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Abstract

Parameters characterizing safety critical systems are generally as-
signed very conservative values for reasons of safety assurance. Pro-
visioning computing resources on the basis of such conservatively
assigned parameter values can lead to system implementations that
make ine!cient use of platform resources during run time. We
address the problem of achieving more e!cient implementations
of sporadic task systems where, in addition to a conservatively
assigned value for the period parameter of each task, we also have
a more optimistic (i.e., larger), but perhaps incorrect, prediction
of this value. We devise an algorithm that executes the system
more e!ciently during runtime if the prediction is correct, without
compromising safety if it turns out to be incorrect.

CCS Concepts

• Computer systems organization → Real-time systems; •
Software and its engineering→ Real-time schedulability.
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1 Introduction

A sporadic task [10, 20, 23] typically models the timing aspects of
code execution triggered by external events. The task, denoted as 𝐿𝐿 ,
is de#ned by two parameters: the worst-case execution time (WCET)
𝑀𝐿 and the period 𝑁𝐿 . WCET represents the maximum duration for
code completion, while the period is the minimum time between
successive triggerings of task 𝐿𝐿 .

Estimating the minimum duration between triggering events in an
accurate manner can be challenging. Safety-critical systems address
this challenge by assigning a small, safe lower bound value to the
period parameter𝑁𝐿 . This conservative approach, aimed at ensuring
safety, often leads to platform resource under-utilization during
runtime when jobs are released much further apart than 𝑁𝐿 . The
algorithms community has recently begun studying how to make
use of lower-assurance information in a safe and e"ective manner.
Such lower-assurance information, called predictions, may be ob-
tained from a variety of sources including measurements, human
intuition, or machine learning. The Algorithms using Predictions
framework [17, 21, 22] (also known as learning-augmented algo-
rithms) outlines a systematic approach to safely and e"ectively use
predictions, increasing e!ciency when correct, without compromis-
ing correctness or causing excessive degradation when predictions
are incorrect. (see [1] for an introduction to this topic that is tar-
geted to the real-time computing community).

In this work we assume access to a prediction 𝑂𝐿 for each task 𝐿𝐿 ’s
period parameter. While 𝑂𝐿 is a more realistic estimate than𝑁𝐿 , there
is no complete assurance that successive jobs of 𝐿𝐿 won’t be released
sooner than 𝑂𝐿 time units apart. In other words, consecutive jobs
being released less than𝑁𝐿 time units apart represent a runtime fault
that would likely trigger fault-tolerance mechanisms. However,
successive jobs being released less than 𝑂𝐿 time units apart, although
believed to be unlikely, do not constitute a system fault and all
deadlines must still be guaranteed.

§. The problem considered here. We assume that we are given a
real-time system comprising a collection of several independent spo-
radic tasks, with each task 𝐿𝐿 characterized by the 3-tuple (𝑀𝐿 ,𝑁𝐿 , 𝑂𝐿 )
as discussed above, that are to execute upon a shared processor that
has a speci#ed maximum speed or computing capacity. We propose
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to schedule this system using a run-time scheduling algorithm
that

(1) starts out with the processor running at some speed 𝑃 that is
smaller than the maximum processor speed (i.e., 𝑃 < 1);

(2) monitors job-release time in order to determine whether suc-
cessive jobs of any task 𝐿𝐿 have been released sooner than 𝑂𝐿
time units apart; if so

(3) increases the processor speed up to its maximum (i.e., to speed
1), and remains at this maximum speed until an idle instant
occurs in the schedule at which point in time the processor
speed is again returned to 𝑃 (and we are back in Step (1) above
of the run-time scheduling algorithm).

The Algorithms using Predictions framework assumes that the pre-
diction is highly likely to be accurate (although as stated above,
there is no absolute guarantee). Consequently, we aim to assign
a small value to 𝑃 so as to achieve energy e!ciency, a reduction
in heat-dissipation costs, etc., during runtime. Simultaneously, we
must ensure that deadlines are consistently met even if the predic-
tions happen to be inaccurate. In essence, we seek to answer the
question:What is the minimum value of 𝑃 that ensures the runtime
algorithm always meets all job deadlines? Our main contribution
in this paper is an algorithm that computes this minimum speed
near-optimally (with the “nearness" to optimality characterized pre-
cisely – Lemma 4) in time pseudo-polynomial in the representation
of the provided task system.

§. Organization. The remainder of this paper is organized in the
following manner. In Section 2 we provide some background infor-
mation that is needed in the remainder of this paper. We formally
state the problem that we will be solving in Section 3, and develop
an algorithm for doing so in Section 4. In Section 5 we analyze
the performance of this algorithm in terms of both its asymptotic
runtime complexity and its distance from optimality. We conclude
in Section 6 with a summary of our #ndings, and brief mention of
some straightforward generalizations.

2 Background and Related Work

We start out providing the necessary background on algorithms
using predictions in Section 2.1, by brie$y and non-exhaustively
reviewing prior work on this subject. In Section 2.2 we review some
well-known results from real-time scheduling theory, concerning
the exact and approximate schedulability analysis of sporadic task
systems that are EDF-scheduled upon preemptive uniprocessor
platforms. In Section 2.3 we discuss some prior work that is related
to the research we are presenting here.

2.1 Algorithms Using Predictions

Safety-critical systems should have their correctness properties
veri#ed prior to deployment; such veri#cation is currently typically
done via some form of worst-case analysis. Worst-case analysis
tends to lead to very conservative system designs that make in-
e!cient use of computing resources almost all of the time. One
approach to overcoming such conservatism is to go “Beyond Worst-
Case Analysis" [25] by using predictions to guide an algorithm. Such

predictions may be drawn from a variety of sources, such as via
measurements based upon empirical observations (that, despite
perhaps being quite extensive and thorough, would not qualify as
high-assurance); being assigned by human experts based on their
expertise and intuition; or through the use of machine-learning
techniques. Since such predictions are often of uncertain prove-
nance, system design and analysis algorithms should not trust them
entirely. Informally speaking, an algorithm that uses predictions
to make decisions should be designed in such a manner that it
achieves the best of both worlds: providing improved performance
when the prediction is accurate, without su"ering too much of a
performance degradation, in comparison with algorithms that are
developed using traditional worst-case methods, when the predic-
tion is inaccurate. The algorithmic framework of algorithms using
predictions (see [21] for a comprehensive introduction) o"ers a sys-
tematic approach to doing so. Algorithms designed according to this
framework are characterized according to the following properties:

(1) C!"#$#%&"’(: When the predictions are accurate, the perfor-
mance of the algorithm is excellent, often near-optimal.

(2) R!)*#%"&##: When the predictions are inaccurate, the perfor-
mance of the algorithm is not much worse than that of an
algorithm that does not use predictions.

(3) S+!!%,"&##: The performance of the algorithm does not fall
o" drastically when the predictions have small errors: “the algo-
rithm interpolates gracefully between the robust and consistent
settings" [21].

(4) L&-."-)$/$%(: Good values of the predicted quantity can be
learnt over time.

In other words, the consistency of an algorithm that uses predic-
tions characterizes its performance when the predictor is perfectly
accurate, while robustness characterizes its performance guarantee
regardless of the quality of the predictions. (In this paper we focus
exclusively on obtaining algorithms that are capable of achieving
consistency and robustness, leaving consideration of smoothness
and learnability for future work.)

Predictions have proven to be a powerful tool for breaking pes-
simistic bounds in various scheduling problems with non-periodic
jobs. While the majority of research addresses uncertainties related
to unknown processing requirements or runtime behavior [5, 6, 8,
14, 16, 18, 24, 30], few works investigate predictions regarding the
online job arrival or deadlines [4, 15] or the processor speed [7, 19].
Only recently, the concept has been introduced to the real-time
systems community [1].

Notably, to our knowledge, there is no prior work exploring predic-
tions on task periods.

This paper aims implicitly at energy minimization via speed scaling
which has been considered for other prediction models and simple
jobs in [4, 8].

2.2 Three-Parameter Sporadic Task Systems

We now brie$y review some well-known prior results on real-time
scheduling (without period predictions – i.e., on task models that
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only assumed guaranteed bounds on both theWCET and the period
parameter), that we will be using in the remainder of this paper.

We have thus far talked of sporadic task systems in which each task
𝐿𝐿 is characterized by a WCET 𝑀𝐿 and a period parameter 𝑁𝐿 , with
the constraint that each job released by 𝐿𝐿 must complete execution
prior to the release of the next job. Such task systems are called
implicit-deadline sporadic task systems; in 3-parameter sporadic
task systems, task 𝐿𝐿 is additionally characterized by a relative-
deadline parameter 𝑄𝐿 , and the constraint is that each job released
by 𝐿𝐿 must complete execution within 𝑄𝐿 time units of its release
time. In this section we restrict attention to constrained-deadline
3-parameter sporadic systems ω, which satisfy the additional re-
striction that 𝑄𝐿 ↑ 𝑁𝐿 for all tasks 𝐿𝐿 ↓ ω. We further assume that∑
𝑀𝐿 ↓ω (𝑀𝐿/𝑁𝐿 ) ↑ 1, and examine the EDF-schedulability of ω upon

a unit-speed preemptive processor. It has been shown [10] that a
necessary and su!cient condition for ω to be EDF-schedulable is
that no deadline is missed in the (simulated) EDF scheduling of the
behavior of ω in which each 𝐿𝐿 ↓ ω generates a job at time-instant
0, and subsequent jobs as soon as legally permitted to do so (i.e., at
time-instants 𝑅 ·𝑁𝐿 for all 𝑅 ↓ N) — such a behavior is commonly
referred to as the synchronous arrival sequence (SAS) for ω. It was
further shown that this simulation may be terminated at the hyper-
period (the least common multiple of the period parameters of the
tasks in ω) — if no deadlines are missed by then, it is not possible
that a deadline miss will occur.

In practice, the idea contained in the paragraph above is usually im-
plemented via an abstraction called the demand bound function (dbf):
for any sporadic task 𝐿𝐿 = (𝑀𝐿 ,𝑄𝐿 ,𝑁𝐿 ) and any interval-duration
𝑆 ↔ 0, dbf𝐿 (𝑆) denotes the maximum possible cumulative execu-
tion requirement by jobs of task 𝐿𝐿 that both arrive in, and have
their deadlines within, any contiguous interval of duration 𝑆 . The
following formula for computing dbf𝐿 (𝑆) was derived in [10]:

dbf𝐿 (𝑆) = max
(⌊
𝑆 ↗ 𝑄𝐿

𝑁𝐿

⌋
+ 1, 0

)
↘𝑀𝐿 (1)

and it was shown that a necessary and su!cient condition for
a constrained-deadline 3-parameter sporadic task system ω to be
EDF-schedulable upon a preemptive unit-speed processor is that
the following condition should hold for all 𝑆 that correspond to
deadlines of jobs in the SAS that are no larger than the hyper-
period: ∑

𝑀𝐿 ↓ω
dbf𝐿 (𝑆) ↑ 𝑆 . (2)

For bounded-utilization sporadic task systems —systems ω satis-
fying the additional condition that

(∑
𝑀𝐿 ↓ω (𝑀𝐿/𝑁𝐿 )

)
↑ 𝑇 for some

pre-de#ned constant 𝑇 strictly smaller than 1— that are not EDF-
schedulable upon a preemptive unit-speed processor, however, it is
known [9, Theorem (3.1))] that Condition 2 is violated for some 𝑆
that lies within the #rst busy interval of the EDF schedule of the
SAS, and that the duration of this busy interval is upper-bounded
by ( 𝑇

1 ↗ 𝑇

)
↘max

𝑀𝐿 ↓ω
{𝑁𝐿 ↗ 𝑄𝐿 }. (3)

(We point out that this upper bound is pseudo-polynomial in the
representation of ω.)

2.2.1 The Albers-Slomka Approximation.

Since EDF schedulability veri#cation is known to be coNP-hard [13],
we should not expect to be able to develop polynomial-time algo-
rithms for doing EDF schedulability-veri#cation exactly — Condi-
tion 2 must in general be checked for exponentially many distinct
values of 𝑆 . However, polynomial-time su!cient (rather than exact)
EDF schedulability veri#cation algorithms are known; many of the
best ones are based upon an approximation proposed by Albers and
Slomka [3] to the demand bound function. In this approximation,
one #xes an integer value for a parameter 𝑈 ↓ N and de#nes the
approximation, dbf ≃𝑁 ⇐𝐿 , as follows:

dbf ≃𝑁 ⇐𝐿 (𝑆) =
{

dbf𝐿 (𝑆), if 𝑆 ↑ 𝑈 ↘𝑁𝐿 + 𝑄𝐿

𝑀𝐿 +
(
𝑂𝐿
𝑃𝐿

)
· (𝑆 ↗ 𝑄𝐿 ), otherwise (4)

(A quick glance at Figure 3 (a) may be helpful to the reader unfa-
miliar with this approximation.)

A testing set T (ω) is de#ned, comprising the deadlines of the
#rst (𝑈 + 1) jobs in the SAS that are released by each task. It was
shown [3] that task system ω is EDF schedulable upon a unit-speed
processor if the following analog of Condition 2:∑

𝑀𝐿 ↓ω
dbf ≃𝑁 ⇐𝐿 (𝑆) ↑ 𝑆 (5)

is satis#ed for all 𝑆 ↓ T (ω); since |T (ω) | ↑ (𝑈 + 1) ↘ |ω |, this
immediately yields a polynomial-time su!cient EDF-schedulability
test.

It has been shown [3] that

dbf𝐿 (𝑆) ↑ dbf ≃𝑁 ⇐𝐿 (𝑆) < dbf𝐿 (𝑆) +𝑀𝐿 . (6)

It follows from the de#nition of dbf ≃𝑁 ⇐𝐿 in Eq. 4 and the second
inequality in Eq. 6 above that

dbf ≃𝑁 ⇐𝐿 (𝑆) <
(
1 + 1

𝑈

)
↘ dbf𝐿 (𝑆) .

Combined with the exact test in Eq. 2 it is easily concluded that any
sporadic task system that is deemed to not be EDF schedulable using
the polynomial-time schedulability test in Eq. 5 is not EDF schedulable
upon a speed-

( 𝑁
𝑁+1

)
-processor.

Choosing a value for 𝑈. Since the running time of the schedula-
bility test depends on the size of the testing set, it is evident that
the smaller the value assigned to 𝑈, the more e!cient this test is.
On the other hand, the larger the value of 𝑈, the more accurate
the test in the following sense: if the test deems a task system to
not be schedulable on unit-speed processors, it is guaranteed to
actually not be so on processors that are closer in speed to one
for larger values of 𝑈. Albers and Slomka [3] point out that the
su!cient test described above can in fact be turned into an FPTAS
for approximating the required processor speed.

2.3 Mixed-Criticality Scheduling

In this paper, we are assuming that each periodic task’s period
parameter is given two values: a conservative one that is guaranteed
to be safe, and amore optimistic one that is very likely to be safe (but
is not guaranteed to be so). This is similar in spirit to much work
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on mixed-criticality scheduling [29] (see, e.g., [12] for a review) in
which tasks are characterized by multiple WCET parameter values
that are guaranteed to be accurate at di"erent assurance levels.

Much of mixed-criticality scheduling theory deals with a decision
problem (is a given system schedulable upon a particular processing
platform?) rather than an optimization problem such as the one we
are addressing (what is the minimum initial processor speed that
guarantees to never miss any deadlines?) in this paper. The standard
model of mixed-criticality scheduling is also to react to incorrect
assumptions (or mispredictions, in the terminology of this paper) by
reducing service, usually entirely, to some tasks that are considered
less critical. This is di"erent from the model considered here where
all tasks are considered equally important and all deadlines must
always be met.

An exception is the work on the mixed-criticality precise scheduling
model [11, 26–28]; in this work, the same question is asked as
the one we are posing here (i.e., determining the minimum initial
speed that guarantees that all jobs of all tasks will always meet
their deadlines in all low-criticality and high-criticality behaviors),
but for the standard mixed-criticality task model with each task
characterized by two WCET values.

3 System Model

We assume that we are given a sporadic task system

ω =
𝑄⋃
𝐿=1

{𝐿𝐿 = (𝑀𝐿 ,𝑁𝐿 , 𝑂𝐿 )}

where𝑀𝐿 and𝑁𝐿 are the WCET and (guaranteed safe) period respec-
tively of task 𝐿𝐿 , and 𝑂𝐿 ↔ 𝑁𝐿 is a prediction of its period. Each task
𝐿𝐿 ↓ ω releases a sequence of jobs which must be executed; it is
required that a job of 𝐿𝐿 must have completed execution before the
next job of 𝐿𝐿 is released. Observe that ω may generate di"erent
sets of jobs each time it is executed; we refer to each execution
as a behavior of the system. In consistent behaviors, successive
jobs of each task 𝐿𝐿 arrive ↔ 𝑂𝐿 time units apart. Any behavior in
which a pair of successive jobs of any 𝐿𝐿 ↓ ω arrive sooner than
𝑂𝐿 (but ↔ 𝑁𝐿 ) time units apart is not consistent, whereas behaviors
in which successive jobs of any 𝐿𝐿 ↓ ω arrive sooner than 𝑁𝐿 time
units apart are said to be faulty. We do not discuss faulty behaviors
any further in this paper, but assume that they are handled by a
separate fault-recovery mechanism that is invoked whenever a fault
is detected at run-time.

We seek to schedule ω upon a single preemptive processor with
maximum speed or computing capacity one: the processor can
complete one unit of execution in one time-unit.

Run-Time Algorithm. As discussed in Section 1, we will start out
running the processor with its speed set to 𝑃 < 1. Since all that can
be guaranteed is that successive jobs of 𝐿𝐿 will be released no sooner
than 𝑁𝐿 time-units apart (in non-faulty behaviors), we must ensure
that each job of 𝐿𝐿 completes its execution within𝑁𝐿 time units of its
release. Hence the systemmust initially be modeled as a constrained-
deadline sporadic task system comprising |ω | tasks, in which the
𝑉’th task has WCET 𝑀𝐿 , relative deadline 𝑁𝐿 , and period 𝑂𝐿 . If any

prediction violation is detected during run-time (i.e., successive
jobs of some task 𝐿𝐿 are released sooner than 𝑂𝐿 time-units apart),
we immediately increase the processor speed to 1.

Optimization criterion: As stated in Section 1, the implicit as-
sumption in the Algorithms using Predictions framework is that
predictions are very likely to be correct, in which case prediction
violations will never occur and the processor will always run at its
initially-set speed of 𝑃 . Our objective is therefore to optimize for
consistency and #nd the smallest value of 𝑃 for which the robust-
ness guarantee holds that no deadline misses will occur (regardless
of whether predictions hold or not).

Some additional terminology: we de#ne the scheduling window of
a job to denote the interval within which it must be scheduled in
order to guarantee that its deadline will be met under all possible
circumstances. Suppose that a job is released by 𝐿𝐿 at some time-
instant 𝑆𝑅 ; since all we know for certain is that its next job will not
be released prior to time-instant 𝑆𝑅 +𝑁𝐿 , its scheduling window is
equal to the time interval [𝑆𝑅, 𝑆𝑅 +𝑁𝐿 ).

4 An Algorithm for Determining the Initial
Processor Speed

Recall our task model from Section 3: we have an implicit-deadline
sporadic task system with guaranteed and predicted period esti-
mates

ω =
𝑄⋃
𝐿=1

{𝐿𝐿 = (𝑀𝐿 ,𝑁𝐿 , 𝑂𝐿 )}

where𝑀𝐿 and𝑁𝐿 are the WCET and (guaranteed safe) period respec-
tively of 𝐿𝐿 , and 𝑂𝐿 ↔ 𝑁𝐿 is a prediction of its period, that we propose
to schedule using the following run-time scheduling algorithm
using EDF.

• We will start out running the processor at some speed that is
smaller than the maximum processor speed.

• We will monitor job-release times, in order to determine whether
successive jobs of any task 𝐿𝐿 have been released sooner than
𝑂𝐿 time units apart. If this happens, we say that a prediction
failure has occurred; we will occasionally refer to this task as the
triggering task, and the instant at which the sooner-than-expected
job of the triggering task arrives as the triggering instant.

• At the triggering instant, we immediately begin running the
processor at its maximum speed, and remain at this maximum
speed until an idle instant occurs in the schedule. When this
happens the processor speed is again returned to the initial slower
speed.

(We point out that a nice feature of this run-time algorithm is its
simplicity, which allows for very e!cient implementation with
minimal run-time overhead. Notice that the scheduling deadlines
assigned to already-arrived jobs do not change at the triggering
instant, and hence no re-ordering of the run-time queue is needed
upon detection of a prediction failure.)

In the remainder of this section we will describe how to determine,
prior to run-time, the speed at which the processor is to initially
be run. We start out with a high-level overview: we will #rst
derive a necessary condition for a deadline miss for a given initial
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Algorithm 1: Computing the initial processor speed
1 Input: Task system ω, with each 𝐿𝐿 ↓ ω characterized by a three-tuple: 𝐿𝐿 = (𝑀𝐿 ,𝑁𝐿 , 𝑂𝐿 )
2 Output: The speed 𝑃𝑆 , 𝑃𝑆 < 1, at which the processor should initially be run
3 𝑃𝑆 ⇒ an initial value for the speed that ensures that fully-consistent behaviors are schedulable (see Section 5.2)
4 𝑊 ⇒ a pseudo-polynomial upper bound on the triggering instants that must be considered to discover a deadline miss (see Section 5.2)
5 for each 𝑆𝑇 ↓ {1, 2, . . . ,𝑊 } do // (Assumption: integer job arrivals)
6 Suppose that 𝑆𝑇 is the triggering instant
7 for each 𝐿𝑈 ↓ ω do
8 Suppose that 𝐿𝑈 is the triggering task
9 Compute a safe set 𝑋 of possible values for 𝑆𝑉 , such that a deadline miss must occur for one of these values of 𝑆𝑉 if any

deadline miss is to occur at all
10 for each 𝑆𝑉 ↓ 𝑋 do
11 Update 𝑃𝑆 to be the larger of its current value, and the value determined according to Equation 7:

𝑃𝑆 ⇒ max
-..
/
𝑃𝑆 ,

(∑
𝑀𝐿 ↓ω 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 )

)
↗ (𝑆𝑉 ↗ 𝑆𝑇 )

𝑆𝑇




12 end
13 end
14 end
15 return 𝑃𝑆

processor speed 𝑃𝑆 . By then negating this condition, we will obtain
a formula for assigning 𝑃𝑆 a value that guarantees no deadline miss.
(Later in Section 5, we will evaluate the e"ectiveness of this means
of assigning the initial processor speed by quantifying how far
removed it is from the lowest possible value.)

To derive a necessary condition for a deadline miss, let us suppose
that we start out at speed 𝑃𝑆 , and let 𝑆𝑉 denote the earliest time-
instant at which a deadline miss can possibly occur when ω is
executed using the run-time algorithm described above. Consider
some collection of jobs J of ω upon which this deadline miss at
𝑆𝑉 occurs. Let 𝑆𝑇 < 𝑆𝑉 denote the triggering instant – the (earliest)
time-instant at which a prediction failure occurred.1 Let 𝐿𝑈 ↓ ω
denote the triggering task: a job of 𝐿𝑈 was released at time-instant
𝑆𝑇 despite less than 𝑂𝑈 time having passed since the prior release of
a job of 𝐿𝑈 .

We point out that there are no idle instants in the EDF schedule
of J when executed upon a processor of speed 𝑃𝑆 over [0, 𝑆𝑇 ) and
speed 1 over [𝑆𝑇 , 𝑆𝑉 ); else it is easily shown that the jobs arriving
after the idle instant would constitute a collection of jobs on which
an earlier deadline miss occurs.

Let 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) denote a (tight) upper bound on the cumulative exe-
cution requirement by jobs that are in J that were generated by
task 𝐿𝐿 —we will describe how 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) is computed in Section 4.1,
and how it may be approximated in Section 4.2. Since the processor
runs at speed 𝑃𝑆 over [0, 𝑆𝑇 ) and speed 1 over [𝑆𝑇 , 𝑆𝑉 ), it must be
the case that ∑

𝑀𝐿 ↓ω
𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) > 𝑃𝑆 ↘ 𝑆𝑇 + 1 ↘ (𝑆𝑉 ↗ 𝑆𝑇 )

1It is also possible that some behavior of ω misses a deadline upon a speed-𝑊𝑀 processor
even without a prediction failure occurring; we explain how we account for this
possibility a bit later in this section.

in order for the deadline miss to occur. Hence, assigning 𝑃𝑆 a value
satisfying

𝑃𝑆 ↔

(∑
𝑀𝐿 ↓ω 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 )

)
↗ (𝑆𝑉 ↗ 𝑆𝑇 )

𝑆𝑇
(7)

for all 𝑆𝑇 , 𝑆𝑉 values is su!cient to ensure that no deadline miss
can occur. Additionally, the smallest such value of 𝑃𝑆 is a lower
bound on the speed at which the processor must initially be run
in order to ensure that no deadline will be missed in the event of a
prediction failure. Algorithm 1 depicts, in pseudocode form, how
we compute a value for 𝑃𝑆 satisfying Expression 7 for all possible
choices of triggering task 𝐿𝑈 and all relevant pairs of 𝑆𝑇 , 𝑆𝑉 values.
Line 3 of this pseudocode is discussed below. In Section 4.1 we show
that 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) can be computed in constant time for given 𝐿𝐿 , 𝑆𝑇 ,
and 𝑆𝑉 . In Section 5.2 we will see that the value assigned to 𝑊 in
Line 4 is pseudo-polynomial in the representation of ω, and the
testing set 𝑋 computed in Line 9 contains at most polynomially
many distinct values, and that these facts together imply that our
overall algorithm has pseudo-polynomial running time.

Initializing 𝑃𝑆 . The value of 𝑃𝑆 we will have computed as described
above ensures no deadline miss in the event of a prediction failure.
We must also consider the possibility that a deadline miss may
occur even without a prediction failure – some consistent behavior
of ω may be unschedulable. To rule this possibility out, we initialize
𝑃𝑆 (Line 3 of Algorithm 1) such that the 3-parameter constrained
deadline sporadic task system that models all possible consistent
behaviors of ω is EDF-schedulable upon a speed-𝑃𝑆 processor; prior
algorithms, e.g., [3, 10], are known that can accomplish this ex-
actly or approximately to any desired degree of accuracy. (This is
discussed brie$y in Section 5.2).
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Figure 1: For Lemma 1. Jobs of 𝐿𝐿 are initially released 𝑂𝐿 time
units apart. If 𝑆𝑇 lies outside the scheduling window of any
such job, then a job is released at 𝑆𝑇 (top); else, a job is released
immediately upon the end of the scheduling window within
which it lies (bottom).

4.1 Computing 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 )
As outlined above, our overall strategy is centered on identifying
conditions that must hold for a deadline miss to occur at some time-
instant 𝑆𝑉 due to some triggering task 𝐿𝑈 experiencing a prediction
failure at some earlier triggering instant 𝑆𝑇 , and then negating
these conditions to ensure that a deadline miss can never occur.
This strategy requires us to repeatedly compute 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) values,
in order to repeatedly evaluate Eqn 7; we now discuss how to do
so, in constant time for given 𝐿𝐿 , 𝑆𝑇 , and 𝑆𝑉 .

Lemmas 1 and 2 below characterize the system behaviors from
which we can compute the desired upper bounds on 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) for
given 𝑆𝑇 , 𝑆𝑉 .

Lemma 1. For each task 𝐿𝐿 ↓ ω other than the triggering task (i.e.,
for all 𝐿𝐿 ω 𝐿𝑈 ), the value of 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) is maximized when each job of
𝐿𝐿 is released as soon as legally permitted to do so. I.e.,

• the !rst job is released at time-instant 0;

• subsequently jobs are released 𝑂𝐿 time-units apart over [0, 𝑆𝑇 );
• the !rst job released after time-instant 𝑆𝑇 is released at the later
of 𝑆𝑇 and 𝑁𝐿 plus the release time of the preceding job of 𝐿𝐿 ; and

• subsequent jobs are released 𝑁𝐿 time-units apart over [𝑆𝑇 , 𝑆𝑉 ).

(This is illustrated in Fig 1.)

0.!!1 #2&%’,. Consider the collection of jobs J discussed in the
overview of our strategy above, for which a triggering instant at 𝑆𝑇
causes a deadline miss at 𝑆𝑉 . It is evident that moving the release
of each job earlier cannot reduce the total amount of execution
that needs to be completed; hence, the total amount of execution
that must be completed by time-instant 𝑆𝑉 cannot decrease. And
since 𝐿𝐿 is, by assumption, not the triggering task, changing the
instants at which its jobs are released cannot increase the amount
of available computing capacity (by speeding up the processor at
an earlier instant in time). ↭

Lemma 2. The triggering task 𝐿𝑈 must release a job at time-instant
𝑆𝑇 , and 𝑌𝑈 (𝑆𝑇 , 𝑆𝑉 ) is maximized when

• its !rst job is released at time-instant 0;

Figure 2: For Lemma 2. No job is released by the triggering
job 𝐿𝑈 within the interval [𝑆𝑇 ↗𝑁𝑈 , 𝑆𝑇 ) (i.e., the dotted blue job
does not get released despite 𝑂𝑈 time having elapsed since
the prior release).

• subsequent jobs are released each 𝑂𝑈 time-units apart, over the
time-interval [0, 𝑆𝑇 ↗𝑁𝑈 );

• a job is released at time-instant 𝑆𝑇 ; and

• subsequent jobs are released 𝑁𝑈 time-units apart over [𝑆𝑇 , 𝑆𝑉 ).

(This scenario is illustrated in Fig 2.)

0.!!1 #2&%’,. This is essentially the same proof as the one for
Lemma 1, with the added restriction that since 𝐿𝑈 is the triggering
task, it must release a job at the triggering instant 𝑆𝑇 . ↭

How many jobs are released? Let cnt𝐿 (𝑆𝑇 , 𝑆𝑉 ) denote the largest
number of jobs of 𝐿𝐿 that can have deadlines ↑ 𝑆𝑉 for given 3-
tuple (𝐿𝐿 , 𝑆𝑇 , 𝑆𝑉 ). Lemmas 1 and 2 enable us to e!ciently determine
cnt𝐿 (𝑆𝑇 , 𝑆𝑉 ) as follows.
Let 𝑍𝐿 (𝑆𝑇 ) denote the number of jobs of 𝐿𝐿 that have their entire
scheduling windows prior to 𝑆𝑇 . The following formula for comput-
ing 𝑍𝐿 was derived in [10]:

𝑍𝐿 (𝑆𝑇 ) = max
(
0,
⌊
𝑆𝑇 ↗𝑁𝐿

𝑂𝐿
+ 1

⌋)
. (8)

Note that the (𝑍𝐿 (𝑆𝑇 )+1)’th job is released at time-instant𝑍𝐿 (𝑆𝑇 )↘𝑂𝐿
(and its scheduling window extends to (𝑍𝐿 (𝑆𝑇 ) ↘ 𝑂𝐿 +𝑁𝐿 ), which is
> 𝑆𝑇 ).

If
𝑍𝐿 (𝑆𝑇 ) ↘ 𝑂𝐿 < 𝑆𝑇 (9)

Then 𝑆𝑇 lies within the scheduling window of this job of 𝐿𝐿 . In
this case, the number of additional jobs of 𝐿𝐿 with deadline ↑ 𝑆𝑉
equals

max
-..
/
0,


𝑆𝑉 ↗

(
𝑍𝐿 (𝑆𝑇 ) ↘ 𝑂𝐿

)
𝑁𝐿





(10)

since the #rst such job is released at time
(
𝑍𝐿 (𝑆𝑇 ) ↘ 𝑂𝐿

)
and

subsequent job releases are 𝑁𝐿 time units apart, and each job
release is the deadline of the previously-released job.

Else (i.e., Condition 9 does not hold) 𝑆𝑇 does not lie within the
scheduling window of a job of 𝐿𝐿 , in which case a job is released
at 𝑆𝑇 and hence the number of additional jobs of 𝐿𝐿 equals

max
(
0,
⌊
𝑆𝑉 ↗ 𝑆𝑇
𝑁𝐿

⌋)
. (11)
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Summarizing for tasks other than the triggering task,

cnt𝐿 (𝑆𝑇 , 𝑆𝑉 ) = 𝑍𝐿 (𝑆𝑇 ) +


𝑎𝑏𝑐𝑑𝑒𝑃𝑃𝑉𝑓𝑔 10 if Condition 9 holds
𝑎𝑏𝑐𝑑𝑒𝑃𝑃𝑉𝑓𝑔 11 otherwise

(12)

For the triggering task, we have seen (Figure 2) that no jobs are
released over the interval [𝑆𝑇 ↗𝑁𝑈 , 𝑆𝑇 ). The number of jobs released

prior to time-instant (𝑆𝑇 ↗𝑁𝑈 ) is equal to
( 
(𝑆𝑇 ↗𝑁𝑈 )/𝑂𝑈


+ 1

)
; hence,

the total number of jobs is given by

cnt𝑈 (𝑆𝑇 , 𝑆𝑉 ) =
(⌊
𝑆𝑇 ↗𝑁𝑈

𝑂𝑈

⌋
+ 1

)
+max

(
0,
⌊
𝑆𝑉 ↗ 𝑆𝑇
𝑁𝑈

⌋)
. (13)

Since Expressions 12 and 13 can clearly be evaluated in constant
time and 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) = 𝑀𝐿 ↘ cnt𝐿 (𝑆𝑇 , 𝑆𝑉 ), it follows that 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) can
be determined in constant time for given 𝐿𝐿 , 𝑆𝑇 , and 𝑆𝑉 .

4.2 Approximating 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 )
In this section we will, in the spirit of the Albers-Slomka approxi-
mation [3] (see Section 2.2.1), derive an upper bound 𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 ) on
𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ). It helps to take a closer look at the Albers-Slomka approxi-
mation in order to better understand our new approximation. Recall
the Albers-Slomka approximation (Expression 4, reproduced below)
to the demand bound function dbf𝐿 of a constrained-deadline spo-
radic task that is characterized by a WCET parameter 𝑀𝐿 , a relative
deadline 𝑄𝐿 , and a period 𝑁𝐿 :

dbf ≃𝑁 ⇐𝐿 (𝑆) =
{

dbf𝐿 (𝑆), if 𝑆 ↑ 𝑈 ↘𝑁𝐿 + 𝑄𝐿

𝑀𝐿 +
(
𝑂𝐿
𝑃𝐿

)
↘ (𝑆 ↗ 𝑄𝐿 ), otherwise.

Figure 3 (a) provides a visual representation of dbf ≃𝑁 ⇐𝐿 (𝑆) as a func-
tion of 𝑆 . The blue step function denotes the exact demand bound
function dbf𝐿 (𝑆). The red line tracks the demand bound function
over [0,𝑄𝐿 ); after that, it is a straight line with slope 𝑀𝐿/𝑁𝐿 . For a
given value of 𝑈 , dbf ≃𝑁 ⇐𝐿 (𝑆) traces the blue step function for the #rst
(𝑈 + 1) steps (i.e., for 𝑆 ↑ (𝑈 ↘𝑁𝐿 + 𝑄𝐿 )), and the red line for larger
values of 𝑆 .

Figures 3 (b) and (c) mimic the spirit of [3] (and hence the graph
in Figure 3 (a)) upon the 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) function for a given value of 𝑆𝑇 .
Figure 3 (b) corresponds to the situation when all jobs are released
as soon as possible. Recall that the triggering task 𝐿𝑈 is required
to release a job at time-instant 𝑆𝑇 and may therefore postpone the
release of a job that is eligible to be released during the time interval
(𝑆𝑇 ↗𝑁𝑈 , 𝑆𝑇 ); Figure 3 (c) represents this possibility.

• The blue line denotes the maximum cumulative execution re-
quirement by jobs of 𝐿𝐿 that have their deadline ↑ 𝑆 .

• The red line is piece-wise linear with slope𝑀𝐿/𝑂𝐿 for 𝑆 ↓ [0, 𝑆𝑇 ),
and slope 𝑀𝐿/𝑁𝐿 thereafter.

For a given value of𝑈 , our approximation𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 ) to the𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 )
function traces the blue line for the #rst 𝑈 steps, and the red line
thereafter. Since we can easily compute (see Equation 8) how many
jobs have deadline before 𝑆𝑇 , and hence how many steps of the
blue line occur ↑ (𝑆𝑇 ↗ 𝑁𝐿 ), we can easily compute 𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 ).
Algorithm 2 provides the details in pseudo-code form.

5 Analysis

Recall that in Algorithm 1, we repeatedly compute 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) for
di"erent combinations of (𝐿𝐿 , 𝑆𝑇 , 𝑆𝑉 ) values. Rather than using exact
values here, let us instead replace 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) in Line 11 of Algorithm 1
with the 𝑈-approximations 𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 ). In Section 5.1 below, we
examine the implications of using this approximation, rather than
the exact 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) values, on the accuracy of our algorithm. Then
in Section 5.2 we show that the worst-case running time of Al-
gorithm 1 (using the approximation rather than exact values for
𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) in Line 11) can be bounded by a pseudo-polynomial in
the representation of the task system ω that is being scheduled.

5.1 A speedup bound

We now quantify, via the speedup factor metric, the consequence of
approximating 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) in Algorithm 1 with the 𝑈-approximation
𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 ). Lemma 3 below shows that 𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 ) is always an
over-approximation of 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ), and bounds from above the maxi-
mum amount by which it can exceed the value of 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ).

Lemma 3. For all 𝐿𝐿 , 𝑆𝑇 , and 𝑆𝑉 ,

𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) ↑ 𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 ) (14)

𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑕)


= 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) if 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) ↑ 𝑈 𝑀𝐿
< 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) + 2𝑀𝐿 otherwise. (15)

0.!!1 #2&%’,. Let us #rst examine Inequality 14. Observe that
the slope of the red line in Figure 3 (b) increases from (𝑀𝐿/𝑂𝐿 ) to
(𝑀𝐿/𝑁𝐿 ) at time-instant 𝑆𝑇 . Hence the red line is an upper bound
on the cumulative demand of jobs of 𝐿𝐿 in all scenarios in which
a job of 𝐿𝐿 arrives at time-instant 𝑆𝑇 — this covers both the top
scenario in Figure 1 and the sole scenario in Figure 2. It is evident
that the cumulative demand in the remaining scenario – the bottom

Algorithm 2: The 𝑈-approximation (Assume: 𝑆 ↔ 𝑆𝑇 )

1 Input: 𝐿𝐿 , 𝑆𝑇 ,𝑈, and 𝑆
2 Output: The approximation 𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆)
3 Compute 𝑍𝐿 , the number of jobs with deadlines ↑ 𝑆𝑇 , as per

Equation 8:
4 𝑍𝐿 = max

(
0,

𝑋𝑁 ↗𝑃𝐿
𝑌𝐿

+ 1
 )

5 if (𝑈 ↑ 𝑍𝐿 ) then // switch to the red line before 𝑆𝑇
6 return

(
𝑀𝐿 + (𝑆𝑇 ↗𝑁𝐿 ) ↘ 𝑂𝐿

𝑌𝐿
+ (𝑆 ↗ 𝑆𝑇 ) ↘ 𝑂𝐿

𝑃𝐿

)
7 end
8 else // (𝑈 > 𝑍𝐿: switch to the red line after 𝑆𝑇
9 if cnt𝐿 (𝑆𝑇 , 𝑆) ↑ 𝑈 then // Exact: the blue line

10 return
(
𝑀𝐿 ↘ cnt𝐿 (𝑆𝑇 , 𝑆)

)
11 end
12 else // Approximate: the red line

13 return
(
𝑀𝐿 ↘ 𝑍𝐿 + (𝑆 ↗ 𝑆𝑇 ) · 𝑂𝐿

𝑃𝐿

)
14 end
15 end
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Figure 3: Depicting the approximations from (a):– Albers and Slomka [3]; (b) and (c):– this paper.

scenario in Figure 1 – cannot exceed the cumulative demand of the
the top scenario in Figure 1, since the jobs that are released more
frequently (i.e., 𝑁𝐿 , rather than 𝑂𝐿 , time units apart) begin arriving
later.

We now turn our attention to Inequality 15. The proof for this upper
bound essentially mirrors the proof in [3] for the second inequality
in Expression 6 (“dbf ≃𝑁 ⇐𝐿 (𝑆) < dbf𝐿 (𝑆) + 𝑀𝐿 "), with an additional
“+𝑀𝐿 ", which is only needed for the scenario depicted in Figure 3 (c),
to account for the job release that may have been postponed during
the time interval [𝑆𝑇 ↗𝑁𝑈 , 𝑆𝑇 ). ↭

The speedup bound of Lemma 4 below follows from Lemma 3.

Lemma 4. If Algorithm 1 determines that the initial speed of the
processor is 𝑃𝑆 , then

( 𝑈

𝑈 + 2

)
↘ 𝑃𝑆 (16)

is a lower bound on the initial minimum speed at which the processor
can be run and still guarantee to always meet all deadlines.

0.!!1 #2&%’,.We #rst observe that

( 𝑈

𝑈 + 2

)
↘ 𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 ) < 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) (17)

for all 𝐿𝐿 , 𝑆𝑇 , and 𝑆𝑉 . This follows from Lemma 3, since 𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 ) =
𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) for all 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) ↑ 𝑈 𝑀𝐿 , while for

(
𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) > 𝑈 𝑀𝐿

)
we

have

𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 ) < 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) + 2𝑀𝐿 (by Eq. 15)

⇑
𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 )
𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 )

< 1 + 2 ↘


𝑀𝐿
𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 )



⇓
𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 )
𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 )

< 1 + 2 ↘ 1
𝑈

⇑ 𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 ) <

(
1 + 2

𝑈

)
↘ 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 )

⇑
( 𝑈

𝑈 + 2

)
· 𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 ) < 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) (18)

as stated in Inequality 17.

Now, it may be veri#ed that Algorithm 1 essentially returns the
smallest 𝑃𝑆 for which Expression 7, with each 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) replaced
by 𝑌 ≃𝑁 ⇐𝐿 (𝑆𝑇 , 𝑆𝑉 ), is satis#ed, for all combinations of 𝑆𝑇 , 𝑆𝑉 values. If𝑃𝑆 is the value returned by Algorithm 1, it therefore follows from
Inequality 17 above that

( 𝑁
𝑁+2

)
· 𝑃𝑆 is a lower bound on the value of 𝑃𝑆

for which the original Expression 7 is satis#ed, for all combinations
of 𝑆𝑇 , 𝑆𝑉 values. And as argued in Section 4, this is the smallest value
at which the processor must initially be run in order to not miss
any deadlines even in the event of prediction failures. Lemma 4
follows. ↭

5.2 Runtime Complexity

We will show below that Algorithm 1, Line 4, can safely assign the
variable 𝑊 a value that is pseudo-polynomial in the representation
of the task system ω under analysis, and that each set 𝑋 that is
computed in Algorithm 1, Line 9 comprises no more than 𝑈 ↘ |ω |
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elements. The overall worst-case running time of Algorithm 1 can
then be written as

1→
𝑊 ↘

2→
|ω | ↘

3→⨌⨌⨌⨌⨌⨌⨌⨌
(𝑈 ↘ |ω |) ↘

4→
|ω | (19)

where

1→ accounts for the choice of triggering instant 𝑆𝑇 ;
2→ counts the choice of triggering task 𝐿𝑈 ;
3→ bounds the number of deadlines that must be considered ex-

plicitly; and
4→ denotes the cost of updating speed (Equation 7)

Since the terms 2→, 3→, 4→ are each polynomial, this is clearly
pseudo-polynomial in the representation of the task system ω under
analysis.

It remains to explain why the values of 𝑊 and |𝑋 | may be upper-
bounded as claimed above. We will also show how the initial value
of 𝑃𝑆 on Line 3 of Algorithm 1 can be calculated.

Calculating the initial value of 𝑃𝑆 and 𝑊 . First, we see from
Lemma 4 that we are, in e"ect, willing to run the processor with an
initial speed 𝑃𝑆 that is up to (1 + 2/𝑈) times as large as the lowest
possible speed with which deadline misses can be avoided. From
this perspective, therefore, there is no downside in having 𝑃𝑆 be
assigned (in Line 3 of Algorithm 1) a starting value as large as

𝑃min
def=

(
1 + 2

𝑈

)
↘

∑
𝑀𝐿 ↓ω

(
𝑀𝐿
𝑂𝐿

)

since
∑
𝑀𝐿 ↓ω

(
𝑂𝐿
𝑌𝐿

)
is clearly a lower bound on 𝑃𝑆 .

Furthermore, the approximation algorithm of Albers and Slomka [3]
(see Expression 5) can easily be applied to determine, in polynomial
time and to within an approximation factor of (1 + 2/𝑈), the min-
imum speed of a processor upon which the constrained-deadline
sporadic task system ⋃

𝑀𝐿 ↓ω


(𝑀𝐿 ,𝑁𝐿 , 𝑂𝐿 )

}
,

representing all possible consistent behaviors of ω, is guaranteed
to meet all deadlines. We will therefore initialize 𝑃𝑆 in Line 3 of
Algorithm 1 to be the larger of this speed and 𝑃min. The value of
𝑃𝑆 is subsequently only ever increased by Algorithm 1 (Line 11).
From this we get two desirable properties: (1) no deadlines can be
missed in consistent behaviors or in inconsistent behaviors prior
to a misprediction, in line with our previous assumptions; and (2)
each consistent behavior of ω is that of a sporadic task system
with a utilization that is ↑ (𝑈/(𝑈 + 2)) relative to the speed of the
processor, e"ectively making consistent behaviors (or inconsistent
behaviors up to a mis-prediction) that of a bounded-utilization
task system. Recall from Section 2.2 that the duration of the initial
busy interval for a bounded-utilization sporadic task system is
bounded by a pseudo-polynomial; hence the value of 𝑊 is pseudo-
polynomial2 in the representation of ω.

2In fact, the value of𝑍 is pseudo-linear [2, Def. 2] in the representation of ω—it depends
in a linear fashion upon the magnitude of the largest integer in the representation of
ω— making the complexity of Algorithm 1 as a whole pseudo-linear as well. On the

Bounding |𝑋 |: Since we are only approximating each 𝑌𝐿 (𝑆𝑇 , 𝑆𝑉 ) to
be exact for the #rst 𝑈 steps, it follows, using arguments virtually
identical to the ones that explain the Albers-Slomka approxima-
tion [3], that 𝑋 need only include the #rst (𝑈 + 1) deadlines of each
task, and hence |𝑋 | is no larger than

|ω | ↘ (𝑈 + 1) . (20)

In fact, since 𝑆𝑉 > 𝑆𝑇 only those of these #rst (𝑈 + 1) deadlines of
each task that are > 𝑆𝑇 need to be in 𝑋

6 Conclusions

We have studied the problem of achieving more e!cient imple-
mentations of systems of implicit-deadline sporadic tasks upon
preemptive unit-speed processors, where each task 𝐿𝐿 = (𝑀𝐿 ,𝑁𝐿 )
is additionally characterized by a prediction 𝑂𝐿 of its period pa-
rameter that is more optimistic (i.e., larger) than the value that
is conservatively assigned to 𝑁𝐿 and guaranteed to always be cor-
rect. We have proposed a formalization of this problem within the
Algorithms using Predictions framework. We have developed a
pseudo-polynomial time algorithm that determines an initial speed
𝑃𝑆 < 1 at which the processor should be run such that all dead-
lines will always be met by (i) running the processor at speed 𝑃𝑆
so long as the predictions hold; and (ii) immediately increasing the
processor speed to 1 upon detecting a prediction failure. We have
shown that this speed that is determined by our algorithm is within
a (1 + 2/𝑈) factor of the minimum possible value, where 𝑈 is a tun-
ing parameter: the larger the value of 𝑈, the closer the computed
speed is to the optimal one (at the cost of greater, although still
pseudo-polynomially bounded, worst-case running time for the
algorithm that determines this initial speed).

Although we have restricted consideration to implicit-deadline
sporadic task systems, we point out that all our results extend in a
straightforward manner to constrained-deadline task systems in
which each task 𝐿𝐿 is characterized by the three-tuple (𝑀𝐿 ,𝑄𝐿 ,𝑁𝐿 )
(as discussed in Section 2.2), plus a prediction 𝑂𝐿 on the value of 𝑁𝐿 .

In closing, we point out that our goal here has been to develop a
pseudo-polynomial time algorithm for computing an initial proces-
sor speed 𝑃𝑆 that can, by an appropriate choice of the tuning parame-
ter 𝑈 be made arbitrarily close to the minimum such speed. We have
not attempted to obtain the most e!cient pseudo-polynomial time
algorithm, occasionally avoiding discussion of possible optimiza-
tions that may further speed up the algorithm (although it would re-
main pseudo-polynomial) for ease of presentation/comprehension.
Similarly, our proofs have not been aimed at identifying the tightest
speedup bound in Lemma 4 – it is possible that the

( 𝑁
𝑁+2

)
term in

Expression 16 could be made larger with more careful analysis.
We also point out that this work has not considered smoothness or
learnability, important concepts for algorithms with predictions (as
described in Section 2.1).

other hand, we note that Algorithm 1 is not robust [2, Def. 3] due to the for-loop on
Line 5.
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