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Anderson localization for Schrödinger operators

with monotone potentials over circle homeomorphisms

Jiranan Kerdboon and Xiaowen Zhu

Abstract. In this paper, we prove pure point spectrum for a large class of Schrödinger operators

over circle maps with conditions on the rotation number going beyond the Diophantine. More

specifically, we develop the scheme to obtain pure point spectrum for Schrödinger operators

with monotone bi-Lipschitz potentials over orientation-preserving circle homeomorphisms with

Diophantine or weakly Liouville rotation number. The localization is uniform when the coupling

constant is large enough.

1. Introduction

The spectral theory of quasiperiodic Schrödinger operators has been the subject of

extensive study over the past several decades due to its deep origins in physics and the

richness of its unusual mathematical features. The general setup of a quasiperiodic

operator is given by a family of operators H�;f;T;x acting on `2.Z/, defined as

.H�;f;T;x /.n/ D  .nC 1/C  .n � 1/C �f .T nx/ .n/; (1.1)

where x 2 T 1, T is an irrational rotation on T 1 defined by T x D R˛x D x C ˛,

with ˛ 2 R n Q, and f W T 1 ! R is a potential function. Examples of such operators

include f .x/ D cos.x/ for the almost Mathieu operator or f .x/ D tan.x/ for the

Maryland model. One of the most interesting features of quasiperiodic operators is

that their spectral type can often be fully characterized by the arithmetic properties

of ˛ (and/or x) in many situations, as demonstrated in works such as [8, 14]. Since

R˛ serves as a fundamental example of general circle homeomorphisms, a natural

question arises: if T is not a rotation but a more general circle homeomorphism with

rotation number ˛, can we still determine or get some information about the spectral

type by the arithmetic properties of ˛?

As one can imagine, the answer may vary depending on properties of f , T , and ˛.

The study of (1.1) for general circle diffeomorphisms T was initiated by [12, 22].
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In [12], the authors proved purely absolutely continuous spectrum for Hölder con-

tinuos f , C 1CBV-smooth T , and super Liouville ˛. [22] further explored similar

phenomena for circle diffeomorphisms with a critical point or break. On the other

hand, for quasiperiodic (1.1), several recent papers have proved the opposite, i.e.,

pure point spectrum, under arithmetic properties of ˛ that go beyond the Diophantine

condition, e.g., [1,2,5,7,8,14–16,23–26]. In this paper, we add to this list by extending

the results in [10], where the authors worked with an irrational rotation T D R˛ with

Diophantine ˛ and potential f satisfying conditions (F 1) and (F 2) below. We work

with the same conditions on f but consider a more general orientation-preserving

circle homeomorphism T under the assumptions (T 1).

(F 1) f is one-periodic on R and f .0/ D 0, f .1 � 0/ ´ limx!1� f .x/ D 1.

(F 2) f is bi-Lipschitz monotone, i.e., there exist 
�; 
C > 0 such that for all

0 � x < y < 1,


�.y � x/ � f .y/ � f .x/ � 
C.y � x/:

(T 1) Assume the invariant measure of T is denoted by � and that

C��.Œx; y�/ � jx � yj � CC�.Œx; y�/:

Under these conditions, we obtain results that are similar to the ones in [10]. In

fact, in addition to extending to more general circle homeomorphisms, we also gener-

alize the result by relaxing the Diophantine condition on ˛ to both weakly Liouville

and Diophantine cases. Specifically, we prove that the followng result.

Theorem 1 (Pure point spectrum). For f satisfying (F 1) and (F 2) and T satisfy-

ing (T 1) with weakly Liouville or Diophatine rotation number ˛, or more specifically,

0 � ˇ.˛/ < 1, there is C0 D C0.
Û; CÛ/ D O
�


�C�


CCC

�

> 0 such that for all � > 0,

we have

�c.H�;f;T;x/ \ ¹E W ˇ.˛/ < C0L.EI˛/º D ;; for all x 2 T 1;

where ˇ.˛/ and the Lyapunov exponent L.EI˛/ are defined in Section 2.

Remark 1. The theorem provides a meaningful statement for homeomorphisms with

rotation number ˛ when ˇ.˛/ is small or zero, which corresponds to weakly Liouville

or Diophantine ˛ (see Section 2). In fact, the smaller ˇ.˛/ is, the more “irrational” ˛

is. For example, since we also proved positivity of Lyapunov exponent L.EI ˛/ > 0

for all irrational ˛ in Corollary 3.3, when ˇ.˛/ D 0, this implies that �c.Hf;T;x/ D ;,

i.e., the spectrum of Hf;T;x is pure point.

Note that condition (T 1) is equivalent to the existence of a bi-Lipschitz conju-

gacy between T and R˛ , meaning that there exists a bi-Lipschitz function � that is
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bounded from above and below such that � ı T D R˛ ı �. We acknowledge that if

such a bi-Lipschitz conjugacy exists and ˛ is Diophantine, our results follow directly

from [10] by a change of variables: letting y D �.x/, we obtain Hf ı��1;R˛ ;y and

can apply known localization results. However, we choose to present the proof in the

more general setting using the invariant measure, since the existence of a bi-Lipschitz

(in fact, C 1C") conjugacy is currently only established for Diophantine ˛.

As a byproduct, we also establish Lipschitz continuity of the integrated density of

states (IDS, see (2.5)) for all � in Lemma 3.3, as well as the continuity and positivity of

the Lyapunov exponent for large � in Corollary 3.3. Together with our key Lemma 5.3,

which is uniform in x;E, and ˛, these results allow us to achieve uniform localization

of H�;f;T;x (see Definition 3) for sufficiently large � and “sufficiently irrational” ˛,

i.e., ˇ.˛/ sufficiently small (see Definition 1).

Theorem 2 (Uniform localization). Let C0 D C0.
Û; CÛ/ > 0. If � > 4e

�C�

and if ˛

is weakly Liouville with ˇ.˛/ <C0 ln
�

�
�C�

4e

�

, thenH�;f;T;x has uniform localization

for all x.

We also remark that a somewhat different proof was developed in [19] for

unbounded lower-Lipschitz monotone f and irrational rotation T D R˛ with Dio-

phantine ˛. The key idea is, that instead of controlling the change of eigenvalue

functions horizontally (see Lemma 3.1), the author controls the change of counting

function horizontally. We believe that the Lipschitz continuity of integrated density of

states in our proof can be done through that of argument in [19] and the results here

can be generalized to more general T with weakly Liouville ˛ and unbounded f in

similar ways to here. This will be explored in future work.

Finally, we mention several interesting works on the Schrödinger operator with

monotonic potential during the submission process of this current paper, in higher

dimensions [4, 27] or for potentials with flat plateaus, and recent results [11, 20, 21].

Structure and key ideas. Under the assumption of (T 1) and allowing weakly Liou-

ville ˛, we re-develop the proof following the method in [10] in the key step: we

use the non-perturbative proof of localization, first developed in [18], together with a

detailed analysis of the behavior of box eigenvalues. We provide the latter for general

T in Section 3, which helps with building the large deviation estimates in Section 4.

From the large deviation estimates, we get our key lemma on the uniform exponential

decay of generalized eigenfunctions in x; ˛; E in Section 5. The main results follow

immediately in Section 6.

The extension of our results from R˛ to more general circle homeomorphisms T

is based on the observation that the behavior of box eigenvalues is closely related to

the distribution of orbits of T . While the orbits of T are not evenly distributed with

respect to distance, they are evenly distributed with respect to the invariant measure,
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allowing us to obtain quantitative estimates of their distribution under the comparabil-

ity assumption (T 1). Appendix A provides the key statements that enable us to carry

out this argument. The extension to weakly Liouville ˛, on the other hand, requires a

more careful estimate of the decay of generalized eigenfunctions in Section 5.

2. Preliminaries

In this section, we will begin by discussing two fundamental concepts: continued frac-

tion expansion and weakly Liouville numbers. Afterwards, we will introduce several

fundamental properties of discrete Schrödinger operators, including the generalized

eigenvalue and Schnol’s theorem, the Green function and Poisson formula, transfer

matrices and Lyapunov exponent, density of states measure, and the Thouless for-

mula.

Notations. For x 2 R, we use jxj to denote the absolute value and

kxk D inf
n2Z

jx � nj

to denote the closest distance between x 2 R and integers.

Continued fraction expansion and weakly Liouville number. Any number ˛ 2

Œ0; 1/ can be written in the continued fraction expansion [28]:

˛ D
1

a1 C 1

a2C 1
a3C���

´ Œa1; a2; a3; : : : �:

with ak 2 NC. Let pn

qn
D Œa1; : : : ; an� denote the continued fraction approximants.

They satisfy

pk D akpk�1 C pk�2; p�1 D 1; p0 D 0I

qk D akqk�1 C qk�2; q�1 D 0; q0 D 1:
(2.1)

Definition 1 (Weakly Liouville). For ˛ 2 Œ0; 1/, let

ˇ.˛/ D lim sup
k!1

ln qkC1

qk

:

We call ˛ weakly Liouville if 0 < ˇ.˛/ < 1.

We mention that if ˛ is Diophantine,1 then ˇ.˛/ D 0.

For a detailed discussion on the next several definitions, please refer to [6, Chap-

ters 9 and 10] and [3, Chapter VII].

1˛ is called Diophantine if there is � > 0 and � > 0 such that kn˛k > �
jnj�

for all n ¤ 0.
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Generalized eigenfunction and Schnol’s theorem. We say is a generalized eigen-

function of an operator H with respect to a generalized eigenvalue E if  is polyno-

mially bounded, i.e., j .n/j � C.1C jnj/p for some C > 0, p 2 N and H D E .

Schnol’s theorem states that the spectral measure of an operator H is supported by

the set of its generalized eigenvalues.

According to Schnol’s theorem, to prove thatH has pure point spectrum, it is suf-

ficient to show that all generalized eigenfunctions belong to `2. This is because if all

generalized eigenfunctions and eigenvalues become eigenfunctions and eigenvalues,

respectively, then the spectrum is pure point.

Green function and Poisson formula. Let HŒa;b�.x/ and zHŒa;b� denote the restric-

tion ofH�;f;T;x to `2.Œa; b�/ with Dirichlet and periodic boundary conditions, respec-

tively. In particular, for the interval Œa; b�D Œ0; n� 1�, we use the simplified notations

Hn.x/ and zHn.x/. More specifically,

Hn.x/ D

0

B

B

B

B

@

�f .x/ 1

1
: : :

: : :

: : :
: : : 1

1 �f .T n�1x/

1

C

C

C

C

A

n�n;

zHn.x/ D

0

B

B

B

B

@

�f .x/ 1 1

1
: : :

: : :

: : :
: : : 1

1 1 �f .T n�1x/

1

C

C

C

C

A

n�n:

Let Gx;E;Œa;b� D .HŒa;b�.x/ � E/�1 denote the Green function and Gx;E;Œa;b�.m; n/

be its .m; n/-entry. Denote Pn.x;E/ D det.Hn.x/ �E/, and let P0.x;E/ D 1.

The Poisson formula provides a connection between the generalized eigenfunction

and the Green function. Specifically, suppose  .n/ is a generalized eigenfunction of

H�;f;T;x with respect to generalized eigenvalue E, then for n in the interval Œa; b�, we

have the following formula:

 .n/ D �Gx;E;Œa;b�.a; n/ .a � 1/ �Gx;E;Œa;b�.n; b/ .b C 1/: (2.2)

Transfer matrix and Lyapunov exponent. Rewrite H�;f;T;x D E into matrix

form:

�

 n

 n�1

�

D An�1.x;E/

�

 n�1

 n�2

�

D An�1.x;E/ : : : A0.x;E/

�

 0

 �1

�

;
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where

Ai .x;E/ ´

�

E � �f .T ix/ �1

1 0

�

:

We define the n-step transfer matrix by

Mn.x;E/ ´ An�1.x;E/ : : : A0.x;E/:

One can verify by induction that

Mn.x;E/ ´

�

Pn.x;E/ �Pn�1.T x;E/

Pn�1.x;E/ �Pn�2.T x;E/

�

: (2.3)

The Lyapunov exponent is defined to be

L.E/ ´ lim
n!1

1

n

1
Z

0

ln kMn.x;E/k d�.x/: (2.4)

Integrated density of states (IDS) and the Thouless formula. Next, we introduce

the density of states measure and the Thouless formula, which connects the Lyapunov

exponent of E with the density of states measure. The integrated density of states

(IDS) is defined as follows:

N.E/ ´ lim
n!1

1

n

1
Z

0

Nn.x;E/ d�.x/; (2.5)

where Nn.x;E/ ´ #�.Hn.x// \ .�1; E�.

Remark 2. We can define zPn.x; E/ and zNn.x; E/, analogous to Pn.x; E/ and

Nn.x;E/ for Hn, respectively, for zHn.x/.

Remark 3. Notice that zHn.x/ is a rank-two perturbation of Hn.x/. Thus, we have

j zNn.x;E/ �Nn.x;E/j � 2. Thus, we can also define the IDS by

N.E/ D lim
n!1

1

n

1
Z

0

zNn.x;E/ d�:

The functionN.E/ is right-continuous, non-decreasing, and approaches zero asE

approaches �1. Its derivative defines a unique probability measure, called the density

of states measure N.dE/. The relation between the density of states measure N.dE/

and the Lyapunov exponents L.E/ is known as the Thouless formula. We state it here

without proof, but refer the interested reader to [6] for more details:

L.E/ D

Z

R

ln jE 0 �EjN.dE/:
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3. Positive Lyapunov exponent

In this section, we first establish some fundamental properties of box eigenvalue func-

tions, which are the eigenvalues of zHn.x/. We then derive estimates for the distance

between these eigenvalue functions. Using these estimates, we obtain the Lipschitz

continuity of the IDS N.E/ with respect to E and prove the positivity of the Lya-

punov exponent L.E/ for large �.

Recall that zHn.x/ is the periodic restriction of H�;f;T;x to Œ0; n � 1�. Let Q�m.x/,

0 � m � n � 1 be the eigenvalues of zHn.x/ in increasing order. We refer to Q�m.x/

as the box eigenvalue functions. Now, we establish some of their basic properties.

Proposition 3.1. Q�i .x/ have the following properties:

(1) Q�i .x/ is 1-periodic, continuous on Œ0; 1/ except at ¹T �j .0/ºn�1
j D0. By rearrang-

ing these discontinuity points in increasing order, we denote them by ¹ˇlº
n�1
lD0

.

We also denote Il ´ Œˇl ; ˇlC1/.

(2) Q�i .x/ is bi-Lipschitz continuous with respect to the invariant measure, and

strictly increasing on each Il . In fact,

�
�C��.Œx; y�/ � Q�i .y/ � Q�i .x/ � �
CCC�.Œx; y�/:

(3) At each jump ˇl , we have

Q�i .ˇl � 0/ � Q�iC1.ˇl/ � Q�iC1.ˇl � 0/; 0 � i � n � 2:

Remark 4. Because of (2) and (3) above, it is natural to define

ƒi .x/ ´

n�1
X

lD0

�iCl.x/�Il
.x/; 0 � i � n � 1

and extend it periodically from Œ0; 1/ to R. As a result, ƒj .x/ is monotone increasing

on Œˇn�j C1 C N; ˇn�j C1 C N C 1/ for any N 2 Z, and it inherits the properties of

�j .x/ on each Il . In particular,ƒj .x/ is also lower-Lipschitz with respect to invariant

measure � on Œˇn�j C1 CN;ˇn�j C1 CN C 1/:

ƒi .y/ �ƒi .x/ � �
�C��.Œx; y�/;

for x < y and x; y 2 Œˇn�j C1 CN;ˇn�j C1 CN C 1/.

Proof. (1) Note that the box eigenvalue functions Q�i .x/ are roots of the characteristic

polynomial QPn.x;E/. Therefore, each Q�i .x/ is continuous with respect to the coeffi-

cients of QPn.x;E/, which are polynomials of ¹�f .T jx/º
qk�1
j D0 . Since f .T jx/ is only

discontinuous at T �j .x/, Q�i .x/ is only potentially discontinuous at ¹T �j .x/º
qk�1
j D0 .
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(2) Notice that, for x < y in the same Il , zH.y/� zH.x/ is a non-negative diagonal

matrix. By Lidskii’s theorem (see [13, Theorem 2]), we have

�min
j
.f .T jy/ � f .T jy// � �j .y/ � �j .x/

� �max
j
.f .T jy/ � f .T jx//:

Notice that (F 2) and (T 1) implies that

f .T jy/ � f .T jx/ � 
CCC�.ŒT
jx; T jy�/;

and similarly, f .T jy/ � f .T jx/ � �
�C��.Œx; y�/.

(3) Notice that
zHn.ˇl � 0/ � zHn.ˇl/ D �ej ˝ ej (3.1)

where 0 � j � qk � 1 such that T �.j �1/.x/D ˇl . This leads to the second inequality

since zHn.ˇl � 0/ � zHn.ˇl/ is positive semi-definite. To derive the first inequality,

by (3.1), let D be the matrix obtained by deleting the row j and column j from
zHn.ˇl � 0/ or zHn.ˇl/. Let !1 � !2 � � � � � !n�1 be the eigenvalues ofD. By eigen-

value interlacing theorem,

Q�0.ˇl � 0/ � !1 � Q�1.ˇl � 0/ � !2 � � � � � !n�1 � Q�n�1.ˇl � 0/;

Q�0.ˇl/ � !1 � Q�1.ˇl/ � !2 � � � � � !n�1 � Q�n�1.ˇl/:

Therefore, Q�m.ˇl � 0/ � !mC1 � Q�mC1.ˇl/, for all 0 � m � n � 2.

Horizontal comparison. From now on, we fix ˛ and consider n D qk since we will

use the dynamical properties of the irrational circle map to compare box eigenvalue

functions horizontally and vertically. The following lemma provides an upper bound

control if we compare the box eigenvalue functions Q�i .x/ and Q�i .T
rx/ horizontally.

Note that the estimate is uniform in r .

Lemma 3.1. For any �qk C 1 � r � qk � 1,

j Q�i .x/ � Q�i .T
rx/j �

�
CCC

qkC1

:

Proof. Define an qk � qk unitary matrix S D Œeqk
; e1; e2; : : : ; eqk�1� where ej 2 Rn

are standard unit vectors. Then

S r zHqk
.x/S�r D zHqk�r.T

rx/˚ zHr.x/;

zHqk
.T rx/ D zHqk�r.T

rx/˚ zHr.T
qkx/:
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By (F 2), (T 1), and Lemma A.2,

k zHr.x/ � zHr.T
qkx/k � � max

0�i�r�1
jf .T ix/ � f .T qkCix/j

� �
CjT ix � T qkCixj

� �
CCC�.ŒT
ix; T qkCix�/ D �
CCC�.Œx; T

qkx�/

�
�
CCC

qkC1

:

The result follows from Lidskii’s theorem.

Corollary 3.2. For any x; y 2 Œ0; 1/,

j Q�i .x/ � Q�i .y/j �
�
CCC

qkC1

C
2�
CCC

qk

�
3�
CCC

qk

:

Proof. First notice that for given x 2 Œ0; 1/, depending on which Ik it belongs to, there

exists �qk C 1 � ˛ � 0, such that each point in ¹T rxº
˛Cqk�1
rD˛ precisely falls in one

interval among ¹Ilº
qk�1

lD0
. Thus, there is �qk C 1 � r � qk � 1 such that T rx and y

are in the same Ik . Then

j Q�i .x/ � Q�i .y/j � j Q�i .x/ � Q�i .T
rx/j C j Q�i .T

rx/ � �i .y/j

�
�
CCC

qkC1

C �
CCC�.ŒT
rx; y�/

�
�
CCC

qkC1

C �
CCC

� 1

qk

C
1

qkC1

�

where the first inequality follows from Lemma 3.1 and the second inequality follows

from Lemma A.2.

Vertical comparison. Now, we estimate the lower bound of vertical distance between

eigenvalue functions. Unfortunately, the vertical distance between two closest eigen-

value functions Q�i .x/ and Q�iC1.x/ is not always positive. However, we can show that

at mostM eigenvalues can be very close to each other, others will be nicely separated

from them.

Lemma 3.2. Given 
Û, � and CÛ. For any " > 0, there is a j0 D j0."/ D
2
CCC

"
�C�
,

such that for any i; j; qk satisfying j � j0 and 0 � i < i C j � qk � 1, we have

j Q�iCj .x/ � Q�i .x/j � �
�C�.1 � "/
j

qk

µ d0."/
j

qk

:
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Proof. First notice that, given x, there exists �qk C 1 � ˛ � 0, such that each point

in ¹T rxº
˛Cqk�1
rD˛ falls in precisely one interval among ¹Ilº

qk�1

lD0
. Then for any ˛ � r ,

r 0 � ˛ C qk � 1,

j Q�iCj .x/ � Q�i .x/j � j Q�iCj .T
rx/ � Q�i .T

r 0

x/j � j Q�iCj .x/ � Q�iCj .T
rx/j

� j Q�i .T
r 0

x/ � Q�i .x/j

� j Q�iCj .T
rx/ � Q�i .T

r 0

x/j �
2�
CCC

qkC1

� sup
r;r 0

j Q�iCj .T
rx/ � Q�i .T

r 0

x/j �
2�
CCC

qkC1

:

In particular, we can pick r; r 0 such that .T r 0
x; Q�i .T

r 0
x// and .T rx; Q�iCj .T

rx// are

on the graph of the same ƒm, defined in Remark 4. Put such pairs of .r; r 0/ together

and denote the set by Sj . Then ŒT rx; T r 0
x� includes j out of qk subintervals created

by the partition ¹T ixº
˛Cqk�1
iD˛ on Œ0; 1/, where each intervals have the same invariant

measure. Thus, by pigeonhole principle,2

sup
r;r 0

j Q�iCj .T
rx/ � Q�i .T

r 0

x/j � �
�C� sup
r;r 02Sj

�.ŒT rx; T r 0

x�/ � �
�C�
j

qk

:

Thus,

j Q�iCj .x/ � Q�i .x/j � �
�C�
j

qk

�
2�
CCC

qkC1

� �
�C�
j

qk

�

1 �
2
CCC


�C�

qk

qkC1j

�

� �
�C�.1 � "0/
j

qk

when j � j0 ´
2
CCC

"0
�C�
.

Lipschitz continuity of IDS. Recall that zNn.x;E/ D #�. zHn.x// \ .�1; E� and

N.E/ D lim
n!1

1

n

1
Z

0

zNn.x;E/ d�.x/:

2In fact, we could bound j Q�iCj .T
rx/� Q�i .T

r 0
x/j, the distance between eigenvalue func-

tions, directly by Lemma A.2 without taking the supremum or referring to the pigeonhole

principle. However, the authors choose to prove it this way both because it is more interesting,

and because it reveals the uniformity in x in the vertical comparison of eigenvalue functions.

It implies that vertical differences of eigenvalue functions at any x are uniformly controlled by

the largest vertical differences among all ƒm. This observation can be useful in dealing with

singular � where certain Ik’s are too small or the case when f is flat at some Ik’s.
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Now, we can derive Lipschitz continuity of zNqk
.x; E/ and N.E/ from vertical dis-

tance of Q�i .x/.

Lemma 3.3. Given �; 
C; 
�, E, E 0 2 R, we have

jN.E/ �N.E 0/j �
jE �E 0j

�
�C�

:

Proof. Fix E and E 0. For any " > 0, we see from Lemma 3.2 that any interval of

length d0."/
j0

qk
contains at most j0 eigenvalues for qk large enough. This allows us to

estimate the number of eigenvalues between E and E 0:

j zNqk
.E; x/ � zNqk

.E 0; x/j �
�qkjE �E 0j

d0."/j0

C 1
�

j0

D
qkjE �E 0j

d0."/

�

1C
j0d0."/

qkjE �E 0j

�

for any x. Let k ! 1, we get

jN.E/ �N.E 0/j � lim inf
k!1

jE �E 0j

d0."/

�

1C
j0d0."/

qkjE �E 0j

�

D
jE �E 0j

d0."/
D

jE �E 0j

�
�C�.1 � "/
:

Since this inequality is true for all ", the result follows.

Positivity of Lyapunov exponent. This is a corollary of Lemma 3.3 which is also

useful in the later proof of uniform localization.

Corollary 3.3. The Lyapunov exponent L.E/ of H�;f;T;x is continuous in E and

L.E/ admits a lower bound

L.E/ � max
°

0; ln
��
�C�

2e

�±

: (3.2)

Therefore, L.E/ is uniformly positive if � > 2e

�C�

.

Proof. By Lemma 3.3, dN.E/ is absolutely continuous with respect to dE and the

Radon-Nikodym derivative
dN.E/

dE
� 1

�
�C�
´ 1

d
, for a.e. E. Thus, by the Thouless

formula,

L.E/ D

Z

R

ln jE 0 �EjdN.E 0/ D

Z

R

.ln jE 0 �Ej/
dN.E 0/

dE 0
dE 0

�

EC d
2

Z

E� d
2

1

d
� ln jE 0 �Ej dE 0 D

2

d

d
2

Z

0

ln jE 0j dE 0 D ln
d

2e
D ln

�
�C�

2e
;
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where the first inequality follows from monotonicity of ln function and bounded-

ness of
dN.E 0/

dE 0 . Finally, notice that L.E/ � 0 follows from the definition. Thus, we

get (3.2).

4. Large deviation theorem

In this section, we provide two essential ingredients for the proof of localization.

Lemma 4.1 provides an upper bound of Pn.x; E/ while Theorem 3 provides the

large deviation estimate which is central of the non-perturbative proofs of localiza-

tion, as introduced in [18]. The first is a result that can be directly adapted from

[17, Lemma 3.5]. It holds for arbitrary ˛ 2 R n Q and arbitrary piecewise potentials.

Lemma 4.1. For any � > 0 andE 2 R, there exists anN 2 N such that for all n >N

jPn.x;E/j � en.L.E/C�/ for all x 2 Œ0; 1/:

Moreover, N can be chosen to be uniform in E 2 I as long as L.E/ is continuous on

interval I .

Proof. This was proved in [17, Lemma 3.5] for irrational rotation T D R˛ . The same

method applies to a general circle diffeomorphism under the assumption (T 1).

Theorem 3 (Large deviation theorem). Fix E such that L.E/ > 0. There exists C0 D

C0.
Û;CÛ/ > 0 such that for any 0 < ı < L.E/, there is k0 such that for any k � k0,

�
°

x 2 Œ0; 1/ W
1

qk

ln jPqk
.x;E/j < L.E/ � ı

±

< e�C0ıqk

Moreover, the set on the left-hand side is composed of at most qk many intervals.

Proof. Recall that

Pqk
.x;E/ ´ det.Hqk

.x/ �E/ D

qk�1
Y

iD0

.�i .x/ �E/:

Denote for convenience

fqk
.x/ ´

1

qk

ln jPqk
.xIE/j D

1

qk

qk�1
X

iD0

ln j�i .x/ �Ej:

Notice that �i .x/ is monotone and fqk
.x/ D �1 at ¹x W �i .x/ D E for some iº.

Thus, “large deviation” happens near ¹x W �i .x/ D E for some iº. The aim is to esti-

mate how large this set can be without rising fqk
.x/ too high. The idea is since �i .x/
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are well separated, only the closest (to E) several �i .x/ contribute the most to the

negativity of fqk
.x/, the rest are nicely controlled.

To do so, we split eigenvalues Q�j .x/ into three clusters: K
C aboveE, K

0 around

E, and K
� below E. Notice that, by jNqk

.xIE/ � zNqk
.xIE/j � 2 and Lemma 3.2,

we can make sure that

(1) the cluster of eigenvalues above E, denoted by �C
i .x/, i D 1; 2; : : : in an

increasing order with �C
i .x/ � E C id0

qk
;

(2) the cluster of eigenvalues below E, denoted by ��
i .x/, i D 1; 2; : : : in an

decreasing order with ��
i .x/ � E � id0

qk
;

(3) the cluster of the rest of eigenvalues, denoted by �0
i .x/, with the number of

eigenvalues in this cluster does not exceed some N0 uniform in E.

For example, this can be achieved by considering the closest 2j0 C 4 eigenvalues

�i .x/ to E to be in the third cluster and every eigenvalue above/below them to be in

the first/second cluster. Here j0 is to guarantee the lower and upper bound estimates

above and 4 D 2 � 2 is due to jNqk
.xIE/ � zNqk

.xIE/j � 2. In fact, we can do the

same thing for Q�i .x/, then we just need to pick the closest 2j0 eigenvalues instead of

2j0 C 4.

Now, decompose Pqk
, zPqk

correspondingly,

Pqk
.xIE/ D PC

qk
.xIE/P 0

qk
.xIE/P�

qk
.xIE/;

zPqk
.xIE/ D zPC

qk
.xIE/ zP 0

qk
.xIE/ zP�

qk
.xIE/;

where

P �
qk
.xIE/ D

Y

��
i

2K�

��
i .x/ �E;

where � 2 ¹C;�; 0º.

Claim 1. Let a; b > 0,

n
X

j D1

Œln.aj C b/ � ln.aj /� �

n
X

j D1

ln
�

1C
b

aj

�

�

n
X

j D1

b

aj
�
b

a
ln.nC 1/:

By Corollary 3.2 and the claim, we have for any x; y 2 Œ0; 1/,

j ln j zPÛ
qk
.xIE/j � ln j zPÛ

qk
.yIE/jj �

qk
X

iD1

h

ln
�jd0

qk

C
3�
CCC

qk

�

� ln
�jd0

qk

�i

� C ln qk :

Here we considered all maximum potential perturbation of all �i .x/ at the maximum

potential place
®

jd0

qk

¯qk

j D1
. There might be extra terms of �Û

i .x/ that do not pair to
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�Û
i .y/ but since there are only finitely many terms and they are bounded, the result

is still true with a modification of C . For the same reason, the inequality holds for

Pqk
.xIE/ as well.

Thus, there is Lqk
.E/ such that

Lqk
.E/ �

1

qk

ln jPC
qk
.xIE/P�

qk
.xIE/j � Lqk

.E/C C
ln qk

qk

; (4.1a)

Lqk
.E/ �

1

qk

ln j zPC
qk
.xIE/ zP�

qk
.xIE/j � Lqk

.E/C C
ln qk

qk

; (4.1b)

Claim 2. There is C0 DC0.j0/DC0.
Û;CÛ/ such that for k large enough, for ı > 0

small enough,

�¹x 2 Œ0; 1/ W
1

qk

ln jPqk
.x;E/j < Lqk

.E/ � ıº < e�C0ıqk :

Proof. If x is such that 1
qk

ln jPqk
.xIE/j � Lqk

� ı, then 1
qk

ln jP 0
qk
.xIE/j � �ı.

Since there are at most N0 eigenvalues in K
0.x/, thus there is some l such that

1

qk

ln j�l.x/ �Ej � �ı=N0 ) j�l.x/ �Ej � e�ıqk=N0 : (4.2)

Among all x 2 Œ0; 1/, there are at most qk intervals of x such that some �l.x/ � E

satisfies (4.2). In fact, there are at most qk intersections of graph.ƒj / and Œ0;1/� ¹Eº.

Since each ƒj is monotone, (4.2) is only possible for x near such intersections. By

Proposition 3.1, �i .x/ are lower-Lipschitz with respect to invariant measure. Thus,

for qk large enough,

�¹x W there is l such that j�l.x/ �Ej � e�ıqk=N0º � qk

e�ıqk=N0

�
�C�

� e
�

ıqk
2N0 � e�C0ıqk :

Thus, we have proved the result with Lqk
.E/ instead of L.E/. Now, we need the

last component of the proof.

Claim 3. For any " > 0, L.E/ � Lqk
.E/C " uniform in E when qk is large enough.

Proof. In fact, since the operator is bounded, ln jP 0
qk
.xIE/j � N0C1. Together with

(4.1), we get

1

qk

ln jPqk
.xIE/j � Lqk

.E/C C
ln qk

qk

C
N0C1

qk

� Lqk
.E/C " for all x 2 Œ0; 1/

(4.3)
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uniformly in E when qk is large enough (depending on �; 
Û; CÛ). The same holds

for zPqk
.xIE/.

On the other hand, by Lemma 4.1, for any " > 0, 1
n

ln jPn.xIE/j � L.E/ C "

eventually. While by definition of Lyapunov exponent (2.4),L.E/ is the limiting aver-

aging of 1
n

ln kMn.xIE/k. But Mn and Pn are connected by (2.3). Thus, we see that

on a set of measures at least 1
4

, the following is true for either n D qk , qk � 1, or

qk � 2:
1

n
ln jPn.xIE/j � L.E/ � ": (4.4)

If nD qk , combining (4.4) and (4.3) gives us what we want. Otherwise, we first notice

by row expansion of determinant, we have

Pn.xIE/C Pn�2.xIE/ D .�f .T n�1x/ �E/Pn�1.xIE/ (4.5)

zPn.xIE/C 2.�1/n D Pn.xIE/ � Pn�2.T xIE/: (4.6)

Then, when n D qk � 1, by (4.5), either Pqk
or Pqk�2 satisfies (4.4), so we can com-

bine it with (4.3) to derive the result. If nD qk � 2, by (4.6), we have eitherPqk
or zPqk

satisfies (4.4). For the former case, we get the result. For the latter, combining (4.4)

and (4.3) with zPqk
instead of Pqk

.xIE/. The claim follows.

Now, the result follows immediately: for any ı > 0, apply Claim 3 to get L.E/ �

Lqk
.E/C ı=2 eventually so that

°

x 2 Œ0; 1/ W
1

n
ln jPn.xIE/j � L.E/ � ı

±

�
°

x 2 Œ0; 1/ W
1

n
ln jPn.xIE/j � Lqk

.E/ �
ı

2

±

:

Then the result follows from Claim 2.

5. Exponential decay of eigenfunctions

We prove our key Lemma 5.3, which provides uniform exponential decay of gener-

alized eigenfunction in x; E; ˛. To do so, we introduce some definitions and prove a

typical “either or” argument in the proof of localization in Lemma 5.2.

Definition 2 (Regular point). We say a point n 2 Z is .x; c; qk/-regular if there is an

interval Œa; b� with

n 2 Œa; b�; b D aC qk � 1; ja � nj �
qk

5
; jn � bj �

qk

5
; (5.1)
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such that

jGx;E;Œa;b�.a; n/j � e�cjn�aj and jGx;E;Œa;b�.n; b/j � e�cjn�bj:

Otherwise we say n is .x; c; qk/-singular.

Lemma 5.1. Fix ı; E such that 0 < ı < L.E/. For qk large enough, for any x, if n

is .x; L.E/ � ı; qk/-singular, then for any a 2
�

n �
�

3qk

4

Ú

; n �
�

qk

4

Ú�

,

jPqk
.T ax/j � eqk.L.E/�ı=10/: (5.2)

Furthermore, let Nk D
�

3qk

4

Ú

�
�

qk

4

Ú

C 1 denote the number of such a, then

qk C 1

2
� Nk �

qk C 3

2
:

Proof. Since n is .x; L.E/ � ı; qk/-singular, for any Œa; b� satisfying (5.1), in partic-

ular, for any a 2
�

n �
�

3qk

4

Ú

; n �
�

qk

4

Ú�

, b D aC qk � 1, we have

8

<

:

either jGx;E;Œa;b�.a;m/j � e�.L.E/�ı/.m�a/;

or jGx;E;Œa;b�.m; b/j � e�.L.E/�ı/.b�m/:
(5.3)

Notice that
8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

jGx;E;Œa;b�.a;m/j D
jPb�m.T

mC1x/j

jPqk
.T ax/j

;

jGx;E;Œa;b�.m; b/j D
jPm�a.T

ax/j

jPqk
.T ax/j

:

(5.4)

Now, we consider the first case in (5.3) for simplicity. The other case is similar. By

Lemma 4.1, we have when qk is large enough

jPb�m.T
mC1x/j � e.L.E/Cı=10/.b�m/: (5.5)

By (5.3),(5.4), and (5.5), we see that

jPqk
.T ax/j � e.L.E/C ı

10 /.b�m/C.L.E/�ı/.m�a/

� eL.E/.b�a/C ı
10 .b�m/�ı.m�a/

� eL.E/qkC ı
10 qk�ı

qk
5 � e.L.E/� ı

10 /qk ;

Thus, we proved (5.2). The bound of Nk follows from direct computation when qk �

0; 1; 2; 3 .mod 4/.
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In other words, there are many “large deviation points” near each singular point.

This fact, together with the large deviation estimates in Theorem 3 and appropriate

weakly Liouville assumption (Definition 1), leads to the repelling of two singular

points. In fact, we prove below that two .x; L.E/ � ı; qk/ singular points are at least

“qkC1 � qk=2” away from each other.

Lemma 5.2 (Either or argument). Let C0 be as in Theorem 3. Assume ˛ andE satisfy

ˇ.˛/ < C0L.E/. For any
ˇ.˛/
C0

< ı <L.E/, we have that for qk large enough, and for

any
qkC1

2
< jn �mj � qkC1 � 1 � qkC1

2
, either m or n is .x; L.E/ � ı; qk/-regular

for any x.

Proof. Without loss of generality, assume n > m. For any ı < L.E/, assume both m

and n are .x; L.E/ � ı; qk/-singular. By Lemma 5.1, we have

jPqk
.T ax/j � e.L.E/�ı=10/qk

for any a 2
�

m �
�

3qk

4

Ú

; m �
�

qk

4

Ú�

[
�

n �
�

3qk

4

Ú

; n �
�

qk

4

Ú�

. Notice further that

n �
j3qk

4

k

�
�

m �
jqk

4

k�

D n �m �Nk C 1

>
qk C 1

2
�
qk C 3

2
C 1 D 0:

Thus, the two intervals of a have no intersection. Overall there are 2Nk � qk C 1many

possible a such that jPqk
.T ax/j � e.L.E/�ı=10/qk . By Theorem 3 and pigeonhole

principle, there are i; j 2
�

m�
�

3qk

4

Ú

;m�
�

qk

4

Ú�

[
�

n�
�

3qk

4

Ú

; n�
�

qk

4

Ú�

such that

�.ŒT ix; T jx�/ � e�C0ıqk :

Notice that

ji � j j � n �
jqk

4

k

�
�

m �
j3qk

4

k�

D n �mCNk � 1 � qkC1 � 1:

By Lemma A.1 and (A.2), we have

e�C0ıqk � �.ŒT ix; T jx�/ � �.Œx; T qkx�/ �
1

qkC1

:

This implies that

C0ı <
ln qkC1

qk

H) C0ı H) C0ı � lim sup
ln qkC1

qk

D ˇ.˛/:

which leads to a contradiction with the assumption.
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Lemma 5.3. Let C0 be as in Theorem 3. If .x;E; ˛/ satisfy

(E1) E is a generalized eigenvalue of H�;f;T;x ,

(E2) ˇ.˛/ < C0L.E/,

then E is an eigenvalue with exponentially decaying eigenfunction. Denote the nor-

malized eigenfunction by  with k k1 D 1.

Furthermore, for any " > 0, there is a C D C."/, uniform in all x; E; ˛ which

satisfy (E1) and (E2) above, such that for any pair of eigenvalue E and normalized

eigenvector  , there is n0 D n0.E/ such that

j .n/j � C."/e
� 1

10 .L.E/� ˇ.˛/
C0

�"/jn�n0j
: (5.6)

Proof. Take any
ˇ.˛/
C0

< ı < L.E/. Let  be a generalized eigenfunction of H�;f;T;x

with respect to E. Thus, j .n/j � C1.1 C jnj/p where C1 D C1.E; x; ˛/. We first

prove  decay exponentially so that E is an eigenvalue, then we prove the decay is

uniform in the sense of (5.6).

Without loss of generality, assume that  .0/ ¤ 0. By (2.2), 0 is eventually

.x; L.E/ � ı; qk/-singular. By Lemma 5.2, we have for qk large enough, any n 2
�

qkC1
2
; qkC1 � 1 � qkC1

2

�

´ .Ak; Bk� is .L.E/ � ı; qk/-regular. Notice further that

AkC1 � Bk since qkC1 � qk C 4 for k � 4. Thus, eventually for any n, there is k

such that n 2 .Ak;AkC1�. We derive exponential decay by considering two cases sep-

arately.

(1) If n 2 .Ak; qk�, n is .L.E/ � ı; qk/-regular, by (2.2), we have for arbitrarily

small " > 0, eventually

j .n/j � C1e
�.L.E/�ı/qk=5.1C 3n/p � e�.L.E/�ı�"/n=5: (5.7)

(2) If n 2 Œqk C 1;AkC1�, then it is easy to check that jn � Bkj � jn � Akj � n
2

.

By (2.2), we have

j .n/j � 2e�.L.E/�ı/qk=5j .n1/j

where n1 D a� 1 or bC 1 for suitable Œa; b� satifying (5.1). As long as n1 2 .Ak;Bk�,

where n1 would be .x;L.E/� ı; qk/ regular, then we can apply (2.2) again to  .n1/.

We can repeat this process to get  .n2/,  .n3/; : : : , as long as ni stays in .Ak; Bk�.

Since jn � Bkj � jn � Akj � n
2

while jni � niC1j � qk , thus we can at least do

J �
jn � Akj

qk

�
n

2qk

many times. Then we get

j .n/j � 2J e�.L.E/�ı/qkJ=5j .nJ /j � e
�.L.E/�ı� 5

qk
/ n

10 j .nJ /j

� C1e
�.L.E/�ı� 5

qk
/n=10

.1C 3n/p � C1e
�.L.E/�ı�"/n=10: (5.8)
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Combining (5.7) and (5.8) gives us the first half of the theorem. Now, since 2 `2,

we can normalize it so that k k1 D 1.

The key point of the second half is the uniformity in x; E; ˛. Take n0 D min¹n W

 .n/ D 1º > �1 to be the leftmost maximum point of  . By (2.2), we see that

the maximum point n0 is always .x; L.E/ � ı; qk/-singular for all qk . Thus, n is

.x;L.E/� ı;qk/-regular ifAk < jn�n0j �Bk . We can now repeat the estimates (5.7)

and (5.8) above with the new, uniform (in x; E; ˛) improvement that j .ni /j � 1

instead of j .ni /j � C1.x;E; ˛/.1C ni /
p , where we get

8

<

:

j .n/j � e�.L.E/�ı/
jn�n0j

5 ; n 2 .Ak; qk�;

j .n/j � e
�.L.E/�ı� 5

qk
/

jn�n0j

10 ; n 2 .qk; AkC1�:

Since
ˇ.˛/
C0

< ı < L.E/ is arbitrary and 5
qk

is arbitrarily small once qk is large enough

uniformly in x;E; ˛. Thus, (5.6) follows.

6. Localization results

Now, we prove our main results. Both of them follow directly from Lemma 5.3.

Proof of Theorem 1. Recall that by Schnol’s theorem, spectral measure is supported

on the set of generalized eigenvalues (see [3, Chapter VII]. Fix � and x, the theorem

follows directly from Lemma 5.3).

Definition 3 (Uniform localization). An operator H exhibits uniform localization if

there exists C; c such that for any pair of eigenvalue and eigenfunction E,  , there

exists n0 D n0.E/ such that

j .n/j � Ce�cjn�n0j:

Proof of Theorem 2. By Corollary 3.3, 0 < ln
�

�
�C�

4e

�

� L.E/ for all E. It follows

that ˇ.˛/ < C0L.E/. Thus, Lemma 5.3 applies to all x, all E and those ˛ which

satisfy our assumption. By taking " D 1
2

ln
�

� OC
�

4�e

�

in Lemma 5.3, we get uniform

localization.

A. Orbital analysis

It is well known that the irrational rotation on the 1D-torus, R˛.x/ D x C ˛, has the

best-approximation property, cf. [28],

kqk˛k � kn˛k for all 1 � n < qkC1˛
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with estimates
1

2qkC1

� kqk˛k �
1

qkC1

;

where qk is defined in (2.1). Furthermore, the orbits of R˛ is also well understood;

we cite [10, Propositions 4.1 and 4.2] here.

Proposition A.1. Let k � 1. The points ¹j˛º, j D 0; 1; 2; : : : ; qk � 1 splits Œ0; 1/ into

qk�1 “large” gaps of length k.qk � qk�1/˛k and qk � qk�1 “small” gaps of length

kqk�1˛k. Furthermore, we have the estimates

1

qk

�
qk�1

qkqkC1

� kqk�1˛k �
1

qk

;

1

qk

� k.qk � qk�1/˛k �
1

qk

C
1

qkC1

:

For a general measure-preserving circle homeomorphism T with rotation num-

ber ˛, such kind of best approximate properties and orbital analysis holds when we

replace the distance function k � k by the invariant measure �.

Lemma A.1 (Best approximation). For any x 2 T 1 and k 2 N,

�.Œx; T ix�/ � �.Œx; T qkx�/;

where 0 � i < qkC1.

Proof. Note that Lemma A.1 holds when the invariant measure is the Lebesgue mea-

sure – in other words when the map T is the irrational rotation.

For a general measure-preserving circle homeomorphism, this inequality holds

since it is equivalent to the irrational rotation case. In fact, the Poincaré classification

theorem [9, Theorem 4.3.20] guarantees the existence of the topological conjugacy

h with a rotation R˛ , and h is also the distribution function for the unique invariant

measure �. Hence, for any x 2 T 1 and i 2 N, we have

�.Œx; T ix�/ D jh.T ix/ � h.x/j D jRi
˛.h.x// � h.x/j D ki˛k:

Lemma A.2. Fix x, Let k � 1. The points ¹T jxº
qk�1
j D0 split interval Œ0; 1/ into qk�1

“large” gaps of invariant measure �.ŒT qkx; T qk�1x�/ D �.Œx; T qk�qk�1x�/, and

qk � qk�1 “small” gaps of invariant measure �.Œx; T qk�1x�/. Furthermore, we have

the estimates

1

qk

�
qk�1

qkqkC1

� �.Œx; T qk�1x�/ �
1

qk

;

1

qk

� �.Œx; T qk�qk�1x�/ �
1

qk

C
1

qkC1

:
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To prove the lemma, let us first introduce the dynamical partition on the circle by

following the convention in [12]. For each k 2 N, let Ik be the interval between x and

T qkx. It can be verified by induction in k that the following collection of intervals

forms a k-th dynamical partition of T 1:

Pk.x/ ´ ¹Ik; T .Ik/; : : : ; T
qk�1�1.Ik/º [ ¹Ik�1; T .Ik�1/; : : : ; T

qk�1.Ik�1/º

´ �k [ Lk :

That is, they are disjoint except for the endpoints, and the union covers the whole cir-

cle. Notice that intervals in �k all have smaller invariant measure �.Ik/ < �.Ik�1/

than intervals in Lk , thus we call them “short” and “long” intervals correspond-

ingly. One can check by induction on k that each “long” interval T j .Ik�1/ in k-th

dynamical partition is divided into akC1 “long” intervals and one “short” interval in

.k C 1th/-th dynamical partition. More specifically,

T j .Ik�1/ 2 Lk

H) T j Cqk�1.Ik/; T
j Cqk�1Cqk .Ik/; : : : ; T

j Cqk�1C.akC1�1/qk .Ik/ 2 LkC1

and T j .IkC1/ 2 �kC1:

This allows us to estimate the “large” and “small” gaps3 in Lemma A.2 now.

Proof of Lemma A.2. Since � is the invariant measure of T , for dynamical partition

PkC1.x/, we have

1 D

qkC1�1
X

iD0

�.T i .Ik//C

qk�1
X

j D0

�.T j .IkC1// D qkC1�.Ik/C qk�.IkC1/: (A.1)

By (A.1), we get

�.Ik/ D
1 � qk�.IkC1/

qkC1

�
1

qkC1

:

Moreover, since (A.1) holds for any k, we also get �.IkC1/ � 1
qkC2

. So,

�.Ik/ �
1

qkC1

�
qk

qkC1qkC2

�
1

2qkC1

:

The last inequality follows from the recurrence relation (2.1) and ak � 1:

qkC2 D akC2qkC1 C qk � 2qk :

By the comparability between � and the Lebesgue measure on a circle (T 1), the claim

follows.

3Notice that the partition in Lemma A.2 is different from dynamical partition, “long” and

“short” intervals are also different concepts from “large” and “small” gaps.
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