
Utilising Assumptions to Determine the WCET
of Multi-component Classification Systems

Alan Burns1(B) and Sanjoy Baruah2

1 University of York, York, UK
alan.burns@york.ac.uk

2 Washington University in St. Louis, St. Louis, USA

Abstract. Cyber-Physical Systems (CPS) are being used increasingly in safety-
critical settings. These are often in complex and dynamic environments that
require a range of sensors and AI-enabled classifiers to be employed to monitor
and understand the challenges posed by such environments. For real-time CPS it
is necessary to execute a range of classifiers so that: (i) the final output is deliv-
ered on time, (ii) the required level of confidence in the correctness of this output
is beyond a safety-derived threshold, and (iii) the minimum level of resources
is consumed in the process of meeting these timing and confidence constraints.
To undertake timing analysis the Worst-Case Execution Time (WCET) of these
multi-component classification systems must be estimated; doing so requires the
maximum input load imposed by any potential environment to be determined. In
this paper we show how this can be done by exploiting well-defined assumptions
about the environment via a Dynamic Programming algorithm. Assumptions can
take many forms; here we demonstrate the expressive power of the approach by
including a range of illustrative examples.

1 Introduction

A key element of Cliff Jones’ work [7,13,14,16–22] on the verification of concurrent
software is that the assumptions that define and constrain the relationships between
concurrent threads, and between these threads and the environment in which they func-
tion, are crucial and must be articulated, challenged and ultimately agreed upon and
documented. This is especially true for Cyber-Physical Systems (CPS) where there is
a close and mutually dependent relationship between the physical and software ele-
ments. For those CPS that are also ‘Real-Time,’ assumptions that limit the work to be
undertaken by the software are essential if the load on the system is to be bounded
and timing constraints, such as meeting deadlines, are to be satisfied. In this paper we
focus on Learning Enabled multi-component Classifiers and illustrate how a range of
assumptions can be accommodated within the same framework. This framework allows
tight bounds on Worst-Case Execution Time (WCET) to be derived using a relatively
standard Dynamic Programming technique.

The recent rapid development of Machine Learning (ML) and Deep Learning
(DL) techniques has led to the widespread use of Deep Neural Nets (DNNs) within
autonomous resource-constrained CPS. One of their primary applications is to under-
take classification exercises. Here a complex chain of DNNs is used to ‘understand’ the
c⃝ The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Cavalcanti and J. Baxter (Eds.): The Practice of Formal Methods, LNCS 14780, pp. 46–64, 2024.
https://doi.org/10.1007/978-3-031-66676-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66676-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-66676-6_3


Utilising Assumptions 47

dynamic environment within which the CPS is operating [24]. Many of these systems
are employed (or are been considered for employment) in safety-critical applications
and require accurate predictions to be delivered in real time using limited computing
resources (this is sometimes called “edge AI” where the efficient execution of machine
intelligence algorithms on embedded edge devices is required [8,28]). For example, an
autonomous mobile systems (AMS) such as a vehicle or robot must repeatedly check
that its designated path is free of hazards. Each such check must be completed by a
deadline (that may be a function of the current speed of the AMS). For each check,
the AMS may apply one or several available classifiers that read in input from different
sources (e.g., cameras, lasers, LiDAR, radars, microphones and even satellite feeds) to
evaluate the designated path.

To deploy such multi-component classifiers within time-critical CPS it is necessary
to model the worst-case load being placed on the system by the environment in which
it is being deployed. In this paper we model such workloads and resource-usage spec-
ifications as a contract between assumptions (A) (or rely conditions) and obligations
(O) (or commitments and gurantees) [5,9,15,16,23]: if the system behaves according
to the assumptions then the obligations shall be delivered. For example, if each classi-
fier executes for no more than a computed Worst-Case Execution Time (WCET) and
there are no more than a specified number of objects to classify then the classification
of all objects will be completed by the specified deadlines.

The rest of this paper is organised as follows. The following section provides
straightforward definitions of Class and Classifiers. It also introduces invariant assump-
tions. The analysis framework is presented via an extended example which is introduced
in Sect. 3. Section 4 develops the Dynamic Program that is used to determine the WCET
of a complete set of classifiers; the code implementing this analysis tool is outlined
in the Appendix. Section 5 considers a collection of more expressive assumptions and
demonstrates how the Dynamic Program is adapted. One issue that the analysis frame-
work can address is how to optimise the order in which the classifiers are executed, this
is discussed in Sect. 6. Section 7 considers some open issues and Sect. 8 presents some
conclusions.

The material presented in the current paper is a significant extension of an earlier
conference paper [5].

2 Classes, Classifiers and Basic Invariant Assumptions

We assume that a single input I to the classification system consists ofN RoIs (Regions
of Interest), each of which contains an object (δ1, . . . , δN ) which is a member of one or
more class hierarchies (Ωs). For example

ΩPet
def= {Dog,Cat}

ΩColour
def= {Black,White,Ginger, . . . }

ΩDog
def= {Poodle,Dalmatian, Labrador, . . . }

ΩCat
def= {Persian, Siamese, Sphynx,Burmese, . . . }



48 A. Burns and S. Baruah

With these definitions, Pet is an example of a binary class, andDog a multi-class; with
Dog being a subclass of Pet (and Pet a superclass of Dog). An object of class Dog
is also of class Pet. An object that is a member of more than one class hierarchy is
usually referred to as being multi-labelled [25]; e.g. an object that is classified to be a
Ginger Labrador.

The number of objects in I with class X (∈ ΩX ) is denoted by NX ; for example,
NPet, NDog, NPoodle. Clearly there are some obvious relations between these values,
e.g. NPet = N ; NPoodle ≤ NDog ≤ N ; NDog +NCat = N .

The work that the system must be capable of managing is defined by the predicate
A that captures the assumptions made about the environment in which the system is
deployed. At a minimum,Amust boundN (i.e.N ≤ Nmax). It may also define bounds
for individual classes (∀X ∈ ΩX : NX ≤ Nmax

X ). For example, the assumptions that
there are at most ten pets with a maximum of eight Cats and seven Dogs1:

A def= N ≤ 10 ∧ Nc ≤ 8 ∧ Nd ≤ 7 (1)

This is an example of a simple invariant assumption. The assumption is true before
classification commences, and it remains true after each RoI is processed.

As noted in the introduction, a complete classification system may involve a collec-
tion (or cascade) of individual classifiers. Each classifier aims to output a single object
that is a subclass of the input’s class. However, some classifiers may output an ordered
list of the most likely classes, and this list may have probabilities assigned.

Where a classifier is unable to output a subclass with sufficient confidence, the out-
put class may be augmented by the addition of classes IDK or U . A classifier that is
unable to determine the right subclass of the input may output IDK to imply “I Don’t
Know” [1,11,27]. Alternatively, a classifier that is confident that the input is not of the
right class (and hence an appropriate subclass cannot be derived) may outputU to signal
‘unclassified’ or ‘unclassifiable.’

A complete classification system incorporates a set of M class specific classifiers,
K1,K2, . . . ,KM . EachK takes as input a RoI that is either unclassified (of class U ) or
partially classified (is of class Ωin). It outputs a member of class Ωout. Where there is
an input class, Ωout will be a subclass of Ωin. Classifiers are linked so that the output
of one classifier may be used as input to another (this is illustrated with the example
in Sect. 3 below). We assume that each operation of the classifier Ki has a worst-case
execution time of Ei.

As classifiers based on DNNs are not 100% accurate a classifier may classify an
object incorrectly. If this incorrect classification is an output of the full system then
this will impact on the effectiveness, and even safety, of the process, but it will not
effect the worst-case execution time of the actual classification system. However, if
this misclassification impacts on the internal flow of objects between the individual
classifiers then it is likely to lead to extended paths through the system and hence higher
worst-case execution times. In order to bound this worst-case behaviour it is necessary
to define a fault model that explicitly states the maximum number of misclassifications

1 In the following, for ease of presentation,NCat is abbreviated toNc andNDog is abbreviated
to Nd.



Utilising Assumptions 49

that can be experienced in the processing of a single input. This is discussed further,
and examples given, in Sect. 5.4.

3 An Example Classifier

We illustrative our framework with a toy example2 that concerns a CADIS (for Cat And
Dog Identification System), a software component that is tasked with identifying the
breeds of all the Cats and Dogs that appear in an input image – see Fig. 1.

Initial CorD DBC

CBC

Image

Breed of Cat

Breed of Dog

RoI

Cat

Dog

U

Fig. 1. CADIS – A Cat And Dog Identification System

Given an image, an Initial component first breaks it down into a number of “boxes”
(RoIs – Regions of Interest), each of which contains an image of interest (i.e., an image
of either a Cat or a Dog). Each RoI is then passed on to a binary classifier component
(CorD) that determines if the input is a Cat or a Dog. Components (CBC – Cat Breed
Classifier) and (DBC – Dog Breed Classifier) then determine the breed of each RoI.

To make the example more realistic we assume that CorD can fail by passing on to
DBC (to CBC, respectively) a RoI that actually contains an image of a cat (dog, resp).
This input will cause DBC (CBC, resp.) to output ‘unclassified’ (U ). This output is
then passed to CBC (to DBC, resp) to enable the breed of this Cat (this Dog, resp.) to
be determined. We assume the Assumptions bound the maximum number of faults that
need be accommodated; for example A might specify that FCorD ≤ 2.

The WCET for each component in our example is shown in Table 1 – these values
are part of the system’s Assumptions.

We initially assume that these values are constant; extensions in which they are a
function of the input RoI or recent history or stakeholder in a multi-model specification
are considered in Sects. 5.2 and 5.3.

From these values it follows that to classify the breed of a Cat takes 16 time units
(1+5+10) and for a Dog 18 (1+5+12). If there is a fault then this increases to 28

2 This toy example is very loosely based on an Identify Friend or Foe (IFF) [3] application sys-
tem that uses DNN-based image processing (for example [12]) to distinguish between friendly
and hostile aircraft, and may further classify each kind.



50 A. Burns and S. Baruah

Table 1.WCET for each Component

Ki Ei

Initial 1

CorD 5

DBC 12

CBC 10

(1+5+12+10). However the values reduce if previous RoIs have exhausted one of the
top level classes. So if the maximum number of Cats has been observed then the next
RoI must be a Dog;CorD need not be executed and the cost is now 13 (1+12). Similarly
for a RoI that must be a Cat its cost is 11 (1+10).

To illustrate the steps that are undertaken to compute the total cost of an input
sequence, let us suppose that our Assumptions assert that there will be at most two
Dogs and at most two Cats in the sequence (and no faults in the one classifier that
impacts on the flow of objects through the classification system):

A def= N ≤ 4 ∧ Nc ≤ 2 ∧ Nd ≤ 2 ∧ FCorD = 0

If the four animal images were to appear in the order 〈D, D, C, C〉 then the first two
would each result in a WCET of 18. However, it will subsequently follow (from the
Assumption predicate) that there are no more Dog images in the sequence, and hence
the remaining animal images do not need to be pre-processed in the CorD; each would
consequently only experience a WCET of 11. Summing over all four RoI’s we have a
duration equal to 58.

If, however, the images were to appear in the order 〈C, D, C, D〉 within the sequence
one can easily show that only the last pet-image RoI (the last “D”) would skip the first
step in the CorD, for a total duration bound of 63.

It may be verified by exhaustive enumeration (in Sect. 4 below, we obtain a more
efficient means of doing so) over all possible orderings of the two Dogs and the two
Cats in the RoI sequence that 〈C, D, C, D〉 represents the worst case and that 63 is
consequently the duration bound under the assumption that there are at most two Cat
images and at most two Dog images (and no faults) in the sequence of 4 RoI’s.

In the earlier example (1), which also only contains simple invariant assumptions,
there are a maximum of 10 RoIs, 8 Cats and 7 Dogs (and again no faults). Clearly
as Dogs are more expensive to process than Cats the worst-case is when there are 7
Dogs and hence 3 Cats. The total cost is 7*18 + 3*16 (= 174). This is delivered by a
sequence such as 〈D, D, D, D, D, D, C, C, C, D〉.

These two simple examples show that for basic invariant assumptions (and a rela-
tively small number of classifier components) the worst-case path through the classifiers
can be determined by exhaustive enumeration. However for more complicated sets of
assumptions this may not the case. In the next section we show how the use of Dynamic
Programming can furnish a method of solving these WCET problems for a wide range
of useful types of Assumptions.



Utilising Assumptions 51

4 Determining WCET via a Dynamic Program

In this section we will use the following slightly more complicated example to illus-
trate how a Dynamic Program can be used to determine the WCET of the collection of
CADIS classifiers introduced above (and in Fig. 1) under the following assumptions:

A def= N ≤ 8 ∧ Nc ≤ 5 ∧ Nd ≤ 6 ∧
(
Nd > 3 ⇒ Nc ≤ 1

)
∧ FCorD = 0

Now there are at most 8 Pets, of which at most 5 may be Cats and at most 6 may be
Dogs; in addition, if there are more than three Dogs then there may be at most one Cat.

The first step is to derive a general recurrent function for determining the maximum
duration needed to fully process an image given Assumption A. We will do this with a
bottom-up definition of the function FC(Nc, Nd) that will deliver the maximum cost
of the complete classification starting from the position of having already classified Nc

Cats and Nd Dogs. Clearly the complete problem is solved by computing FC(0, 0).
The general recurrent function is simply

FC(Nc, Nd) = max
(
Cc+ FC

(
Nc + 1, Nd

)
, Dc+ FC

(
Nc, Nd + 1

))

where Cc is the cost of dealing with one further Cat (i.e., 16) andDc is the cost accrued
by one further Dog (i.e., 18).

At each step a comparison made between the cost of one more Cat being classified
against one more Dog. The path with the highest cost is always taken. The recurrence
is terminated when it is no longer possible (because of the Assumptions) to process
one more Cat, or one more Dog. Let V (Nc, Nd) denote a predicate that returns true if
the Assumptions allow these values for the number of Cats and Dogs. We now give, in
Fig. 2, the full recurrent definition of FC.

Fig. 2. Recurrent Definition of FC

The constant RCc is the reduced cost of classifying a Cat when it is known that the
RoI is not a Dog (i.e. ¬V (Nc, Nd+1)). This allows the component CorD to be skipped
with the result that the cost of classification is reduced form 16 to 11. Similarly RDc
has the value 13, having been reduced from 18.

The recurrence in Fig. 2 clearly demonstrates that the problem of computing
FC(0, 0) possesses the optimal substructure property (see, e.g., [10, p. 379]), and is
hence amenable to solution as a Dynamic Program [2]. Notice that the recursive calls
made in computing FC(Nc, Nd) are to FC(Nc+1, Nd) and FC(Nc, Nd+1) – in both
cases, one of the arguments is strictly increasing and getting closer to the upper bounds



52 A. Burns and S. Baruah

of Nmax, Nmax
c and Nmax

d . Clearly the resulting Dynamic Program has running time
no worse that O(Nmax

c × Nmax
d ), implying an asymptotic complexity no worse than

O((Nmax)2).
For the simple example introduced at the beginning of this section the V (for ‘valid’)

predicate is easily derived from the defined Assumptions:

V (Nc, Nd) = Nc +Nd ≤ 8 ∧ Nc ≤ 5 ∧ Nd ≤ 6 ∧ ¬(Nd > 3 ∧ Nc > 1)

In the Appendix we outline the Dynamic Program that implements this recurrence.
When executed with this V (·, ·) predicate it returns the WCET calculation of 129 – this
is realised upon the input sequence 〈C, C, C, C, D, D, C, D〉. Note that if the associated
clause of the A is changed from Nd > 3 ⇒ Nc ≤ 1 to Nd ≥ 3 ⇒ Nc ≤ 1 then the
WCET value would reduce to 119 – from the sequence 〈D, D, D, D, D, C, D〉.

In the following section we consider a range of more expressive assumptions which
together demonstrate the effectiveness of the proposed approach. In all of these exam-
ples the Assumptions have the dual role of constraining the size of the problem (and
hence terminating the recurrence) and sanctioning optimisations that lead to reduced
WCET estimates. Assumptions restrict the set of legal paths through the components,
and hence enable more efficient paths to be chosen. As ‘assumptions’ the program does
not need to check their authenticity: they are a fundamental aspect of the (ideally for-
mal) specification of the complete classifier.

5 Extending the Model – More Expressive Assumptions

In this section we are going to look at a number of ways that the semantics of Assump-
tions can be extended. While individual examples are used to illustrate these extensions,
we note that an arbitrary number of these can be combined within the context of a single
application.

The examples considered so far employ a model defined by the costs of each opera-
tion and a function that checks for a valid operation. The costs reflect assumptions made
about the RoI that is to be processed. Typically, if something about the class of the RoI
is known then the cost of the operation can be reduced. In the simple example above if
the RoI is known to not be of a Cat then it may be passed directly to the Dog classifier
and its execution time reflects the fact that the input is definitely a Dog (unless this is
an error). We re-emphesize that the assumptions are, in effect, axioms – they are true
if the environment in which the system operates behaves correctly (as specified); and
if the environment does not behave correctly then nothing need be (or indeed can be)
guaranteed. More resilient systems can be built by including degraded models that have
weaker assumptions and obligations. This is a form of multi-model often explored in
the Mixed-Criticality literature [6,26] – we discuss this further in Sect. 5.3.

In this section we focus on the constraints and provide a number of more expressive
examples.

– Incorporating arbitrary constraints on the relationships between the object classes.
– Incorporating constraints that relate to recent history.
– Incorporating non-constant execution time parameters.
– Incorporating a Fault Model.



Utilising Assumptions 53

5.1 Arbitrary Post-condition Constraints

In the examples given so far the Assumptions are simple invariants – they remain true
throughout the processing of all the RoIs. Other assumptions may take the form of
post-conditions: they will be true at the end of the processing but are not necessarily
true during processing.

In addition to constraints concerning the number of RoIs, the maximum number
of each class of RoI, and the maximum number of faults, it is possible to add further
constraints that can help reduce the solution space for the algorithm. So, for example, if
it is known (i.e. this is part of the specification) that if there is more than one Dog then
there are always more Dogs than Cats then the Assumptions can reflect this:

A def= N ≤ 7 ∧ Nc ≤ 5 ∧ Nd ≤ 3 ∧
(
Nd > 1 ⇒ Nd > Nc

)

This assumption must be true once the entire input sequence has been processed. It
can be false ‘during classification,’ as long as correctness is delivered as an overall
post-condition. The Assumptions leads to the following definition of the necessary V
predicate that determines if specific numbers of Cats and Dog can lead to a correct
outcome:

V (Nc, Nd) =Nc +Nd ≤ 7 ∧ Nc ≤ 5 ∧ Nd ≤ 3 ∧
(Nd ≤ 1 ∨ Nd +min {7 − (Nc +Nd), 3 − Nd)} > Nc)

The predicate is true if Nc and Nd are not too large and either there is at most one
Dog or if the number of Dogs so far identified (Nd) plus the minimum that could still
be in the input image is greater then the number of Cats so far identified (Nc). If this
is true then there is a possible future that will satisfy the constraint and hence this is a
Valid step: the assumptions remain satisfiable.

As the assumptions define the sanctioned behaviour of the outside world, they define
a semi-cooperative environment. This is in contrast to an analysis in which the environ-
ment is deemed to be an adversary that will always behave in the worst possible way
in order to break the behaviour of the system. Here the environment always exhibits
behaviour that is sanctioned by the specified assumptions – it is nevertheless neces-
sary to identify the worst possible behaviour (in terms of time taken to complete the
classification) that is compatible with the assumptions.

For this example the Dynamic Program given in the Appendix is unchanged other
than having its ‘Valid’ function reflect the V predicate given above. The program out-
puts a worst-case cost of 93 with the sequence 〈C, C, C, C, C, D〉. But with one less
Cat (i.e. Nc ≤ 4) in A, the worst-case drops to 81 from the sequence 〈C, C, D, D, D〉.
With this last sequence after the second Dog there is an equal number of Cats and Dogs.
This temporarily invalidatesA; however, a fifth RoI is feasible, it can be a Dog and then
the post-condition is delivered. As this final RoI cannot be a Cat if the assumptions are
to be obeyed then the cost of classification is at the lower level of 13 rather than 18: a
useful reduction in the WCET.

To illustrate a final really arbitrary example, consider a somewhat strange require-
ment that the number of Cats must be a prime number! The code for the Valid pred-
icate is somewhat more complicated (see Appendix 2.2.1), but the Dynamic Program



54 A. Burns and S. Baruah

is unchanged. Example runs of the program with N=100 and various values of Nmax
d

generate the outputs given in Table 2. Note the number of Cats is always a prime, but
its value is reduced as more Dogs are allowed.

Table 2. Example Outputs for the ‘prime number of Cats’ Assumption

Nmax
d WCET NC ND

10 1601 97 3

20 1629 83 17

30 1653 71 29

40 1673 61 39

50 1689 53 47

In Sect. 7 we give further consideration to the potential expressive power of the form
of Assumptions used in this WCET analysis framework.

5.2 Assumptions Related to Recent History

The above examples demonstrate the expressive power of the modelling technique
being proposed. In this section we introduce assumptions that relate to the order in
which RoIs are presented to the classifiers. We will consider two examples where this
is the case.

In order to deal with assumptions that relate to the past it is necessary for the recur-
sively called function to have an additional parameter that carries the relevant history of
that sequence of calls. At the extreme, the entire sequence from first RoI to the current
assignment must be accommodated. But this would add significantly to the memory
requirements of the Dynamic Program; a more efficient representation is used in the
following examples.

Restricted Neighbours. First we will consider a constraint that will limit the number
of objects of the same class that can appear in adjacent RoIs. To illustrate this we will
add the assumption that no more than three Dogs can appear in sequence. So if there
have been three Dogs in a row then the next entry must be a Cat - and hence this RoI
will take less time to process as the CorD classifier can be omitted.

To cater for such constraints in the Dynamic Program (see Appendix, A.2.1) the
recursive function, Fc has an additional parameter added, Count, that holds a count of
the number of Dogs in the immediate history. This value is either 0, 1, 2 or 3. If it is 3
then the next element cannot be a Cat.

An execution of this program with the basic assumptions of no more than 10 Pets,
5 Cats and 7 Dogs produces a WCET estimate of 174 from the sequence 〈C, D, D, C,
D, D, C, D, D, D〉. Initially the Dogs are in pairs; this maximises the execution time as
once there are three in a row then the next one must be a Cat. An assumption such as
10 Pets, 1 Cats and 10 Dogs of course has the worst-case output sequence of 〈D, D, D,
C, D, D, D〉.



Utilising Assumptions 55

Cache Example. In the above example a history parameter is used to expand the
expressive power of the Assumptions predicate; it broadens what is considered to be
valid allocations of Cats and Dogs. In this next example history is used not to define
what is valid, but to alter the execution time required by each classifier as it executes.

To support what might be called a cache effect we modify the model as follows. The
operation of DBC which works on a RoI that has been categorised as a Dog, and which
usually takes eighteen time units to execute, is reduced by one unit if the previous RoI
was also a Dog. Similarly, two or more Cats in sequence reduces the execution time of
CBC by one for all but the first RoI in this sequence.

The code for this cache example is contained in Appendix, A.2.2. The execution
of this code, for the assumption that there are at most six pets, two Cats and five Dogs
results in a worst-case cost of 103 for the sequence 〈D, C, D, D, D, D〉 with individual
costs of 18, 16, 18, 17, 17, 17. Although only one Cat is contained in this sequence,
if the predicate is changed to have Nc ≤ 1 then the worst-case cost is reduced to 98
which comes from the sequence 〈D, D, D, D, C, D〉 (with individual costs of 18, 17, 17,
17, 16, 13). Note, without the cache effect the maximum cost would be 101.

5.3 Assumptions Related to Multi-models

One of the motivations for developing an approach to timing analysis based on assump-
tions is to support Multi-Model specifications [4,5]. This is an extension to Mixed-
Criticality [6,26] thinking and allows a specification to cater for more than one model
of the load on the system. This is motivated by either there being more than one defini-
tion of the expected worst-case environment for the deployment of the system, or there
being distinct Stakeholders that have different classification requirements.

For example, with CADIS, assume there are two modes for the environment, One
(D) that mainly contains Dogs:

AD def= N ≤ 8 ∧ Nc ≤ 2 ∧ Nd ≤ 5

and another (C) that is mainly cats:

AC def= N ≤ 7 ∧ Nc ≤ 5 ∧ Nd ≤ 3

The models could be united into one:

A def= N ≤ 8 ∧ Nc ≤ 5 ∧ Nd ≤ 5

but this now incorporates scenarios that cannot occur (lots of both Dogs and Cats). The
classification framework developed above can easily be adapted to support integrated
multi-models [5]. Each model has its own Valid predicate (V D and V C) and the com-
posite is simply

V (Nc, Nd) = V D(Nc, Nd) ∨ V C(Nc, Nd)

For a step to be valid at least one of the models must deem it to be valid – but of course
both can. So, for example, V (1, 1) is valid as V D(1, 1) is valid (and also V C(1, 1));



56 A. Burns and S. Baruah

V (3, 1) is also valid but now only one model (the model C) sanctions the step; and for
completion V (4, 4) is invalid since neither models considers the step to be valid.

With the above example the multi-model delivers a worst-case cost of 118; for the
single collapsed model this rises to 138, a significantly more pessimistic estimate.

This example can be extended. Assume each of the models has a distinct stakeholder
(SD and SC). Now SD is only interested in the breed of the Dogs (not Cats), and SC
requires the breed of the Cats to be output but not that of the Dogs. The existence of
two such stakeholders now effects the cost of classification. Consider the assignment to
X in the Dynamic Program code (see Appendix) for a call of the recursive function Fc
(but reversing the terms for readability):

X := Fc(TC, TD+1) + 18

where 18 is the full cost of classifying the breed of the potential further dog. But this
full cost need only be spent if SD is still interested, i.e. when modelD is still valid and
therefore boolean variable VD is true. If SD is not interested than the cost of classifying
the breed (i.e., 12) can be saved. Hence the above line becomes;

X := Fc(TC, TD+1) + (if VD then 18 else 6)

Similar changes are made to the other timing parameters.

5.4 Assumptions Related to Fault Tolerance

A robust classifier must be able to tolerate a level of misclassification. In our exam-
ple CorD can, incorrectly, pass a Cat image to DBC (or a Dog image to CBC). This
will result in an unclassified output from the two Breed classifiers. These outputs are
then passed to the other classifier where they are (in our example) correctly processed.
There is no output error, but misclassifications will increase the system’s maximum exe-
cution time. To bound this value there must be an upper limit on the number of faults to
be expected (and hence tolerated). This fault model becomes part of the Assumptions
predicate; for example

A def= N ≤ 10 ∧ Nc ≤ 8 ∧ Nd ≤ 8 ∧ FCorD ≤ 2

Now the recurrence has two extra alternatives. If the maximum number of faults has
not yet been reached then there can be, in addition to a further Cat or Dog, a Cat that is
initially misclassified or a Dog that is misclassified.

The recurrence function now has a third parameter (see Appendix 2.3) – the number
of faults that have been experienced. And, in general there are four alternatives at each
recurrence: a further Dog, 〈D〉, or Cat, 〈C〉, or Dog that is initially misclassified as a
Cat, 〈D*〉, or a Cat misclassified as a Dog, 〈C*〉.

With the Assumptions specified above the worst-case cost is 200which comes from
the sequence 〈D, D, D, D, D, D, D, C*, C*, D〉.



Utilising Assumptions 57

6 Optimising the Internal Order of the Execution of the Classifiers

With the fault tolerance example employed in the previous section it is reasonable to
ask if it is actually worth executing the CorD classifier. For example, would the simpler
arrangement depicted in Fig. 3 lead to a lower worst-case cost? The recurrence for this
arrangement is straightforward and leads to a worst-case cost of 210. Reversing DBC
and CBC is an improvement and delivers a worst-case cost of 206. Nevertheless, it
follows that the inclusion of CorD, which as shown above leads to a cost of 200, is
worthwhile.

However if the fault model was FCorD ≤ 3 then this worst-case cost rises to 210
and it would not be beneficial to include this (faulty) classifier; the sequence Initial →
DBC→ CBC with its worst-case cost of 206 would now be the optimal arrangement.

Initial CBC DBCImage

Breed of Cat Breed of Dog

RoI U

Fig. 3. CADIS2 – A Simplified Cat And Dog Identification System

This example points to an important application of the proposed framework: it sup-
ports design exploration. With the objective of minimising worst-case execution time,
alternative designs can be compared. And even with a fixed set of classifiers it is possi-
ble to examine the order of their executions to again minimise the cost of undertaking
the complete classification.

7 Open Issues

The above discussions of the framework has illustrated a number of different examples
of the kinds of assumptions that can be accommodated. But what is the expressive
power of the approach: what is the full range of assumptions that can be included?

A starting point for such a discussion is to note that it is clearly possible to define
assumptions that are unsatisfiable. Folding into an assumption the need to solve the
Halting Problem, or an encoding of some NP-hard problem will of course rule out the
possibility of obtaining an efficiently computable ‘Valid’ predicate. For other, more
reasonable, assumptions the ability to construct the Valid predicate is itself proof of sat-
isfiability. If checking the satisfiability of assumptions is computationally non-trivial,
then efficiency considerations must take the computational complexity of doing so into
account; it may be computationally more efficient to simply assume that some or all of
the assumptions hold and thereby take on the responsibility of satisfying more obliga-
tions than may be strictly necessary.

In terms of implementation, an assumption needs to be converted into a Valid pred-
icate that checks that the addition of a further object (of a defined class) is Valid: it
moves the system from one Valid state to another (and hence closer to termination).



58 A. Burns and S. Baruah

Examples have shown that the Valid function:

– Can, for simple assumptions, be computed immediately from the current state.
– Needs to ‘simulate’ potential futures to check that there is a path from the proposed
next step to a final state in which the Assumptions are upheld.

– Needs to retain knowledge of earlier steps if the sequence (and not just the final
state) is constrained, or if the cost of a classification is dependent on recent history.

– Can incorporate a Fault Model to cater for faulty classifiers.
– Needs to indicate which model or models (in a multi-model application) reports a
valid step.

8 Conclusion

It is clear that AI-enabled components will be increasingly deployed in future Real-
Time Cyber-Physical Systems (RTCPS), and many of these will take the form of Clas-
sifiers. Autonomous behaviour requires the external world to be understood at a level
of detail far beyond what is required for the current class of control systems. It is likely
that banks of classifiers will be employed to identify the key objects in the environment.
But to build a system with the right functionality and scale arguably requires a compre-
hensive model of this environment. Unfortunately in many scenarios such models are
impossible (or infeasible) to derive. For this reason Jones and others have concentrated
more on capturing the assumptions that define, and therefore constrain, the dynamic
characteristics of the domains in which the RTCPS is to be deployed.

In this paper we have shown how assumptions can be used to constrain the work that
needs to be undertaken by a cascade of classifiers. The assumptions not only specify
how big the input space can be but they also critically indicate where particular classi-
fiers need not be executed, and hence the computation load be reduced. By employing
a relatively straightforward Dynamic Program it is possible to compute the worst-case
execution time of the complete cascade. A correct, but tight, bound for this parameter
is crucial if the schedulability of the RTCPS is to be achieved.

Assumptions can take many forms. A number of such have been illustrated in this
paper; many others are feasible. To be practical it must be possible for an assumption
to be validated – it must be possible in a reasonable time to determine if a particular
input sequence can ultimately satisfy the assumption. Of course, this timing analysis is
undertaken pre-run-time, and although a variety of sensors and banks of classifiers are
likely to be employed in the future it is unlikely that the number of scheduled compo-
nents will be more than perhaps 20 to 30. And hence the effort necessary to undertake
the timing analysis is manageable.

As future work we will look at multi-labelling; where an input RoI has more than
one class (aGinger Labrador was the example given in Sect. 2). Now there is the poten-
tial for concurrent execution of some classifiers. As Edge computing is typically multi-
core then real parallel execution is possible. This will speed up the classifying opera-
tions, but determining the worst-case execution time is not straightforward.



Utilising Assumptions 59

Appendix – The Dynamic Program

An outline of the (Ada) code for the Dynamic Program is given in below. The function
returns one of four values: (i) the maximum of the two valid paths, or (ii) the value of
taking a Cat when only a Cat is valid, or (iii) the value of taking a Dog when only a
Dog is valid, or (iv) the value 0 as neither a Cat nor a Dog can be taken. Initially ignore
the code in red.

KD = 13 (1+12)
KC = 11 (1+10)
UKD = 18 (1+5+12)
UKC = 16 (1+5+10)

type Pet is (Cat, Dog);
P : Pet;

function Fc(TC, TD : integer) return integer is
X,Y : integer := 0;
VD, VC : boolean;

begin
if S(TC,TD) > -1 then return S(TC,TD); end if;
VD := Valid(TC, TD+1);
VC := Valid(TC+1, TD);
if VD and VC then

X := UKD + Fc(TC, TD+1);
Y := UKC + Fc(TC+1, TD);
X := max(X,Y);
if X=Y then P:=Cat; else P:=Dog; end if;
S(TC,TD) := X;
return X;

end if;
if VC then P:=Cat; return KC + Fc(TC+1, TD); end if;
if VD then P:=Dog; return KD + Fc(TC, TD+1); end if;
return 0;

end Fc;

The array S holds previously computed values – that can be used to reduce the
computational load. All elements in this array are initialised to −1. If the appropriate
element of S holds a value strictly greater than −1 then it must have been previously
computed and can be returned immediately.

Since the recurrence is bottom up, the initial call of the function is:

Cost := Fc(0, 0);

The call terminates and returns when a recursive call is made that has no valid successor
(and hence returns 0 without making a further call on Fc).



60 A. Burns and S. Baruah

The code implementing the function Valid is written according to the assump-
tions, and is therefore application-specific. The parameters are valid if they satisfy the
assumptions, A, or if there exists a sequence of future RoIs that will satisfy A. As an
example of the first type of definition: if there is a maximum of 8 pets, 4 Cats and 4
Dogs then the Valid function is simply:

function Valid(TC, TD : integer) is
begin

return TC+TD <= 8 and TC <= 4 and TD <= 4;
end

This gives a result of 131.
To output the sequence that gives rise to this maximum result a minor modification

can be made to the code (see elements highlighted in red) and rather than calling the
function Fc just once a series of calls are make:

SC := 0; SD := 0; -- count of Cats and Dogs so far
Cost := Fc(SC, SD);
while Cost > 0 loop

-- re-initialise S
case P is
when Cat =>

Put("C, "); SC := SC + 1;
when Dog =>

Put("D, "); SD := SD + 1;
end case;
Cost := Fc(SC, SD);

end loop;

A call of Cost := Fc(0, 0) now also returns, via the P parameter, the first
entry in the worst-case sequence. If P=Cat then the Fc function is called again with
Cost := Fc(1, 0). This returns the next entry in the sequence. Calls are repeated
with the number of Cats and Dogs so far identified used to define the parameters.
Eventually, Cost := Fc(4, 4) is called and the, terminating, response of zero is
returned. With this example the sequence 〈C, C, C, D, D, D, C, D, 〉 is produced for the
worst-case execution time of 131.

To give an indication of the efficiency of this code, an assumption of a maximum of
1000 Pets, 500 Cats and 700 Dogs returns the value 17400 immediately on a standard
laptop. Indeed the production of the full sequence that returns this value, and which
involves 1000 runs of the program, is only slowed down by the print to screen of the Cs
andDs. The initial execution, that just produced the WCET estimate, involved 830,601
recursive calls to the Fc function. And on 328,901 occasions (40%) the result was
returned immediately by the S matrix.



Utilising Assumptions 61

A.2.1 Code for Prime Number of Cats Example

The V alid predicate leads to the following code. To check that the number of Cats can
be a prime number a loop runs from the current proposed value of TC to the maximum
value it is allowed to take. If any of these values is a prime the loop is exited and Pr
records true. If the loop terminates with no prime found then Pr retains its initiated
value of false. For the function to return true the usual tests must comply and Pr
must be true.

function Valid(TC, TD : integer) return Boolean is
Pr : boolean := false;

begin
for I in TC .. TC + (min(N-(TD+TC),Nc-TC)) loop

if I in primes then Pr := true; exit; end if;
end loop;
return TC+TD <= N and TC <= Nc and TD <= Nd and Pr;

end;

A.2.1 Code for Restricted Neighbour

The code for the Fc function now has a Count parameter that holds the number of
consecutive Dogs in the recent history. If Count is 0, 1 or 2 then a further Dog is
allowed (and the Count value is increased by 1). If Count is equal to 3 then it is not
valid for the current RoI to be a Dog. The basic code for this version of Fc is below.

function Fc(TC, TD, Count : integer) return integer is
X,Y : integer := 0;
VD, VC : boolean;

begin
VD := Count < 3 and then Valid(TC, TD+1);
VC := Valid(TC+1, TD);
if VD and VC then

X := UKD + Fc(TC, TD+1, Count+1);
Y := UKC + Fc(TC+1, TD, 0);
X := max(X,Y);
return X;

end if;
if VC then return KC + Fc(TC+1, TD, 0); end if;
if VD then return KD + Fc(TC, TD+1, Count+1); end if;
return 0;

end Fc;

A.2.2 Code for Cache Example

The code for the Fc now has a very simple history parameter that gives the type of
the last RoI to be classified. If this history flag has the same pet type as the current
allocation then a unit of computation time is removed from the calculation.



62 A. Burns and S. Baruah

type Pet is (Cat, Dog, Void);

function Fc(TC, TD : integer; H : Pet) return integer is
X,Y : integer := 0;
VD, VC : boolean;

begin
VD := Valid(TC, TD+1);
VC := Valid(TC+1, TD);
if VD and VC then

X := UKD + Fc(TC, TD+1, Dog) - (if H = Dog then 1 else 0);
Y := UKC + Fc(TC+1, TD, Cat) - (if H = Cat then 1 else 0);
X := max(X,Y);
return X;

end if;
if VC then return KC + Fc(TC+1, TD, Cat)

- (if H = Cat then 1 else 0); end if;
if VD then return KD + Fc(TC, TD+1, Dog)

- (if H = Dog then 1 else 0); end if;
return 0;

end Fc;

The initial call on this function is now Fc(0,0,Void).

A.2.3 Code for Fault Model Example As described in the main text, again a third
parameter to Fc is added, this time to count the number of faults so far experienced.
The following shows the code for the general four-way comparison.

function Fc(TC,TD,F : integer) return integer is
X,Y,Z,W : integer := 0;
VD, VC : boolean;

begin
VD := Valid(TC, TD+1);
VC := Valid(TC+1, TD);
if VD and VC and F < Fmax then

X := UKD + Fc(TC, TD+1,F);
Y := UKC + Fc(TC+1, TD,F);
W := UKF + Fc(TC, TD+1, F+1); -- where UKF=28 (1+5+12+10)
Z := UKF + Fc(TC+1, TD, F+1);
Z := max(X,Y,W,Z);
return Z;

end if;
...

end Fc;



Utilising Assumptions 63

References

1. Baruah, S.K. , Burns, A., Wu, Y.: Optimal synthesis of IDK-cascades. In: Proceedings of the
29th International Conference on Real Time Networks and Systems, RTNS. ACM (2021)

2. Bellman, R.: Dynamic Programming, 1st edn. Princeton University Press, Princeton (1957)
3. Bowden, L.: The story of IFF (Identification Friend or Foe). IEE Proc. A Phys. Sci. Mea-

sur. Instrument. Manag. Educ. Rev. 132(6), 435 (1985). https://doi.org/10.1049/ip-a-1.1985.
0079

4. Burns, A.: Multi-model systems—an MCS by any other name. In: Proceedings of the WMC
Workshop, IEEE Real-Time Systems Symposium (RTSS) (2020)

5. Burns, A., Baruah, S.: Multi-model specifications and their application to classification sys-
tems. In: Proceedings of the 31th International Conference on Real-Time Networks and Sys-
tems, RTNS 2023. ACM (2023)

6. Burns, A., Davis, R.I.: A survey of research into mixed criticality systems. ACM Comput.
Surv. 50(6), 1–37 (2017)

7. Burns, A., Hayes, I.J., Jones, C.B.: Deriving specifications of control programs for cyber
physical systems. Comput. J. 63(5), 774–790 (2020)

8. Chen, J., Ran, X.: Deep learning with edge computing: a review. Proc. IEEE 107(8), 1655–
1674 (2019)

9. Chen, Y.-F., et al.: Automated assume-guarantee reasoning through implicit learning. In:
Touili, T., Cook, B., Jackson, P. (eds.) Computer Aided Verification, pp. 511–526. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 44

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.
MIT Press (2009)

11. Davis, R., Baruah, S., Burns, A., Wu, Y.: Optimally ordering IDK classifiers subject to dead-
lines. Real-Time Systems (2022)

12. Gupta, P., Pooja, J., Kakde, O.G.: Deep learning techniques in radar emitter identification.
Def. Sci. J. 73, 551 (2023)

13. Hayes, I.J., Jackson, M.A., Jones, C.B.: Determining the specification of a control system
from that of its environment. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003.
LNCS, vol. 2805, pp. 154–169. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45236-2 10

14. Hayes, I.J., Jones, C.B.: A guide to rely/guarantee thinking. In: Bowen, J.P., Liu, Z., Zhang,
Z. (eds.) SETSS 2017. LNCS, vol. 11174, pp. 1–38. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-02928-9 1

15. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You assume, we guarantee: methodology and
case studies. In: Hu, A.J., Vardi, M.Y. (eds.) Computer Aided Verification, pp. 440–451.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028765

16. Jones, C.B.: Development Methods for Computer Programs including a Notion of Inter-
ference. PhD thesis, Oxford University (1981). Printed as: Programming Research Group,
Technical Monograph 25

17. Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of IFIP, pp.
321–332. North-Holland (1983)

18. Jones, C.B.: Tentative steps toward a development method for interfering programs. Trans.
Program. Lang. Syst. 5(4), 596–619 (1983)

19. Jones, C.B.: Accommodating interference in the formal design of concurrent object-based
programs. Formal Methods Syst. Design 8(2), 105–122 (1996)

20. Jones, C.B., Hayes, I.J.: Possible values: exploring a concept for concurrency. J. Logic.
Algeb. Methods Program. 85(5), 972–984 (2016)

https://doi.org/10.1049/ip-a-1.1985.0079
https://doi.org/10.1049/ip-a-1.1985.0079
https://doi.org/10.1007/978-3-642-14295-6_44
https://doi.org/10.1007/978-3-540-45236-2_10
https://doi.org/10.1007/978-3-540-45236-2_10
https://doi.org/10.1007/978-3-030-02928-9_1
https://doi.org/10.1007/978-3-030-02928-9_1
https://doi.org/10.1007/BFb0028765


64 A. Burns and S. Baruah

21. Jones, C.B., Hayes, I.J., Jackson, M.A.: Deriving specifications for systems that are con-
nected to the physical world. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods
and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 364–390. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75221-9 16

22. Jones, C.B., Pierce, K.G.: Elucidating concurrent algorithms via layers of abstraction and
reification. Formal Aspects Comput. 23(3), 289–306 (2011)

23. Powell, D.: Failure mode assumptions and assumption coverage. In: Proceedings of the
22nd International Symposium on Fault-Tolerant Computing (FTCS-22), pp. 386–395. IEEE
Computer Society Press (1992)

24. Razavi, K., Luthra, M., Koldehofe, B., Muhlhauser, M.M., Wang, L.: FA2: fast, accurate
autoscaling for serving deep learning inference with SLA guarantees. In: Proceedings of the
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) (2022)

25. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification
tasks. Inf. Process. Manage. 45(4), 427–437 (2009)

26. Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees of exe-
cution time assurance. In: Proceedings of the Real-Time Systems Symposium (RTSS), pp.
239–243 (2007)

27. Wang, X., Luo, Y., Crankshaw, D., Tumanov, A., Yu, F., Gonzalez, J.E.: IDK cascades: fast
deep learning by learning not to overthink. arXiv preprint arXiv:1706.00885 (2018)

28. Yao, S., Hu, S., Zhao, Y., Zhang, A., Abdelzaher, T.: Deepsense: a unified deep learning
framework for time-series mobile sensing data processing. In: Proceedings of the 26th Inter-
national Conference on World Wide Web, pp. 351–360 (2017)

https://doi.org/10.1007/978-3-540-75221-9_16
http://arxiv.org/abs/1706.00885

	Utilising Assumptions to Determine the WCET of Multi-component Classification Systems
	1 Introduction
	2 Classes, Classifiers and Basic Invariant Assumptions
	3 An Example Classifier
	4 Determining WCET via a Dynamic Program
	5 Extending the Model – More Expressive Assumptions
	5.1 Arbitrary Post-condition Constraints
	5.2 Assumptions Related to Recent History
	5.3 Assumptions Related to Multi-models
	5.4 Assumptions Related to Fault Tolerance

	6 Optimising the Internal Order of the Execution of the Classifiers
	7 Open Issues
	8 Conclusion
	References


