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Anderson localization for Schrodinger operators
with monotone potentials over circle homeomorphisms

Jiranan Kerdboon and Xiaowen Zhu

Abstract. In this paper, we prove pure point spectrum for a large class of Schrodinger operators
over circle maps with conditions on the rotation number going beyond the Diophantine. More
specifically, we develop the scheme to obtain pure point spectrum for Schrodinger operators
with monotone bi-Lipschitz potentials over orientation-preserving circle homeomorphisms with
Diophantine or weakly Liouville rotation number. The localization is uniform when the coupling
constant is large enough.

1. Introduction

The spectral theory of quasiperiodic Schrédinger operators has been the subject of
extensive study over the past several decades due to its deep origins in physics and the
richness of its unusual mathematical features. The general setup of a quasiperiodic
operator is given by a family of operators H}_ .1 acting on {?(Z), defined as

(Harx¥)) =¥+ 1)+ 9 (n— 1)+ Af(T"x)y (), (1.1)

where x € T!, T is an irrational rotation on T ' defined by Tx = Ryx = x + «,
witha € R\ @, and f : T! — R is a potential function. Examples of such operators
include f(x) = cos(x) for the almost Mathieu operator or f(x) = tan(x) for the
Maryland model. One of the most interesting features of quasiperiodic operators is
that their spectral type can often be fully characterized by the arithmetic properties
of a (and/or x) in many situations, as demonstrated in works such as [8, 14]. Since
Ry serves as a fundamental example of general circle homeomorphisms, a natural
question arises: if 7' is not a rotation but a more general circle homeomorphism with
rotation number «, can we still determine or get some information about the spectral
type by the arithmetic properties of «?

As one can imagine, the answer may vary depending on properties of f, 7', and .
The study of (1.1) for general circle diffeomorphisms 7" was initiated by [12, 22].
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In [12], the authors proved purely absolutely continuous spectrum for Holder con-
tinuos f, C1TBY
phenomena for circle diffeomorphisms with a critical point or break. On the other

-smooth 7', and super Liouville . [22] further explored similar

hand, for quasiperiodic (1.1), several recent papers have proved the opposite, i.e.,
pure point spectrum, under arithmetic properties of « that go beyond the Diophantine
condition, e.g., [1,2,5,7,8,14-16,23-26]. In this paper, we add to this list by extending
the results in [10], where the authors worked with an irrational rotation 7' = R, with
Diophantine « and potential f satisfying conditions (¥ 1) and (¥ 2) below. We work
with the same conditions on f but consider a more general orientation-preserving
circle homeomorphism 7" under the assumptions (7 1).

(1) f isone-periodicon R and f(0) =0, f(1 —0) :=limy—1- f(x) = 1.
(¥2) f is bi-Lipschitz monotone, i.e., there exist y—, y+ > 0 such that for all
0<x<y<l,
-y —x) = f¥) = f(x) = y+(y —x).
(7'1) Assume the invariant measure of 7 is denoted by v and that
Cov(lx,yD = |x =yl = Cyv(lx. yD.

Under these conditions, we obtain results that are similar to the ones in [10]. In
fact, in addition to extending to more general circle homeomorphisms, we also gener-
alize the result by relaxing the Diophantine condition on « to both weakly Liouville
and Diophantine cases. Specifically, we prove that the followng result.

Theorem 1 (Pure point spectrum). For [ satisfying (¥ 1) and (¥ 2) and T satisfy-
ing (T 1) with weakly Liouville or Diophatine rotation number «, or more specifically,

0 < B(a) < o0, there is Co = Co(y+,Cx) = O(;’;g;) > 0 such that for all A > 0,

we have
oc(Hy frx) N{E : B(a) < CoL(E;a)} =0, forallx € T,
where f(a) and the Lyapunov exponent L(E; ) are defined in Section 2.

Remark 1. The theorem provides a meaningful statement for homeomorphisms with
rotation number o when B () is small or zero, which corresponds to weakly Liouville
or Diophantine « (see Section 2). In fact, the smaller B(«) is, the more “irrational” o
is. For example, since we also proved positivity of Lyapunov exponent L(E;®) > 0
for all irrational o in Corollary 3.3, when B(a) = 0, this implies that o.(Hy,1,x) = 9,
i.e., the spectrum of Hy,7 . is pure point.

Note that condition (7 1) is equivalent to the existence of a bi-Lipschitz conju-
gacy between T and R, meaning that there exists a bi-Lipschitz function ¢ that is
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bounded from above and below such that ¢ o T = Ry o ¢p. We acknowledge that if
such a bi-Lipschitz conjugacy exists and « is Diophantine, our results follow directly
from [10] by a change of variables: letting y = ¢ (x), we obtain Hyo4-1 g, , and
can apply known localization results. However, we choose to present the proof in the
more general setting using the invariant measure, since the existence of a bi-Lipschitz
(in fact, C'7%) conjugacy is currently only established for Diophantine .

As a byproduct, we also establish Lipschitz continuity of the integrated density of
states (IDS, see (2.5)) for all A in Lemma 3.3, as well as the continuity and positivity of
the Lyapunov exponent for large A in Corollary 3.3. Together with our key Lemma 5.3,
which is uniform in x, E, and «, these results allow us to achieve uniform localization
of Hy rr,x (see Definition 3) for sufficiently large A and “sufficiently irrational” c,
i.e., B(a) sufficiently small (see Definition 1).

Theorem 2 (Uniform localization). Let Co = Co(y+,C+) > 0. IfA > 4 and ifa

y—C—
is weakly Liouville with B(a) < Cy ln('l V;ec’ ) then Hy, s x has uniform localization
forall x.

We also remark that a somewhat different proof was developed in [19] for
unbounded lower-Lipschitz monotone f and irrational rotation 7' = R, with Dio-
phantine «. The key idea is, that instead of controlling the change of eigenvalue
functions horizontally (see Lemma 3.1), the author controls the change of counting
function horizontally. We believe that the Lipschitz continuity of integrated density of
states in our proof can be done through that of argument in [19] and the results here
can be generalized to more general T with weakly Liouville @ and unbounded f in
similar ways to here. This will be explored in future work.

Finally, we mention several interesting works on the Schrodinger operator with
monotonic potential during the submission process of this current paper, in higher
dimensions [4,27] or for potentials with flat plateaus, and recent results [11,20,21].

Structure and Kkey ideas. Under the assumption of (7 1) and allowing weakly Liou-
ville «, we re-develop the proof following the method in [10] in the key step: we
use the non-perturbative proof of localization, first developed in [18], together with a
detailed analysis of the behavior of box eigenvalues. We provide the latter for general
T in Section 3, which helps with building the large deviation estimates in Section 4.
From the large deviation estimates, we get our key lemma on the uniform exponential
decay of generalized eigenfunctions in x, , E in Section 5. The main results follow
immediately in Section 6.

The extension of our results from R, to more general circle homeomorphisms 7
is based on the observation that the behavior of box eigenvalues is closely related to
the distribution of orbits of 7. While the orbits of 7" are not evenly distributed with
respect to distance, they are evenly distributed with respect to the invariant measure,
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allowing us to obtain quantitative estimates of their distribution under the comparabil-
ity assumption (7 1). Appendix A provides the key statements that enable us to carry
out this argument. The extension to weakly Liouville ¢, on the other hand, requires a
more careful estimate of the decay of generalized eigenfunctions in Section 5.

2. Preliminaries

In this section, we will begin by discussing two fundamental concepts: continued frac-
tion expansion and weakly Liouville numbers. Afterwards, we will introduce several
fundamental properties of discrete Schrodinger operators, including the generalized
eigenvalue and Schnol’s theorem, the Green function and Poisson formula, transfer
matrices and Lyapunov exponent, density of states measure, and the Thouless for-
mula.

Notations. For x € R, we use |x| to denote the absolute value and

||x|| = inf |x —n|
nez

to denote the closest distance between x € R and integers.

Continued fraction expansion and weakly Liouville number. Any number o €
[0, 1) can be written in the continued fraction expansion [28]:

1
o = M_—l = [al,az,a3,...].

with a; € NT. Let f]’—”: = [a1,...,ay] denote the continued fraction approximants.
They satisfy

Pk = akPk—1 + pk—2, p-1 =1, po=0;

9k = akqk—1 + qk—2, -1 =0, qo=1.
Definition 1 (Weakly Liouville). For « € [0, 1), let

2.1

|
B(a) = limsup Nkt

k—o0 qk

We call « weakly Liouville if 0 < B(a) < oo.
We mention that if « is Diophantine,' then B(a) = 0.

For a detailed discussion on the next several definitions, please refer to [6, Chap-
ters 9 and 10] and [3, Chapter VII].

' is called Diophantine if there is k > 0 and © > 0 such that ||na|| > # forall n # 0.
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Generalized eigenfunction and Schnol’s theorem. We say v is a generalized eigen-
function of an operator H with respect to a generalized eigenvalue E if v is polyno-
mially bounded, i.e., |y (n)] < C(1 + |n|)? forsome C >0, p € N and Hy = E.
Schnol’s theorem states that the spectral measure of an operator H is supported by
the set of its generalized eigenvalues.

According to Schnol’s theorem, to prove that H has pure point spectrum, it is suf-
ficient to show that all generalized eigenfunctions belong to £2. This is because if all
generalized eigenfunctions and eigenvalues become eigenfunctions and eigenvalues,
respectively, then the spectrum is pure point.

Green function and Poisson formula. Let H, 5)(x) and H [a,b] denote the restric-
tion of Hy, 7.7, to £?([a, b]) with Dirichlet and periodic boundary conditions, respec-
tively. In particular, for the interval [a, b] = [0, n — 1], we use the simplified notations
H,(x) and H, (x). More specifically,

Af(x) 1
Hy(x) = !
. 1
1 Af(T" 'x) e,
Af(x) 1 1
ﬁn(x)= !
. . 1
1 1 Af(T" 'x) .

Let Gy g [a.6] = (Hiap)(x) — E)~! denote the Green function and Gy, g [4,61(m, 1)
be its (m, n)-entry. Denote P, (x, E) = det(H,(x) — E), and let Py(x, E) = 1.

The Poisson formula provides a connection between the generalized eigenfunction
and the Green function. Specifically, suppose v (n) is a generalized eigenfunction of
H)j, 1 x with respect to generalized eigenvalue E, then for n in the interval [a, b], we
have the following formula:

Y (n) = =Gy g jap)(@n)¥(a—1)— Gy g ap(n b)Y +1). (2.2)

Transfer matrix and Lyapunov exponent. Rewrite H 77 ¥ = E into matrix

form:
(V;ﬁl) = An-1(, E)(zz:;) = Ap-1(x, E). --Ao(x,E)(‘/lf/f—Ol),
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where
E —Af(T'x) —1)

Ai(x,E) := ( | 0

We define the n-step transfer matrix by
M,(x,E) == Ap—1(x, E) ... Ap(x, E).

One can verify by induction that

, Py(x,E) —Pn1(Tx,E)
M,(x,E) = (Pn—l(X, E) —P, o(Tx. E))' 2.3)
The Lyapunov exponent is defined to be
1
L(E):= lim l/‘ln M, (x, E)|| dv(x). 2.4)
n—oo p

0

Integrated density of states (IDS) and the Thouless formula. Next, we introduce
the density of states measure and the Thouless formula, which connects the Lyapunov
exponent of E with the density of states measure. The integrated density of states
(IDS) is defined as follows:

1
N(E) = nli)rglo%/Nn(x,E) dv(x), 2.5)
0

where N, (x, E) := #o (H,(x)) N (—o0, E].

Remark 2. We can define P, (x, E) and N, (x, E), analogous to P,(x, E) and
N, (x, E) for H,, respectively, for H,(x).

Remark 3. Notice that H,(x) is a rank-two perturbation of H,(x). Thus, we have
|Nn(x, E) — Ny(x, E)| < 2. Thus, we can also define the IDS by

1
1 [ ~
N(E) =nli)n;o;/N,,(x,E) dv.
0

The function N(E) is right-continuous, non-decreasing, and approaches zero as E
approaches —oo. Its derivative defines a unique probability measure, called the density
of states measure N(dE). The relation between the density of states measure N(dE)
and the Lyapunov exponents L(E) is known as the Thouless formula. We state it here
without proof, but refer the interested reader to [6] for more details:

L(E) = /m |E' — E| N(dE).
R



Schrodinger operators with monotone potentials over circle homeomorphisms 1629
3. Positive Lyapunov exponent

In this section, we first establish some fundamental properties of box eigenvalue func-
tions, which are the eigenvalues of ﬁn (x). We then derive estimates for the distance
between these eigenvalue functions. Using these estimates, we obtain the Lipschitz
continuity of the IDS N(E) with respect to E and prove the positivity of the Lya-
punov exponent L(E) for large A.

Recall that H, (x) is the periodic restriction of H A, f.Tx t0 [0,n —1]. Let fi,,(x),
0 <m < n — 1 be the eigenvalues of H,(x) in increasing order. We refer to fi,, (x)
as the box eigenvalue functions. Now, we establish some of their basic properties.

Proposition 3.1. [i;(x) have the following properties:

(1) f1; (x) is 1-periodic, continuous on [0, 1) except at {T 7 (O)};’;l. By rearrang-
ing these discontinuity points in increasing order, we denote them by {f; 7;3.
We also denote 1) := [B1, Bi+1)-

(2) j1i(x) is bi-Lipschitz continuous with respect to the invariant measure, and
strictly increasing on each I;. In fact,

Ay-Cv([x, y]) = @i(y) — i (x) = Ay4Cov([x, y]).
(3) At each jump B;, we have
fi(Br —0) < ftiv1(B) < fi+1(B1 —0), 0<i <n-2.
Remark 4. Because of (2) and (3) above, it is natural to define
n—1
Ai(x) =) i)y (x), 0<i<n—1

=0

and extend it periodically from [0, 1) to R. As aresult, A;(x) is monotone increasing
on [Bu—jy1+ N,Bu—j+1 + N + 1) forany N € Z, and it inherits the properties of
wj(x) oneach I;. In particular, A; (x) is also lower-Lipschitz with respect to invariant
measure von [Bn_j41 + N, Bn_jr1 + N + 1):

Ai(y) — Ai(x) = Ay-C_v([x, y]),
forx <yandx,y € [Bn—jy1 + N.Bn—jr1 + N +1).

Proof. (1) Note that the box eigenvalue functions fi; (x) are roots of the characteristic
polynomial P, (x, E). Therefore, each ji; (x) is continuous with respect to the coeffi-
cients of P, (x, E), which are polynomials of {)Lf(zj)}j":_Ol. Since f(T7x) is only

discontinuous at 7=/ (x), fi; (x) is only potentially discontinuous at {7~/ (x)}?’;gl.
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(2) Notice that, for x < y in the same I;, H(y) — H(x) is a non-negative diagonal
matrix. By Lidskii’s theorem (see [13, Theorem 2]), we have

A rr}in(f(T-"y) — f(T7y)) < i (y) — 1 (x)
< Amax(f(T7y) — f(T7x)).
j
Notice that (¥2) and (7 1) implies that
f(T7y) = f(T7x) < y+Cov([T/x, T/ y)),

and similarly, f(T7y) — f(T/x) > Ay_C_v([x, y]).
(3) Notice that
Hy(B1 —0) — Hu(B1) = Aej ® ¢ (3.1

where 0 < j < gx — 1 such that 7~U~D(x) = ;. This leads to the second inequality
since H,(B; — 0) — H,(B;) is positive semi-definite. To derive the first inequality,
by (3.1), let D be the matrix obtained by deleting the row j and column j from
H,(B; —0) or H,(B1).Letw; < ws < -+ < wp_; be the eigenvalues of D. By eigen-
value interlacing theorem,

fo(Br —0) <1 = i1 (fr —0) Swz <+ < wp—1 =< jin—1(B1 —0),
fo(Br) w1 < (B1) S w2 <+ S wp—1 = fin—1(B1)-

Therefore, i, (81 —0) < Wm+1 < fm+1(B;), forall0 <m <n —2. ]

Horizontal comparison. From now on, we fix o and consider n = gj since we will
use the dynamical properties of the irrational circle map to compare box eigenvalue
functions horizontally and vertically. The following lemma provides an upper bound
control if we compare the box eigenvalue functions ji; (x) and fi; (T" x) horizontally.
Note that the estimate is uniform in r.

Lemma 3.1. Forany —q; +1 <r <gqp — 1,

~ . Ay+Cy
i (x) = 1 (T"x)| = ———.
dk+1
Proof. Define an g X g unitary matrix S = [eq, ,e1,€2,...,eq,—1] where e; € R”

are standard unit vectors. Then
S"Hy, (x)S™" = Hy,—(T"x) ® H,(x),
Hy, (T"x) = Hyp—r (T"x) & H, (T x).
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By (¥2),(71), and Lemma A.2,
| (x) = A (T%x)| < A max | f(T'x) = (T4 )
<i<r—
< Ay4|TPx — TU x|
< Ay Coo([T7x, T%H x]) = Ay Cv([x, T%x])

< )W+C+‘
qk+1

The result follows from Lidskii’s theorem. [

Corollary 3.2. Forany x,y € [0, 1),

- - Ay.C 2Ay+C 3Ay.C
i () — s ()] < 2=ty AV 2RV
dk+1 dk dk

Proof. First notice that for given x € [0, 1), depending on which I it belongs to, there
exists —qx + 1 < a < 0, such that each point in {7 x}‘,’iﬁ{k“ precisely falls in one
interval among {I;};I’;gl. Thus, there is —gr + 1 <r < g — 1 such that 7" x and y

are in the same /. Then

|2 (x) — i (D] = 12 (x) = @i (T" )| + [ (T"x) = i ()]

Ay+C
< 2 Ay Co([T x, )
dk+1
Ay+C 1 1
< AV+Et + Ay+Cy (_ + )

qk+1 qk dk+1

where the first inequality follows from Lemma 3.1 and the second inequality follows
from Lemma A.2. ]

Vertical comparison. Now, we estimate the lower bound of vertical distance between
eigenvalue functions. Unfortunately, the vertical distance between two closest eigen-
value functions ji; (x) and fi;1(x) is not always positive. However, we can show that
at most M eigenvalues can be very close to each other, others will be nicely separated
from them.

2y4+Cy
gy—_C—>
such that for any i, j, qx satisfying j > joand0 <i <i 4+ j < gy — 1, we have

Lemma 3.2. Given y4, A and Cx. For any ¢ > 0, there is a jo = jo(e) =

i () = ()] = Ay-C—(1 — &) = = do(e) -
qk dk
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Proof. First notice that, given x, there exists —qx + 1 < o < 0, such that each point
in {T7x}222 1 falls in precisely one interval among {/; ;Ii 51. Then for any o < r,
r<a+qp—1,

it (6) = 1 ()| = | i (T7x) — @i (T7 )| = i (x) = i (T7x)]|
— | (T x) = i (x)]

~ - i 2)&')/+C+
> iy (T7x) = i (T x)| — 2222
dk+1
- - , 2Ay..C
> sup |jii 4 (T7x) — iy (T7 x)] — 222
r,r’ qk+1

In particular, we can pick r, ' such that (7" x, fi; (T" x)) and (T” x, fti+j(T"x)) are
on the graph of the same A,,, defined in Remark 4. Put such pairs of (r, r’) together

and denote the set by S;. Then [T"x, T" "x] includes j out of g subintervals created
by the partition {77 x}* %!

1=
measure. Thus, by pigeonhole principle,’

on [0, 1), where each intervals have the same invariant

sup i (T"x) = i (T" )| = Ay-C- sup v([T"x.T" x]) = Ay_C-L.
r,r’ dk

r,r'€S;
Thus,

j 20y, C j 2y4+C
R S A A e )

dk Jk+1 gk Y-C— Gr+1J

> Ay—C—(1—59) -
9k

2y4+Cy
goy—C—"

when j > jo :=

Lipschitz continuity of IDS. Recall that N, (x, E) = #0(H,(x)) N (o0, E] and

1
N(E) = lim 1 / N, (x, E) dv(x).
n—oon
0

2In fact, we could bound |f; 4 ; (T x) — ji; (T" 'x)|, the distance between eigenvalue func-
tions, directly by Lemma A.2 without taking the supremum or referring to the pigeonhole
principle. However, the authors choose to prove it this way both because it is more interesting,
and because it reveals the uniformity in x in the vertical comparison of eigenvalue functions.
It implies that vertical differences of eigenvalue functions at any x are uniformly controlled by
the largest vertical differences among all A,,. This observation can be useful in dealing with
singular v where certain I ’s are too small or the case when f is flat at some I ’s.
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Now, we can derive Lipschitz continuity of ﬁl]k (x, E) and N(E) from vertical dis-
tance of [i; (x).

Lemma 3.3. Given A,yy,y—, E, E' € R, we have

/ |E_E/|
N(E) — N(E -
INCE) = N(E)| < o

Proof. Fix E and E’. For any ¢ > 0, we see from Lemma 3.2 that any interval of
length d (8);—2 contains at most jj eigenvalues for gy large enough. This allows us to
estimate the number of eigenvalues between E and E’:

(qk|E—_El|+1)j0

N, (E.x)— N, (E.x)| < _
qrlE — E'| Jodo(e)
Ny
do(e) ( qr|E El|)

for any x. Let k — oo, we get

IN(E) — N(E')| < 1}(minf|E_E/|(1 Jodo(e) |)

—00 do(s) qklE — E’
_|E-E'|  |E-E
T do(e)  Ay_C_(1—¢)’
Since this inequality is true for all ¢, the result follows. ]

Positivity of Lyapunov exponent. This is a corollary of Lemma 3.3 which is also
useful in the later proof of uniform localization.

Corollary 3.3. The Lyapunov exponent L(E) of Hj st x is continuous in E and
L(E) admits a lower bound

L(E) > max{o, 1n(k”2‘f‘)}. (3.2)

2e
y-C-*

Therefore, L(E) is uniformly positive if A >

Proof. By Lemma 3.3, d N(E) is absolutely continuous with respect to dE and the

Radon-Nikodym derivative dZEEE ) < ﬁ = %, for a.e. E. Thus, by the Thouless
formula,
dN(E’
L(E) = /ln|E/—E|dN(E/) = /(ln|E/— E)) dﬁi’ )dE/
R R
E+%1 2 : d Ay_C
> / —-1n|E’—E|dE/=—/1n|E’|dE’=1n—=ln r=t-
d d 2e 2e
E-4 0
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where the first inequality follows from monotonicity of In function and bounded-
ness of d]z%b: ), Finally, notice that L(E) > 0 follows from the definition. Thus, we

get (3.2). [ ]

4. Large deviation theorem

In this section, we provide two essential ingredients for the proof of localization.
Lemma 4.1 provides an upper bound of P,(x, E) while Theorem 3 provides the
large deviation estimate which is central of the non-perturbative proofs of localiza-
tion, as introduced in [18]. The first is a result that can be directly adapted from
[17, Lemma 3.5]. It holds for arbitrary & € R \ Q and arbitrary piecewise potentials.

Lemmad4.1. Foranyk > 0and E € R, there exists an N € N such that for alln > N
|P,(x, E)| < " EEFTO forail x €[0,1).

Moreover, N can be chosen to be uniform in E € I as long as L(E) is continuous on
interval I.

Proof. This was proved in [17, Lemma 3.5] for irrational rotation 7 = R,. The same
method applies to a general circle diffeomorphism under the assumption (7 1). |

Theorem 3 (Large deviation theorem). Fix E such that L(E) > 0. There exists Cy =
Co(y+,Cx) > 0 such that for any 0 < § < L(E), there is ko such that for any k > k,

1
v{x € [0,1): —In| Py (x. E)| < L(E) _5} < o—Coda
qk

Moreover, the set on the left-hand side is composed of at most q many intervals.

Proof. Recall that

gx—1
Py (x, E) := det(Hy, (x) = E) = [ | (i(x) — E).
i=0
Denote for convenience
qx—1

1 1
x):=—nl|P, (x;: E)| = — In|u; (x) — E|.
far (x) ” | Py (x: E)| qu i (x) — E|

Notice that p;(x) is monotone and f;, (x) = —oo at {x : u;(x) = E for somei}.
Thus, “large deviation” happens near {x : u;(x) = E for some i }. The aim is to esti-
mate how large this set can be without rising fy, (x) too high. The idea is since j; (x)
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are well separated, only the closest (to E) several p;(x) contribute the most to the
negativity of f, (x), the rest are nicely controlled.

To do so, we split eigenvalues /i, (x) into three clusters: K+ above E, K° around
E,and KX~ below E. Notice that, by | Ny, (x; E) — ﬁqk (x; E)] <2and Lemma 3.2,
we can make sure that

(1) the cluster of eigenvalues above E, denoted by ;L;r (x),i =1,2,... inan
increasing order with y; (x) > E +* do
(2) the cluster of eigenvalues below FE, denoted by pu;(x),i =1,2,... in an

ido.
qk ’

(3) the cluster of the rest of eigenvalues, denoted by /L?(x), with the number of
eigenvalues in this cluster does not exceed some Ny uniform in E.

decreasing order with p; (x) < E —

For example, this can be achieved by considering the closest 2j, + 4 eigenvalues
Wi(x) to E to be in the third cluster and every eigenvalue above/below them to be in
the first/second cluster. Here jo is to guarantee the lower and upper bound estimates
above and 4 = 2 x 2 is due to | Ny, (x; E) — qu (x; E)| < 2. In fact, we can do the
same thing for fi; (x), then we just need to pick the closest 2 eigenvalues instead of
2jo + 4.

Now, decompose Py, , ﬁQk correspondingly,

Py (x:E) = P (x: E)P) (x: E)P, (x: E),
Py (x:E) = P} (x: E)P) (x: E)P; (x; E),

where

Py (xiE)= [ wi)-E

wiex*
where * € {+,—,0}.
Claim 1. Leta,b > 0,
n n b
Z[ln(a] + b) —In(aj)] < Zln(l + ) — < —ln(n +1)
j=1 j=1 j=1 aj

By Corollary 3.2 and the claim, we have for any x, y € [0, 1),

dk . .
~ ~ d 3y C d
| B (s B) = n Pt ()| = D [In( 220 4+ 2222 ) —in(£2)]
i qk qk qk
< ClIngg.
Here we considered all maximum potential perturbation of all u; (x) at the maximum
potential place {%}?il. There might be extra terms of /L;—L (x) that do not pair to
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/,Ll:t (y) but since there are only finitely many terms and they are bounded, the result
is still true with a modification of C. For the same reason, the inequality holds for
Py, (x; E) as well.

Thus, there is L4, (E) such that

1 _ In gj

Ly (E) < —In| P (v E) Py (5 E)| < Lqo(E) + C—5 (41a)
9k dk
1 ~ ~ In g

Ly, (E) < q—kln|Pq+k (x: E)P, (x:E)| < Lg (E) 4+ C — (4.1b)

Claim 2. There is Cy = Co(jo) = Co(y+,C+) such that for k large enough, for § > 0
small enough,

1
vix €[0,1): —In|Py, (x,E)| < Ly (E) =8} < e~ Codax
qk

Proof. 1f x is such that - In | Py, (x; E)| < Lg, — 6, then # In|PY (x: E)| < —.
Since there are at most Ny eigenvalues in K °(x), thus there is some / such that

1
—In|p(x) — E| < —=8/No = | (x) — E| < e 4x/No, (4.2)
dk

Among all x € [0, 1), there are at most gj intervals of x such that some u;(x) — E
satisfies (4.2). In fact, there are at most gy, intersections of graph(A;) and [0,1) x {E}.
Since each A; is monotone, (4.2) is only possible for x near such intersections. By
Proposition 3.1, w;(x) are lower-Lipschitz with respect to invariant measure. Thus,
for gy large enough,

e—8ax/No

Ay—C—

_ Sak
<e 2Ny < e~ Coddx -

v{x : there is [ such that |p;(x) — E| < e %%/Noy < g

Thus, we have proved the result with L, (E) instead of L(E). Now, we need the
last component of the proof.

Claim 3. Foranye >0, L(E) < Ly, (E) + € uniform in E when qy is large enough.

Proof. In fact, since the operator is bounded, In |P‘§’k (x; E)| < NoCy. Together with
(4.1), we get

Ingx n NoCy

< L4 (E)+e foralxel0,1)
4.3)

1
—In|P, (x:E)| < Ly (E)+ C
qx qk
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uniformly in £ when gy is large enough (depending on A, y+, C+). The same holds
for Py, (x; E).

On the other hand, by Lemma 4.1, for any & > 0, %ln |Pp(x; E)| < L(E) + ¢
eventually. While by definition of Lyapunov exponent (2.4), L (E) is the limiting aver-
aging of ,—ll In || My, (x; E)|. But M,, and P, are connected by (2.3). Thus, we see that
on a set of measures at least %, the following is true for either n = g, gx — 1, or
qr — 2

%ln|P,,(x;E)| > L(E)—e. 4.4)

If n = g, combining (4.4) and (4.3) gives us what we want. Otherwise, we first notice
by row expansion of determinant, we have

Py(x;E) + Py_s(x; E) = Af(T" 'x) — E)Py_1(x; E) 4.5)
Py(x; E) +2(=1)" = Py(x; E) — Pyo(Tx: E). (4.6)

Then, when n = g — 1, by (4.5), either Py, or P,, —, satisfies (4.4), so we can com-
bine it with (4.3) to derive the result. If n = g — 2, by (4.6), we have either P, or Py,

satisfies (4.4). For the former case, we get the result. For the latter, combining (4.4)
and (4.3) with FQk instead of P, (x; E). The claim follows. [

Now, the result follows immediately: for any 6 > 0, apply Claim 3 to get L(E) <
Ly, (E) + §/2 eventually so that
1
{x €[0,1): —1In|Py(x; E)| < L(E) —5}
n

c{ref.n: 71—11n|P,,(x;E)| < Ly (E) - g}

Then the result follows from Claim 2. [

5. Exponential decay of eigenfunctions

We prove our key Lemma 5.3, which provides uniform exponential decay of gener-
alized eigenfunction in x, E, «. To do so, we introduce some definitions and prove a
typical “either or”” argument in the proof of localization in Lemma 5.2.

Definition 2 (Regular point). We say a point n € Z is (x, ¢, gx )-regular if there is an
interval [a, b] with

nelab, b=a+qg—-1 la—n>% p-p=% (1
5 5
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such that
G £ jap)(@ ) <e " and |Gy g o (n,b)| < e 0L

Otherwise we say n is (x, ¢, g )-singular.

Lemma 5.1. Fix 8, E such that 0 < § < L(E). For qi large enough, for any x, if n
is (x, L(E) — 6, qx)-singular, then for any a € [n — L%J,n — LquJ],

| Py (Tx)| < ek (LE)=3/10), (5.2)
Furthermore, let N, = L%J — L%J + 1 denote the number of such a, then

qr +1 <Nk<4k+3.
2 - - 2

Proof. Since n is (x, L(E) — §, qx)-singular, for any [a, b] satisfying (5.1), in partic-
ular, for any a € [n — L%J,n — LquJ], b =a+ qgr — 1, we have

either |GX,E,[a,b](a7m)| > e_(L(E)_S)(m_a),

(5.3)
or |G, £ [a,b)(m, b)| > e~ (LE)=8)(b=m)
Notice that | (T )
Pb_ T X
G E Jap) (@, m)| = —2—
|qu(T x)|
| Pm—a(T%%)| oY
_ X
G by = e
| x,E,[a,b](m )I |qu(TaX)|

Now, we consider the first case in (5.3) for simplicity. The other case is similar. By
Lemma 4.1, we have when gy, is large enough

IPb—m(Tm+1x)| < e(L(E)-FS/lO)(b—m)‘ (55)

By (5.3),(5.4), and (5.5), we see that
|P, (T%x)| < o (L(E)+{5) (b—m)+(L(E)~8)(m—a)
< oLEY =)+ {5 (b—m)=b(m—a)
< oL B)ak+15ax—8% — JLE)—{5)ax

Thus, we proved (5.2). The bound of Ny follows from direct computation when g =
0,1,2,3 (mod 4). n
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In other words, there are many “large deviation points” near each singular point.
This fact, together with the large deviation estimates in Theorem 3 and appropriate
weakly Liouville assumption (Definition 1), leads to the repelling of two singular
points. In fact, we prove below that two (x, L(E) — §, q) singular points are at least
“Gr+1 — qk /2" away from each other.

Lemma 5.2 (Either or argument). Let Cgy be as in Theorem 3. Assume o and E satisfy

B(a) < CoL(E). For any ﬂ(a) < 8 < L(E), we have that for qy, large enough, and for

any 25 < |n —m Ifqzm—l—q";l

, eitherm orn is (x, L(E) — 8, qi)-regular
for any x.

Proof. Without loss of generality, assume n > m. For any § < L(FE), assume both m
and n are (x, L(E) — 6, qx)-singular. By Lemma 5.1, we have

|qu (T%x)| < o (L(E)=8/10)gx

forany a € [m — L%J,m — LquJ] U [n — |_3ij n— LTkJ] Notice further that

o o

qk+1_qk+3

1 =0.
2 2 +

Thus, the two intervals of @ have no intersection. Overall there are 2N; > g + 1 many
possible a such that | P, (T9x)| < eX(E)=8/104k By Theorem 3 and pigeonhole
principle, there are i, j € [m — | 2% |,m — | % |JU [n — | 2% |,n — | % |] such that

v([Tix, zj]) < ¢~ Codax

Notice that

3
|i—j|§n—L%J—(m—L%J>=n—m+Nk—1§¢Ik+1—1-

By Lemma A.1 and (A.2), we have

e~Codak > (TP x, T/ x]) > v([x, T9%x]) >

dk+1

This implies that

Inggq
9k

I
Cob < — Co8 = Cob < limsup —K*L — B(a).
qk

which leads to a contradiction with the assumption. ]
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Lemma 5.3. Let Cy be as in Theorem 3. If (x, E, ) satisfy
(€1) E is a generalized eigenvalue of Hj, fr x,
(€2) Bla) < GoL(E),

then E is an eigenvalue with exponentially decaying eigenfunction. Denote the nor-
malized eigenfunction by V¥ with |V ]|eo = 1.

Furthermore, for any ¢ > 0, there is a C = C(e), uniform in all x, E, a which
satisfy (& 1) and (E2) above, such that for any pair of eigenvalue E and normalized
eigenvector W, there is ng = no(E) such that

o (L(E)= B2 —g)|n—nq

Y (n)] = Cle)e ™

Proof. Take any %‘5) < § < L(E). Let ¥ be a generalized eigenfunction of H rr
with respect to E. Thus, [ (n)| < C1(1 + |n|)? where C; = C1(E, x, o). We first
prove ¥ decay exponentially so that E is an eigenvalue, then we prove the decay is
uniform in the sense of (5.6).

Without loss of generality, assume that ¥ (0) # 0. By (2.2), 0 is eventually
(x, L(E) — 6, qi)-singular. By Lemma 5.2, we have for g, large enough, any n €
(qk;l Gker1 — 1 — %] := (Ag, Br]is (L(E) — 8, gx)-regular. Notice further that
Ag41 < By since gx+1 > qr + 4 for k > 4. Thus, eventually for any n, there is k

(5.6)

such that n € (Ag, Ax+1]. We derive exponential decay by considering two cases sep-
arately.

(1) If n € (A, qx], nis (L(E) — 8, qx)-regular, by (2.2), we have for arbitrarily
small ¢ > 0, eventually

lv(n)| < Cle—(L(E)—S)qk/S(l +3n)? < e~ (L(E)=8—e)n/5 (5.7

(2) If n € [qk + 1, Ag41], then it is easy to check that [n — By| > [n — Ax| > 3.
By (2.2), we have
¥ ()] < 2e” EETDUS |y (ny))|

where n; =a — 1 or b + 1 for suitable [a, b] satifying (5.1). As long as ny € (Ay, Bx],
where n; would be (x, L(E) — 8, gx ) regular, then we can apply (2.2) again to ¥ (ny).
We can repeat this process to get ¥ (n3), ¥ (n3), ..., as long as n; stays in (Ax, Br].
Since [n — By| > [n — Ag| > 5 while [n; —n; 41| < g, thus we can at least do

JZ|n_Ak|> n

G 2qk

many times. Then we get

_ _ —(L(E)—§—2)2
W (n)] < 27 e EE DS |y (n 1) < ¢ EE TG0y ()|

—(L(E)—S—%)n/lo

< Cie (14 3n)? < Cre”LEI=8=e)n/10, (5.8)
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Combining (5.7) and (5.8) gives us the first half of the theorem. Now, since ¥ € {2,
we can normalize it so that | {/||cc = 1.

The key point of the second half is the uniformity in x, E, @. Take n9 = min{n :
Y(n) = 1} > —oo to be the leftmost maximum point of ¥. By (2.2), we see that
the maximum point ng is always (x, L(E) — §, qx)-singular for all gi. Thus, n is
(x,L(E)—§6,qx)-regularif Ay <|n —ngo| < Br. We can now repeat the estimates (5.7)
and (5.8) above with the new, uniform (in x, E, @) improvement that [y (n;)| < 1
instead of | (n;)| < C1(x, E,a)(1 4 n;)?, where we get

In—ngl

Y ()] < e”EE=D T, n € (Ak. gkl
—(L(E)—§—5-)nnol
() e EETTETIN 0 e (g Al
Since %‘(’)‘) < § < L(E) is arbitrary and % is arbitrarily small once gy is large enough
uniformly in x, E, «. Thus, (5.6) follows. ]

6. Localization results

Now, we prove our main results. Both of them follow directly from Lemma 5.3.

Proof of Theorem 1. Recall that by Schnol’s theorem, spectral measure is supported
on the set of generalized eigenvalues (see [3, Chapter VII]. Fix A and x, the theorem
follows directly from Lemma 5.3). |

Definition 3 (Uniform localization). An operator H exhibits uniform localization if
there exists C, ¢ such that for any pair of eigenvalue and eigenfunction E, v, there
exists ng = no(E) such that

¥ ()] = Cememol,

Proof of Theorem 2. By Corollary 3.3, 0 < ln(%) < L(E) for all E. It follows
that f(«) < CoL(E). Thus, Lemma 5.3 applies to all x, all E and those o which
Ag;;_) in Lemma 5.3, we get uniform

localization. n

satisfy our assumption. By taking ¢ = %ln(

A. Orbital analysis

It is well known that the irrational rotation on the 1D-torus, Ry (x) = x + «, has the
best-approximation property, cf. [28],

lgree]l < llne|| forall 1 <n < gri
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with estimates

1
5 < llgrall = —,
qk+1 9k+1

where ¢y is defined in (2.1). Furthermore, the orbits of R, is also well understood;
we cite [10, Propositions 4.1 and 4.2] here.

Proposition A.1. Let k > 1. The points {ja}, j =0,1,2,...,qr — 1 splits [0, 1) into

qi—1 “large” gaps of length ||(qr — qx—1)|| and qx — qr—1 “small” gaps of length
|gx—1¢||. Furthermore, we have the estimates

1 dk—1 1

— — ——— < |lgk—1]| = —.

qk  dk9k+1

1 1 1
— =< gk — qx-De| = — + :
dk qk qk+1

For a general measure-preserving circle homeomorphism 7" with rotation num-
ber «, such kind of best approximate properties and orbital analysis holds when we
replace the distance function || - || by the invariant measure v.

Lemma A.1 (Best approximation). Forany x € T! andk € N,
v([x, T'x]) = v([x, T%x]),
where 0 <i < qg41.

Proof. Note that Lemma A.l holds when the invariant measure is the Lebesgue mea-
sure — in other words when the map 7 is the irrational rotation.

For a general measure-preserving circle homeomorphism, this inequality holds
since it is equivalent to the irrational rotation case. In fact, the Poincaré classification
theorem [9, Theorem 4.3.20] guarantees the existence of the topological conjugacy
h with a rotation Ry, and 4 is also the distribution function for the unique invariant
measure v. Hence, for any x € T!andi € N, we have

v([x, T'x]) = |h(Tx) = h(x)| = |Rg (h(x)) — h(x)| = |lial. .

Lemma A.2. Fix x, Let k > 1. The points {zj}?’;_ol split interval [0, 1) into qr—1
“large” gaps of invariant measure v([T% x, T%-1x]) = v([x, T ~9%-1x]), and
Gk — qi—1 “small” gaps of invariant measure v([x, T9%~1x]). Furthermore, we have
the estimates

i k=1

1
< v(lx, T%-1x]) < —

9k 4k9k+1

1 1 1
— <v([x, T¥ 9k=1x]) < — + .
qk dk qk+1
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To prove the lemma, let us first introduce the dynamical partition on the circle by
following the convention in [12]. For each k € N, let I be the interval between x and
T x. It can be verified by induction in k that the following collection of intervals
forms a k-th dynamical partition of T1:

Pr(x) i= {Le, TUg), ., T THI)Y U Tmr, T(g—1), - T (I}
=8 U £y
That is, they are disjoint except for the endpoints, and the union covers the whole cir-
cle. Notice that intervals in S all have smaller invariant measure v(/g) < v(Ig—y)
than intervals in £, thus we call them “short” and “long” intervals correspond-
ingly. One can check by induction on k that each “long” interval 7/ (Ix_;) in k-th

dynamical partition is divided into ag 41 “long” intervals and one “short” interval in
(k 4 1?")-th dynamical partition. More specifically,

T/ (Ix-1) € Ly
= T/ (Iy), T/ Y1tk (g, LTI Tk @ =D () € £
and Tj(1k+1) € Sky1-

This allows us to estimate the “large” and “small” gaps® in Lemma A.2 now.

Proof of Lemma A.2. Since v is the invariant measure of 7', for dynamical partition
Pr+1(x), we have

dk+1—1 4 qx—1 4
L= " (T + Y v(T7 k) = qierrvic) + o). (AD)
i=0 j=0

By (A.1), we get
L= qevUisn) _ 1

v(ly) = =< -
qk+1 k41
Moreover, since (A.1) holds for any k, we also get v(/g41) < qk1+z . So,
1 1
V(i) = R

Gk+1  Gk+19k+2  2qk+1

The last inequality follows from the recurrence relation (2.1) and a; > 1:

dk+2 = Ak+29k+1 T 9k = 2qk.

By the comparability between v and the Lebesgue measure on a circle (7 1), the claim
follows. |

3Notice that the partition in Lemma A.2 is different from dynamical partition, “long” and
“short” intervals are also different concepts from “large” and “small” gaps.
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