
IDK Cascades for Time-Series Input Streams
Kunal Agrawal→ Sanjoy Baruah→ Alan Burns† Jinhao Zhao→

→Washington University in St. Louis, USA. Email: {kunal, baruah, jinhaoz}@wustl.edu
†The University of York, UK. Email: alan.burns@york.ac.uk

Abstract—An IDK classifier is a software component that at-

tempts to categorize each input provided to it into one of a fixed

set of classes, returning IDK (“I Don’t Know”) if it is unable to

do so with the required level of confidence. Several different IDK

classifiers may be available for the same classification problem,

each offering a different trade-off between execution duration

and the likelihood of successful classification. Algorithms have

been obtained for determining the order in which such classifiers

should be called such that the expected duration to successfully

classify an input is minimized – such an ordering of classifiers is

called an IDK cascade. Cascade-synthesis algorithms make the

assumption that each input to be classified is drawn from the

same underlying distribution. We derive runtime algorithms that

seek to further reduce the expected response time of IDK cascades

upon input sequences for which successive inputs are ‘similar’ in

the following sense: if a particular classifier successfully classifies

some input it is likely to also be able to classify the next input.

We evaluate the effectiveness of our algorithms in the context

of the algorithms using predictions framework by showing that

it significantly reduces expected response time when the desired

similarity between successive inputs exists, while suffering only

a minor increase in expected response time in the absence of

such similarity. We describe how our algorithm is able to learn

during runtime whether similarities exist (and if so, to what

degree) amongst its inputs.

I. INTRODUCTION

A classifier is a software component that classifies its input
as belonging to one of a predefined set of classes. Percep-
tion in autonomous mobile Cyber-Physical Systems (CPS)
increasingly relies on classifiers founded on Deep Learning
and related AI technologies [1]. Such perception requires
classifiers to make accurate real-time predictions when imple-
mented upon platforms with limited computational resources;
however, most current machine learning research emphasizes
accuracy over real-time considerations. We consequently have
classifiers that are highly accurate, but quite time-consuming
even upon simple inputs – e.g., it was shown [2] that a ten-
fold increase in classifier execution time yields only a marginal
improvement in prediction accuracy for much of the ImageNet
2012 benchmark [3].

IDK Cascades. IDK classifiers aim to strike a balance between
accuracy and timeliness by using slower advanced classifiers
only for more challenging cases. An IDK classifier can be
derived from any pre-existing base classifier: if the base
classifier fails to decide upon a classification with a confidence
level surpassing a specified confidence threshold, it instead
outputs a placeholder class labeled as IDK, signifying “I Don’t
Know.” Multiple distinct IDK classifiers may be trained for
a given classification problem, each with differing execution

times and probabilities of producing an actual class instead
of IDK. Wang et al. [2] proposed that such IDK classifiers be
organized into an IDK cascade: a linear sequence of classifiers
that is deployed as follows upon any input to be classified:

1) The first classifier in the sequence is invoked.
2) If it outputs a real class then the IDK cascade concludes

and the input is categorized under the identified class.
3) If, however, it outputs IDK, then the next classifier in the

IDK cascade is invoked, and the process repeats from step
2 above.

For use-cases where it is mandatory that each input must
always be classified with a real class, a deterministic classifier,
that returns a real class on all inputs, is placed as the final
component of an IDK cascade. (The deterministic classifier
being unable to classify an input would constitute a system
fault and may trigger a recovery mechanism.)

Recent research in the real-time systems community (e.g., [4]–
[7]) has studied the problem of synthesizing IDK cascades that
minimize the expected duration needed to obtain a real (i.e.,
non-IDK) classification, optionally within a specified latency
constraint. This prior work assumes a model for IDK classifiers
(which we describe in greater detail in Section II) that char-
acterizes each classifier with a probability of it successfully
classifying any given input. This model does not require the
different classifiers to be mutually independent with regards
to the probability of successful classification; it does however,
assume that for each individual classifier the probability of
successful classification is the same for each input (i.e., that
all inputs are drawn independently from the same underlying
probability distribution).

This work. Most mobile perception pipelines require that
sequences of readings [8] from sensors such as accelerometers,
cameras, and microphones [9], each be classified. It is rea-
sonable to hypothesize some dependence amongst successive
inputs in such time-series readings from a single sensor source.
Consider, for instance, a stream of frames captured by a
camera in a moving car, with each identified Region of
Interest (RoI) tracked individually across successive frames.
It is plausible that if a RoI is successfully classified by a
particular classifier, then that classifier can also classify the
same RoI in the following several frames until perhaps even-
tually failing because the object has moved too far away and
needs a more advanced classifier. Such potential dependencies
are, to our knowledge, not currently exploited when using
IDK classifier cascades, which always start out invoking the

83

2024 IEEE Real-Time Systems Symposium (RTSS)

2576-3172/24/$31.00 ©2024 IEEE
DOI 10.1109/RTSS62706.2024.00017

TABLE I
From [10]: Accuracy (normalized) versus execution duration tradeoff when

image resizing is used for visual machine perception. (Durations include the
time required to downsize an image.)

first classifier in the cascade and moving on through the
cascade until a non-IDK classification is returned. In this
paper, we propose run-time algorithms that exploit potential
dependencies between successive inputs of time-series data.
We show that our proposed algorithms further reduce the
expected duration to successful classification in the event that
such dependencies exist, while simultaneously guaranteeing to
not do too much worse than prior run-time algorithms (that
always start out invoking the first classifier in the cascade)
if the anticipated dependencies are absent. Specifically, we
characterize and formally define (Definition 2) a particular
kind of dependence that we hypothesize is widely present in
time-series sensor input streams, and derive algorithms that
are capable of exploiting such dependencies when present to
speed up expected classification duration, whilst guaranteeing
bounded degradation in the event the anticipated dependencies
are not present. Additionally, we propose and evaluate a
schema for learning the degree of dependence in an input
stream, and for adapting to dynamic changes in this degree of
dependence.

Organization. We start out in Section II with a discussion on
IDK cascades, briefly describing formal models and surveying
relevant prior work, and state the specific problem that is the
subject of this paper. We design an algorithm for exploiting
dependencies in Section III; in Section IV, we provide a
thorough formal characterization of this algorithm’s perfor-
mance both when the expected dependence is present and
when it is not. In Section V we propose a generalization of the
algorithm of Section III that enables us to make certain kinds
of QoS guarantees (that the original algorithm could not); more
importantly, we will see that it possesses properties that enable
us to use it to learn whether, and to what degree, dependencies
exist in the input stream. We exploit this feature to develop
a learning-based algorithm in Section VI. We conclude in
Section VII by placing this work within the larger context
of using learning-based components in safety-critical systems,
and suggesting some directions for future research.

II. BACKGROUND AND PROBLEM STATEMENT

As mentioned in Section I, IDK cascades have recently been
the subject of several studies in the real-time computing
community (see, e.g., [4]–[7], [11] — this list is by no means
exhaustive). Let us consider an illustrative example application
in order to motivate IDK cascades from a practical perspective:
the image resizing approach advocated by Hu et al. [10] for
enhancing efficiency in visual machine perception. Hu et al.
examined the tradeoff between execution duration and accu-
racy in image classification when the images may be down-
sized and classified using DNNs with smaller input sizes –
please see [10] for details. Some of their findings are presented
in Table I; from this table it can be seen, for instance, that
downsizing an image with original size 256→256 to 128→128
reduced the execution duration by more than a factor of two
(from 0.028 to 0.013) whilst causing only a small reduction in
accuracy from 1.00 to 0.985. For purposes of illustration, let
us suppose that the individual DNNs are retrained to output
IDK (rather than an erroneous class) when their confidence in
their classification is low, and that by so doing, we obtain four
different IDK classifiers for inputs of size 256→256, 128→128,
64→64, and 32→32 respectively, that have execution durations
of 0.028, 0.013, 0.008, and 0.004 respectively and normalized
probabilities of successful classification of 1.00, 0.985, 0.881,
and 0.673 respectively. Given a stream of images of original
size 256→256 to be classified, we could process each such
image through a cascade of these four IDK classifiers (after
appropriate downsizing as needed); by so doing, the expected
execution duration of a successful classification is(

0.004 +
(
0.008→ (1↑ 0.673)

)
+

(
0.013→ (1↑ 0.881)

)

+
(
0.028→ (1↑ 0.985)

))
= 8.583→ 10→3 (1)

which is smaller than the 0.028 (or 28 → 10→3) execution
duration of the classifier that uses the full-sized images.

Could one do better – reduce the expected execution duration
even further by perhaps removing one or more of the classifiers
from the cascade? For this particular example, it turns out that
one cannot; however if the initial images to be classified are of
size 128→128 (and so the second row of Table I is the relevant
one) we see that the cascade of all three classifiers yields an
expected execution duration equal to
(
0.004 +

(
0.008→ (1↑ 0.667)

)
+

(
0.013→ (1↑ 0.854)

)

= 8.562→ 10→3

whereas the cascade obtained by dropping the middle classifier
(the one for images of size 64→64) has a smaller expected
execution duration of

(
0.004 +

(
0.013→ (1↑ 0.667)

))
= 8.329→ 10→3

These examples serve to illustrate both that (i) IDK cascades
are useful in the sense that they have the potential to sig-
nificantly reduce expected execution duration; and (ii) it is

84

(K1,K2,K3)

(K1, K2,K3)

(K1,K2,K3)

(K1,K2,K3) (K1,K2, K3)

(K1, K2,K3)

(K1,K2,K3) (K1,K2, K3)

Fig. 1. (From [6].) The 2n disjoint regions in the probability space for three
IDK classifiers (n = 3) and one deterministic classifier. The blue, red, and
brown ellipses respectively denote the regions of the probability space where
the classifiers K1, K2, and K3 are successful (i.e., do not output IDK). The
enclosing rectangle denotes the region in which the deterministic classifier is
successful (i.e., all inputs). Each of the 23 = 8 disjoint regions into which the
probability space is partitioned by the three ellipses is labeled with a 3-tuple,
with Ki (Ki, respectively) denoting that the the IDK classifier Ki returns a
real class (resp. IDK) in this region.

not always obvious what the optimal cascade –the one with
minimum expected duration– is. As mentioned earlier, consid-
erable recent research in the real-time systems community has
addressed the latter of these questions; we briefly discuss this
prior research next, in Sections II-A and II-B.

A. A MODEL FOR IDK CLASSIFIERS

We now describe the formal model for IDK classifiers that has
previously been considered in the real-time scheduling litera-
ture. Let us suppose that we have n IDK classifiers denoted
K1,K2, . . . ,Kn, all for the same classification problem. We
assume that there is a probability Pi of each classifier Ki

successfully classifying any given input. The probabilistic be-
haviors of the different classifiers are not, in general, assumed
to be independent – the classifiers may exhibit various mutual
dependences between their behaviors. It is sometimes helpful
to visualize the probability space for the n IDK classifiers as a
Venn Diagram divided into 2n distinct regions. Each of these
regions corresponds to one of the 2n potential combinations
of the n individual classifiers returning either a real class or
IDK for an input, see Figure 1 (taken from [6]) for the case
of n = 3 classifiers. Abdelzaher et al. [4], [12] describe a
measurement-based methodology for estimating the probabil-
ity values associated with each of these regions, by conducting
profiling experiments using representative training data. This
methodology characterizes the collection of n IDK classifiers
by 2n probability values, one labeling each region of the Venn
diagram, as well as the WCET values C1, C2, . . . , Cn, Cn+1

with Ci denoting the worst-case execution duration of IDK
classifier Ki, 1 ↓ i ↓ n, and Cn+1 denoting the worst-case
execution duration of the deterministic classifier.

B. SYNTHESIZING IDK CASCADES

Algorithms have been derived for constructing IDK cascades
that minimize the expected duration required to achieve suc-
cessful classification, while optionally adhering to a specified

(K1,K2,K3)

(K1, K2,K3)(K1,K2,K3) (K1, K2,K3)

Fig. 2. Venn diagram for three contained IDK classifiers (plus one determin-
istic classifier). As in Figure 1, the blue, red, and brown ellipses respectively
denote the regions of the probability space where the classifiers K1, K2, and
K3 are successful (i.e., do not output IDK).

latency constraint. To our knowledge, the most general algo-
rithm for this purpose [4] has a worst-case running time of
O(4n) where n denotes the number of available IDK clas-
sifiers. More efficient algorithms have been obtained [5] for
the special case where the different available IDK classifiers
are a priori known to satisfy a particular property that we
will refer to here as the containment property – this paper
primarily restricts attention to this special case. (Containment
was called ‘full dependence’ in [5]; however, this causes
confusion with the notion of dependence amongst inputs.)
The classifiers in a contained collection of classifiers can be
strictly ordered from least to most powerful, such that any
input successfully classified by a particular classifier in the
collection is also successfully classified by all more powerful
classifiers (see Figure 2 for a Venn-diagram representation,
and to appreciate the rationale for the name “containment”
for this property). For synthesizing optimal IDK cascades
from a collection of contained classifiers, a polynomial-time
algorithm with O(n2) worst-case running time was derived
in [5], as was a pseudopolynomial one with worst-case running
time O(n2D) if a latency constraint D must also be satisfied.

A different aspect of IDK cascades was studied in [7]: what
if the underlying probabilities (of successful classification
by individual IDK classifiers) may have been incorrectly
estimated? Assuming this is a possibility, the Algorithms
Using Predictions framework [13]–[15] was applied to develop
algorithms that perform well when these probability estimates
are correct, while also being robust to incorrect estimates.

C. THE PROBLEM CONSIDERED

All the results discussed in Section II-B made the underlying
assumption that there is no dependence between different
inputs that are to be classified1 (equivalently, that each is
drawn independently from the same underlying probability

1Indeed, such non-use of potential dependencies is explicitly pointed out
by Abdelzaher et al. [4]: “This paper considers the use of IDK cascades as
a single-shot solution to the machine perception problem. Such solutions are
also viable for systems where inputs are generated recurrently, i.e. periodically
or sporadically, but no account is taken of the input data or results from
previous time frames, i.e. each machine perception or classification job is
[assumed to be] effectively independent.”

85

(explorative computations)
classification

(explorative)
classification

0

input

T

input

2T

input

time

Fig. 3. Inputs to be classified arrive at time-instants k · T for all k ↑ N. Upon successful classification, the determined class is immediately communicated
to the next stage of the perception pipeline; the remainder of the duration until the arrival of the next input may be used to perform speculative exploratory
computations aimed at speeding up classification of future inputs.

distribution). The main issue we investigate in this paper is
this: what if dependence between successive inputs is likely
(but not guaranteed to be present); and additionally, the precise
degree of such dependence is a priori unknown? We focus only
on the case of contained classifiers, in which each classifier in
a cascade is successively more powerful than the prior ones.

As in prior work, we assume that there is a stream of inputs
arriving (from, e.g., a sensor) at the classifier with successive
inputs exactly T time units apart – see Figure 3. Each input
must be classified before the next input arrives – we thus have
a hard deadline of time-duration T for successful classification.
Our performance objective is to reduce the expected duration
to classification, subject to this hard deadline always being
met.

We assume that we do not know, nor can precisely charac-
terize, the possible dependence between successive inputs in
the input stream.2 Hence, in our approach, we assume that
IDK cascades have already been pre-constructed exactly as
discussed in Section II-B.3 In particular, the construction of
IDK cascades assumes that the inputs are independent. In
this work, we demonstrate how one might adapt the use of
a cascade during runtime in order to exploit the presence of
dependencies to further optimize the expected runtime (still
subject to the hard deadline).

Abstractly, our runtime strategy works as follows. As stated
above, one input arrives each T time units. Hence at each
time-instant k · T for all k ↔ N, our run-time algorithm
chooses which classifiers in the cascade to execute, and in
what order, until a successful classification is obtained. When
the successful classification occurs, our algorithm immediately
reports the identified class; the lapsed duration between the
input’s arrival instant and this classification instant constitutes
the response time for this input (the reduction of which is our
performance objective). Once classification is complete, the
remainder of the time-interval [k · T, (k + 1) · T) is used by
the run-time algorithm for performing additional “exploratory”
computations that are aimed at reducing the expected duration
for classification of future inputs.

A design choice. Note that our run-time algorithm is designed
to optimize for expected response-time rather than the over-
all computation time (i.e., for computing the classification

2In Section VI we will explore avenues towards overcoming this assumption
by learning the degree of dependence during runtime.

3Since we are considering contained classifiers and have a hard deadline, we
use the pseudo-polynomial time algorithm from [5] to construct the cascade.

and additionally doing the exploration) – this was a design
choice on our part. By way of justification, we will see that
the explorative computations essentially consist of executing
some of the remaining classifiers upon the (already classified)
input; hence the total execution duration of classification +
exploration is guaranteed to not exceed the cumulative worst-
case execution duration of the entire cascade (which, by design
of the cascade, is guaranteed to not exceed T). The rationale
behind our design choice is that since the computing capacity
is anyway available, we may as well use it to possibly improve
future response times. (In Section VII we briefly discuss
alternative approaches in which there is also a cost associated
with exploration and one must trade off the cost of current
exploration versus future benefit.)

D. A MODEL FOR DEPENDENCE

Since our primary goal is to exploit dependences between
successive inputs in an input stream, let us define a quantitative
metric of such dependence. In order to precisely and clearly
define this metric, we first define a notion of equivalent inputs.
Definition 1 (equivalent inputs). Consider a time series ωx

def
=

↗x1, x2, x3 . . .↘ of inputs drawn from a distribution D and to be
classified by a cascade consisting of a set of classifiers S . We
say that two inputs in ωx are equivalent iff the same (sub)set
of classifiers in S can successfully classify both inputs (or
equivalently, the same (sub)set of classifiers return the class
IDK for both inputs).

Intuitively, two inputs are equivalent if they belong to the same
region in the Venn Diagram representations of the classifiers
as in Figures 1 and 2.

We now define the dependence parameter which defines the
probability that two successive inputs are equivalent.
Definition 2 (dependence parameter ε). Consider a time-
series stream of inputs ωx

def
= ↗x1, x2, x3 . . .↘, an underlying

probability distribution D and a cascade K constructed for D.
We say that ωx has dependence parameter ε iff it possesses the
property that for each t ≃ 1 the input xt+1 is

• equivalent to input xt with probability ε, and

• with probability (1 ↑ ε), drawn from the underlying prob-
ability distribution D.

Thus a small value of ε indicates little dependence between
successive inputs (ε = 0 implies that each input is indepen-
dently drawn from the underlying distribution D) whereas a

86

larger ε denotes greater dependence (if ε = 1 then all the
inputs are equivalent).

We point out that the value of the dependence parameter is
not used while constructing the cascade since we assume that
the cascade is preconstructed and assumed to be optimal with
respect to the expected execution time if the inputs are drawn
independently from the underlying probability distribution
D. (Thus, ε is a very different kind of parameter from
the probability estimates discussed in Section II-A, that are
estimated using the technique of Abdelzaher et al. [4], [12]
and subsequently explicitly used by the algorithms of [5]
to synthesize the IDK cascade.) This parameter, however, is
a characteristic property of the input stream which may be
unknown to us. Our algorithms do not explicitly use this
parameter and it is used only during the analysis of the
algorithms. In later sections, we show how this parameter
may be estimated during runtime and can be used to further
optimize our runtime algorithms.

Implication of ε on cascades for contained classifiers. In
this paper, we focus only on cascades constructed using a
set of contained classifiers. In these cascades, each successive
classifier is more powerful than the previous one — that is, it
can classify everything that the prior classifier could classify.
(For instance, if we consider the example in Figure 2, then
the cascade would consist of K1,K2,K3 in order or it might
choose to skip one of these, but would never put them out
of order.) Therefore, for these cascades, two equivalent inputs
are always successfully classified by an identical suffix of the
cascade.

III. AN ALGORITHM FOR EXPLOITING DEPENDENCIES

Let us suppose we have a stream of inputs that need to
be classified, and we have a collection of contained IDK
classifiers (i.e., a collection of IDK classifiers that can be
strictly ordered from least powerful to most powerful such
that any input successfully classified by a classifier is also
successfully classified by all more powerful classifiers — see
Figure 2) all trained to solve this classification problem. As
previously mentioned (Section II-B), an algorithm has been
derived in [5] to construct an optimal IDK cascade from such
a collection; we will use this prior algorithm to synthesize a
cascade that is guaranteed, by the results in [5], to be optimal
in the absence of dependencies between successive inputs. In
the remainder of this section, let

K
def
= ↗K1,K2, . . . ,KN ↘ (2)

denote this optimal cascade, with KN denoting the deter-
ministic classifier. Let Ci denote Ki’s WCET, and Pi the
probability that Ki does not return IDK upon a randomly-
drawn input. (Note that Ci→1 < Ci and Pi→1 < Pi for
each i, 1 < i ↓ N , and PN = 1, in any optimal cascade.)
For notational convenience, let (i) K0 denote a hypothetical
classifier that has WCET C0 = 0 and P0 = 0; and (ii) Pi = 1
for all i > N .

Algorithm 1: Dynamic (K = ↗K1,K2, . . . ,KN ↘)

1 b = 1 // Start executing the cascade here
2 for each input do

3 Execute classifiers Kb,Kb+1, . . . until Ki (i ≃ b)
classifies the input with a non-IDK class

4 output this non-IDK class
5 if (i == b) then // Try and improve b

6 Execute classifiers Kb→1,Kb→2, . . . until Ki

classifies the input as IDK
7 b = (i+ 1)// updating b

8 else

9 b = i

Exploiting dependencies. To understand the benefit of ex-
ploiting potential dependencies amongst successive inputs in
the input stream, let us revisit the image resizing scenario IDK
cascade considered in Section II (that was adapted from [10]).
If an object being tracked in an image has not changed much in
size between successive frames, then using a classifier trained
for a particular size that successfully classifies a particular
input image is likely to perform successful classifications upon
multiple successive inputs before eventually returning IDK.4
We had seen in Section II (Expression (1)) that the expected
duration for the IDK cascade constructed from the first row
of Table I to successfully classify an image is 8.583→ 10→3.
Let us assume that if a particular stage of the IDK cascade
constructed from the first row of Table I is the first to
successfully classify an image, then there is a 50% probability
that it will also successfully classify the following image; in
the presence of such dependencies, we will see in Example 1
that Algorithm 1, which we have designed to explicitly exploit
dependencies (when present), further reduces the expected
duration to successful classification to 7.896→ 10→3.

Run-time algorithm. We now describe – see Algorithm 1 –
how the cascade K of Expression (2) is used during run-time
once it has been synthesized by the algorithm in [5], in order
to exploit potential dependencies between successive inputs in
the input stream. (Note that this algorithm will not explicitly
use the dependence parameter ε.) For each input the first
classifier to be called is the classifier of minimum WCET that
was able to successfully classify the prior input – the index
of this classifier is stored in the variable b (initialized to one;
thus, classifier K1 is the first to attempt to classify the first
input). For each input, the time taken to execute lines 3–4
constitutes its response time, while the time taken to execute
lines 5–7 represent exploration (during which progressively
less powerful classifiers are executed until one that fails to
classify the input is encountered; the index of the next-most-
powerful classifier is then stored in variable b). (Observe that

4This is explained thus in [10, (p 171)]: “When the sampling rate of the
sensors is relatively high, there will be a large amount of redundancy between
frames. An object that appeared in the previous frame will likely also appear
in the current frame.”

87

exploration is not needed if i ⇐== b, i.e., Kb returned IDK,
since in that case classifier Ki is the classifier of minimum
WCET to successfully classify the input.)

A note on terminology: we refer to “normal” use of the
cascade – begin at classifier K1 on each input and continue
executing classifiers in sequence until a non-IDK classification
is obtained – as “static” to emphasize that the order of
execution of the classifiers is pre-determined when the cascade
is synthesized and is hence static at run-time, in contrast to the
more dynamic execution order of the classifiers in the cascade
in Algorithm 1. In the remainder of this manuscript we will
use the term “the static algorithm” to refer to such static use
of the cascade during runtime.

IV. ANALYSIS OF ALGORITHM 1

In this section we provide a multi-faceted characterization
of the performance of Algorithm 1. The analysis is framed
in terms of the dependence parameter ε — generally, the
algorithm performs better for larger values of ε, as is to be
expected. Lemma 1 below asserts that regardless of the value
of the dependence parameter (i.e., irrespective of whether
successive inputs have dependencies or not), each individual
input can continue to be modeled as being drawn from the
underlying distribution that was assumed by the algorithms
in [5] whilst constructing the optimal cascade:
Lemma 1. Consider an input stream ωx characterized by depen-
dence parameter ε drawn from some underlying probability
distribution. Each individual input xt in this input stream
may be modeled as being drawn from the same underlying
probability distribution.

Proof. This lemma is easily proved via induction. Observe
first, for the base case, that the first input x1 is drawn from the
underlying probability distribution. Assume, for an inductive
hypothesis, that input xt→1 is also drawn from the underlying
probability distribution. For the inductive step, we have two
possibilities for the input xt:

1) with probability ε, xt and xt→1 are equivalent. By the
inductive hypothesis, xt→1 is drawn from the underlying
probability distribution, and hence so is xt.

2) with probability (1 ↑ ε), xt is drawn independently from
the underlying probability distribution.

In either case, we conclude that xt may also be modeled as
being drawn from the underlying probability distribution. The
lemma follows.

We now introduce some notation —see Table II: for any
random variable (RV) X , let E[X] denote its expectation (i.e.,
its average value). Let RV Cstatic(K) represent the execution
duration (on a single input) of the static algorithm upon
the optimal cascade that was constructed using the algorithm
of [5]. Since the static algorithm will execute the classifier Ki

Cstatic(K)
RV denoting the execution duration of the cascade K upon
a single input under ‘normal’ use (i.e., by “the static
algorithm”)

Cdyn(K)
RV denoting the execution duration of the cascade K under
Algorithm 1 upon a single input

Cdyn-k(K, k)
RV denoting the execution duration of the cascade K under
Algorithm 2 upon a single input

TABLE II
Some Random Variables used in our analysis

in the optimal cascade for some input only if all the preceding
classifiers fail to successfully classify that input, we have

E[Cstatic(K)] =
N∑

i=1

(1↑ Pi→1)Ci (3)

by summing over the expected execution durations of all the
classifiers in the cascade.

Some additional notation (again see Table II): analogous
to Cstatic(K), let Cdyn(K) be a random variable denoting
the execution duration of Algorithm 1 upon a single input.
The following theorem identifies the relationship of expected
execution duration of Algorithm 1 upon each input in an input
stream to the dependence parameter of the input stream.
Theorem 1. When classifying a stream of inputs with depen-
dence parameter ε,

E[Cdyn(K)] =
N∑

i=1

[((
Pi ↑ P 2

i→1

)
↑ ε

(
Pi→1 ↑ P 2

i→1

))
· Ci

]

(4)

Proof. Consider some arbitrary input xt in the input stream
ωx that is characterized by dependence parameter ε. Let Kb

denote the classifier with minimum WCET to successfully
classify the previous input, xt→1. (Note that for each i,
1 ↓ i ↓ N , the probability that classifier Ki is this classifier
Kb is equal to (Pi ↑ Pi→1) — this follows from Lemma 1, and
the fact that the probability of a classifier Ki being the lowest-
indexed one to classify a randomly-drawn input is equal to
Pi↑Pi→1.) On input xt Algorithm 1 begins with classifier Kb.
As previously observed (Definition 2), there are two possible
cases:

Case 1. With probability ε, the dependence holds and Kb

is successful (returns a real class, not IDK). (Note, the
probability that Kb is the classifier with minimum WCET
to have successfully classified the previous input is equal to
(Pb ↑ Pb→1).)

Case 2. With probability (1 ↑ ε), there is no dependency
between xt and xt→1 and xt is randomly drawn from the
underlying distribution. Recall that Algorithm 1 executes
classifiers Kb,Kb+1, . . . , until a successful classification is

88

obtained. Hence in this case, the probability that the classifier
Ki must be executed in order to classify xt is equal to






0, if i < b
1, if i = b
(1↑ Pi→1), if i > b

which equals Pr{b = i}+ (1↑ Pi→1) · Pr{b < i}, or
(
Pi ↑ Pi→1

)
+
(
(1↑ Pi→1) · Pi→1

)

= Pi ↑ Pi→1 + Pi→1 ↑ P 2
i→1

= Pi ↑ P 2
i→1

Summing over the two cases, the probability that classifier Ki

must be executed in order to classify the input xt is equal to

ε ·

Pr{b=i}
︷ ︸︸ ︷
(Pi ↑ Pi→1)+(1↑ ε) · (Pi ↑ P 2

i→1)

= εPi ↑ εPi→1 + Pi +↑P 2
i→1 ↑ εPi + εP 2

i→1

= Pi ↑ εPi→1 ↑ (1↑ ε)P 2
i→1

= (Pi ↑ P 2
i→1)↑ ε(Pi→1 ↑ P 2

i→1)

and the theorem follows by summing, over all i, 1 ↓ i ↓ N ,
the product of classifier Ki’s WCET with this probability of
its being executed.

A. AN ILLUSTRATIVE EXAMPLE

We can use the results obtained above to evaluate the run-
time performance of Algorithm 1 upon any particular IDK
cascade; we now illustrate the process of performing such
evaluation. The analysis will be performed within the context
of the Algorithms Using Predictions framework [13]–[15], by
looking upon the claimed presence of dependencies in the
input stream as a prediction that may or may not be correct. We
begin with a very brief and informal primer on the Algorithms
Using Predictions framework (please see [13] for additional
details, or [16] for an introduction directed at a real-time
computing audience). Algorithms are evaluated within this
framework according to three characteristics5:

1) Consistency: When the prediction is accurate, the perfor-
mance of the algorithm is better than one that does not use
predictions. (Since our prediction is that the time-series
input stream exhibits dependencies, the static algorithm,
which ignores possible dependencies and always executes
the classifiers in sequence beginning at K1 until a non-IDK
classification is returned, is the obvious candidate for the
role of a good algorithm that does not use predictions.)

2) Robustness: When the prediction is inaccurate, the perfor-
mance of the algorithm is not much worse than that of an
algorithm that does not use predictions.

3) Smoothness: The performance of the algorithm does not
fall off drastically when the prediction has small errors:
“the algorithm interpolates gracefully between the robust
and consistent settings” [13].

5A fourth characteristic, learnability, is also considered – we defer discus-
sion on this to Section VI.

For any particular IDK cascade K, the Pi and Ci values are all
fixed and therefore Expression (4), the expected classification
duration E[Cdyn(K)] of Algorithm 1, can be written in the
form

(
A ↑ B ε

)
for non-negative constants A and B. When

E[Cdyn(K)] is plotted as a function of ε, this is a straight line
with negative slope (see the solid blue line in Figure 4 for
an example). We see from Expression (3) that E[Cstatic(K)],
the expected classification duration of the static algorithm, is
constant for a given cascade; hence, the ratio

ϑdyn(K,ε)
def
=

E[Cdyn(K)]

E[Cstatic(K)]
(5)

is also a straight line with negative slope. For any cascade
K ϑdyn(K, 1) can be looked upon as an indicator of the
consistency, and ϑdyn(K, 0) of the robustness, of Algorithm 1
when used to schedule that cascade at runtime, while its
smoothness is indicated by the slope of the straight line. We
illustrate on an example.
Example 1. Let us once again consider the IDK cascade
constructed from the first row of Table I (the image resizing
scenario from [10]), that was analyzed in Section II. Instantiat-
ing Expression (5) for this example, we’d already seen that the
denominator (i.e., expected duration for the static algorithm) is
8.583→10→3; it may be verified that the numerator evaluates to
(9.665↑3.538ε)→10→3; hence for this example IDK cascade
we have

ϑdyn(K,ε) =
9.665

8.583
↑

3.538

8.583
→ ε ⇒

(
1.126↑ 0.4122ω

)

and hence its consistency (when ε = 1) is ⇒ 0.714 while
its robustness (when ε = 0) is ⇒ 1.126, indicating that its
expected classification duration may be as small as 71.4% that
of the static algorithm when there is very high dependence in
the input stream, at a cost of perhaps a 12.6% increase in
expected classification duration when there is absolutely no
dependence whatsoever. Its smoothness is depicted graphically
in Figure 4 – it is visually evident from this figure that the
transition between the extremes of consistency and robustness
is indeed smooth.

Since the plot of a cascade’s expected classification duration as
a function of ε provides a graphic illustration of smoothness,
in the remainder of this manuscript we will refer to such plots
as smoothness curves.

B. WORST-CASE ANALYSIS

Example 1 illustrated how Algorithm 1, which has been
designed to exploit dependencies, may suffer a performance
degradation vis-à-vis the static algorithm in the absence of
such dependencies; the upper bound on this performance
degradation is given by its robustness ϑ(K, 0). Theorem 2
below establishes an upper bound of 2 on the value of
ϑ(K, 0) for any cascade, even upon input streams that are
carefully selected by a malevolent adversary to minimize the
effectiveness of Algorithm 1.

89

EXPECTED DURATION

DEPENDENCE PARAMETER ω 1(0, 0)

9.665

8.583

6.127

Fig. 4. Illustrating smoothness for Example 1: Expected execution duration
versus ω. The solid line is for Algorithm 1; the dashed one, for the static
algorithm.

Theorem 2. Consider any input stream ωx
def
= x1, x2, . . . , xT .

For each t, 1 ↓ t ↓ T , let Cdyn(K, xt) (Cstatic(K, xt),
respectively) denote the execution duration of Algorithm 1
(the static algorithm, resp.) in classifying the input xt.





T∑

t=1

Cdyn(K, xt)

T∑

t=1

Cstatic(K, xt)




↓ 2 (6)

Proof. As in the proof of Theorem 1, let Kb denote the classi-
fier with minimum WCET to successfully classify the previous
input, xt→1. Recall that Algorithm 1 begins with classifier
Kb on input xt, and continues executing the classifiers in
sequence until some classifier returns a successful (non-IDK)
classification. We consider two cases.

1) Input xt is successfully classified by Kb. Since xt→1

is, by definition of “b”, not successfully classified by
classifier Kb→1, Kb’s WCET term Cb must contribute to
Cstatic(K, xt→1).

2) Input xt is not successfully classified by Kb, and con-
sequently classifiers Kb,Kb+1, . . . are all executed. Each
such Ki’s WCET term Ci must contribute to Cstatic(K, xt).

We thus see that each WCET term contributing to Cdyn(K, xt)
must appear in at least one of Cstatic(K, xt) or Cstatic(K, xt→1).
We therefore conclude that

Cdyn(K, xt) ↓ Cstatic(K, xt) + Cstatic(K, xt→1),

and the theorem follows.

The upper bound of Theorem 2 assumes a malicious adversary
that carefully selects the inputs in order to maximally degrade
Algorithm 1’s performance. What if the inputs are instead
drawn from the underlying probability distributions that was
assumed whilst constructing the optimal cascade (using the
algorithm in [5])? The upper bound of Theorem 2 clearly con-
tinues to hold (since Algorithm 1’s performance on such input

Algorithm 2: Dynamic-k (K = ↗K1,K2, . . . ,KN ↘, k)

// k is the skip-back factor
1 b = 1 for each input do

2 Execute the classifiers in K in order starting at
Kmax(b→k,1), until some Ki classifies the input

3 output this non-IDK class
4 if (i == b) then // Try and improve b

5 Execute classifiers Kb→1,Kb→2, . . . until Ki

classifies the input as IDK
6 b = (i+ 1)

7 else

8 b = i

cannot be poorer than on adversarial input). The following
theorem shows that there are in fact IDK cascades for which
we can come arbitrarily close to reaching this upper bound.
Theorem 3. There exist IDK cascades for which the ratio of
Expression (6) is arbitrarily close to 2 upon an input stream
drawn from the underlying distribution that was assumed
whilst constructing the cascade.

Proof. Consider the following two-classifier cascade (recall
that K0 is a “dummy” classifier that was introduced for
notational convenience):

K0 K1 K2

Pi 0 (1↑ ϖ) 1
Ci 0 0 C2

Let us suppose that this IDK cascade encounters an in-
put stream exhibiting no dependencies (ε = 0). Since
the expected classification duration by Algorithm 1 when
the input stream exhibits no dependencies is seen to equalN

i=1

((
Pi ↑ P 2

i→1

)
· Ci

)
, (by setting ε ⇑ 0 in Expres-

sion (4)), whilst the expected duration by the static algorithm
is as given in Expression (3), their ratio is

N
i=1

((
Pi ↑ P 2

i→1

)
· Ci

)

N
i=1

(
(1↑ Pi→1)Ci

) (7)

For our IDK cascade, Expression (7) becomes

((1↑ ϖ)↑ 02) · 0 + (1↑ (1↑ ϖ)2) · C2

(1↑ 0) · 0 + (1↑ (1↑ ϖ)) · C2



=


ϖ(2↑ ϖ)

ϖ


= (2↑ ε)

which approaches 2 as ϖ ⇓ 0.

V. A GENERALIZED ALGORITHM

We have seen (Theorems 2 and 3 above) that Algorithm 1
may have expected classification duration as large as twice
that achieved by the static algorithm. This appears to be

90

a consequence of Algorithm 1 being quite aggressive in
seeking to exploit dependencies; we now investigate a natural
generalization of Algorithm 1, listed as Algorithm 2, that lets
us tune down the degree of aggression. It does so by accepting
an additional integer parameter k, 0 ↓ k ↓ N (here N is
the number of classifiers in the cascade), with smaller values
representing greater aggression. In fact, setting k ⇑ 0 yields
Algorithm 1 (and hence Algorithm 2 is a generalization of
Algorithm 1), and it may be verified that setting k ⇑ N causes
Algorithm 2 to behave as the static algorithm does.

The primary difference between Algorithm 2 and the prior
Algorithm 1 is that whereas Algorithm 1 attempts to classify
each input starting with the classifier of minimum WCET
that was able to successfully classify the prior input, the first
classifier called by Algorithm 2 upon each input is k positions
sooner in the cascade (or the beginning of the cascade if that
is fewer than k positions sooner). Intuitively, Algorithm 2 is
being more conservative than Algorithm 1 regarding depen-
dencies amongst successive inputs, in the sense that it starts
out closer to the start of the IDK cascade on each input
than Algorithm 2 does. We will now examine how this more
conservative approach impacts the performance of Algorithm 2
as compared to that of Algorithm 1.

Some additional notation (also added to Table II): let
Cdyn-k(K, k) be a random variable denoting the classifiction
duration of Algorithm 2 upon a single input, when the skip-
back factor is set equal to k. The following theorem is
analogous to Theorem 1 in that it exposes the dependence of
E[Cdyn-k(K, k)] upon the dependence parameter of the input
stream that it is tasked with classifying (its proof is similar to
that of Theorem 1, and is provided in the appendix):

Theorem 4. When classifying a stream of inputs with depen-
dence parameter ε,

E[Cdyn-k(ω, k)] =
N∑

i=1

((
Pi+k → Pi+k→1 Pi→1 → ε (Pi→1 → Pi+k→1 Pi→1)

)
Ci

)

(8)

(Recall the notational convention that P0
def
= 0 and Pi

def
= 1 for

all i > N .)

Worst-case analysis. Recall that Theorems 2 and 3 established
an upper bound of two on the ratio of the execution durations
of Algorithm 1 and the static algorithm upon an input stream,
regardless of whether the input stream is generated randomly
or by a malicious adversary. These bounds generalize in a
straightforward manner to Algorithm 2: it is easily shown that
for Algorithm 2 the RHS of Expression (6) becomes

(
k+2
k+1

)
,

and the proof of Theorem 3 can be adapted to show that
this upper bound also holds for some cascade upon randomly
generated input streams. We omit detailed proofs.

k E[Cdyn-k(K, k)] Best (ω = 1) Worst (ω = 0)

0 9.4417↓ 3.4567ω 5.9850 9.4417
1 8.7236↓ 0.8716ω 7.8520 8.7236
2 8.5346↓ 0.1266ω 8.4080 8.5346
3 8.5055↓ 0.0215ω 8.4840 8.5055
4 8.5000↓ 0.0000ω 8.5000 8.5000

TABLE III
SMOOTHNESS CURVES, AND BEST-/ WORST-CASE BEHAVIORS, FOR THE
CASCADE K OF EXAMPLE 1 ENHANCED WITH ADDITIONAL CLASSIFIER.

(ALL NUMBERS ARE ↔10→3 .)

A. ANALYSIS OF ALGORITHM 2

We now provide a brief analysis of Algorithm 2 from the per-
spective of the Algorithms With Predictions framework [13].
Recall (Section IV-A) that in this framework an algorithm
is characterized by its consistency in making good use of
correct predictions, its robustness to incorrect predictions, and
its smoothness in transitioning between the two extremes.

Let us start with smoothness. It is evident from Expression (8)
that for any given IDK cascade K and fixed integer k,
E[Cdyn-k(ϱ, k)] as a function of ε takes the form of a straight
line with negative slope (i.e.,

(
E[Cdyn-k(ϱ, k)] = A↑B ε

)
for

some non-negative constants A and B whose values depend
on K and k). Since the line is straight for each value of k, we
can conclude that smoothness holds for each value of k.

Turning next to robustness and consistency, observe that each i
in the summation on the RHS of Expression (8) contributes an
additive term

(
Pi→1 · (1↑ Pi+k→1) ·Ci

)
to the magnitude of

the slope of this straight line. Note that as k increases, Pi+k→1

becomes larger and hence (1↑ Pi+k→1) becomes smaller;
consequently, the value of B (the magnitude of the slope of the
straight line) decreases. That leads to the conclusion that for
larger values of k we will see smaller performance degradation
when the predicted dependencies are missing (is more robust
to mis-prediction), but conversely see smaller improvement
when dependencies are present (displays poorer consistency).

We illustrate upon an enhancement of our running example –
the IDK cascade of Example 1:
Example 2. In addition to all the IDK classifiers that were as-
sumed in Example 1 to be available to us, suppose that we had
another classifier Ki with Pi = 0.996 and Ci = 15. It turns
out that the optimal IDK cascade generated by the cascade-
synthesis algorithm of [5] includes all five classifiers6 in the
optimal cascade K, and E[Cstatic(K)] falls to 8.500 → 10→3

(from 8.583→ 10→3 for the four-classifier cascade considered
in Example 1).

We have instantiated Expression (8) for this cascade K for
k = 0, 1, 2, 3, and 4 – see Table III. From the table it can be
seen that when the predicted dependencies are strong (ε ⇓ 1),
smaller values of k exhibit smaller expected execution duration
– this represents consistency. On the other hand when the pre-

6Indeed, the parameters of the added classifier were carefully selected in
this contrived example in order to ensure that this is the case.

91

EXPECTED DURATION

DEPENDENCE PARAMETER ω ↑ 10

k = 0

k = 1

k = 2

k = 3
k = 4

k = 4 is best
k = 3 is best

k = 1
is best

k = 0 is best

Fig. 5. Illustrating learning: smoothness curves for the same cascade, for
different values of the skip-over factor k. Different smoothness curves are
“best” – offer minimum expected classification duration – over different ranges
of values of ω.

dicted dependencies are very weak or entirely absent (ε ⇓ 0),
larger values of k result in smaller expected execution duration
(and are thus more robust to mis-prediction).

Meeting robustness bounds. In addition to needing to meet
the hard deadline of T time units – the inter-arrival duration
between successive inputs – while processing each individual
input, our cascade may additionally be subject to a Quality
of Service (QoS) requirement: a need to guarantee that the
expected duration to successful classification not exceed some
specified bound.7 By appropriate application of Theorem 4,
Algorithm 2 is easily adapted to respect such bounds: we
would only consider values of k for which Expression (8),
when evaluated for ε ⇑ 0, does not fall below the specified
robustness bound. Continuing Example 2, let us suppose that
we are subject to a SLA requiring that expected execution
duration not exceed 9 → 10→3. From Table III, we learn that
k = 0 is unacceptable (since it would violate the SLA with
an expected classification duration of 9.4417 → 10→3 if the
anticipated dependencies are entirely absent: ε = 0); hence,
we can only call Algorithm 2 with k ≃ 1. If we anticipate
significant dependencies, we would choose k ⇑ 1, if we
expect that the input stream will have little to no dependencies,
we could choose k ⇑ 4 and essentially default to the static
algorithm.

VI. INCORPORATING LEARNING

In Section V-A we saw that for any cascade K, calling Algo-
rithm 2 with different values of k yields different smoothness
curves. In Figure 5 we have plotted the different smoothness
curves for a hypothetical cascade K, for k = 0 (the red line –

7Such statistical QoS requirements are frequently found in Service Level
Agreements (SLAs) between service providers and clients; although they may
not be safety-critical, failure to meet a SLA may have adverse consequences
in the form of penalties and reputation loss.

highest intercept on the y axis) through k = 4 (the horizontal
line: the larger the value of k, the lower its y-intercept).

As stated when defining it (Definition 2), the concept of the
dependence parameter ε was introduced for analysis purposes
only: it plays no role in either the cascade-synthesis algorithms
in [5] or our run-time Algorithms 1 and 2. But the observa-
tion, evident in Figure 5, that different curves may offer the
minimum expected classification duration for different ranges
of values of ε, suggests there it may be worth attempting to
learn ε’s value at run-time: if this value can be discovered, then
Algorithm 2 could be called with the corresponding value of
k that minimizes the expected classification duration.

We can learn ε’s value at run-time for a given cascade K in the
following manner. Prior to run-time, we first pre-compute the
“
(
A↑Bε

)
” representations of the smoothness curves for each

value of k, thereby obtaining the (mathematical equivalent of)
Figure 5 for K, and then choose an initial value for k as
previously discussed in Section V-A (to maximally exploit de-
pendencies subject to QoS robustness bounds). During runtime
we observe the algorithm’s behavior as discussed below over a
series of inputs – we will refer to the interval (equivalently, the
number of inputs in the interval) over which such observation
is done as an epoch, and use these observations to obtain an
estimate of ε’s true current value. If our smoothness curves
reveal that a different choice of k would yield a smaller
expected execution duration for this value of ε, then we change
k accordingly, and a new epoch commences.

Estimating ε’s true value. There are several ways, of varying
degrees of statistical sophistication and reliability, for estimat-
ing ε’s true current value during an epoch. We could simply
measure the average observed classification duration over the
epoch and then determine, from the smoothness curve for the
current value of k, the value of ε for which the expected
classification duration equals this average observed duration.8
For greater statistical accuracy, we can obtain a maximum
likelihood estimate9 of ε’s true value directly, rather than via
the expected classification duration. We could, for instance,
count the following over the epoch for each i, 1 ↓ i ↓ N :

1) Ai: the number of inputs xt for which the classifier Ki

is the minimum-WCET classifier to successfully classify

8Note that the slope of a smoothness curve determines its sensitivity
to detecting changes in the true value of ω from the observed average
classification duration (at one extreme, the smoothness curve for the static
algorithm – in Figure 5, the brown “k = 4” line – is completely horizontal
and hence the observed average classification duration yields no information
about the true underlying value of ω). The epoch size should reflect this: while
relatively small epochs may be adequate for small values of k, the epoch size
needs to be larger when k is larger and slopes, correspondingly smaller. (If
the slope is very small, one should occasionally “explore” with a smaller k
(larger slope) — the largest possible that satisfies robustness constraints —
for a small duration in order to check whether the current estimate of ω needs
updating.)

9The maximum likelihood estimate (MLE) of a parameter is the parameter
value whose probability of generating the observations is the greatest –
see, e.g., [17] for a tutorial introduction. Since discussion of fairly standard
statistical techniques is not the purpose of this paper we only give a very
high-level description of the MLE approach to estimating ω’s value here.

92

Dependencies: Pr{Ki executes} =






Pr{b ↔ [1, . . . , k + 1]} = Pk+1, i = 1
Pr{b ↔ [i, i+ 1, . . . , i+ k]} = Pi+k ↑ Pi→1, 2 ↓ i ↓ N ↑ k
Pr{b ↔ [i, i+ 1, . . . , N]} = 1↑ Pi→1, i > N ↑ k

No dependencies: Pr{Ki executes} =






Pr{b ↔ [1, . . . , k + 1]} = Pk+1, i = 1
Pr{b=i+k}

︷ ︸︸ ︷
Pi+k ↑ Pi+k→1 +

Pr{b<i+k}
︷ ︸︸ ︷
Pi+k→1 →

Pr{Ki→1 fails}
︷ ︸︸ ︷
(1↑ Pi→1) , 2 ↓ i ↓ N ↑ k

Pr{Ki→1 fails (since b < i)} = 1↑ Pi→1 i > N ↑ k

Fig. 6. Probability that a given classifier Ki executes in the presence/ absence of dependencies (see proof of Theorem 4)

both xt and xt→1.
2) Bi: the number of inputs xt for which the classifier Ki

is the minimum-WCET classifier to successfully classify
xt, but the minimum-WCET classifier to have successfully
classified xt→1 is not Ki.

Having obtained these Ai, Bi values, it is straightforward to
apply standard MLE techniques to estimate ε by constructing
the following log likelihood function for ε:

L(ωx;ε) =
#εx→1

t=1

Pr[xt+1|xt]

Define Qi =
(
ε+ (1↑ ε) · (Pi ↑ Pi→1)

)
, we also know that

Pr[xt+1|xt] =


Qxt , xt+1 = xt

(1↑Qxt) ·
Pxt+1→Pxt+1→1

1→(Pxt→Pxt→1)
, xt+1 ⇐= xt

Therefore, we can express L(ωx;ε) in terms of Ai’s and Bi’s
and ε. We then obtain the lambda value that maximizes the
log likelihood function, i.e., best explains the observed depen-
dencies, by setting ϑ

ϑωL(ε) equal to zero and solving for ε.
The associated confidence interval is obtained by determining
the Fisher information [18] of these observations, and an
epoch terminates (and the value of ε gets updated) when the
measured confidence exceeds a pre-specified threshold (e.g.,
95%); a new epoch commences.

VII. CONTEXT AND FUTURE RESEARCH DIRECTIONS

The real-time computing community has established a rich
body of results on the real-time properties of IDK cascades.
This prior work has all assumed that each input to be classified
is drawn from the same underlying distribution. However, an
important use-case for IDK cascades is perception, and many
mobile perception pipelines require that sequences of readings
obtained by some sensor each be classified. It is reasonable to
hypothesize some dependencies between successive inputs in
such time-series readings from a single sensor source. Hence
in this paper we have extended prior work to allow for the
exploitation of dependencies, if present, in the stream of inputs
that an IDK cascade is tasked with classifying.

Since IDK classifiers are inherently learning-based, it is
reasonable to apply recently-developed techniques from the

algorithmic AI community to their analysis. A recent paper [7]
had applied the Algorithms Using Predictions framework to
the analysis of IDK cascades; we have also done this, but in a
very different direction than in [7]: whereas [7] looked on the
probability parameters as predictions, here we instead consider
the presence and degree of dependence amongst successive
inputs as a prediction.

We have also explored an aspect of the Algorithms Using
Predictions framework that was not addressed in [7] – learn-
ing. In this we drew inspiration from another widely-studied
topic in algorithmic AI: reinforcement learning, whereby we
occasionally perform additional exploratory computations in
the interest of perhaps improving future performance.10

Future work. There are multiple directions in which this work
could be carried further forward; here we list a couple that we
find particularly interesting:

1) It is not yet clear to us how to best extend the methods
and results of this paper to cascades built using classifiers
that do not possess the containment property (that the
individual classifiers can be strictly ordered from least
powerful to most powerful such that any input successfully
classified by a classifier is also successfully classified by all
more powerful classifiers). Indeed coming up with math-
ematically rigorous reasonable definitions of dependence
parameters, that generalize Definition 2 to cascades of such
classifiers, seems quite challenging and may require the
use of more deep-learning detailed approaches (such as
“feature vectors”) to define the degree of similarity between
inputs.

2) We are assuming hard-real-time environments in which
run-time algorithms reserve adequate computation to be
able to successfully classify each input even in the worst
case. In the event of early successful classification, the
entire remaining reserved computation is turned over for
exploration for potentially improving future performance.
It would be interesting to study algorithms for exploration
that do not get “free” use of all the unused capacity, by
coming up with cost measures for exploratory computation;
perhaps the technique of Explorable Uncertainty, that has
recently attracted attention in the algorithmic AI commu-

10We point out that we are not the first to have noticed the relationship
between reinforcement learning and IDK cascades – Srikishan et al. [19]
have independently also observed this.

93

nity (see, e.g., [20]), may help formalize the tradeoff of the
cost of current exploration versus potential future benefits.

3) As mentioned above, prior work [7] has considered the
probability characterization of IDK classifier behavior as a
prediction, while we have accepted that these are ground
truth and instead consider the presence and degree of
dependence amongst successive inputs as a prediction. In
future, it would be interesting to incorporate both forms of
predictions into a single holistic analysis.

Acknowledgements. This research was funded in part by the
US National Science Foundation (Grant Nos CNS-2141256
and CPS-2229290), and Innovate UK SCHEME project
(10065634). EPSRC Research Data Management: No new
primary data was created during this study.

APPENDIX

We now provide a brief proof of the claim made in Theorem 4
that the expected classification duration E[Cdyn-k(ϱ, k)] of
Algorithm 2 equals

N∑

i=1

((
Pi+k ↑ Pi+k→1 Pi→1 ↑ ε (Pi→1 ↑ Pi+k→1 Pi→1)

)
Ci

)

As in the proof of Theorem 1, we will express E[Cdyn-k] as a
sum of the contributions of each individual classifier Ki to the
expected classification duration, which is simply the product
of its WCET Ci and the probability that it executes. Now, the
total probability that any classifier executes equals

ε→ Pr{it executes when dependencies happen}
+(1↑ ε)→ Pr{it executes when dependencies do not happen}

We separately compute the probability that each classifier
executes in each of these two cases in Figure 6; the reason-
ing behind these computations is essentially identical to the
reasoning used in the proof of Theorem 1.

It remains to compute, for each classifier, the total probability
that it executes. For i = 1 and i > N↑k, these are easily seen
to equal Pk+1 and (1↑Pi→1) respectively. For 2 ↓ i ↓ N↑k,
we have

Pr{Ki executes}
= ε(Pi+k ↑ Pi+1)

+(1↑ ε)
(
Pi+k ↑ Pi+k→1 + Pi+k→1(1↑ Pi→1)

)

= ε(Pi+k ↑ Pi+1) + (1↑ ε)
(
Pi+k ↑ Pi+k→1 Pi→1)

)

=
(
Pi+k ↑ Pi+k→1 Pi→1

)
↑ ε

(
Pi→1 ↑ Pi+k→1 Pi→1

)
(9)

Recalling that we have adopted the notational conventions
P0

def
= 0 and Pi

def
= 1 for i > N , it may be verified that

instantiating Expression (9) with i ⇑ 1 yields Pk+1 and
instantiating it with any i > N ↑ k yields (1 ↑ Pi→1).
Theorem 4 follows.

REFERENCES

[1] L.-H. Wen and K.-H. Jo, “Deep learning-based perception systems for
autonomous driving: A comprehensive survey,” Neurocomputing, vol.
489, pp. 255–270, 2022. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0925231222003113

[2] X. Wang, Y. Luo, D. Crankshaw, A. Tumanov, F. Yu, and J. Gonzalez,
“IDK cascades: Fast deep learning by learning not to overthink,” in
Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial
Intelligence, UAI 2018, Monterey, California, USA, August 6-10, 2018,
A. Globerson and R. Silva, Eds. AUAI Press, 2018, pp. 580–590.
[Online]. Available: http://auai.org/uai2018/proceedings/papers/212.pdf

[3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. Berg, and
L. Fei-Fei, “Imagenet large scale visual recognition challenge,” Int. J.
Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015. [Online]. Available:
https://doi.org/10.1007/s11263-015-0816-y

[4] T. Abdelzaher, K. Agrawal, S. Baruah, A. Burns, R. I. Davis, Z. Guo,
and Y. Hu, “Scheduling IDK classifiers with arbitrary dependences
to minimize the expected time to successful classification,” Real-Time
Systems, vol. 59, no. 3, pp. 348–407, Sep. 2023.

[5] S. Baruah, A. Burns, R. Davis, and Y. Wu, “Optimally ordering IDK
classifiers subject to deadlines,” Real Time Syst., vol. 59, no. 1, pp. 1–34,
2023. [Online]. Available: https://doi.org/10.1007/s11241-022-09383-w

[6] S. Baruah, I. Bate, A. Burns, and R. Davis, “Optimal synthesis of fault-
tolerant IDK cascades for real-time classification,” in Proceedings of
the 30th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2024). IEEE, 2024.

[7] S. Baruah, A. Burns, and R. I. Davis, “Optimal synthesis of
robust IDK classifier cascades,” in 2023 International Conference on
Embedded Software, EMSOFT 2023, Hamburg, Germany, September
2023, C. Pagetti and A. Biondi, Eds. ACM, 2023. [Online]. Available:
https://doi.org/10.1145/3609129

[8] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “Deepsense:
A unified deep learning framework for time-series mobile sensing
data processing,” in Proceedings of the 26th International Conference
on World Wide Web, ser. WWW ’17. Republic and Canton
of Geneva, CHE: International World Wide Web Conferences
Steering Committee, 2017, p. 351–360. [Online]. Available: https:
//doi.org/10.1145/3038912.3052577

[9] D. Liu, T. F. Abdelzaher, T. Wang, Y. Hu, J. Li, S. Liu, M. Caesar,
D. Kalasapura, J. Bhattacharyya, N. Srour, J. Kim, G. Wang,
G. Kimberly, and S. Yao, “IoBT-OS: Optimizing the sensing-to-decision
loop for the Internet of Battlefield Things,” in 31st International
Conference on Computer Communications and Networks, ICCCN 2022,
Honolulu, HI, USA, July 25-28, 2022. IEEE, 2022, pp. 1–10. [Online].
Available: https://doi.org/10.1109/ICCCN54977.2022.9868920

[10] Y. Hu, S. Liu, T. Abdelzaher, M. Wigness, and P. David, “On exploring
image resizing for optimizing criticality-based machine perception,” in
2021 IEEE 27th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2021, pp. 169–178.

[11] S. Baruah, A. Burns, and Y. Wu, “Optimal synthesis of IDK-cascades,”
in RTNS’2021: 29th International Conference on Real-Time Networks
and Systems, Nantes, France, April 7-9, 2021, A. Queudet, I. Bate,
and G. Lipari, Eds. ACM, 2021, pp. 184–191. [Online]. Available:
https://doi.org/10.1145/3453417.3453425

[12] T. F. Abdelzaher, S. K. Baruah, I. Bate, A. Burns, R. I. Davis,
and Y. Hu, “Scheduling classifiers for real-time hazard perception
considering functional uncertainty,” in Proceedings of the 31st
International Conference on Real-Time Networks and Systems, RTNS
2023, Dortmund, Germany, June 7-8, 2023. ACM, 2023, pp. 143–154.
[Online]. Available: https://doi.org/10.1145/3575757.3593649

[13] M. Mitzenmacher and S. Vassilvitskii, “Algorithms with predictions,”
in Beyond the Worst-Case Analysis of Algorithms, T. Roughgarden, Ed.
Cambridge University Press, 2021, pp. 646–662.

[14] ——, “Algorithms with predictions,” Commun. ACM, vol. 65, no. 7, pp.
33–35, jun 2022. [Online]. Available: https://doi.org/10.1145/3528087

[15] A. Lindermayr and N. Megow, “Open source project: ALGORITHMS
WITH PREDICTIONS,” https://algorithms-with-predictions.github.io, ac-
cessed: 2023-08-02.

[16] K. Agrawal, S. Baruah, M. A. Bender, and A. Marchetti-Spaccamela,
“The Safe and Effective Use of Low-Assurance Predictions in Safety-
Critical Systems,” in 35th Euromicro Conference on Real-Time Systems
(ECRTS 2023), ser. Leibniz International Proceedings in Informatics

94

(LIPIcs), A. V. Papadopoulos, Ed., vol. 262. Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, pp. 3:1–3:19.
[Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2023/18032

[17] I. J. Myung, “Tutorial on maximum likelihood estimation,” Journal
of Mathematical Psychology, vol. 47, no. 1, pp. 90–100, 2003.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0022249602000287

[18] A. Ly, M. Marsman, J. Verhagen, R. Grasman, and E.-J. Wagenmakers,
“A tutorial on fisher information,” 2017.

[19] B. Srikishan, A. Tabassum, S. Allu, R. Kannan, and N. Muralidhar,
“Reinforcement learning as a parsimonious alternative to prediction
cascades: A case study on image segmentation,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 38, no. 13,
pp. 15 066–15 074, Mar. 2024. [Online]. Available: https://ojs.aaai.org/
index.php/AAAI/article/view/29428

[20] C. Dürr, T. Erlebach, N. Megow, and J. Meissner, “Scheduling with
Explorable Uncertainty,” in 9th Innovations in Theoretical Computer
Science Conference (ITCS 2018), ser. Leibniz International Proceedings
in Informatics (LIPIcs), vol. 94. Cambridge, United States: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Jan. 2018, pp. 30:1–30:14.
[Online]. Available: https://hal.science/hal-02074087

95

