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The quantum numbers of monopoles in R3 in the presence of massless fermions have been analyzed
using a uniform flux background in S2 × R coupled to fermions. An analogous study in T2 × R is
performed by studying the discrete symmetries of the Dirac Hamiltonian in the presence of a static uniform
field on T2 with a total flux of Q in the continuum. The degenerate ground states are classified based on
their transformation properties under π2 rotations of T

2 that leave the background field invariant. We find that
the lattice analysis with overlap fermions exactly reproduces the transformation properties of the single-
particle zero modes in the continuum. Whereas the transformation properties of the single-particle negative
energy states can be studied in the continuum and the lattice, we are also able to study the transformation
properties and the particle number (charge) of the many-body ground state on a finite lattice, and we show
that the contributions from the fully filled single-particle states cannot be ignored.

DOI: 10.1103/PhysRevD.111.014502

I. INTRODUCTION

Monopoles play a significant role in the modern analysis
of QED in three dimensions. When the gauge action
suppresses monopoles, the resulting parity-invariant quan-
tum theory is scale invariant for all even numbers of flavors
of massless two-component fermions [1,2]. The compu-
tation of monopole scaling dimensions in an expansion in a
large number of flavors [3,4], an expansion around four
dimensions [5], and the conformal bootstrap [6–8] sug-
gests a critical number of flavors. This has been confirmed
by numerical simulations [9,10]. A nonperturbative study
of compact QED with massless fermions faces hurdles due
to the proliferation of monopoles that are singular on the
lattice. This leads to near-zero modes for Wilson fermions
with negative masses, thereby causing a technical diffi-
culty in numerical simulations with massless overlap
fermions [11].

The numerical evaluation of the scaling dimensions of
monopoles using a background field computation [9,10]
does not address the question of the quantum numbers of
the underlying monopole operators. The determination of
the scaling dimensions of monopole operators in the limit
of a large number of flavors is a computation in a fermionic
theory coupled to a static monopole background [3]. For
such an analysis, it is natural to consider radial quantiza-
tion, where R3 → S2 × R. The Euclidean time τ is related to
the radial coordinate by r ¼ eτ. The Dirac operator in the
presence of a spherically symmetric monopole was ana-
lyzed in [12]. The nonzero single-particle energy levels of
the corresponding Hamiltonian are given by

ϵ ¼ "
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðpþ jQjÞ

p
; p∈N: ð1Þ

From this, the scaling dimensions of the monopole as a
function of Q can be read off from the corresponding
Casimir energies of the ground states in the radial quan-
tization [3,4].
In addition to the scaling dimension, the monopole

operators could carry nontrivial quantum numbers [3,4] as
follows. All ground states are obtained by first filling the
infinite number of negative energy states of the Hamiltonian.
The vacuum state in the presence of monopoles is not unique
due to the presence of zero modes. A single-particle energy
state labeled by an integer p is also an eigenstate of the
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generalized angular momentum operator K [12] with an
eigenvalue j ¼ pþ jQj−1

2 > 0; thus, in general, the single-
particle states transform nontrivially under rotations.
Nevertheless, one assumes that the multiparticle vacuum
state transforms trivially under K, and one also assumes
that the charge is zero under suitable normal ordering.
With Q ¼ 1, the situation is reasonably clear [3]. The zero
mode has a total spin of zero. With N flavors, one has N
zero modes, and starting from the state obtained by filling
all of the negative energy states, we see that there are ðNkÞ
degenerate vacuum states obtained by filling the k∈ ½0; N'
zero-energy modes. If we impose invariance under CP, the
claim is that N needs to be even (N ¼ 2Nf) and the states
with k ¼ Nf are those that are invariant under CP. Since
the spin of each of the zero modes is zero, we can conclude
that all ð2Nf

Nf
Þ will be rotationally invariant. The situation

becomes more complicated when jQj > 1 and we have
2jQjNf zero modes. The spin of the zero mode is not zero

and only some of the ð2jQjNf
jQjNf

Þ will have a total spin of zero.
This was analyzed in [13].
This paper aims to understand the emergence of the

quantum numbers of the filled many-body vacuum states,
now in the presence of an ultraviolet regulator. This will
help avoid the assumptions about contributions from the
infinite number of negative energy states. Ideally, we would
want to stay on S2 × R and use a lattice regularization, but
this is not simple to implement. It is typical to implement
the lattice regulator on the torus. Therefore, instead of
addressing the issue in S2 × R, we study the analogous
problem of quantum numbers of vacua of massless fer-
mions in the presence of a background static magnetic field
2πQ on T2. This problem was also studied in [14], where
the focus was to study the effect of different types of
bipartite lattices on the structure of the ground states. The
study in this paper is only on a square lattice and we use
overlap fermions to realize a single two-component fer-
mion. The spectrum of the Dirac Hamiltonian in this
background was analyzed in [15]. The associated vacuum
energy cannot be related to the monopole scaling dimen-
sions, but a study of the quantum number of the degenerate
states that form the vacuum is relevant.
To be precise, we consider the Dirac Hamiltonian on an

L2 lattice with a background field that has a uniform flux of
2πQ. Spatial parity transformation is the same as charge
conjugation for this particular gauge field background.
Overlap fermions for a single two-component fermion will
have exactly jQj zero modes.1 Parity invariance is restored
if we have a pair of flavors with ðHoðQÞ; Hoð−QÞÞ as the
associated Hamiltonians. In this case, the two flavors put

together will have ð2L2 − jQjÞ negative eigenvalues and
2jQj zero modes, which need to be suitably filled to create
the multiparticle vacuum state. In this paper, we address the
transformation properties of such ground states under π

2

rotations. We focus on the lowest and highest energy states
that have a total of L2 filled single-particle states, inde-
pendent of Q. We refer to these as the two half-filled
sectors. The half-filling is motivated by the fact that the
ground state of free fermions (Q ¼ 0) is unique (with
antiperiodic boundary conditions on the fermions) and is
made up of L2 single-particle states, and we wish to
maintain this condition for all Q (imposing Gauss’ law).
The organization of the rest of the paper is as follows. Our

presentation in Sec. II is slightly unconventional: we set up
the problem on the lattice and then take the continuum limit.
We discuss the action of the discrete rotation symmetry on
the gauge fields. We set up the Dirac Hamiltonian in Sec. III.
We first analyze the problem in the continuum in Sec. V.
Much of the results are taken from [15], but the presentation
is self-contained to help the reader. Particular attention is
paid to the transformation of the eigenstates (corresponding
to both zero and nonzero eigenvalues) under π

2 rotations.
Due to the infinite number of nonzero eigenvalues, we are
not able to properly address the issue of the transformation
properties of the degenerate ground states. This is resolved
by repeating the study on the lattice in Sec. VI. We show
that the transformation properties of the zero modes exactly
match those in the continuum even when L is finite. This
helps us to isolate the role played by the transformation
properties of the nonzero modes and show that a continuum
statement can be made by studying the theory on finite L. In
particular, we address the flavor symmetry of the ground
state sector at half-filling.

II. UNIFORM FIELD ON A
TWO-DIMENSIONAL TORUS

Let the size of the symmetric spatial torus be l and we
refer to those spatial directions as 1,2. The Euclidean time
direction is 3. To write down the gauge field in the
continuum, we start on a lattice where the periodic
boundary conditions are imposed on the link variables.
Let the periodic two-dimensional lattice be L × L and we
label the points on the lattice by ðn1; n2Þ, where the gauge
links Uiðn1; n2Þ satisfy

Uiðn1 þ k1L; n2 þ k2LÞ ¼ Uiðn1; n2Þ; i ¼ 1; 2 ð2Þ

and ðk1; k2Þ are in the set of integers. The link variables are
naturally associated with the unitary parallel transporters
Tk, k ¼ 1, 2 defined by

½T1ϕ'ðn1; n2Þ ¼ U1ðn1; n2Þϕðn1 þ 1; n2Þ;
½T2ϕ'ðn1; n2Þ ¼ U2ðn1; n2Þϕðn1; n2 þ 1Þ; ð3Þ

1Wilson fermions will also have jQj zero modes, but the
Wilson mass parameter will have to be tuned to different values
for each zero mode and all of these modes will coalesce only
when the continuum limit is taken.
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and ϕðn1; n2Þ obey periodic boundary conditions, namely,

ϕðn1 þ L; n2Þ ¼ ϕðn1; n2 þ LÞ ¼ ϕðn1; n2Þ: ð4Þ

One choice for the gauge links that results in a uniform
plaquette

Pðn1; n2Þ ¼ U1ðn1; n2ÞU2ðn1 þ 1; n2ÞU(
1ðn1; n2 þ 1Þ

×U(
2ðn1; n2Þ ¼ ei

2πQ
L2 ð5Þ

is

U1ðn1; n2Þ ¼
(
e−i

2πQn2
L n1 ¼ L − 1;

1 0 ≤ n1 < L − 1;
U2ðn1; n2Þ ¼ ei

2πQn1
L2 : ð6Þ

Explicit computation shows that Pðn1; n2Þ gives the ex-
pected value as long as ðn1; n2Þ ≠ ðL − 1; L − 1Þ and

PðL − 1; L − 1Þ ¼ ei
2πQ
L2 e−i2πQ: ð7Þ

Equation (5) is satisfied by all plaquettes if Q needs to take
on integer values resulting in flux quantization on the torus.
The Polyakov loops are

P1ðn2Þ ¼
YL−1

n1¼0

U1ðn1; n2Þ ¼ e−i
2πQn2

L ;

P2ðn1Þ ¼
YL−1

n2¼0

U2ðn1; n2Þ ¼ ei
2πQn1

L : ð8Þ

A rotation by π
2 of the lattice takes

ðn1; n2Þ → ðn01; n02Þ ¼ ððL − n2Þmod L; n1Þ; ð9Þ

which results in T 0
k ¼ RtTkR, with the transformation

matrix

Rn1;n2;n01;n
0
2
¼ δn1;n02 ½δn2þn01;L

þ δn2þn01;0
';

RRt ¼ I; R4 ¼ I: ð10Þ

The resulting link variables are

U0
1ðn01; n02Þ ¼ e−i

2πQn0
2

L2 ;

U0
2ðn01; n02Þ ¼

(
ei

2πQn0
1

L n02 ¼ L − 1;

1 0 ≤ n02 < L − 1;
ð11Þ

and we see that the plaquettes and Polyakov loops remain
invariant. The above rotation is the same as the periodic
gauge transformation defined by

Gn1;n2;n01;n
0
2
¼ e−i

2πQn1n2
L2 δn1;n01δn2;n02 ; G†G ¼ I;

T 0
k ¼ G†TkG: ð12Þ

The continuum limit is taken by introducing the lattice
spacing a and writing xi ¼ ani and l ¼ aL. We see that

U2ðn1; n2Þ ¼ eia
2πQx1
l2 has a well-defined continuum limit

but U1ðn1; n2Þ is singular. As a result, one modifies the
periodic boundary conditions on the continuum field ϕ
such that the gauge field in the continuum limit corre-
sponding to the lattice fields in Eq. (6) is written as

A1ðx1;x2Þ ¼ 0; A2ðx1;x2Þ ¼ bx1; b¼ 2πQ
l2

; ð13Þ

along with

ϕðx1 þ l; x2Þ ¼ e−i
2πQx2

l ϕðx1; x2Þ;
ϕðx1; x2 þ lÞ ¼ ϕðx1; x2Þ: ð14Þ

The continuum gauge field associated with rotated lattice
fields in Eq. (11) is written as

x01¼−x2; x02¼ x1; A0
1ðx01;x02Þ¼−bx02; A0

2¼0; ð15Þ

along with

ϕ0ðx01 þ l; x02Þ ¼ ϕ0ðx01; x02Þ;

ϕ0ðx01; x02 þ lÞ ¼ ei
2πQx0

1
l ϕ0ðx01; x02Þ: ð16Þ

These are, of course, well known [15].

III. DIRAC HAMILTONIAN

The Dirac Lagrangian is

L ¼
Z

d2xdτψ̄ðx; τÞ½σ1ð∂1 þ iA1Þ þ σ2ð∂2 þ iA2Þ

þ σ3∂τ'ψðx; τÞ; ð17Þ
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with σi being the standard Pauli matrices, and the total
charge

J0 ¼
Z

d2xψ̄ðx; τÞσ3ψðx; τÞ ð18Þ

is time independent. The time-independent multiparticle
Hamiltonian is

H ¼
Z

d2xψ†ðx; τÞHψðx; τÞ; H ¼
"

0 C

C† 0

#
;

C ¼ −ð∂1 þ iA1Þ þ ið∂2 þ iA2Þ; ð19Þ

and the total charge

J0 ¼
Z

d2xψ†ðx; τÞψðx; τÞ ð20Þ

is the number operator.
Lattice regularization will result in finite matrices for H

in Eq. (19) and the integral over space will become a sum
over lattice sites. This enables us to perform a careful
enumeration of the states along with their particle number
(total charge). We proceed to regularize H using overlap
fermions [16–19] to ensure massless fermions without fine-
tuning while avoiding doublers. The naive chiral Dirac
operator is

C ¼ −
1

2
ðT1 − T†

1Þ þ
i
2
ðT2 − T†

2Þ ð21Þ

and the Wilson mass operator is

B¼ 2−m−
1

2
ðT1þT†

1Þ−
1

2
ðT2þT†

2Þ; m∈ð0;2Þ: ð22Þ

The overlap-Dirac Hamiltonian is

Ho ¼
σ3 þ ϵðHwÞ

2
; Hw ¼

"
B C

C† −B
#
: ð23Þ

All eigenvectors of the unitary operator V ¼ σ3ϵðHwÞ
satisfy the relation

Vψ ¼ eiϕψ ; Vσ3ψ ¼ e−iϕσ3ψ : ð24Þ

The spectrum of Ho is given by

Ho

$
ψ " ei

ϕ
2σ3ψffiffiffi
2

p
%
¼ " cos

ϕ
2

$
ψ " ei

ϕ
2σ3ψffiffiffi
2

p
%
: ð25Þ

IfQ ≠ 0, there will be jQj zero modes ofHo that are chiral,
and their chiral pairs will have eigenvalues of "1 depend-
ing on the sign of Q.

IV. DISCRETE TRANSFORMATIONS

Given the gauge field background in Eq. (6), the charge-
conjugated field is given by Uc

μðn1; n2Þ ¼ Uμðn1; n2Þ for
μ ¼ 1; 2. This takes Q → −Q, and we denote the corre-
sponding overlap-Dirac Hamiltonians by HoðQÞ and
Hoð−QÞ, with Q > 0.
Given the gauge field background in Eq. (6), we define

the field under spatial parity by

np1 ¼ n1; np2 ¼ mod ðL − n2; LÞ; ð26Þ

and this results in

Up
1 ðn

p
1 ; n

p
2 Þ ¼U1ðn1;L− n2Þ ¼

(
ei

2πQn2
L n1 ¼ L− 1;

1 0 ≤ n1 < L− 1;

Up
2 ðn

p
1 ; n

p
2 Þ ¼U(

2ðn1;L− n2Þ ¼ e−i
2πQn1
L2 ; ð27Þ

and we see that the resulting field is the same as the charge-
conjugated field.
Our gauge field background is static and we can there-

fore identify time reversal with particle ↔ antiparticle.
Given the many-body Hamiltonian HðQÞ ¼ a†HoðQÞa, a
particle ↔ antiparticle transformation results in

HτðQÞ ¼ aHoðQÞa† ¼ −a†Ht
oðQÞa ð28Þ

since TrðHoÞ ¼ 0. Noting that BtðQÞ ¼ B(ð−QÞ and
CtðQÞ ¼ Cð−QÞ, we see that

Ht
wðQÞ ¼−σ1Hwð−QÞσ1 ⇒ Ht

oðQÞ ¼−σ1Hoð−QÞσ1;
ð29Þ

and therefore

HτðQÞ ¼ a†σ1Hoð−QÞσ1a; ð30Þ

implying that this transformation is also related to charge
conjugation. In essence, there is only one discrete trans-
formation for this background field and we refer to it as
charge conjugation from now on. Therefore, we consider a
pair of Hamiltonians ðHoðQÞ; Hoð−QÞÞ to ensure invari-
ance under the discrete transformations, Nf pairs of such
flavors, and ground states that are half-filled with the
zero modes.

V. CONTINUUM ANALYSIS

We start with the gauge field in Eq. (13), which yields

C ¼ −∂1 − bx1 þ i∂2 ð31Þ

in Eq. (19). The Hamiltonian acts on two-component spinors
ψðx1; x2Þ that obey the nontrivial boundary conditions
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ψðx1þ l;x2Þ¼ e−i
2πQx2

l ψðx1;x2Þ; ψðx1;x2þ lÞ¼ψðx1;x2Þ
ð32Þ

on the torus. With

ψ ¼
"
ψþ

ψ−

#
; ð33Þ

the spectrum of the Hamiltonian is as follows for Q ≠ 0:
(1) Q > 0: The Q normalized zero modes are given by

ψ0
jðx1;x2Þ¼

"
0

ϕj;0ðx1;x2Þ

#
; j∈ ½0;Q−1': ð34Þ

The paired normalized modes with eigenvalues

"
ffiffiffiffiffiffiffiffiffiffi
4πQ
l2 n

q
and a degeneracy of Q are

ψ"n
j ðx1; x2Þ ¼

1ffiffiffi
2

p
"
ϕj;n−1ðx1; x2Þ
∓ϕj;nðx1; x2Þ

#
;

j∈ ½0; Q − 1': ð35Þ

(2) Q < 0: The jQj normalized zero modes are given by

ψ0
jðx1; x2Þ ¼

"
ϕj;0ðx1; x2Þ

0

#
; j∈ ½0; jQj − 1':

ð36Þ

The paired normalized modes with eigenvalues

"
ffiffiffiffiffiffiffiffiffiffiffiffi
4πjQj
l2 n

q
and a degeneracy of jQj are

ψ"n
j ðx1; x2Þ ¼

1ffiffiffi
2

p
"

ϕj;nðx1; x2Þ
∓ϕj;n−1ðx1; x2Þ

#
;

j∈ ½0; jQj − 1': ð37Þ

The orthonormal functions ϕj;nðx1; x2Þ appearing in the
above equations are given by

ϕj;nðx1; x2Þ ¼
ð2πjQjÞ14

l

X∞

k¼−∞
ei

2πðjþkQÞx2
l ϕn

" ffiffiffi
b

p $
x1 þ lkþ lj

Q

%#
;

Z
l

0
dx1

Z
l

0
dx2ϕ(

j0;n0ðx1; x2Þϕj;nðx1; x2Þ ¼ δj;j0δn;n0 ð38Þ

and ϕnðyÞ are normalized eigenfunctions of the dimension-
less one-dimensional Harmonic oscillator. All of the details
can be found in Appendix A.
We proceed to first discuss the transformation of the

single-particle wave function under rotations, keeping in
mind that rotations change the boundary conditions. Based
on this, we are able to discuss the transformation properties
of the many-body vacuum. The Hamiltonian operator in
Eq. (19) is

H ¼ −iσ2∂1 þ iσ1ð∂2 þ ibx1Þ ð39Þ

and it acts on functions ψðx1; x2Þ that obey the boundary
conditions in Eq. (14). Define the operator GH by

GH ¼
"
G 0

0 G

#
;

Gðx1; x2; y1; y2Þ ¼ e−ibx1x2δðx1 − y1Þδðx2 − y2Þ;

G†
HGH ¼ I; ð40Þ

and ϕ ¼ G†
Hψ obeys the boundary conditions in Eq. (16).

In addition,

H0 ¼ G†
HHGH ¼ −iσ2ð∂1 − ibx2Þ þ iσ1∂2 ð41Þ

acts on functions ϕðx1; x2Þ. We define the operator RH by

RH ¼
"
iR 0

0 R

#
;

Rðx1; x2; y1; y2Þ ¼ δðx1 − y2Þδðx2 þ y1Þ;

R†
HRH ¼ I; ð42Þ

and note that

H0 ¼ R†
HHRH ⇒ H ¼ ðGHR

†
HÞ†HðGHR

†
HÞ;

ðGHR
†
HÞ4 ¼ I: ð43Þ

Although the rotation RH itself is not a symmetry of the
Hamiltonian due to the nontrivial boundary condition, the
transformationGHR

†
H is a symmetry. Therefore, we can ask

for the quantum numbers of the various single-particle
states under GHR

†
H, which can take one of the val-

ues 1; i;−1;−i.
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Using the result in Appendix A 1, we have

ðRHG
†
HÞψ

0;"n
j ðx1; x2Þ ¼

(
inJjj0ðQÞψ0;"n

j0 ðx1; x2Þ; Q > 0;

i−nþ1Jjj0ðQÞψ0;"n
j0 ðx1; x2Þ; Q < 0;

Jð−QÞ ¼ J†ðQÞ: ð44Þ

There is an extra factor of i between Q > 0 and Q < 0 in
Eq. (44). Letmj; j ¼ 0; 1; 2; 3 be the number of zero modes
(after simultaneous diagonalization of H and GHR

†
H) that

transform as 1; i;−1;−i, respectively, for a givenQ. Table I
lists the eigenvalue degeneracies of the matrix J for a fixed
value of Q > 0. From Eq. (44), we see that the trans-
formation matrix is iJ†ðjQjÞ for Q < 0 and therefore

fm0;m1;m2;m3g→ fm1;m0;m3;m2g under Q→ −Q:

ð45Þ

Using the above properties of single-particle states, we
now find the transformation properties of multiparticle
ground states obtained by appropriately filling the single-
particle modes. Let us assume Q > 0 and consider ground
states that are half-filled with the zero modes of Nf pairs of
ðHoðQÞ; Hoð−QÞÞ. Since we have an infinite number of
negative and positive eigenvalues of HoðQÞ, we assume
that the corresponding fully filled negative energy states of
ðHoðQÞ; Hoð−QÞÞ are rotationally invariant. Let nk; k ¼
0; 1; 2; 3 be the number of zero modes transforming as
1; i;−1;−i, respectively, that were filled to obtain a half-
filled ground state. Then

X3

k¼0

nk ¼ QNf; 0 ≤ n0; n1 ≤ ðm0 þm1ÞNf;

0 ≤ n2; n3 ≤ ðm2 þm3ÞNf: ð46Þ

All solutions of nk; k ¼ 0; 1; 2; 3 can be obtained from the
data in Table I. For each solution to the above equation, the
transformation under π

2 rotations is given by

ð1Þn0ðiÞn1ð−1Þn2ð−iÞn3 ≡ ei
π
2j; j ¼ 0; 1; 2; 3: ð47Þ

The number of such ground states is

dðfnkg;QÞ ¼
" ðm0 þm1ÞNf

n0

#" ðm0 þm1ÞNf

n1

#

×
" ðm2 þm3ÞNf

n2

#" ðm2 þm3ÞNf

n3

#
: ð48Þ

The associated symmetry group is Uðn1Þ ×Uðn2Þ ×
Uðn3Þ × Uðn4Þ rotations of the zero modes and should
be compared with the maximally allowed UðQNfÞ rota-
tions of the half-filled ground state.

VI. LATTICE ANALYSIS

We had an infinite number of negative energy states in
the continuum, and we could only discuss the properties of
filling the zero modes. The situation under lattice regu-
larization enables us to include the filled negative energy
states in our discussion of the transformation properties.
One should also note that, in the continuum, a highest-
energy many-body state obtained by filling all of the
positive modes and half of the zero modes is indistinguish-
able from the many-body ground state obtained by filling
all of the negative modes and the corresponding zero
modes. Therefore, we discuss the transformation properties
of the lowest- and highest-energy half-filled state on the
lattice for Nf pairs of ðHoðQÞ; Hoð−QÞÞ.
We show in Appendix B that, like in the continuum, the

symmetry of the lattice Hamiltonian is a composition of
rotation R and a gauge transformation G†:

R†
HHoRH ¼G†

HHoGH ⇒ Ho ¼ ðRHG
†
HÞ†HoðRHG

†
HÞ;
ð49Þ

where GH and RH have the same structure as in Eqs. (40)
and (42) and G and R are given by Eqs. (12) and (10).
Let eij

−
L
π
2 be the phase by which a lattice multiparticle

ground state transforms under a π=2 rotation with
j−L ¼ 0; 1; 2; 3. Two terms now contribute to this phase:
the net phase from the half-filled zero modes and the net
phase from all of the fully filled negative modes. The latter

TABLE I. Degeneracy table of the eigenvalues of J for a fixed
Q.

Q m0 m1 m2 m3

1 1 0 0 0
2 1 0 1 0
3 1 0 1 1
4 2 0 1 1
5 2 1 1 1
6 2 1 2 1
7 2 1 2 2
8 3 1 2 2
9 3 2 2 2
10 3 2 3 2
11 3 2 3 3
12 4 2 3 3
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contribution is obtained by the product of the eigenvalues
of GHR

†
H restricted to the filled negative modes of Ho,

which is a determinant. Let det−ðQÞ be this determinant of
GHR

†
H on the fully filled negative energy states.

Similarly, let eij
þ
L
π
2 be the phase by which a highest-

energy state transforms under a π=2 rotation with
jþL ¼ 0; 1; 2; 3. The contribution to this phase now comes
from the same half-filled zero modes and the net phase
from all of the fully filled positive modes given by the
product of the eigenvalues of GHR

†
H restricted to the filled

positive modes. Let detþðQÞ be this determinant of GHR
†
H

on the fully filled positive energy states. Using the formula
for detðGHR

†
HÞ in Eq. (B14), we can relate detþðQÞ to

det−ðQÞ via the relation

det
þ
ðQÞdet

þ
ð−QÞdet− ðQÞdet− ð−QÞijQj ¼ ð−1ÞL; ð50Þ

where the factor of ijQj is the contribution from the zero
modes.2

Given values of L∈ ½8; 15' and"Q∈ ½1; 12', we numeri-
cally evaluate the eigenvalues and eigenvectors of Ho. The
number of zero modes is equal to jQj and their chiralities
are − Q

jQj, like in the continuum. These are paired with jQj
modes of opposite chiralities with eigenvalues Q

jQj. The
number of paired positive and negative eigenvalues away
from 0;"1 is L2 − jQj and these are not chiral. The
transformation properties of the zero modes (eigenvalues
of GHR

†
H) turn out to be independent of L for L > 8 and

exactly match the continuum values obtained from
Eq. (44). The results for det−ðQÞ are tabulated in
Table II. We note from Table II that det−ðQÞ det−ð−QÞ

is independent of L even though each of the factors depend
on L, and we empirically find

det− ðQÞdet− ð−QÞ ¼ ei
πðjQj−1Þð6−jQjÞ

4

⇒ det
þ
ðQÞdet

þ
ð−QÞ ¼ ð−1ÞLei

πðjQjþ1ÞðjQj−10Þ
4 : ð51Þ

With this information in place, one can list the trans-
formation properties under a π

2 rotation of all multiparticle
ground states and the highest-energy states of Nf pairs
ðHoðQÞ; Hoð−QÞÞ. The fully filled negative and positive
energy states transform trivially if Nf is a multiple for 4.
For Nf not a multiple of 4, the transformation properties of
the fully filled negative and positive energy states of
ðHoðQÞ; Hoð−QÞÞ become relevant. Since the transforma-
tion properties of the zero modes under π

2 rotations are
found to be the same on the lattice and continuum, the
phase from the zero modes is still eij

π
2 with integer j, as

defined in Eq. (47) for the continuum case. The phase from
the fully filled modes is ½det"ðQÞ det"ð−QÞ'Nf . Putting
everything together, multiparticle ground states and the
highest-energy states of the lattice regularized Hamiltonian
transform under a π=2 rotation by

eij
"
L
π
2 ¼ ei

π
2j½det

"
ðQÞdet

"
ð−QÞ'Nf ;

where ei
π
2j ¼ ½1n0in1ð−1Þn2ð−iÞn3 '; ð52Þ

where the choice of " corresponds to the lowest and
highest states, respectively. As before, nk; k ¼ 0; 1; 2; 3 are
the number of zero modes transforming as 1; i;−1;−i,
respectively, that were filled to obtain the half-filled ground
state. One should note two points:
(1) The determinant factors are not identity (except for

Nf ¼ 4), and thus the fully filled states contribute to

TABLE II. Table of representations of the fully filled negative energy states on the lattice for positive and
negative Q.

det−ðQÞ det−ð−QÞ

Q L ¼ 8; 12 L ¼ 10; 14 L ¼ 9; 11; 13; 15 L ¼ 8; 12 L ¼ 10; 14 L ¼ 9; 11; 13; 15 det−ðQÞ det−ð−QÞ

1 i −i 1 −i i 1 1
2 1 −1 −1 −1 1 1 −1
3 −1 1 −i i −i 1 −i
4 −i i −i 1 −1 1 −i
5 −i i −1 −i i 1 −1
6 −1 1 1 −1 1 1 1
7 1 −1 i i −i 1 i
8 i −i i 1 −1 1 i
9 i −i 1 −i i 1 1
10 1 −1 −1 −1 1 1 −1
11 −1 1 −i i −i 1 −i
12 −i i −i 1 −1 1 −i

2The factor ijQj comes from Table I and Eq. (45): ½1m0 im1ð−1Þm2

ð−iÞm3 '½1m1 im0ð−1Þm3ð−iÞm2 '¼ im0þm1þm2þm3 ¼ ijQj.
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the transformation properties of the multiparticle
vacua. Given a solution to Eq. (46), the effect of the
fully filled positive or negative energy states is
simply to map the associated j in Eq. (47) to a
j"L ðj;Q; LÞ on the lattice.

(2) detþðQÞdetþð−QÞ ≠ det−ðQÞdet−ð−QÞ, and thus
on regularization, the ground state and the highest
excited states start behaving differently.

VII. CONCLUSIONS

A classification of the monopole quantum numbers in
three-dimensional QED is usually done by considering
the fermion spectrum in the background of a spherical
monopole. This is a local operator and the transformation
properties of the zero modes can be obtained by a study of
the generalized angular momentum operator. One typically
used radial quantization is r ¼ eτ, where τ is the Euclidean
time and r ¼ 0 is mapped to τ ¼ −∞. The Hamiltonian is
defined on S2 and the monopole has a constant flux on each
S2 in τ ¼ ð−∞;∞Þ. The quantum numbers as extracted
from S2 × R computation could be obtained by a compu-
tation of two-point functions on the lattice with periodic
boundary conditions. However, it is difficult to regulate the
S2 computations directly on the lattice. Therefore, we
considered an analogous problem of uniform flux on T2

and studied the spectrum of the fermion Hamiltonian in
order to gain understanding of how the vacuum quantum
numbers arise when a lattice regulator is used. Unlike S2

where the monopole is invariant under a continuous
rotation, we only have discrete π

2 rotations on T2. Such a
study is of relevance from the viewpoint of Dirac spin
liquids [14,20], where the transformations of the monopole
operators are considered on lattices with different discrete
symmetries. In addition to the transformation properties of
the zero modes of the lattice operator under π

2 rotations, we
also need to look at the transformation properties of all
eigenmodes since we look at the full transformation
property of the multiparticle ground states and this includes
filling all negative energy states of the Hamiltonian.
Considering 2Nf flavors (Nf parity-invariant pairs), we
found that the transformation properties of the half-filled
many-body state on the lattice are not the same as those in
the continuum. The set of continuum states that transform as
ei

π
2j in the continuum along with the associated symmetry

group gets nontrivially mapped to a j−Lðj;QÞ when we
consider the lowest-energy state and to a jþL ðj;Q; LÞ when
we consider the highest-energy state. To make sure that our
lattice observations are not due to lattice artifacts, we used
an exactly massless overlap fermion, which preserves the
flavor symmetry even at finite lattice spacings, and studied
the vacuum quantum numbers at multiple values of lattice
spacings at fixed background fluxes. Even though we
reduced the continuous symmetry group on S2 to the
discrete group rotation on T2, we have shown that we

cannot ignore the transformation property of the fully filled
negative energy state. Furthermore, we were able to take the
continuum limit by including the transformation of the full
vacuum state and not just the contribution of the zero
modes, as is done in a continuum analysis on S2 × R. Given
the observed significance of negative energy states on the
torus, it would be important to regulate the theory on S2 × R
and study the continuum limit of the transformation
properties.
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APPENDIX A: SPECTRUM OF THE DIRAC
HAMILTONIAN IN THE BACKGROUND

OF A UNIFORM FLUX ON T2

The problem of the spectrum of the Dirac Hamiltonian
in the background of a uniform flux on T2 was solved
in [15] and our aim is to study the transformation of
the eigenvectors under π

2 rotations. To make the presen-
tation self-contained, we write down the details of the
eigenvalue problem here. The eigenvalue problem for the
Hamiltonian is

ð−∂1 − bx1 þ i∂2Þψ−ðx1; x2;EÞ ¼ Eψþðx1; x2;EÞ;
ð∂1 − bx1 þ i∂2Þψþðx1; x2;EÞ ¼ Eψ−ðx1; x2;EÞ: ðA1Þ

We expand both ψ" in a momentum basis in the x2
direction and write

ψ"ðx1; x2;EÞ ¼
X∞

k¼−∞
ck"e

ipx2ϕ"ðy;EÞ;

p ¼ 2πk
l

; y ¼ 1ffiffiffiffiffiffi
jbj

p ðbx1 þ pÞ: ðA2Þ

Then,

ψ"ðx1þl;x2;EÞ¼ e−
2πiQx2

l

X∞

k¼−∞
ck−Q" eipx2ϕ"ðy;EÞ: ðA3Þ

To match with the boundary condition in the x2 direction,
we conclude

ck" ¼ ck−Q" ; ðA4Þ

and the degeneracy of each energy eigenstate is Q-fold.
With E ¼

ffiffiffiffiffiffiffiffi
2jbj

p
α, the differential equations reduce to
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X∞

k¼−∞
eipx2

1ffiffiffi
2

p
$
Q
jQj

d
dy

þ y
%
ck−ϕ−ðy;EÞ ¼ −α

X∞

k¼−∞
eipx2ckþϕþðy;EÞ;

X∞

k¼−∞
eipx2

1ffiffiffi
2

p
$
−

Q
jQj

d
dy

þ y
%
ckþϕþðy;EÞ ¼ −α

X∞

k¼−∞
eipx2ck−ϕ−ðy;EÞ: ðA5Þ

The connection to a one-dimensional Harmonic oscillator is evident and we use the standard creation and annihilation
operators,

a ¼ 1ffiffiffi
2

p
$
d
dy

þ y
%
; a† ¼ 1ffiffiffi

2
p

$
−

d
dy

þ y
%
; ðA6Þ

and label the states by real-valued functions, ϕnðyÞ; n ¼ 0; 1;…, such that

aϕn ¼
ffiffiffi
n

p
ϕn−1; a†ϕn ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
ϕ;

Z
∞

−∞
dyϕnðyÞϕn0ðyÞ ¼ δn;n0 ; ϕnð−yÞ ¼ ð−1ÞnϕnðyÞ: ðA7Þ

Let us define

ϕj;nðx1; x2Þ ¼
ð2πjQjÞ14

l

X∞

k¼−∞
ei

2πðjþkQÞx2
l ϕn

"
bffiffiffiffiffiffi
jbj

p
$
x1 þ lkþ lj

Q

%#
; j∈ ½0; jQj − 1'

⇒

(
aϕj;n ¼

ffiffiffi
n

p
ϕj;n−1; a†ϕj;n ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
ϕj;nþ1;R

l
0 dx1

R
l
0 dx2ϕ(

j0;n0ðx1; x2Þϕj;nðx1; x2Þ ¼ δj;j0δn;n0 :
ðA8Þ

We separately analyze the cases for Q > 0 and Q < 0.

(1) Q > 0: In this case,

ck−aϕ−ðy;EÞ ¼ −αckþϕþðy;EÞ;
ckþa†ϕþðy;EÞ ¼ −αck−ϕ−ðy;EÞ: ðA9Þ

We haveQ zero modes and this corresponds to ϕ− ¼
ϕj;0 and ϕþ ¼ 0, and the normalized zero modes are
given by

ψ j;0ðx1; x2Þ ¼
"

0

ϕj;0ðx1; x2Þ

#
; j∈ ½0; Q − 1':

ðA10Þ

The paired normalized modes with eigenvalues

"
ffiffiffiffiffiffiffiffiffiffi
4πQ
l2 n

q
each have a degeneracy of Q and are

ψ"
j;nðx1; x2Þ ¼

1ffiffiffi
2

p
"
ϕj;n−1ðx1; x2Þ
∓ϕj;nðx1; x2Þ

#
;

j∈ ½0; Q − 1': ðA11Þ

(2) Q < 0: In this case,

ck−a†ϕ−ðy;EÞ ¼ −αckþϕþðy;EÞ;
ckþaϕþðy;EÞ ¼ −αck−ϕ−ðy;EÞ: ðA12Þ

We have jQj zero modes and this corresponds to
ϕþ ¼ ϕj;0 and ϕ− ¼ 0, and the normalized zero
modes are given by

ψ j;0ðx1; x2Þ ¼
"
ϕj;0ðx1; x2Þ

0

#
; j∈ ½0; jQj − 1':

ðA13Þ

The paired normalized modes with eigenvalues

"
ffiffiffiffiffiffiffiffiffiffiffiffi
4πjQj
l2 n

q
each have a degeneracy of Q and are

ψ"
j;nðx1; x2Þ ¼

1ffiffiffi
2

p
"

ϕj;nðx1; x2Þ
∓ϕj;n−1ðx1; x2Þ

#
;

j∈ ½0; jQj − 1': ðA14Þ
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1. Transformation of continuum eigenvectors under π
2 rotations

Let us start with ϕj;n in Eq. (A8) and note thatG†ϕj;n obeys the boundary conditions in Eq. (16). Therefore, we can write

X∞

k¼−∞
ei

2πQx1x2
l2 ei

2πðkQþjÞx2
l ϕn

 
bffiffiffiffiffiffi
jbj

p
$
x1 þ lkþ lj

Q

%!

¼
X∞

k0¼−∞
ei

2πk0x1
l fj;nðx2; k0Þ: ðA15Þ

Then,

fj;nðx1; k0Þ ¼
1

l

Z
l

0
dx1

X∞

k¼−∞
ei

2π
l2
½Qx1x2þðkQþjÞx2l−k0x1l'ϕn

 
bffiffiffiffiffiffi
jbj

p
$
x1 þ lkþ lj

Q

%!

¼ 1

l

Z
l

0
dx1

X∞

k¼−∞
ei

2π
l2
½ðQx2−lk0Þðx1þklþlj

QÞþl2k0kþl2k
0j
Q 'ϕn

 
bffiffiffiffiffiffi
jbj

p
$
x1 þ lkþ lj

Q

%!

¼ ei
2πk0j
Q

l

Z
∞

−∞
dx1e

ibx1ðx2−lk0
Q Þϕn

 
bffiffiffiffiffiffi
jbj

p x1

!

¼ ei
2πk0j
Q

ffiffiffiffiffiffi
jbj

p
l

Z
∞

−∞
dyei

b
jbjxyϕnðyÞ; x ¼ bffiffiffiffiffiffi

jbj
p

 

x2 −
lk0

Q

!

; y ¼ bffiffiffiffiffiffi
jbj

p x1: ðA16Þ

Let us define

χnðxÞ ¼ i−n
Z

∞

−∞
dyeixyϕnðyÞ ⇒ χ(nðxÞ ¼ χnðxÞ; χnð−xÞ ¼ ð−1ÞnχnðxÞ: ðA17Þ

Then,

dχnðxÞ
dx

¼ i−nþ1

Z
∞

−∞
dyeixyyϕnðyÞ

¼

8
<

:

i−nþ1
R∞
−∞ dyeixy

& ffiffiffiffiffiffi
2n

p
ϕn−1ðyÞ − dϕn

dy

'

i−nþ1
R∞
−∞ dyeixy

& ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
ϕnþ1ðyÞ þ dϕn

dy

'

¼

8
<

:
i−nþ1

R∞
−∞ dyeixyð

ffiffiffiffiffiffi
2n

p
ϕn−1ðyÞ þ ixϕnÞ

i−nþ1
R∞
−∞ dyeixyð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
ϕnþ1ðyÞ − ixϕnÞ

¼

8
<

:

ffiffiffiffiffiffi
2n

p
χn−1ðxÞ − xχnðxÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
χnþ1ðxÞ þ xχnðxÞ;

ðA18Þ

where we have used the recursion relations for ϕnðyÞ from Eq. (A7) and we see that χnðxÞ satisfy the same recursion
relations, namely,

dχnðxÞ
dx

þ xχnðxÞ ¼
ffiffiffiffiffiffi
2n

p
χn−1ðxÞ; −

dχnðxÞ
dx

þ xχnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
χnþ1ðxÞ: ðA19Þ

To fix the constant relating χnðxÞ and ϕnðxÞ, we note that

χ0ðxÞ ¼
1ffiffiffi
π

p
Z

∞

−∞
eixy−

y2

2 dy ¼ e−
x2
2

ffiffiffi
π

p
Z

∞

−∞
e−

1
2ðy−ixÞ

2
dy ¼

ffiffiffiffiffiffi
2π

p
ϕ0ðxÞ ⇒ χnðxÞ ¼

ffiffiffiffiffiffi
2π

p
ϕnðxÞ: ðA20Þ

Therefore,

ðG†ϕj;nÞðx1; x2Þ ¼ i
b
jbjn
XQ−1

j0¼0

e−i
2πjj0
Q

ffiffiffiffiffiffiffi
jQj

p ϕj0;nðx2;−x1Þ ¼ i
b
jbjn
XQ−1

j0¼0

e−i
2πjj0
Q

ffiffiffiffiffiffiffi
jQj

p ðRtϕj0;nÞðx1; x2Þ; ðA21Þ
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resulting in

ðRG†ϕj;nÞðx1; x2Þ ¼ i
b
jbjn
XQ−1

j0¼0

Jj;j0ðQÞϕj0;nðx1; x2Þ; Jj;j0ðQÞ ¼ e−i
2πjj0
Q

ffiffiffiffiffiffiffi
jQj

p : ðA22Þ

We note that

JJ† ¼ I; ðA23Þ

showing that it is a unitary matrix. Next, we note that

½J2'jj0 ¼
1

jQj
X

j

e−i
2πðjþj0Þj

Q ¼ δðjþ j0; 0Þ þ δðjþ j0; QÞ ⇒ J4 ¼ I: ðA24Þ

APPENDIX B: GAUGE TRANSFORMATIONS AND π
2 ROTATIONS ON THE LATTICE

We start with the rotation matrix in Eq. (10) and consider

ðRt½T1ϕ'Þðm1; m2Þ ¼ Rt
m1;m2;k1;k2

½T1ϕ'ðk1; k2Þ ¼

(
½T1ϕ'ðm2; 0Þ; m1 ¼ 0;

½T1ϕ'ðm2; L −m1Þ; 0 < m1 ≤ L − 1

¼
(
U1ðm2; 0Þϕðm2 þ 1; 0Þ; m1 ¼ 0;

U1ðm2; L −m1Þϕðm2 þ 1; L −m1Þ; 0 < m1 ≤ L − 1

¼
(
U1ðm2; 0ÞðRtϕÞð0; m2 þ 1Þ; m1 ¼ 0;

U1ðm2; L −m1ÞðRtϕÞðm1; m2 þ 1Þ; 0 < m1 ≤ L − 1;
ðB1Þ

ðRt½T2ϕ'Þðm1; m2Þ ¼ Rt
m1;m2;k1;k2

½T2ϕ'ðk1; k2Þ ¼

(
½T2ϕ'ðm2; 0Þ; m1 ¼ 0;

½T2ϕ'ðm2; L −m1Þ; 0 < m1 ≤ L − 1

¼
(
U2ðm2; 0Þϕðm2; 1Þ; m1 ¼ 0;

U2ðm2; L −m1Þϕðm2; L −m1 þ 1Þ; 0 < m1 ≤ L − 1

¼
(
U2ðm2; 0ÞðRtϕÞðL − 1; m2Þ; m1 ¼ 0;

U2ðm2; L −m1ÞðRtϕÞðm1 − 1; m2Þ; 0 < m1 ≤ L − 1:
ðB2Þ

If we now define

RtT1R ¼ T 0
2; RtT2R ¼ T 0†

1 ; χ ¼ Rtϕ; ðB3Þ

then

U0
1ðn1; n2Þ ¼ U(

2ðn2; L − 1 − n1Þ U0
2ðn1; n2Þ ¼

(
U1ðn2; 0Þ; n1 ¼ 0;

U1ðn2; L − n1Þ; 0 < n1 ≤ L − 1:
ðB4Þ

The above transformation matches Eq. (11). Referring to Eqs. (21) and (22), we have

RtCR ¼ iC0; RtBR ¼ B0; ðB5Þ

where C0 and B0 are in terms of T 0
i; i ¼ 1; 2. Then,

RH ¼
"
iR 0

0 R

#
⇒ R†

HHwRH ¼ H0
w

⇒ R†
HϵðHwÞRH ¼ ϵðH0

wÞ: ðB6Þ
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We write the gauge transformation using Eq. (12) as

GH ¼
"
G 0

0 G

#
⇒ H0

w ¼ G†
HHwGH

⇒ G†
HϵðHwÞGH ¼ ϵðH0

wÞ: ðB7Þ

In addition,

σ3 ¼ R†
Hσ3RH ¼ G†

Hσ3GH: ðB8Þ

Therefore,

H0
o ¼ R†

HHoRH ¼ G†
HHoGH: ðB9Þ

Next, we write

ðGHR
†
HÞn1;n2;m1;m2

¼ e−i
2πQn1n2

L2 δn1;m2
½δn2þm1;0 þ δn2þm1;L':

ðB10Þ

Then,

ðGHR
†
HÞ2n1;n2;m1;m2

¼ e−i
2πQn1ðn2þm2Þ

L2 ½δn1þm1;0 þ δn1þm1;L'½δn2þm2;0 þ δn2þm2;L' ðB11Þ

and

ðGHR
†
HÞ4n1;n2;n01;n02 ¼ e−i

2πQn1ðn2þm2Þþm1ðm2þn0
2
Þ

L2 ½δn1þm1;0 þ δn1þm1;L'½δn2þm2;0 þ δn2þm2;L'

½δm1þn01;0
þ δm1þn01;L

'½δm2þn02;0
þ δm2þn02;L

': ðB12Þ

If n1 ¼ 0 (we have m1 ¼ n01 ¼ 0) or n2 ¼ 0 (we have
m2 ¼ n02 ¼ 0), the phase prefactor is unity. If n1 ≠ 0
and n2 ≠ 0, then n1 þm1 ¼ m1 þ n01 ¼ n2 þm2 ¼ m2 þ
n02 ¼ L and the prefactor is e−i2πQ ¼ 1. Therefore, we
conclude that

ðGHR
†
HÞ4 ¼ 1; ðGHR

†
HÞ†ðGHR

†
HÞ ¼ 1; ðB13Þ

and the eigenvalues of GHR
†
H are "1;"i. It can be shown

that

detðGHR
†
HÞ ¼

(−i for L odd;

ð−1ÞQ; for L even:
ðB14Þ

Note that if we combine a pair ðHoðQÞ; Hoð−QÞÞ, the
result is independent of Q but depends on L. One may
absorb this dependence by redefining RH with an
L-dependent sign.
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