

here we use a capacitance value computed via FEM for

a dipole of the same characteristics located in free space

(this modifies the capacitance from 9.091 to 8.035 fF). In

the results of Fig. 10, we also see “resonant spikes” in the

AC-Stark shift that occur due to the qubit and cavity modes

becoming resonant with one another. When this occurs, the
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Fig. 10. AC-Stark shift χ between one qubit and the TE101 mode as a
function of qubit frequency using various methods, including an analytical
calculation using a corrected dipole capacitance.

dispersive regime approximations break down and the data can

no longer be safely interpreted as an AC-Stark shift (gaps in

the curves are due to this making identification of eigenvalues

to calculate χ unreliable). However, nearby these resonant

spikes do correspond to useful operating regimes, such as the

“straddling regime” discussed in [15] that occurs between the

two resonant spikes.

For these simulations, all methods performed their analysis

for 51 frequency points. For our field-based approach using

numerical eigenmode data, a single 3D FEM eigenmode

calculation was required which took ~320 seconds. This data

was then used to generate 51 Hamiltonian matrices whose

eigenvalues and eigenvectors were then computed to evaluate

the desired dispersive regime parameters, taking a total time of
~50 seconds. Hence, the total simulation time for our method

took ~6 minutes. For the EPR method, 51 3D FEM eigenmode

calculations were required which took ~320 minutes and the

corresponding 51 Hamiltonian generation and eigenproblem

solutions took ~1372 minutes, leading to a total simulation

time of over 28 hours.

Finally, we repeat a similar analysis but for computing

the ZZ-interaction rate between the two qubits. To lead to

a larger interaction strength, we fix one qubit frequency to

11.5GHz by setting LJ to 3.095 nH while varying the other

qubit frequency from 11 to 12GHz (LJ ranging from 3.374
to 2.850 nH). We set the frequencies in this way so that

the ZZ-interaction can be facilitated primarily through the

TE102 mode which has peaks at the locations of both qubits.

To validate our analytical solution, we compare against our

method using numerical EM eigenmodes and the impedance-

based method of [23], [24]. From a theoretical analysis [54],

we expect to see a similar shape to that seen in Fig. 10 for the

AC-Stark effect. As shown in Fig. 11, we do see this expected

behavior and also see that all our calculation approaches agree

well. Again, by improving the accuracy of the dipole antenna

capacitance value we see that the accuracy of our analytical

solution can be improved.

Fig. 11. ZZ-interaction rate ζ between two qubits as a function of one qubit
frequency computed using various methods, including an analytical calculation
using a corrected dipole capacitance.

V. CONCLUSION

In this work, a 3D geometry was designed that could

have all EM aspects needed in a quantum full-wave analy-

sis evaluated using analytical techniques from classical EM

theory. We first considered the analysis of an empty coaxial-

fed rectangular waveguide cavity and showed how an analyt-

ical solution could be developed using quantum input-output

theory. We then used this solution to calculate HOM inter-

ference curves, validating our approach by comparing it to a

similar approach using numerical EM eigenmodes. Following

this, we developed an analytical solution for a rectangular

waveguide cavity with multiple transmon qubits embedded

inside it. We validated our approach by computing key system

parameters related to controlling qubits and compared them

to our approach using numerical EM eigenmodes, as well

as the independent EPR and impedance-based methods. This

calculation also showed that our field-based formalism can

be substantially more efficient than the EPR method in many

commonly occurring situations.

Future work can improve the accuracy of our analytical

quantum full-wave solutions by using more sophisticated

classical EM techniques and expanding our solution approach

to other geometries. Our field-based formalism can also be

used to create a more complete numerical method to analyze

complex dynamical effects in cQED systems. Generalizing

our approach to consider quantized quasinormal modes with

complex eigenvalues could also provide an elegant approach

to include dissipative effects into our analysis [55], [56].

APPENDIX A

SECOND-ORDER CORRELATION FUNCTION

Here, we give the full expressions to evaluate the second-

order correlation function given in (48). The algebra of the

derivation is rather tedious, so we have omitted the details for

brevity. The key aspect is that the properties of the creation

and annihilation operators can be utilized to greatly reduce the

expressions until one can find that the individual expressions

simplify to (64) to (66), shown at the top of the next page.
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A=
∑

m,n

(

W ∗
in,1(ωm)R∗

1(ωm)eiωmt0 W ∗
in,2(ωn)R

∗
2(ωn)e

iωn(t0+τ)+W ∗
in,1(ωm)T ∗

21(ωm)eiωm(t0+τ)W ∗
in,2(ωn)T

∗
12(ωn)e

iωnt0

)

×
∑

`,p

(

Win,1(ω`)R1(ω`)e
−iω`t0 Win,2(ωp)R2(ωp)e

−iωp(t0+τ) +Win,1(ωp)T21(ωp)e
−iωp(t0+τ)Win,2(ω`)T12(ω`)e

−iω`t0

)

(64)

B =

(

∑

m

Win,2(ωm)T12(ωm)e−iωmt0

)(

∑

n

W ∗
in,2(ωn)T

∗
12(ωn)e

iωnt0

)(

∑

`

|Win,1(ω`)|2
)

+

(

∑

m

Win,1(ωm)R1(ωm)e−iωmt0

)(

∑

n

W ∗
in,1(ωn)R

∗
1(ωn)e

iωnt0

)(

∑

`

|Win,2(ω`)|2
)

(65)

C =

(

∑

m

Win,1(ωm)T21(ωm)e−iωm(t0+τ)

)(

∑

n

W ∗
in,1(ωn)T

∗
21(ωn)e

iωn(t0+τ)

)(

∑

`

|Win,2(ω`)|2
)

+

(

∑

m

Win,2(ωm)R2(ωm)e−iωm(t0+τ)

)(

∑

n

W ∗
in,2(ωn)R

∗
2(ωn)e

iωn(t0+τ)

)(

∑

`

|Win,1(ω`)|2
)

(66)

REFERENCES

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, 2019.

[2] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung,
H. Deng, Y. Du, D. Fan et al., “Strong quantum computational advantage
using a superconducting quantum processor,” Physical Review Letters,
vol. 127, no. 18, p. 180501, 2021.

[3] X. Gu, A. F. Kockum, A. Miranowicz, Y.-X. Liu, and F. Nori, “Mi-
crowave photonics with superconducting quantum circuits,” Physics

Reports, vol. 718, pp. 1–102, 2017.

[4] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and
W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,”
Applied Physics Reviews, vol. 6, no. 2, p. 021318, 2019.

[5] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, “Circuit
quantum electrodynamics,” Reviews of Modern Physics, vol. 93, no. 2,
p. 025005, 2021.

[6] P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin,
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