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Abstract—Dual formulations for optimization problems pro-
vide a new way to view the same problem, revealing its structure
and bounding optimal solutions. A strong dual formulation
constructs a problem that can be solved in place of or alongside
the primal and converges to the same optimal objective function
value. In this paper we examine the general dual framework
for nonlinear programs suggested by Everett and developed
by Gould. This is leveraged to provide a novel strong dual
formulation for general and 0-1 integer linear programming
with qualitatively different structure from other known strong
dual formulations. In particular, the dual problem optimizes
three variables subject to a bounded, exponential number of
constraints. The zero duality gap and small domain may prove
useful in developing new techniques for solving integer linear
programs.

Index Terms—Duality, Lagrangian multipliers, Integer linear
programming, Nonconvex optimization

I. INTRODUCTION

This section introduces the topic under consideration and
provides context for the state of the art.

Constrained optimization problems typically involve the
maximization or minimization of some objective function

subject to a set of equality or inequality constraints on
the variables. Nonconvex optimization problems are notorious
for their intractability. Significant resources are expended in
developing sufficiently efficient techniques for solving them.

One common approach is to leverage duality theory. This
involves the formulation of a related dual problem, whose
solution tells you something about the solution to the original,
or primal, problem. In some scenarios, it is faster to solve
the primal and dual problems in tandem than to solve either
separately. In other scenarios, the dual problem is significantly
easier to solve than the primal. The difference between the
optimal objective function values of the pair is called the
duality gap. For many formulations, the only guarantee that
can be provided is that of weak duality, i.e., that the optimal
objective function values of the primal and dual provide upper
or lower bounds on each other. In some cases, however,
the dual formulation guarantees strong duality, in which the
optimal objective function values of the twin problems are
equal. This is a highly desirable property for the flexibility
it enables in how one may go about solving the problems.
This applies particularly to nonconvex optimization on account
of how inherently difficult the primal problems may be,
and so this is an active research area spanning a range of
disciplines [7], [8], [11].

One novel formulation, proposed by [4] and extended
by [5], introduces a generalized form of Lagrange multipliers.
Lagrangian duality is a canonical approach to a variety of
problems, constructing a dual problem with scalar variables.
These two papers, along with a number of other contemporary
works [1], [3], [12], all of which are cogently surveyed in [14],
conceive of the set of Lagrange multipliers as defining a linear
function and then replace this with a more general function.
The Lagrangian duality problem then becomes an optimization
problem over a set of functions. The domain, i.e., the set of
functions that is selected, determines the tractability of the
dual problem as well as whether strong duality holds. Classes
of functions which are sufficient for strong duality are given
by [14] for integer programming, integer linear programming,
and nonlinear programming under certain conditions. How-
ever, these are for the most part of only theoretical interest
on account of the high- or infinite-dimensional domains they
optimize over.

In particular, a superadditive dual is introduced for integer
linear programming optimizing over the set of superadditive
nondecreasing functions [6]. It’s proved that there exists a
superadditive, nondecreasing function solving it which trivially
guarantees strong duality. Therefore, if the domain is the set
of superadditive, nondecreasing functions, then it must contain
an optimal solution. This particular function is, however, much
more difficult to find than it is to just solve the primal.
One alternate approach is to construct a solution in stages
corresponding to the Chvátal ranks of a polytope, essentially
encoding the operation of a branch-and-cut algorithm in a
single function [6]. There is additionally a branch and bound

dual and an inference dual which provide strong dual for-
mulations for integer linear programming. However, these are
in practice structured and solved according to branch-and-
bound techniques, meaning that they are unlikely to yield
lower runtimes and do not seem to lend new insight into the
composition of the problem [6]. Our understanding is that,
as concisely put by Bertsimas and Tsitsiklis, “unlike linear
programming, integer [linear] programming does not have a
strong duality theory” [2].

A. Problem Statement

Integer linear programming is the problem of maximizing
a linear objective function subject to a set of integer equal-
ity or inequality constraints and with the variables’ domain
constrained to a subset of the integers. This problem is
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nonconvex on account of its discrete domain, and its decision
variant is NP-complete. A strong dual formulation for integer
linear programming generates a related program with the same
optimal objective function value.

B. Main Results

This paper presents a novel strong dual formulation for
integer linear programming with a finite-dimensional domain.

C. Contributions

This paper applies the generalized dual framework intro-
duced by [4], extended by [5], and surveyed by [14] to develop
this novel dual formulation.

II. BACKGROUND

This section provides background knowledge useful for
understanding the results of this paper.

Linear programming is the problem of optimizing a linear
objective function subject to linear equality or inequality
constraints on variables usually understood to be spanning
the real numbers. This problem is well-understood and enjoys
a wealth of efficient solutions. In particular, for a linear
program max{cx : Ax → b, x ↑ Rn

}, there exists a dual
problem min{ub : uA = c, u ↓ 0, u ↑ Rn

} where, for two
vectors u, v, the expression u → v denotes that ui → vi for
every entry. The expression u < v is defined analogously.

Definition II.1. Consider a maximization (minimization)
problem P which is dual to a minimization (maximization)
problem D. Weak duality holds for this system if it is guar-
anteed that the optimal objective function value for P is less
(greater) than or equal to that of D; strong duality holds if
they are guaranteed to be equal.

Without loss of generality, it will be assumed in the rest
of this paper that primal problems are maximization instances
and dual problems are minimization instances; the same results
hold if these are swapped.

It is well known that this dual formulation for linear
programming exhibits strong duality. Therefore, their optimal
objective function values are equal if both of the problems are
feasible and bounded.

The problem is drastically changed in a qualitative way if
we add the constraint that solution vectors must be integral,
i.e., max{cx : Ax → b, x ↑ Zn

}. This is because linear
programming is a convex problem, meaning that any local
optimum is also a global optimum. The integrality requirement
turns this into a nonconvex problem and eliminates that assur-
ance. An optimal solution to a linear programming problem, if
it exists, will be at a vertex of the convex polytope representing
the feasible solutions. But the integrality requirement may take
this optimum and displace it to an integer vector which is
difficult to find. A variety of approaches have been proposed
to solve such problems, but they are little better than an
exhaustive search in the worst-case scenario.

Now consider the constrained optimization problem

(P)

max
x

f(x),

g(x) → b,

x ↑ X,

where f : Rn
↔ R, g : Rn

↔ Rm, b ↑ Rm, and X ↗ Rn.
A common tool for such problems is Lagrangian duality. We
define this problem’s Lagrangian function L(x,ω) = f(x) +
ω
T (b ↘ g(x)), its dual function J(ω) = maxx L(x,ω), and

construct its Lagrangian dual, which is simply

(D) min
ω→0

J(ω).

Note that for all feasible (x,ω), it must hold that f(x) →

J(ω). In particular, maxx→X f(x) → minω↑0 J(ω) if g(x) →
b. Therefore, weak duality holds for problems P and D.

In [10], the authors reformulated this pair of problems
as maxx→X minω↑0 L(x,ω) and minω↑0 maxx→X L(x,ω), re-
spectively, and interpreted them as a pair of related two-player,
zero-sum games. Player A chooses x and wants to maximize
their objective function, while player B chooses ω and wants
to minimize their own objective function.

In the primal, player A goes first and chooses an x to
maximize minω↑0 L(x,ω). Player A has to be careful to not
choose an x that will result in b ↘ g(x) having a negative
entry, otherwise then player B can choose a ω vector with
an arbitrarily large positive value in that entry to make
the objective function an arbitrarily large negative number.
Therefore, it’s in the interests of player A to choose an x

that will make f(x) as large as possible without making
any entry of b ↘ g(x) negative, i.e., maxx→X f(x) subject
to g(x) → b. That’s why max{f(x) : g(x) → b, x ↑ X} =
maxx→X minω↑0 L(x,ω).

The dual problem, on the other hand, has the order of
play reversed. Player B goes first and chooses a ω to min-
imize maxx→X L(x,ω). It would be unwise for Player B to
make all the ωi equal zero because then Player A would be
unconstrained and might make f(x) arbitrarily large. However,
Player B has to be thoughtful in their choice because Player A
may also be able to make certain entries of b↘ g(x) large by
leaving slack in the primal constraint. In that case, if any ωi

are carelessly chosen, then Player A could make the objective
function large.

We’ve only stated the weak duality of this system because
strong duality is not guaranteed to hold in general. And
yet, the only difference between maxx→X minω↑0 L(x,ω)
and minω↑0 maxx→X L(x,ω) is the order in which Players A

and B make their moves. Whichever player makes the first
move is at a disadvantage because their opponent can react
optimally. Intuitively, if we were to enlarge the space of
strategies which the players could choose from, then that might
give the first player a sufficient advantage to close this duality
gap.

A generalized Lagrangian dual, called the F-dual of prob-
lem P, is given in [14] of the form

(DG)

min
F

F (b),

F (g(x)) ↓ f(x) ↔x ↑ X,

F ↑ F ↗ Fm
+ ,
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where F
m
+ is the set of nondecreasing functions F : Rm

↔ R,
meaning u → v =≃ F (u) → F (v). If x, F are feasible for
their respective problems, then f(x) → F (g(x)) → F (b). The
first inequality holds by dual feasibility, and the second in-
equality holds by primal feasibility coupled with F being non-
decreasing. In particular, these hold for the optimal (x↓

, F
↓)

and so weak duality holds between problems P and DG.
We denote the value function of problem P by ε : Rm

↔ R
and define it, as in [14], ε(d) = supx{f(x) : g(x) → d, x ↑

X}. Note that if there is no x such that g(x) → d, then ε(d) =
↘⇐. This function gives the optimal objective function value
for problem P subject to a specific loosening or tightening of
its constraints. It’s not hard to see that u → v =≃ ε(u) →
ε(v) because a loosening of P’s constraints can’t decrease
its optimal objective function value, so ε ↑ F

m
+ . Therefore

if F = F
m
+ , then ε ↑ F and strong duality trivially holds

between problems P and DG. However, ε is of course even
more general and difficult to find than the optimal solution to
problem P. Therefore for a given problem, it is advantageous
to identify a small subset of F

m
+ , not containing ε but still

sufficient to guarantee strong duality.
We now consider a formulation equivalent to problem DG,

proposed by [5], which lends some geometric insight:

(D↑
G)

min
F

F (b),

F (d) ↓ ε(d) ↔d ↑ Rm,

F ↑ F ↗ Fm
+ .

Lemma 1 (Lemma 2.8 from [14]). Problems DG and D
↔
G

are

equivalent.

Proof.

{F : F (g(x)) ↓ f(x) ⇒x ↑ X}

={F : F (d) ↓ f(x) ⇒[(d, x) : d ↓ g(x), x ↑ X]}

={F : F (d) ↓ ε(d) ⇒d ↑ Rm
}

The formulation of problem D↔
G provides an interesting new

geometric perspective on the problem. If we can characterize
the shape of ε, then we only need F to be a class of
nondecreasing functions, at least one of which upper-bounds ε
everywhere and equals it at b. That will be sufficient to
guarantee strong duality.

This paper will largely focus on the problem of 0-1 integer
linear programming, whose primal and corresponding pair of
duals, formulated as above, are given below:

(P0-1 ILP)

max
x

cTx,

Ax → b,

x ↑ {0, 1}n,

(D0-1 ILP)

min
h

h(b),

h(Ax) ↓ cTx ↔x ↑ {0, 1}n,
h ↑ F ↗ Fm

+ ,

(D↑
0-1 ILP)

min
h

h(b),

h(d) ↓ ε(d) ↔d ↑ Rm,

h ↑ F ↗ Fm
+

for A ↑ Rm↗n and b ↑ Rm, c ↑ Rn. The resulting theorem
will then be extended to general integer linear programming.

Additionally, a brief review of simplices and barycentric
coordinates is in order. An n-simplex is a generalization of the
triangle or tetrahedron to n dimensions. It is the n-dimensional
convex hull of its exactly n+1 vertices, and it is the polytope
with the fewest vertices that requires n dimensions. A simplex
is a point for n = 0, a line segment for n = 1, a triangle
for n = 2, a tetrahedron for n = 3, a 5-cell for n = 4, et cetera.
A simplex has an orthogonal corner if it has some vertex with
all incident edges pairwise orthogonal, and a simplex can only
have at most one orthogonal corner. In this paper, we refer to
the (n ↘ 1)-face “opposite” a simplex’s orthogonal corner as
its base; an n-simplex’s base is defined by the set of n vertices
connected to but not containing the orthogonal corner.

The barycentric coordinate system is a useful tool for
uniquely describing every point inside a simplex. The coor-
dinates for a point u relative to an n-simplex are, intuitively,
the values of the n + 1 masses ωi you would place at the
vertices of the simplex if you wanted u to be their center
of mass. At least one of the masses ωi is negative if and
only if u is outside the simplex. It is usually required that
the coordinates are normalized, i.e.,

∑n+1
i=1 ωi = 1. That way,

for a given n-simplex with its n + 1 vertices denoted s
i,

you can write u =
∑n

i=0 ωis
i. If there are more than n + 1

points si being used in the barycentric expression of a point u
relative to an n-simplex, then u is not uniquely determined by
a single specific set {ωi}. The authors choose to call an n-
simplex open if it does not contain any point which is an
affine combination of fewer than n + 1 of its vertices (under
the constraint that ωi ↑ [0, 1]). Therefore, every point in an
open simplex has ωi > 0 for every coordinate i. Finally, we
denote by [m] the set {i : 1 → i → m, i ↑ Z}.

III. A SUFFICIENT CLASS FOR 0-1 ILP
This section explains and proves the sufficiency of a class

of functions which, serving as the domain of a dual prob-
lem for 0-1 integer linear programming (problems D0-1 ILP
and D↔

0-1 ILP), guarantees strong duality. On a first reading of
this paper, the intuition provided by section III-A may be a
more productive place to start before returning here.

These functions will be called the class H of piecewise lin-
ear hatch functions for the shape they take in low-dimensional
instances of 0-1 ILP. We denote by 1m the Rm vector
containing 1 in every entry, and we denote by ϑ (as will
be more thoroughly explained later) the radius of a small
open neighborhood around b, which our result requires such
that ε(b) = ε(d) for all d in the neighborhood. All functions
in the set H of hatch functions are of the form h : Rm

↔ R,
have an associated open simplex Sh ↗ Rm, and are defined
piecewise as follows:

h(d) =

{
ϑ1T

m(b↘ l↓
m
1m) + ϖ if d ↑ Sh

ϑ1T
md+ ϖ otherwise

(1)

where ϖ,ϱ, l ↑ R and b ↑ Rm are parameters of h satisfy-
ing ϖ > 0, l ↓ 0 (when the primal is a maximization problem).
Note that b will be fixed by the problem you’re seeking a hatch
function for.
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The simplex Sh corresponding to h ↑ H has exactly m+1
vertices at the points

s0 = b+
ϱ≃
m

1m ↑ Rm,

si = s0 ↘ (l + ϱ)
≃
mei ↑ Rm for i ↑ [m], ei ↑ Rm standard

basis vector.

(2)

Observe that w < s
0 for every w ↑ Sh. This follows because,

for every w ↑ Sh, the normalized barycentric representation
of w with coordinates ω0 ↑ R,ω ↑ Rm is given by

w =
m∑

i=0

ωis
i = ω0s

0 +
m∑

i=1

ωi(s
0 ↘ (l + ϱ)

≃
mei)

= s0 ↘ (l + ϱ)
≃
m

m∑

i=1

ωiei,

wi = (bi +
ϱ≃
m

)↘ ωi(l + ϱ)
≃
m < bi +

ϱ≃
m

= s0i

(3)

because Sh is open, so ωi > 0. Additionally, note that for
each i > 0, it follows that h(si) = ϖ1T

m(b ↘ l↘
m
1m) + ϱ,

which can be verified by plugging in their definition to the
hyperplane equation.

A. Intuition

To find an appropriate dual domain that guarantees strong
duality, we need a set of nondecreasing functions of the
form h : Rm

↔ R that can upper-bound ε and fulfill h(b) =
ε(b). We first must intuitively characterize the shape of ε. The
below description is informal to give an idea of why hatch
functions are appropriate.

For a 0-1 ILP, the first things to recognize are that ε exists
at every point d ↑ Rm, is discontinuous, its gradient is 0 when
it exists, and it’s nondecreasing. This already gives us quite a
bit of information about how it will look. Its graph will consist
of a set of level platforms, each corresponding to an optimal
objective function value for instances of problem P0-1 ILP
with constraint vectors near each other. The platforms get
monotonically higher the further they are from the origin.

A function h that we choose for problem D↔
0-1 ILP has to not

only upper-bound ε everywhere, but it may need to be able
to coincide with points in the interior of platforms without
ever decreasing on the way there from the origin. If h ever
exceeds ε(b) at some point d → b, then it cannot decrease
back down to ε(b) before its surface passes over b. This is
restrictive because the gradient on the platforms is 0 where
it exists, so this suggests that h may be a piecewise function
with at least one of those pieces a level surface with a constant
gradient of 0 that can coincide with platforms.

Consider the example 0-1 ILP
max

x
2x1 + 4x2 + 6x3 + 8x4,

8x1 + 4x2 + 6x3 + 10x4 → 11,

xi ↑ {0, 1}.
(4)

The functions h and ε both have domain R, so they are
depicted as a two-dimensional graph in figure 1. We will
take b = 11 to be the problem that we’re interested in, and
that value of b is depicted as a purple dot on the graph among
all the other possible values for b.

Fig. 1. The value function (red solid, left) and hatch function (green dotted,
right) for problem 4 with m = 1 and b = 11 (purple dot)

The shape of ε agrees with our inferences, and so the
first step is to choose a function that can upper-bound it
everywhere. It is preferable to select a function that requires
few parameters to describe it, so we choose a linear function
with positive slope. It’s easy to find a function satisfying this
upper-bound property just by looking at the graph, but now
we need to replace a segment of it so that h(b) = ε(b)
without violating the nondecreasing requirement. However,
we’ve already described exactly what we need that to look
like: a level, flat surface with a constant gradient of 0 that
can rest on top of platforms. So we simply change h to
have slope 0 once it reaches h(d) = ε(b) for some d → b,
it holds constant until it reaches b, and then snaps back up
to its linear function. This can be informally analogized to
unlocking a hatch that’s built into the linear function of h

and allowing it to swing down, coming to rest on top of the
platform: hence the name of the “hatch functions”. It clearly is
still a nondecreasing function in figure 1, and therefore we’ve
characterized a sufficient class of functions for m = 1.

Now we need to extend this intuition to m = 2. Consider
the example 0-1 ILP

max
x,y

x+ 2y,

2x+ 4y → 5,

3x+ y → 3,

x, y ↑ {0, 1}.

(5)

The functions h and ε now have domains of R2, so we need
a three-dimensional graph in figure 2. The shape of ε still
agrees with our inferences and there’s nothing surprising there,
but we now need to extend our definition of h such that
it remains nondecreasing in higher-dimensional spaces. We
intuitively generalize our line with positive slope to a plane
with gradient (1, 1). We can guess that the hatch will once
again be some flat, level surface with gradient 0 hanging off
the underside of the linear function, and now must choose
the shape of the hatch. We can’t allow there to be any pair
of points u → v such that v is on the hatch and u is
a point neighboring the hatch at a height greater than that
of v. Intuitively, we can’t allow an ant walking around on h,
constrained to walk only along the +x or +y directions, to
ever fall onto the hatch from a neighboring point of greater
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height. This is simply resolved by making the hatch a right
triangle with its base perpendicular to the gradient, while the
other two are each parallel to a respective axis that b varies
along. The triangle is rotated so that the only way to fall onto
the hatch from a neighboring point is for the ant to walk in the
direction of some vector in R2 that has at least one negative
component. The hatch function is now nondecreasing at every
point and the location of the hatch can be adjusted so it rests
on the platform of b, covering the point corresponding to b

itself it with just its “tip”, or orthogonal corner.
Generalizations to higher dimensions reveal that the hatch,

using an approach analogous to this, is always a simplex with
an orthogonal corner, with each orthogonal edge parallel to
an axis in Rm and the base orthogonal to 1m. This is a
generalization of our observation that two of the triangle’s
edges must each be parallel to an axis so as to maintain
the nondecreasing property. The simplex is embedded in a
hyperplane and the function’s value on the simplex is always
equal to that of the hyperplane along its interface with the
simplex (where the interface is a point for m = 1, a line
segment for m = 2, a face for m = 3, et cetera).

In the rest of the paper, the variables l and ϑ are frequently
used as parameters for the hatch function and problem under
consideration, respectively. To give them a geometric mean-
ing, l is the distance from the base of the simplex to b, and ϑ

is the radius of the open neighborhood around b which is
level on ε. That’s why the length of the hatch, from base to
orthogonal corner, is l+ ϑ. However, the math is expressed in
terms of rotated vectors whose Euclidean lengths therefore de-
pend on their dimension. As a result, the displacement from b

to the base of the simplex is always expressed as ↘
l↘
m
1m

and the displacement from b to the orthogonal corner of the
simplex is + ε↘

m
1m. And the value (l + ϑ)

⇑
m in eq. (2) is

just the length for each edge in the set of orthogonal edges
for a simplex with an orthogonal corner and height l + ϑ.

In the bottom picture of figure 2, the black line from the
hypotenuse of the triangle to the red dot at b represents the
length l, and the circle around the red dot represents the
neighborhood of radius ϑ.

B. Functions in H are nondecreasing

In this section, we will prove that every function in H is
nondecreasing. For convenience of notation below, we will

also define the function h
↔ : Rm

↔ Rm+1 as h↔(d) =

(
d

h(d)

)
.

To clarify, h↔ is not a member of H.

Theorem 1. Let h ↑ H and u → v for any u, v ↑ Rm
. Then h

is nondecreasing, i.e., h(u) → h(v).

Proof. We will consider the four exhaustive cases below and
prove h(u) → h(v) in each:

a) Case 1: If u, v are both inside Sh, then h(u) = h(v)
and so the nondecreasing property is fulfilled.

b) Case 2: If u, v are both outside Sh, then u → v means
that ui → vi for all i → m. As a result, h(u) = ϖ1T

mu+ ϱ =

Fig. 2. The value function (color coded by the value of ω(d), top two), hatch
function (grey, middle two), and isolated hatch (grey, bottom) for problem 5
with m = 2 and b = (5, 3) (red dot)

ϖ
∑

i ui + ϱ → ϖ
∑

i vi + ϱ = h(v) and so the nondecreasing
property is fulfilled.

c) Case 3: If u is inside Sh and v is not, then we first
must prove that h↔(u) and h

↔(v) are both in the positive open
half-space (in the direction that the normal points) of the
hyperplane K ↗ Rm+1 defined by N ·(d↘h

↔(b↘ l↘
m
1m)) = 0,

where N ↑ Rm+1 is the normal vector of K with Ni = 1
for i < m + 1 and Nm+1 = mϖ. Note that N is orthogonal
to the normal of the hyperplane dm+1 = ϖ1T

md + ϱ in h, so
the two hyperplanes are orthogonal. Some algebra shows that
the subset of Rm corresponding to their intersection is given
by:

ϑ1T
md+ ϖ = ϑ1T

m(b↘ l≃
m

1m) + ϖ

m∑

i=1

di =
m∑

i=1

bi ↘
≃
ml.

(6)

To understand why h
↔(u) and h

↔(v) are on the positive side
of K, we first note that h

↔(si) ↑ K for i > 0. This
may be verified by plugging in to the equation for K.
Additionally, h↔(s0) is in the positive open half-space of K

because h
↔(b ↘ l↘

m
1m) ↑ K by construction and the angle

that the free vector h↔(s0)↘ h
↔(b↘ l↘

m
1m) makes with N is

acute, as seen by evaluating their dot product:

N · (h↑(s0)↘ h↑(b↘ l≃
m

1m))

=1m · ( ϱ+ l≃
m

1m) +mϑ(mϑ
ϱ+ l≃
m

)

=(1 +mϑ2)
≃
m(ϱ+ l) > 0.

(7)
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Therefore, the projection of Sh onto the surface of h is con-
tained entirely in the positive open half-space of K because m

of its vertices are in K, the last vertex is in the positive open
half-space, and Sh is a convex open polytope. Now recall
that u is inside Sh, therefore h

↔(u) is in the positive open
half-space of K.

Now suppose for contradiction that h↔(v) is in the negative
closed half-space of K. Then because u → v by their
definition, there must exist some w ↑ Rm such that u → w → v

and h
↔(w) is in the negative open half-space of K. Consider

some p ↑ K. We know N · (u↘ p) > 0 and N · (w↘ p) < 0,
and therefore N ·(u↘w) = N ·(u↘p)+N ·(p↘w) > 0. And
yet, ui ↘ wi → 0 and every entry of N is positive, so it must
be that N · (u ↘ w) → 0. Hence we derive our contradiction,
and so h

↔(v) is in the positive open half-space of K.
We denote h(d) by dm+1 for clarity. Now, by setting their

equations equal to each other, we can see that the intersection
of the graph of dm+1 = ϖ1T

md+ϱ with K defines a level curve
(which makes sense because K is orthogonal to the former’s
constant gradient):

↘1
ϑ

dm+1 +
m∑

i=1

di +
ϖ
ϑ

=N · d↘N · h↑(b↘ l≃
m

1m)

↘1
ϑ

dm+1 +
ϖ
ϑ

=mϑdm+1 ↘
m∑

i=1

(bi ↘
l≃
m

)

↘mϑ(ϑ
m∑

i=1

(bi ↘
l≃
m

) + ϖ)

mϑ2 + 1
ϑ

dm+1 =(1 +mϑ2)
m∑

i=1

(bi ↘
l≃
m

)

+ ϖ
mϑ2 + 1

ϑ

dm+1 =ϑ
m∑

i=1

(bi ↘
l≃
m

1m) + ϖ

dm+1 =h(b↘ l≃
m

1m).

(8)

The hyperplanes of K and h contain the point h
↔(b ↘

l↘
m
1m) by definition of the hyperplane and by definition

of the point itself, respectively, and so the fact that their
level curve intersection has its value makes sense. As a
result, the level curve tells us that h(b ↘ l↘

m
1m) → h(w)

for every h
↔(w) in the positive closed half-space, particu-

larly h(u) = h(b ↘ l↘
m
1) → h(v), and so the nondecreasing

property is fulfilled.
d) Case 4: If v is inside Sh and u is not, then there are

two subcases we split this into.
If h

↔(u) is in the closed negative half-space of K,
then h(u) → h(v) by a similar argument as above in case
3. The structure of the proof is that h(w) = ϖ1T

mw + ϱ →

ϖ1T
m(b↘ l↘

m
1m)+ϱ = h(v) for all w → v, particularly w = u,

and so the nondecreasing property is fulfilled.
Finally, it suffices to show it is not possible for h

↔(u) to
be in the positive open half-space of K (as defined in case
3) under the above conditions, namely, that u → v, u /↑ Sh,
and v ↑ Sh. We’ve proven that w < s

0 for all w ↑ Sh,
therefore u → v < s

0.

An argument based on the normalized barycentric coordi-
nates of u can derive a contradiction under the assumption
that u is in the positive open half-space of K. Let u =∑m

i=0 ωis
i = s

0
↘
∑m

i=1 ωi(l+ϑ)
⇑
mei for

∑
i ωi = 1, so ui =

bi+
ε↘
m
↘ωi(l+ϑ)

⇑
m. We will now prove that if h↔(u) is in the

positive open half-space of K, or
∑m

i=1 ui >
∑m

i=1 bi ↘
⇑
ml

as some algebra shows, then ωi > 0 for all i. We can see
that ω0 > 0 by plugging its entry-wise definition into the
preceding inequality:

m∑

i=1

ui >
m∑

i=1

bi ↘
≃
ml

m∑

i=1

(bi +
ϱ≃
m

↘ (l + ϱ)
≃
mωi) >

m∑

i=1

bi ↘
≃
ml

m∑

i=1

bi +
≃
mϱ↘ (l + ϱ)

≃
m(1↘ ω0) >

m∑

i=1

bi ↘
≃
ml

(l + ϱ)
≃
mω0 > 0 =⇐ ω0 > 0.

(9)

And to prove ωi > 0 for i > 0, we recall that u < s
0:

u < s0 ⇒⇐ ui < s0i ↔i

bi +
ϱ≃
m

↘ (l + ϱ)
≃
mωi < bi +

ϱ≃
m

↘(l + ϱ)
≃
mωi < 0 =⇐ ωi > 0.

(10)

On the other hand, it’s a basic property of barycentric co-
ordinates that u /↑ Sh implies ωi < 0 for some i. Thus
the contradiction arises, and so it’s not possible for h

↔(u)
to be in the closed negative half-space of K under the
provided assumptions, so there’s no need to worry about
proving h(u) → h(v) under those conditions.

That concludes the fourth and last case. All other cases have
been exhausted, and so the proof that h is nondecreasing is
complete.

C. H guarantees strong duality

This section proves that F = H guarantees strong duality
for problem P0-1 ILP with both problems D0-1 ILP and D↔

0-1 ILP.

Lemma 2. Consider the value function ε : Rm
↔ R

corresponding to feasible problem P0-1 ILP with a bounded

solution. There exists a function the form h(d) = ϖ1T
md + ϱ

with parameters ϖ,ϱ ↑ R and ϖ > 0 that upper-bounds ε,

i.e., h(d) ↓ ε(d) for all d ↑ Rm
.

Proof. For constraint vectors d that give a feasible primal,
we can express ε(d) as

∑
i→Id

ci where Id ↗ [n] contains
the indices of the 1-entries in an optimal solution x

↓ to prob-
lem P0-1 ILP with constraint vector d, i.e., x↓

i = 1 ⇓≃ i ↑ Id.
As a result, there’s only a finite number of values that ε can
take because there are only a finite number of possible settings
of I (subsets of [n]). In particular, there is a finite upper bound
on ε of

∑
ci>0 ci.

Additionally, any point t ↑ Rm with some entry tj <

minI≃[n]

∑
i→I Aj,i has ε(t) = ↘⇐ because no 0-1 com-

bination of the columns of A can satisfy problem P0-1 ILP with
constraint vector t: it is infeasible. Note that the subset of all
such points in Rm is unbounded; for example, all t

↔
↑ Rm

with t
↔
j < tj as defined above will also have ε(t↔) = ↘⇐.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 05,2025 at 14:57:43 UTC from IEEE Xplore.  Restrictions apply. 



Now define t
↓

↑ Rm by t
↓
j = minI≃[n]

∑
i→I Aj,i for

each j ↑ [m], so every entry t
↓
j is an inclusive lower bound

on (Ax)j in problem P0-1 ILP. It then must be that ε(d) = ↘⇐

for all d satisfying 1T
m(d↘ t

↓) < 0 because this is equivalent
to saying that

∑m
i=1(di ↘ t

↓
i ) < 0, in which case some entry

satisfies di < t
↓
i . Therefore, we define h(d) =

∑m
i=1(di ↘

(t↓i ↘ ς)) with ς > 0 so that its hyperplane intersects the level
curve dm+1 = 0 along the line

∑m
i=1(di ↘ (t↓i ↘ ς)) = 0.

It is possible in general that ε has a finite value at t
↓,

so the inclusion of ς shifts the line slightly and ensures
that ε(d) = ↘⇐ at all points satisfying the equation of
this line. As a result, h(d) = 0 > ε(d) = ↘⇐ for all d

satisfying
∑m

i=1(di ↘ (t↓i + ς)) = 0, and h(d) ↑ (↘⇐, 0) for
every finite d satisfying

∑m
i=1(di↘(t↓i+ς)) < 0, while ε(d) =

↘⇐ for all such points. Therefore, h upper-bounds ε for all
constraint vectors d satisfying

∑m
i=1(di ↘ (t↓i + ς)) → 0.

With this in mind, consider any function h(d) =
ϖ
∑m

i=1(di ↘ (t↓i ↘ ς)) with ϖ, ς > 0. Clearly this still upper-
bounds the same set of points described above. That means
if h does not upper-bound ε at every point, then the points
at which h(d) < ε(d) must satisfy

∑m
i=1(di ↘ (t↓i ↘ ς)) > 0.

In this case, the function g(d) = ϖ
∑m

i=1(di ↘ (t↓i ↘ ς)) + ϱ

where ϱ =
∑

ci>0 ci, is still of the same form described in
the lemma statement and does upper-bound ε at every point.
This follows for all d satisfying

∑m
i=1(di ↘ (t↓i + ς)) > 0

because h(d) ↓ 0 and ε(d) →
∑

ci>0 ci on this set, there-
fore h(d) ↘ ε(d) ↓ 0 ↘

∑
ci>0 ci and so g(d) ↘ ε(d) ↓ 0

on this set. For all d satisfying
∑m

i=1(di ↘ (t↓i + ς)) →

0, g(d) ↑ (↘⇐, 0] clearly still upper-bounds ε(d) and so g

upper-bounds ε everywhere.

Theorem 2. Let the domain F of problem D
↔
0-1 ILP

be H.

Assume there is some open neighborhood around b of ra-

dius ϑ > 0 such that ε(d) = ε(b) for every d in that neigh-

borhood. Then strong duality holds with problem P0-1 ILP when

feasible with a bounded solution, i.e., there exists some h
↓
↑ H

such that h
↓(d) ↓ ε(d) for all d ↑ Rm

and h
↓(b) = ε(b).

Proof. Once again, for convenience of notation we will define

the function h
↔ : Rm

↔ Rm+1 as h
↔(d) =

(
d

h(d)

)
.

We know from lemma 2 that there must be some func-
tion g(d) = ϖ1T

md+ ϱ such that g(d) ↓ ε(d) for all d ↑ Rm.
We also know ε is a nondecreasing function because any
loosening of the constraints in problem P0-1 ILP (replacing b

with b
↔
↓ b) will only maintain or increase its optimal value.

As a result, ε(b ↘ r) → ε(b) for every r ↑ Rm, r ↓

0. The same thing holds for every vector inside the level
open neighborhood of b by definition, in particular, ε(b) =
ε(b + ( ε↘

m
↘ ς)1m) for sufficiently small ς ↑ (0, ε↘

m
).

Therefore, ε(d) → ε(b) for every d in the open simplex
defined by the vertices of eq. (2) given the unique value
for l which satisfies ϖ1T

m(b ↘ l↘
m
1m) + ϱ = ε(b) using the

same ϖ,ϱ from g. Such a value for l must exist because we
know ϖ1T

mb + ϱ ↓ ε(b), so there must be some l ↓ 0 such
that ϖ1T

mb↘
⇑
ml + ϱ = ϖ1T

m(b↘ l↘
m
1m) + ϱ = ε(b).

As a result, if we change g just by lowering its values in
that open simplex to be identical to ϖ1T

m(b ↘ l↘
m
1m) + ϱ,

then it remains an upper bound on ε at every point. It is also
now of the form defined in eq. (1), so it is nondecreasing by
theorem 1. Finally, g(b) is now equal to ε(b). Therefore, H
meets the criteria for strong duality according to definition II.1
and problems D0-1 ILP and D↔

0-1 ILP.

IV. EXTENDING HATCH FUNCTIONS TO GENERAL ILP
This section extends the results of section III to general

integer linear programs in a straightforward way. Consider a
general integer linear program and its dual of the form

(PILP)

max
x

cTx,

Ax → b,

x ↑ Zn,

(D↑
ILP)

min
h

h(b),

h(d) ↓ ε(d) ↔d ↑ Rm,

h ↑ F ↗ Fm
+

with A ↑ Rm↗n and ε : Rm
↔ R the value function of

problem PILP.

Theorem 3. Taking the primal problem to be problem PILP,

let the domain F of problem D
↔
ILP

be H. Assume there is

some open neighborhood around b of radius ϑ > 0 such

that ε(d) = ε(b) for every d in that neighborhood. Then strong

duality holds with problem PILP when feasible with a bounded

solution, i.e., there exists some h
↓
↑ H such that h

↓(d) ↓ ε(d)
for all d ↑ Rm

and h
↓(b) = ε(b).

Proof. The argument is identical to that of theorem 2 except
for the fact that now, there is no finite upper or lower bound
on ε across all of Rm. However, note that if we take A, b, c

all to be constants fixed by problem PILP, then for k ↑

R, ε(b+kei) = O(k) for each ith unit basis vector ei. In other
words, ε will not increase superlinearly along any axis in Rm.
Suppose for contradiction that it did, i.e., ε(b+ kei) = φ(k).
That would imply that c

T
x(k) = φ(k) where x(k) ↑ Zn is

the optimal solution such that Ax(k) → b + kei. All entries
in c are treated as constants here, so the superlinear growth
comes from

∑n
j=1 x(k)j = φ(k). However, in the ith row

of that matrix inequality,
∑n

j=1 Ai,jx(k)j → bi + k, the
right-hand side only grows linearly in k and the left-hand
side is !(

∑n
j=1 x(k)j), so the constraint would be violated

eventually. Hence, ε(b+ kei) = O(k).
The linear growth therefore also holds for linear combina-

tions of the constraint vector axes, so there exists some linear
function g(d) =

∑m
i=1 ϖidi + ϱ which upper-bounds ε(b +

k1m) as a function of k ↑ R. The same function will upper-
bound ε(b + kei) for each ei because problem PILP with
constraint vector b + kei will have no greater an objective
function value than that with b + k1m. Now define h(d) =
ϖ
∑m

i=1 di + ϱ for ϖ = max{ϖi} and it will still upper-
bound ε. Insert the hatch in the same way as for the 0-1
problem with the same justification, and this is a feasible
solution to problem D↔

ILP with value at b equal to ε(b).
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Therefore, there exists some h
↓
↑ H that upper-bounds ε

for all d such that h↓(b) = ε(b).

V. DISCUSSION AND FURTHER WORK

This section provides some discussion of the application
and structure of these results.

The first thing to clarify is that, recalling lemma 1, although
problem D↔

0-1 ILP has an unbounded number of constraints and
requires knowledge of ε, it is equivalent to problem D0-1 ILP.
Problem D↔

0-1 ILP helps prove the result, but problem D0-1 ILP
appears more readily solvable by conventional techniques. The
analogous observation holds for general ILPs.

Next, we would like to highlight the Sherali-Adams [13]
hierarchy’s contributions in this area. This is a so-called “lift
and project” method which takes a 0-1 ILP and produces a
hierarchy of increasingly tight relaxations of the integer convex
hull. This may be leveraged to construct a strong dual problem
corresponding to the proof system encoding this algorithm’s
logic. However, to our knowledge, this is only applicable to 0-
1 ILP problems. In addition, the constant-size domain of our
formulation makes it qualitatively distinct from the Sherali-
Adams formulation.

The next thing to note is the exponential number of con-
straints generated by this dual formulation. Though this is
restrictive, a well-known result by Lenstra [9] demonstrates
that for a constant number of variables, there is an algorithm
for integer linear programming with runtime polynomial in the
instance size. Therefore, the exponential number of constraints
is unsurprising; if the dual instance had size polynomial in
that of the primal, then Lenstra’s Algorithm could be applied
to solve the primal instance via the dual in polynomial time.

It’s also interesting to observe that a certain subset of
constraints are in some sense responsible for the hardness of
this dual formulation. For any positive setting of ϖ, it’s trivial
to set ϱ such that (ϖ1T

mA↘ c)x+ ϱ ↓ 0 for all x ↑ {0, 1}n.
Therefore, all dual constraints associated with x which h ⇔A

maps onto the hyperplane part of h are satisfied. The com-
plexity in solving the dual is therefore rooted in constraints
falling on the hatch part of the hatch function, rather than the
hyperplane. If l is initially set to 0 with the above settings of
ϖ and ϱ, then all constraints are satisfied but this is unlikely to
yield the optimal solution. Next, l can be gradually increased,
expanding the simplex to start absorbing additional constraints
while also reducing the objective function value towards the
optimal. Any constraints violated by the increase of l will be
associated with x which have Ax ↑ Sh. The identification and
checking of these constraints is the root of the complexity.
The procedure detailed above suggests itself as one natural
approach for solving this dual. In particular, problem D0-1 ILP
can be rephrased as a problem optimizing over just l and the
set of constraints pared down to only those associated with x

for which Ax → b.
Empirical analysis of Lenstra’s algorithm for a fixed num-

ber of variables [9] applied to this formulation may also
prove an interesting further avenue of exploration. The NP-
completeness of integer linear programming will limit any

application to sufficiently small instances, here owing to
the exponential number of constraints. However, it may be
possible to beat the naı̈ve approach by a polynomial factor
using techniques for pruning the space of constraints to be
checked at each step. There is also potential for development
of an approximation algorithm, only checking a small subset
of the constraints and therefore surpassing the optimal solution
by at most some bounded amount.

In addition, it is possible that a similar approach may be
applied to obtain a strong dual formulation for mixed integer
linear programming. We have not found a comprehensive
duality theory for MILPs, and so that may prove a useful
generalization of our result. The value function would have
“tilted” platforms rather than level ones, as would the hatch
function. It may prove straightforward to obtain such a for-
mulation.

VI. ACKNOWLEDGMENTS

This research was funded in part by the US National Science
Foundation (Grant No CNS-2141256).

We give our heartfelt thanks to Dr. Laurence A. Wolsey for
answering our email containing questions about his paper [14],
which served as the indispensable foundation of this project,
over forty years after its publication.

Our gratitude goes to Dr. Brendan Juba for his advice on
the context, framing, and presentation of our result. We also
thank Alex Nelson for his invaluable feedback on early drafts
of this paper.

REFERENCES

[1] Erik Balder. An extension of duality-stability relations to nonconvex
optimization problems. SIAM Journal on Control and Optimization,
15:329–343, 1977.

[2] Dimitris Bertsimas and John Tsitsiklis. Introduction to Linear Optimiza-

tion, page 495. Athena Scientific, 1st edition, 1997.
[3] Szymon Dolecki and Stanislaw Kurcyyusz. On phi-convexity in extremal

problems. SIAM Journal on Control and Optimization, 16(2):277, 1978.
[4] Hugh Everett. Generalized lagrange multiplier method for solving

problems of optimum allocation of resources. Operations Research,
11(3):399–417, 1963.

[5] F. J. Gould. Extensions of lagrange multipliers in nonlinear program-
ming. SIAM Journal on Applied Mathematics, 17(6):1280–1297, 1969.

[6] J. N. Hooker. Integer programming dualityInteger Programming Duality,
pages 1657–1667. Springer US, Boston, MA, 2009.

[7] Cédric Josz and Didier Henrion. Strong duality in lasserre’s hierarchy
for polynomial optimization, 2014.

[8] Javad Lavaei and Steven H Low. Zero duality gap in optimal power flow
problem. IEEE Transactions on Power systems, 27(1):92–107, 2011.

[9] H. W. Lenstra. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8(4):538–548, 1983.

[10] Panos Parpas and Berç Rustem. Duality Gaps in Nonconvex Optimiza-

tion, pages 802–805. Springer US, Boston, MA, 2009.
[11] Teemu Pennanen and Ari-Pekka Perkkiö. Stochastic programs without
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