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Massless fermions in uniform flux background on 77 x R: Vacuum quantum
numbers from single-particle filled modes using lattice regulator
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The quantum numbers of monopoles in R? in the presence of massless fermions have been analyzed
using a uniform flux background in $? x R coupled to fermions. An analogous study in 72 x R is
performed by studying the discrete symmetries of the Dirac Hamiltonian in the presence of a static uniform
field on T? with a total flux of Q in the continuum. The degenerate ground states are classified based on

their transformation properties under 7 rotations of T? that leave the background field invariant. We find that
the lattice analysis with overlap fermions exactly reproduces the transformation properties of the single-
particle zero modes in the continuum. Whereas the transformation properties of the single-particle negative
energy states can be studied in the continuum and the lattice, we are also able to study the transformation
properties and the particle number (charge) of the many-body ground state on a finite lattice, and we show
that the contributions from the fully filled single-particle states cannot be ignored.
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I. INTRODUCTION

Monopoles play a significant role in the modern analysis
of QED in three dimensions. When the gauge action
suppresses monopoles, the resulting parity-invariant quan-
tum theory is scale invariant for all even numbers of flavors
of massless two-component fermions [1,2]. The compu-
tation of monopole scaling dimensions in an expansion in a
large number of flavors [3,4], an expansion around four
dimensions [5], and the conformal bootstrap [6—8] sug-
gests a critical number of flavors. This has been confirmed
by numerical simulations [9,10]. A nonperturbative study
of compact QED with massless fermions faces hurdles due
to the proliferation of monopoles that are singular on the
lattice. This leads to near-zero modes for Wilson fermions
with negative masses, thereby causing a technical diffi-
culty in numerical simulations with massless overlap
fermions [11].
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The numerical evaluation of the scaling dimensions of
monopoles using a background field computation [9,10]
does not address the question of the quantum numbers of
the underlying monopole operators. The determination of
the scaling dimensions of monopole operators in the limit
of a large number of flavors is a computation in a fermionic
theory coupled to a static monopole background [3]. For
such an analysis, it is natural to consider radial quantiza-
tion, where R3 — S2 x R. The Euclidean time 7 is related to
the radial coordinate by r = e*. The Dirac operator in the
presence of a spherically symmetric monopole was ana-
lyzed in [12]. The nonzero single-particle energy levels of
the corresponding Hamiltonian are given by

e==xypp+I1Q));  peN (1)
From this, the scaling dimensions of the monopole as a
function of Q can be read off from the corresponding
Casimir energies of the ground states in the radial quan-
tization [3,4].

In addition to the scaling dimension, the monopole
operators could carry nontrivial quantum numbers [3,4] as
follows. All ground states are obtained by first filling the
infinite number of negative energy states of the Hamiltonian.
The vacuum state in the presence of monopoles is not unique
due to the presence of zero modes. A single-particle energy
state labeled by an integer p is also an eigenstate of the
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generalized angular momentum operator K [12] with an
eigenvalue j = p + ‘Q|T_1 > 0; thus, in general, the single-
particle states transform nontrivially under rotations.
Nevertheless, one assumes that the multiparticle vacuum
state transforms trivially under K, and one also assumes
that the charge is zero under suitable normal ordering.
With Q = 1, the situation is reasonably clear [3]. The zero
mode has a total spin of zero. With N flavors, one has N
zero modes, and starting from the state obtained by filling
all of the negative energy states, we see that there are ()
degenerate vacuum states obtained by filling the k € [0, N]
zero-energy modes. If we impose invariance under CP, the
claim is that N needs to be even (N = 2N) and the states
with k = N are those that are invariant under CP. Since
the spin of each of the zero modes is zero, we can conclude

that all (%\if ) will be rotationally invariant. The situation

becomes more complicated when |Q| > 1 and we have
2|Q|N, zero modes. The spin of the zero mode is not zero
2|QINs
|OIN;
This was analyzed in [13].

This paper aims to understand the emergence of the
quantum numbers of the filled many-body vacuum states,
now in the presence of an ultraviolet regulator. This will
help avoid the assumptions about contributions from the
infinite number of negative energy states. Ideally, we would
want to stay on S> x R and use a lattice regularization, but
this is not simple to implement. It is typical to implement
the lattice regulator on the torus. Therefore, instead of
addressing the issue in S? x R, we study the analogous
problem of quantum numbers of vacua of massless fer-
mions in the presence of a background static magnetic field
27Q on T?2. This problem was also studied in [14], where
the focus was to study the effect of different types of
bipartite lattices on the structure of the ground states. The
study in this paper is only on a square lattice and we use
overlap fermions to realize a single two-component fer-
mion. The spectrum of the Dirac Hamiltonian in this
background was analyzed in [15]. The associated vacuum
energy cannot be related to the monopole scaling dimen-
sions, but a study of the quantum number of the degenerate
states that form the vacuum is relevant.

To be precise, we consider the Dirac Hamiltonian on an
L? lattice with a background field that has a uniform flux of
27 Q. Spatial parity transformation is the same as charge
conjugation for this particular gauge field background.
Overlap fermions for a single two-component fermion will
have exactly |Q| zero modes.' Parity invariance is restored
if we have a pair of flavors with (H,(Q), H,(—Q)) as the
associated Hamiltonians. In this case, the two flavors put

and only some of the ( ) will have a total spin of zero.

'Wilson fermions will also have |Q| zero modes, but the
Wilson mass parameter will have to be tuned to different values
for each zero mode and all of these modes will coalesce only
when the continuum limit is taken.

together will have (2L% — |Q]) negative eigenvalues and
2|Q| zero modes, which need to be suitably filled to create
the multiparticle vacuum state. In this paper, we address the
transformation properties of such ground states under 7
rotations. We focus on the lowest and highest energy states
that have a total of L? filled single-particle states, inde-
pendent of Q. We refer to these as the two half-filled
sectors. The half-filling is motivated by the fact that the
ground state of free fermions (Q = 0) is unique (with
antiperiodic boundary conditions on the fermions) and is
made up of L? single-particle states, and we wish to
maintain this condition for all Q (imposing Gauss’ law).

The organization of the rest of the paper is as follows. Our
presentation in Sec. II is slightly unconventional: we set up
the problem on the lattice and then take the continuum limit.
We discuss the action of the discrete rotation symmetry on
the gauge fields. We set up the Dirac Hamiltonian in Sec. IIL
We first analyze the problem in the continuum in Sec. V.
Much of the results are taken from [15], but the presentation
is self-contained to help the reader. Particular attention is
paid to the transformation of the eigenstates (corresponding
to both zero and nonzero eigenvalues) under 7 rotations.
Due to the infinite number of nonzero eigenvalues, we are
not able to properly address the issue of the transformation
properties of the degenerate ground states. This is resolved
by repeating the study on the lattice in Sec. VI. We show
that the transformation properties of the zero modes exactly
match those in the continuum even when L is finite. This
helps us to isolate the role played by the transformation
properties of the nonzero modes and show that a continuum
statement can be made by studying the theory on finite L. In
particular, we address the flavor symmetry of the ground
state sector at half-filling.

II. UNIFORM FIELD ON A
TWO-DIMENSIONAL TORUS

Let the size of the symmetric spatial torus be £ and we
refer to those spatial directions as 1,2. The Euclidean time
direction is 3. To write down the gauge field in the
continuum, we start on a lattice where the periodic
boundary conditions are imposed on the link variables.
Let the periodic two-dimensional lattice be L x L and we
label the points on the lattice by (n;, n,), where the gauge
links U;(n;,n,) satisfy

Ui(ny + kiLyny + kL) = Ui(nyny), i=12 (2)
and (ky, k,) are in the set of integers. The link variables are

naturally associated with the unitary parallel transporters
Ty, k=1, 2 defined by

[T\¢)(ny,ny) = Uy(ny,ny)p(ny + 1, 1ny),
[T2¢)(ny, ;) = Us(ny, ny)p(ny, ny + 1), (3)
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and ¢(ny, n,) obey periodic boundary conditions, namely,

P(nl,}’l2> = Ul(nl,nz)Uz(nl + l,nz)UT(}’ll,nz + 1)

270

¢(ny + L,ny) = p(ny,ny + L) = p(ny,my). (4 x Us(ny,m) = ' (5)
One choice for the gauge links that results in a uniform
plaquette is
e_izzr(Lgnz n=1L-1 200m
Ui(ny,ny) = | 0<n <L _1 Us(ny,ny) = e 17 . (6)
= -1
[
Explicit computation shows that P(n;,n,) gives the ex- G S e—iZ"QL# s GG=1
pected value as long as (n;,n,) # (L —1,L — 1) and N . et eI ’
T, = G'T,G. (12)

P(L—1,L—1)=¢ e 20, (7)

Equation (5) is satisfied by all plaquettes if Q needs to take
on integer values resulting in flux quantization on the torus.
The Polyakov loops are

i2/th2

L-1
Pi(ny) = H Uy(ny.ny) = 7717,
n;=0

L-1
270n
Py(ny) = [] Ua(ny.ny) = €77 (8)

n,=0

A rotation by 7 of the lattice takes
(n1,n3) = (n},ny) = ((L = ny)mod L,ny),  (9)

which results in 7} = R'T;R, with the transformation
matrix

R”l’”z;n/l ¥ = 5”ls”/2 [5nz+n’].L + 5nz+n’] ,O]’
RR'=1, R'=1L (10)

The resulting link variables are

272Qn,
U (n . n) = —i—52
(), nh) = e 17,

_ZﬂQn/l
I

[ —
U;<n1,na>={“ m=L-1 (11)

1 0<n)<L-1,

and we see that the plaquettes and Polyakov loops remain
invariant. The above rotation is the same as the periodic
gauge transformation defined by

The continuum limit is taken by introducing the lattice

spacing a and writing x; = an; and £ = aL. We see that
270x)

Us(ny,ny) = '~ has a well-defined continuum limit
but U,(n,n,) is singular. As a result, one modifies the
periodic boundary conditions on the continuum field ¢
such that the gauge field in the continuum limit corre-
sponding to the lattice fields in Eq. (6) is written as

27xQ
Ai(x1,x) =0,  Ay(x,x;) = bxy, b=77 (13)
along with
210x)
b(x) +2,x) = e P(x1, x7),
d(x1, % +€) = Pp(x1,x2). (14)

The continuum gauge field associated with rotated lattice
fields in Eq. (11) is written as

Y=m =x. Afxab)=-by, A5=0. (15)
along with
P¥ +7x) = P(x1, %),
'Zan/
¢ (x1 x5+ 6) = e (x]. 35). (16)

These are, of course, well known [15].

III. DIRAC HAMILTONIAN

The Dirac Lagrangian is

L= /dzxd‘n/'/(x, 7)[61(0; + iA) + 62(0, + iA,)

+ 030w (x.7), (17)
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with o; being the standard Pauli matrices, and the total
charge

Jo= / P (x, 2o (x,7) (18)

is time independent. The time-independent multiparticle

Hamiltonian is
0o C
H= | d&xy'(x,7)Hy(x,1), H:< ),
[ o) o
C=—(0,+iA) +i(0, + iA,), (19)

and the total charge

do= [ @ x cpyr.) (20)

is the number operator.

Lattice regularization will result in finite matrices for H
in Eq. (19) and the integral over space will become a sum
over lattice sites. This enables us to perform a careful
enumeration of the states along with their particle number
(total charge). We proceed to regularize H using overlap
fermions [16—19] to ensure massless fermions without fine-
tuning while avoiding doublers. The naive chiral Dirac
operator is

1 ; i N
C=-3(M-T)+5T-1)  @1)

and the Wilson mass operator is

1 1 .
B=2-m—(T, +7T7) —5(T2+T3), me(0.2). (22)

The overlap-Dirac Hamiltonian is

oy telt) BoC
H H, = . (23
=2t (o )

All eigenvectors of the unitary operator V = o3¢(H,,)
satisfy the relation

Vi = ey, Voyy = e Poqy. (24)
The spectrum of H, is given by

= 6%031//} ¢ [w + oy

e T e REY

2
If Q # 0, there will be |Q| zero modes of H,, that are chiral,
and their chiral pairs will have eigenvalues of +1 depend-
ing on the sign of Q.

IV. DISCRETE TRANSFORMATIONS

Given the gauge field background in Eq. (6), the charge-
conjugated field is given by Uj(n,n,) = U,(n;,n,) for
u=1,2. This takes Q — —Q, and we denote the corre-
sponding overlap-Dirac Hamiltonians by H,(Q) and
H,(-Q), with Q0 > 0.

Given the gauge field background in Eq. (6), we define
the field under spatial parity by

nt =ny, nh =mod (L —n,,L), (26)

and this results in

T p =L—1
Ui(n,L—ny) = ! '
1 O<n<L-1,

270n;

Us(niL—ny) = e 77, (27)

Up( 1’”2)

U5 (nf.ny) =
and we see that the resulting field is the same as the charge-
conjugated field.

Our gauge field background is static and we can there-
fore identify time reversal with particle < antiparticle.
Given the many-body Hamiltonian H(Q) = a'H,(Q)a, a
particle <> antiparticle transformation results in

H(Q) = aH,(Q)a" = —a'H,(Q)a (28)
since Tr(H,) = 0. Noting that B'(Q)
C'(Q) = C(—Q), we see that

= B*(-Q) and

= H,(Q)=-0,H,(-0)o,
(29)

H,(Q)=—-0H,(-0Q)0;

and therefore
HT(Q) = CZTGIHO(—Q)GIG, (30)

implying that this transformation is also related to charge
conjugation. In essence, there is only one discrete trans-
formation for this background field and we refer to it as
charge conjugation from now on. Therefore, we consider a
pair of Hamiltonians (H,(Q),H,(—Q)) to ensure invari-
ance under the discrete transformations, Ny pairs of such
flavors, and ground states that are half-filled with the
zero modes.

V. CONTINUUM ANALYSIS
We start with the gauge field in Eq. (13), which yields
C:—al —bxl +102 (31)

in Eq. (19). The Hamiltonian acts on two-component spinors
y(xy,x,) that obey the nontrivial boundary conditions

014502-4



MASSLESS FERMIONS IN UNIFORM FLUX BACKGROUND ON ...

PHYS. REV. D 111, 014502 (2025)

270x)

w(xi+hxy)=e"Tyw(x,x), wx,x+1)=y(x,x)
(32)
on the torus. With
wz(%>» (33)
w_

the spectrum of the Hamiltonian is as follows for Q # 0:
(1) Q > 0: The Q normalized zero modes are given by

)= ( eb.0-1). (34)

)
¢j.0(xl’x2) ’

The paired normalized modes with eigenvalues

+ 4”Qn and a degeneracy of Q are

vyt (xn, %) = 2 (i;,;gii;)

JjE€0,0-1]. (35)
|

¢/n( 1, X 2)

k=—o0

/dxl/ dx ¢

and ¢, (y) are normalized eigenfunctions of the dimension-
less one-dimensional Harmonic oscillator. All of the details
can be found in Appendix A.

We proceed to first discuss the transformation of the
single-particle wave function under rotations, keeping in
mind that rotations change the boundary conditions. Based
on this, we are able to discuss the transformation properties
of the many-body vacuum. The Hamiltonian operator in
Eq. (19) is

H = —i0261 + i01(62 + ibxl) (39)

and it acts on functions y(x;, x,) that obey the boundary
conditions in Eq. (14). Define the operator Gy by

G — <G O)
=\o ¢/
G(x1. x5 y1.y2) = e7PM1%28(x; — y1)8(x2 — y2),

GLGy =1, (40)

and ¢ = Gl W obeys the boundary conditions in Eq. (16).
In addition,

(27T|Q|)% 3 S

(2) Q < 0: The |Q| normalized zero modes are given by

¢j,0<xl’x2)) (0, (0]-1].

0 —
e = (#5

(36)

The paired normalized modes with eigenvalues
+ 4”\Q\

n and a degeneracy of |Q| are

n(x, x —L ¢/~”(x1’x2)
vt x) = \/z(:Fqu,n—l(xlvxZ))’
el0,|o| - 1]. (37)

The orthonormal functions ¢;,(x;,x;) appearing in the
above equations are given by

(i)

i’ xlvx2)¢j,n('x1’x2) = 5]',]"5}1.}1’ (38)

H = GLHGy = —io5(0, — ibx,) + i610,  (41)

acts on functions ¢(x;, x,). We define the operator Ry by

R, — <iR O),
0 R
R(x1, X33 y1,¥2) = 6(x) = y2)8(x2 + 1),
RyRy =1, (42)

and note that

H' =RjHRy; = H=(GyR})'H(G,R}),
(GyR})* = 1. (43)

Although the rotation Ry itself is not a symmetry of the
Hamiltonian due to the nontrivial boundary condition, the
transformation G HRL is a symmetry. Therefore, we can ask
for the quantum numbers of the various single-particle
states under GHRL, which can take one of the val-
uves 1,7,—1, —1i.
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Using the result in Appendix A 1, we have

(RHGL)W?’ﬂ(Xl X)) = {

There is an extra factor of i between Q > 0 and Q < 0 in
Eq. (44). Let mj; j=0,1,2,3 be the number of zero modes

(after simultaneous diagonalization of H and GHRL) that
transform as 1, i, —1, —i, respectively, for a given Q. Table |
lists the eigenvalue degeneracies of the matrix J for a fixed
value of Q > 0. From Eq. (44), we see that the trans-
formation matrix is iJ7(]Q|) for Q < 0 and therefore

{mo,my,my,ms3} — {m,my,mz,my} under Q— —Q.

(45)

Using the above properties of single-particle states, we
now find the transformation properties of multiparticle
ground states obtained by appropriately filling the single-
particle modes. Let us assume Q > 0 and consider ground
states that are half-filled with the zero modes of N pairs of
(H,(Q),H,(—Q)). Since we have an infinite number of
negative and positive eigenvalues of H,(Q), we assume
that the corresponding fully filled negative energy states of
(H,(Q),H,(—Q)) are rotationally invariant. Let n;; k =
0,1,2,3 be the number of zero modes transforming as
1,i,—1,—i, respectively, that were filled to obtain a half-
filled ground state. Then

3
an = ONy; 0 < ng,ny < (mg +m)Ny,
k=0
0 < ny,n3 < (my +ms3)Ny. (46)

TABLE I. Degeneracy table of the eigenvalues of J for a fixed

E
E
3
E

—_
S

—
—_

W LW WD === =0

W WD === =00

AW W LW WD ===
DO === —000O

N

"5 (W (1. 3,).

i_"HJjj’(Q)ll/?fin(m’x2>’ 0 <0,

0 >0,

|

All solutions of n;; k = 0, 1,2, 3 can be obtained from the
data in Table I. For each solution to the above equation, the
transformation under 7 rotations is given by

(1) iy (1) (=i = e,
The number of such ground states is

d({n}.0) = (<’"0 +n;"1>Nf> ((mo +:LI>Nf)

X <(m2+m3)Nf) ((mﬁmﬁNf). (48)

ny ns

j=0,1,2,3. (47)

The associated symmetry group is U(n;) x U(n,) x
U(nz) x U(ny) rotations of the zero modes and should
be compared with the maximally allowed U(QN/) rota-
tions of the half-filled ground state.

VI. LATTICE ANALYSIS

We had an infinite number of negative energy states in
the continuum, and we could only discuss the properties of
filling the zero modes. The situation under lattice regu-
larization enables us to include the filled negative energy
states in our discussion of the transformation properties.
One should also note that, in the continuum, a highest-
energy many-body state obtained by filling all of the
positive modes and half of the zero modes is indistinguish-
able from the many-body ground state obtained by filling
all of the negative modes and the corresponding zero
modes. Therefore, we discuss the transformation properties
of the lowest- and highest-energy half-filled state on the
lattice for N, pairs of (H,(Q).H,(=Q)).

We show in Appendix B that, like in the continuum, the
symmetry of the lattice Hamiltonian is a composition of
rotation R and a gauge transformation G':

R,H,Ry =G,H,Gy = H,=(RyG}) H,(RyG},),
(49)

where Gy and Ry have the same structure as in Eqgs. (40)
and (42) and G and R are given by Egs. (12) and (10).
Let e'/i5 be the phase by which a lattice multiparticle
ground state transforms under a z/2 rotation with
jz =0,1,2,3. Two terms now contribute to this phase:
the net phase from the half-filled zero modes and the net
phase from all of the fully filled negative modes. The latter
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TABLE II. Table of representations of the fully filled negative energy states on the lattice for positive and
negative Q.
det_(Q) det_(-Q)

Q L=8,12 L=10,14 L=9,11,13,15 L=8,12 L=10,14 L=9,11,13,15 det_(Q)det_(-Q)
1 i —i 1 —i i 1 1

2 1 -1 -1 -1 1 1 -1

3 -1 1 —i i —i 1 —i

4 —i i —i 1 -1 1 —i

5 —i i -1 —i i 1 -1

6 —1 1 1 -1 1 1 1

7 1 -1 i i —i 1 i

8 i —i i 1 -1 1 i

9 i —i 1 —i i 1 1

10 1 -1 -1 -1 1 1 -1

11 -1 1 —i i —i 1 —i

12 —i i —i 1 -1 1 —i

contribution is obtained by the product of the eigenvalues
of GHRL restricted to the filled negative modes of H,,,
which is a determinant. Let det_(Q) be this determinant of
GHR;, on the fully filled negative energy states.

Similarly, let ez be the phase by which a highest-
energy state transforms under a /2 rotation with
jzr =0, 1,2,3. The contribution to this phase now comes
from the same half-filled zero modes and the net phase
from all of the fully filled positive modes given by the
product of the eigenvalues of G HR;, restricted to the filled
positive modes. Let det, (Q) be this determinant of Gy R},
on the fully filled positive energy states. Using the formula
for det(GyR},) in Eq. (B14), we can relate det, (Q) to
det_( Q) via the relation

det(Q)det(—Q)det(Q)det(-Q)il®l = (=1)*,  (50)

where the factor of il9l is the contribution from the zero
modes.”

Given values of L € [8, 15] and £Q € [1, 12], we numeri-
cally evaluate the eigenvalues and eigenvectors of H,. The
number of zero modes is equal to |Q] and their chiralities
are — %, like in the continuum. These are paired with |Q|
modes of opposite chiralities with eigenvalues % The
number of paired positive and negative eigenvalues away
from 0,41 is L?—|Q| and these are not chiral. The
transformation properties of the zero modes (eigenvalues
of GyR},) turn out to be independent of L for L > 8§ and
exactly match the continuum values obtained from
Eq. (44). The results for det_(Q) are tabulated in
Table II. We note from Table II that det_(Q)det_(—Q)

*The factor i/ comes from Table I and Eq. (45): [170™1 (—1)™
(_l')m3] [lml im‘)(—l)m3 (_i)mz} — jmo+mytmyt+ms l\Q\

is independent of L even though each of the factors depend
on L, and we empirically find

(1011 (6-10)
7

det(Q)det(-Q) = e
z(|01+1)(10|-10)

= det(Q)det(-Q) = (-1)e™ 7 (51)

With this information in place, one can list the trans-
formation properties under a 7 rotation of all multiparticle
ground states and the highest-energy states of N, pairs
(H,(Q),H,(—Q)). The fully filled negative and positive
energy states transform trivially if N is a multiple for 4.
For N, not a multiple of 4, the transformation properties of
the fully filled negative and positive energy states of
(H,(Q).H,(—Q)) become relevant. Since the transforma-
tion properties of the zero modes under 7 rotations are
found to be the same on the lattice and continuum, the
phase from the zero modes is still ¢/ with integer j, as
defined in Eq. (47) for the continuum case. The phase from
the fully filled modes is [det, (Q)det, (—Q)]"s. Putting
everything together, multiparticle ground states and the
highest-energy states of the lattice regularized Hamiltonian
transform under a /2 rotation by

¢/iif = o [det (Q)det (-Q)]r,

where e/ = [1™0" (=1)"2(=i)™], (52)
where the choice of + corresponds to the lowest and
highest states, respectively. As before, n;; k =0, 1,2, 3 are
the number of zero modes transforming as 1,7, —1, —i,
respectively, that were filled to obtain the half-filled ground

state. One should note two points:
(1) The determinant factors are not identity (except for
N r= 4), and thus the fully filled states contribute to
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the transformation properties of the multiparticle
vacua. Given a solution to Eq. (46), the effect of the
fully filled positive or negative energy states is
simply to map the associated j in Eq. (47) to a
j£(j, O, L) on the lattice.

(2) det (Q)det, (—Q) # det_(Q)det_(—Q), and thus
on regularization, the ground state and the highest
excited states start behaving differently.

VII. CONCLUSIONS

A classification of the monopole quantum numbers in
three-dimensional QED is usually done by considering
the fermion spectrum in the background of a spherical
monopole. This is a local operator and the transformation
properties of the zero modes can be obtained by a study of
the generalized angular momentum operator. One typically
used radial quantization is r = %, where 7 is the Euclidean
time and r = 0 is mapped to 7 = —oo. The Hamiltonian is
defined on S? and the monopole has a constant flux on each
$? in 7 = (—o0, 00). The quantum numbers as extracted
from S? x R computation could be obtained by a compu-
tation of two-point functions on the lattice with periodic
boundary conditions. However, it is difficult to regulate the
S? computations directly on the lattice. Therefore, we
considered an analogous problem of uniform flux on 72
and studied the spectrum of the fermion Hamiltonian in
order to gain understanding of how the vacuum quantum
numbers arise when a lattice regulator is used. Unlike S?
where the monopole is invariant under a continuous
rotation, we only have discrete 5 rotations on T?. Such a
study is of relevance from the viewpoint of Dirac spin
liquids [14,20], where the transformations of the monopole
operators are considered on lattices with different discrete
symmetries. In addition to the transformation properties of
the zero modes of the lattice operator under 7 rotations, we
also need to look at the transformation properties of all
eigenmodes since we look at the full transformation
property of the multiparticle ground states and this includes
filling all negative energy states of the Hamiltonian.
Considering 2N, flavors (N parity-invariant pairs), we
found that the transformation properties of the half-filled
many-body state on the lattice are not the same as those in
the continuum. The set of continuum states that transform as
e’/ in the continuum along with the associated symmetry
group gets nontrivially mapped to a j;(j, Q) when we
consider the lowest-energy state and to a j; (j, Q, L) when
we consider the highest-energy state. To make sure that our
lattice observations are not due to lattice artifacts, we used
an exactly massless overlap fermion, which preserves the
flavor symmetry even at finite lattice spacings, and studied
the vacuum quantum numbers at multiple values of lattice
spacings at fixed background fluxes. Even though we
reduced the continuous symmetry group on S to the
discrete group rotation on T2, we have shown that we

cannot ignore the transformation property of the fully filled
negative energy state. Furthermore, we were able to take the
continuum limit by including the transformation of the full
vacuum state and not just the contribution of the zero
modes, as is done in a continuum analysis on 52 x R. Given
the observed significance of negative energy states on the
torus, it would be important to regulate the theory on S? x R
and study the continuum limit of the transformation
properties.
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APPENDIX A: SPECTRUM OF THE DIRAC
HAMILTONIAN IN THE BACKGROUND
OF A UNIFORM FLUX ON T?

The problem of the spectrum of the Dirac Hamiltonian
in the background of a uniform flux on 72 was solved
in [15] and our aim is to study the transformation of
the eigenvectors under 7 rotations. To make the presen-
tation self-contained, we write down the details of the
eigenvalue problem here. The eigenvalue problem for the
Hamiltonian is

(—0] - bxl + 102)1//_
(0y = bxy +idy)y

('xl?xz;E)
('xl?XZ;E)

= EW+(X1,X2;E),

= Ey_(x;,x3E).  (Al)

We expand both ., in a momentum basis in the x,
direction and write

7/ )Cl,.X'2, Z C elpx2¢ y’ )’
k=—o0
2k
P:7, y:—bx1+p (A2)
Vbl
Then,
Wil O E) == 00 Y e (viE). (A3)

k=—o00

To match with the boundary condition in the x, direction,
we conclude

k k-0

c=ci ", (A4)

and the degeneracy of each energy eigenstate is Q-fold.
With E = /2|b|a, the differential equations reduce to
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lle 0 d
2 Jﬁmd+ﬂ6¢< -

—a Y erack g, (y;E),
k=—00
Z szzl[ 0 d

0ldy +y} K (iE)=—a »_ ereckg_(yE).

(AS)
k=—c0
The connection to a one-dimensional Harmonic oscillator is evident and we use the standard creation and annihilation
operators,

k=—00

|

A6
and label the states by real-valued functions, ¢,(y); n =0, 1, ..., such that
a¢n = \/ﬁ¢n—1; aTd’n =vn+ 1¢’ / dy¢n(y>¢n’(y) = 5n,n” ¢n(_y) = (_1)n¢n( ) (A7)
Let us define
27|0))F N astitionm b £j ,
Gjn(x1,x2) = e 7T | = |+ Ck+— ). j€l0,|0]-1]
! 4 k:Z—oo V |b| Q
- ag;, = /nd; -1, aT¢j,n =vn+1¢;,, (A8)
fﬁ dxl fof d.X2¢ i /()C] s xz)d)jy,,(xl s .Xz) = 6j,j/5n.n"
We separately analyze the cases for Q > 0 and Q <0
(1) Q > 0: In this case, (2) QO < 0: In this case,
ckap_(y;E) = —ack ¢, (y; E), ctatep_(v;E) = —ack ¢ (y; E),
Ka'p, (v E) = —ackp_(y; E). (A9) Kap,(y;E) = —ackp_(y; E). (A12)
We have Q zero modes and this corresponds to ¢_

= We have |Q| zero modes and this corresponds to
¢;0and ¢, = 0, and the normalized zero modes are ¢+ =¢jo and ¢_ =0, and the normalized zero
given by modes are given by

0
)= (o ) =001

(A10)

€0,

l’U./',O(xl s xz) — <¢j,0()(c)1, x2) ) |

~1l.

(A13)
The paired normalized modes with eigenvalues

:t 4IZQ

The paired normalized modes with eigenvalues
n each have a degeneracy of Q and are

+ 4”‘Q‘ n each have a degeneracy of Q and are
1 ¢,n_1(x1’x2) + o 1 ¢j,n(-x1,x2)
:,t X1, X :_< J> >’ Wjﬁn(xl’xz)_— ’
l//j,n( 1 2) \/§ :F(ﬁj,n(xl’xZ) \/Z :|:¢j,n_1(X1,x2)
JjE0,0—1].

(A11) j€lo,[o]-1]. (A14)
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1. Transformation of continuum eigenvectors under 7 rotations

Let us start with ¢; ,, in Eq. (A8) and note that G .n Obeys the boundary conditions in Eq. (16). Therefore, we can write

270X %) 2p(kQ+j Lﬂ - 27k x|
Y Ay, (\/m {x1+fk+QD =Y T (k). (A15)
K =—c0

Then,

[e+] b f'
Finlirik) = [ DI [xl + fk+—’]

= VP 0

N (x Zj / Kj b £j
S et ]
e o /oo ibx (x —E) < b >
= dxye™”" e, | ——=xy
¢ ) /i

27k j
! & b b Ik b
L ata, () e e

0
Let us define
‘mmzﬂ[ﬂWW@w = n@ =0 (D) = (1) ). (A17)

Then,

dyn(x)

e =it / dye™y,(y)

V21,1 (y) — d(ﬁ,")
NEICERORE

i [ dye™ (V2,1 () + ixg,,)
j—ntl foo dye’xv(\/m¢n+](y) - ix¢n)

\/zﬁxn—l (x) - x)(n<x)

2(” + 1))(n+1 (.Xf) + X)(n(X),

i [ dyeix)(
(V2 FD

i—n+1 ffooo dyeixx

(A18)

where we have used the recursion relations for ¢,(y) from Eq. (A7) and we see that y, (x) satisfy the same recursion
relations, namely,

dy,(x)

W) 4 ) = VI (0, =P (0 = VA T (0 (A19)

dx

To fix the constant relating y,(x) and ¢,(x), we note that

2
1 S 2 -5 o { .
Zo(x) :ﬁ/ e rdy = i/;/ e dy = V2rgy(x) = y(x) = V27, (x). (A20)
Therefore,

—1 _127w —1 —12"“

(G' Gin) (X1, %) = — jim Z \/74;] 2, —x) = — b Z \/@ (R'j ) (x1,x2), (A21)
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resulting in

0-1 21j)
o e ¢
(RGT¢] n xlvx2 i /ZOJJ/ Q)¢j n x17x2) Jj,j’(Q) = \/ﬁ

We note that
JIT=1,

showing that it is a unitary matrix. Next, we note that

Iy ‘Q|Z gt 5(j+7.0)+6(j+/j.0) = J=L

APPENDIX B: GAUGE TRANSFORMATIONS AND 7 ROTATIONS ON THE LATTICE

We start with the rotation matrix in Eq. (10) and consider

(RIT B m1.m2) = Ry T ) = { N G
B { Uy(my,0)¢p(my +1,0), my =0,
Ui(my, L—m)p(my +1,L—my), 0<m <L-1
_ { Uy (my, 0)(R'¢)(0,my + 1), my =0,
Ui(my, L —my)(R'¢p)(my.my+1), 0<m <L-1,
(RT3 1) = Ry [ ) = { P G
Uz(my,0)gp(my, 1), my =0,
{U(mz,L m)p(my, L —m;+1), 0<m <L-1
{ Us(my, 0)(R'¢)(L — 1. m;), my =0,
Uy(my, L—m)(R'$p)(m; —1,m,), 0<m <L-—1.

If we now define
RT\R=T,,  RT,R=T, y=R¢,
then

U](nz,()), ng :0,

U (ni,ny) =Ui(n,,L—1—-n Ul(ny,n,) =
1. m2) = U3, % 2m.m) {Ul(nz,L—m), 0<nm <L-1.

The above transformation matches Eq. (11). Referring to Eqgs. (21) and (22), we have
R'CR = iC', R'BR = B/,

where C' and B’ are in terms of 7%; i = 1,2. Then,

iR 0 ; /
RH: 0 R :> RHHWRH:HW

= RLG(HW)RH = G(Hcv)

014502-11

(A22)

(A23)

(A24)



KARTHIK, NARAYANAN, and ROMERO

PHYS. REV. D 111, 014502 (2025)

We write the gauge transformation using Eq. (12) as

G 0 :
GH: :> HiV:GHHWGH

H, = R,H,Ry = G},H,Gy. (B9)

Next, we write

0 G
= Gle(H,)Gy =e(H,). (B7)
_ 20mm
In addition, (GHRL)nl-ﬂ2§m1,m2 =e 0 nymy [5n2+m|,0 + 5n2+ml,L]'
(BIO)
03 = R03Ry = G},05Gy. (BS)
Therefore, Then,
|
t\2 _2EQn (nytmy)
(GHRH)nl,nZ;ml,mz =e L [5n1+m1,0 + 5n1+ml.L] [6n2+m2,0 + 5n2+m2,L] (Bl 1)
and
. _l_ZIthl(n2+m2)+m1(m2+n/2)
(GHRH)m,nz;n’],n/z =¢ v [5"1+m1,0 + 5n1+m1»1~“5"2+mz~,0 + 5nz+mz.1~}
[5m1+n’l 0 + 5m1+n’] ,L} [5m2+n’2,0 + 5m2+n’2,L]' (B12)

If ny =0 (we have m; =n| =0) or n, =0 (we have
m, = n = 0), the phase prefactor is unity. If n; #0
and ny, # 0, then ny +m; =m; +n| =ny + my = m, +
nb =L and the prefactor is e~2"¢ = 1. Therefore, we
conclude that

(GHRTH)4 =1, (GHR;I>T(GHR;I) =1, (B13)

and the eigenvalues of GHRL are +1, i. It can be shown
that

—i for L odd,

10 (B14)

det(GHRL) - { for L even

Note that if we combine a pair (H,(Q),H,(-Q)), the
result is independent of Q but depends on L. One may

absorb this dependence by redefining Ry with an
L-dependent sign.
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