International Mathematics Research Notices, 2024, 2024(22), 13870-13889

https://doi.org/10.1093/imrn/rnae212
OXFORD Advance access publication date 9 October 2024
Article

Topological Edge Spectrum Along Curved
Interfaces

Alexis Drouot and Xiaowen Zhu*

Department of Mathematics, University of Washington, C-138 Padelford Hall, Seattle, WA, 98105, USA
*Correspondence to be sent to: e-mail: xilaowenz@uw.edu
Communicated by Svetlana Jitomirskaya

We prove that if the boundary of a topological insulator divides the plane into two regions, each
containing arbitrarily large balls, then it acts as a conductor. Conversely, we construct a counterexample
to show that topological insulators that fit within strips do not need to admit conducting boundary
modes. This constitutes a new setup where the bulk-edge correspondence is violated. Our proof relies
on a seemingly paradoxical and underappreciated property of the bulk indices of topological insulators:
they are global quantities that can be locally computed.

1 Introduction and Main Results

1.1 Introduction

Topological insulators are novel materials with striking properties. They are phases of matter insulating
in their bulk (the Hamiltonian has a spectral gap), but turn into conductors when truncated to half-
spaces (the spectral gap fills). The resulting edge conductance is equal to the difference of the bulk
topological invariants across the cut, a principle known as the bulk-edge correspondence (3,5, 12, 15, 16,
19, 20, 23, 27, 31]. Here, we consider truncations of topological insulators in regions more sophisticated
than half-spaces (e.g., sectors or filled parabolas). We investigate how the shape of the resulting material
affects the spectrum.

The main operator in our analysis is approximately equal to

H, on
H, =
H. on =7\
for two Hamiltonians H. on ¢2(Z? €% with distinct bulk invariants within a joint spectral gap G
(potentially one of them representing the vacuum) and € a subset of Z2. We refer to §1.2 for precise
definitions and assumptions. We ask for geometric conditions on @ that guarantee that H, has spectrum
filling G.

Our main result, Theorem 1, asserts that if both € and Q¢ contain arbitrarily large balls then H, has
spectrum filling G (referred to as edge spectrum). Hence, H, behaves like a conductor near 9Q. Examples
of such domains © include half-planes, sectors, regions enclosed by hyperbolas, and so on. They exclude
strips or half-strips; see Figure 1. In this last case, we actually show that there exist examples of distinct
topological insulators Hy such that H, remains an insulator (Theorem 3). Therefore, topological materi-
als fitting in strips can violate the bulk-edge correspondence: boundaries or interfaces are not system-
atic conductors. This violation was suggested in a question of Graf in an online talk by Thiang [21].
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Fig. 1. The first three truncations systematically give rise to the edge spectrum. In the last case, we construct
Haldane-type topological insulators H_, Hy such that He is also an insulator.

Our experience of the world is, by nature, an approximation of reality. Experiment samples (here,
Q) are always finite, and spectral measurements are valid only up to an uncertainty § > 0. Hence, in
practice © never contains arbitrarily large balls—but neither can experiments assess with full certainty
that spectral gaps completely fill: they can only measure the emergence of a §-dense set of the spectrum.
Theorem 2 is a quantitative formulation of Theorem 1 that relates to these observations. It predicts that
there exist constants «, Ry such that for all R > Ry, the following holds. Assume that both €, Q¢ contains
a ball of radius R. Then the spectrum of H, within G is @ In(R)/R-dense for some « > 0:

In(R
Vi, €G, TreTMH), h—il<Z r;( ).

This justifies why topological insulators truncated to sufficiently large balls appear to conduct along
their boundaries in experiments.

1.2 Topological insulators and interface operators
We briefly review standard facts from condensed matter physics. Electronic propagation through a given
material is described via a self-adjoint operator H on a Hilbert space—here ¢2(Z?, C). The spectrum
¥ (H) of H characterizes the electronic nature of the material: H is a conductor at energy A if and only
if » € T(H) (sometimes the definition of conductor requires A € Zq.(H), which is an additional condition
on the spectral type at A; see §1.6 for further discussion) and an insulator otherwise.
In the rest of this paper, v € (0, 1] is a fixed parameter.

We work here with short-range Hamiltonians: operators on 02(z%, €% whose kernels satisfy

vx,yeZ?,  |JHE Y| <v e x—y|i=Ix -yl + 1% — Yol (11

Under (1.1), one can define the bulk conductance of H, denoted as o (H, A) at an insulating energy A.
For A ¢ Z(H), let P,(H) = L(_y) (H) be the spectral projector below energy A, and A1 (respectively A»)
the indicator function of N x Z (respectively Z x IN). Then the operator P, (H)[[P;.(H), A1], [Px(H), Az]] is
trace-class (see [16] and Remark 1 below) and

o(H,A) := =21 Tr (Py(H)[[P,.(H), A1), [Pa(H), A]])
is well defined. We comment that if G is a subinterval of £ (H)® (referred to below as a spectral gap), then
MmN eG = oH, L) =0H,N).
Therefore, there is no ambiguity in using the notation o (H, G) for o(H, 1), A € G. It represents the bulk
conductance for energies in G [4]. Under the gap condition A ¢ Z(H), o (H, A) is an integer that measures
topological aspects of the Hamiltonian H.
In this work, we ask under which conditions interfaces between two topologically distinct insulators

(the bulk materials) carry currents. We make the following assumption on the bulk components:

Assumption 1. H, are two self-adjoint, short-range Hamiltonians on 02(z*, %, with a common
spectral gap G (an interval contained in Z(H,)¢ N Z(H-)) and distinct bulk conductances
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within G:

oH4+,9) #oH-, 9.

Given a discrete domain § € Z?, we define its boundary following the idea of [24, Sec. 5.2] by
I :={xeQ, Bi(x) ¢ QU {x e Q, B1(X) ¢ Q},

where B,(x) denotes the ¢!-ball of radius r centered at x in Z2. This definition is more commonly used
for sets in 72, in comparison to the boundaries defined for sets in R?. We will denote the distance from
X to 9 by d(x, 9€2). We make the following assumptions on the interface operator:

Assumption 2. H, is a self-adjoint, short-range Hamiltonian on ¢2(Z?, C%) satisfying the kernel
condition:

vx,y € 72, [Ex,y)| < vle 2™ Ei=H, ~1qH,1q — lg:H L. (1.2)

The condition (1.2) means that H, is equal to Hy on Q and H_ on Qf, up to corrections decaying
exponentially away from a<2.

1.3 Main results

To formulate our main results, we will need the notion of filling radius for a subset  of Z:
Fr(Q) = sup{r: 3x e Z?, B,(x) N Z* C Q}.

It measures the size of the largest ball contained in Q: Fr(Q) > rif and only if Q@ contains a ball of radiusr.
Theorem 1. Let H., H, satisfying Assumptions 1 and 2. If Fr(Q) = Fr(Q°) = oo, then G C Z(H,).

This means thatif the boundary of a topological insulator divides the plane into two regions of infinite
filling radius, then it is a conductor. In the context of translation-invariant bulk operators or Landau
Hamiltonian on the hyperbolic plane, this result was already proved using coarse geometric methods
by Ludewig-Thiang [26, 27]. We provide here a spectral approach that will rely on a novel quantitative
version of Theorem 1. Given § > 0, we say that a set S C G is §-dense within G if either |G| < § or if

Vi, €G, Ir e Sstlr, — A < 6.

Theorem 2. There exist constants e, > 0 and R, > 0, depending on v only, such that the following
holds. For Hy, H, satisfying Assumptions 1 and 2 and any R > R,:

Fr(Q), Fr(Q9>R = XH,)NG is al,lnTR—dense within G.

Theorem 2 has the following physical interpretation. Assume that H, represents the truncation of a
topological insulator Hy in the ball Bg(0), and that we have a measurement procedure that can infer
if energy is within § of (H,). Theorem 2 asserts that if In(R)/R « §, then experiments measure that
the spectral gap of H. closes when truncating it to Bg(0). This imperfect conclusion (H, actually has a
discrete spectrum when truncated to Bz(0)) is due to the limitation of the measuring procedure.

Theorem 2 implies Theorem 1: if Fr(Q) = Fr(Q°) = oo, then Fr(Q) and Fr(Q°) are larger than R for any
R, s0 ©(He) NG is §-dense within G for any § > 0. This means that (H.) N G is actually dense within G;
since it is a closed subset of G we conclude that £(He) NG = G, equivalently G C Z(H,).

A natural question is whether the conclusion of Theorem 1 fails for unbounded sets @ with finite
filling radius (see Figure 2).

Theorem 3. Fix L > 0 and Q C [-L, L] x Z. There exists operators H, satisfying Assumption 1 for
a gap G containing 0; and H, satisfying Assumption 2 such that 0 ¢ =(H,).
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Fig. 2. A region Q that does not satisfy the assumption of Theorem 1: the largest ball that fits in Q¢ has radius 1, so
Fr(Q) = 1 < oo. There actually exist operators Hx, He satisfying Assumptions 1, 2 such that G ¢ Z(He).

In other words, a topological insulator fitting in a strip does not have to be a conductor. This
constitutes a new setup with a violation of the bulk-edge correspondence: an interface between two
distinct topological phases does not have to support edge states, for instance, if the interface is the
boundary of a half-strip. This adds up to a number of other violations; see, for example, [11, 22, 25, 32].

1.4 Sketch of proof

We explain here the main ideas leading to Theorem 1. Strictly speaking, the paper will focus on
quantitative forms of these ideas to obtain Theorem 2, which (as explained above) implies Theorem 1.

Let H be a self-adjoint, short-range Hamiltonian on ¢%(Z?, C% and A ¢ T(H). Our main argument is
the observation that o (H, 1) can be computed from the sole knowledge of H within a ball centered at
any point n of Z?, as long as its radius R is sufficiently large (depending on v, but independent of n).
While this may seem paradoxical, the global condition A ¢ %(H) actually ensures that the result of the
computation is independent of n.

We proceed now by contradiction. Let Hy, He satisfy the assumptions of Theorem 1, and assume that
» € G\ Z(H,). We can then define o (H,, 1), and, thanks to the above observations, compute it from sole
knowledge of H, on balls of the form Bg(n).

Pick now n so that Br(n) lies deep in @, that is, in Q and far from 9€; this is possible because under
Fr(Q) = oo, Q contains arbitrarily large balls. From Assumption 2, H, is roughly H, there and we deduce
o0(He, &) = o(Hy, A). Likewise, pick n so that Br(n) lies deep in Q¢ and deduce o (H,, 1) = o(H_, ). This
contradicts the assumption o (H;, A) # o (H_, ). Therefore, 1 € Z(H,).

We comment that this proof also applies to materials made off three or more topological insulators,
with at least two of them with different bulk invariant filling regions with infinite filling radius.

1.5 Relation to existing results

The question of how the shape of the truncation affects the edge spectrum has been considered before.
The bulk-edge correspondence predicts the emergence of edge spectrum for half-space truncations: it
gives the resulting interface conductance as a difference of Chern numbers [3, 5, 12, 15, 16, 19, 23, 27].

In [18], the authors focus on truncated quantum Hall Hamiltonians and derive a global analytic
condition on  for the emergence of the edge spectrum. They verify that this condition holds for local
perturbations of sectors. It is not evident how their condition relates to ours.

More recently the techniques have shifted to coarse geometry and K-theory. In [28, 33] the authors
prove that magnetic Hamiltonians truncated to corners or sectors, and their local perturbations,
have edge spectrum. The furthest-reaching works are due to Ludewig-Thiang [26, 27]. For translation-
invariant bulk operators and Landau Hamiltonian on the hyperbolic plane, they produce a coarse-
geometric condition equivalent to ours: if d(-, 3Q2) is unbounded on both Q and ¢, then edge spectrum
emerges between topologically distinct insulating phases.

Our proof uses spectral theory instead of coarse geometry. It has the benefit of being short and
intuitive, and coming up with a quantitative form of the result. This version explains in what sense
experimentalists observe edge spectrum in bounded samples. To the best of our knowledge, this is the
first time such a result has been provided.
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The shape of edge states matters in technological applications: they are the vectors of conduction
along the edge. When the boundary is weakly curved — which corresponds to the adiabatic or semiclas-
sical regime — several works constructed edge states as wave packets [6, 7, 13, 29]. The assumptions
in the present work are significantly weaker (we only assume the existence of a spectral gap) but the
result is also significantly weaker: we only prove the existence of an edge spectrum.

1.6 Open problems

An open problem is whether the bulk-edge correspondence generalizes to truncations to domains Q
satisfying Fr(Q) = Fr(Q°) = co. We believe that this condition will need to be strengthened to something
more quantitative for the bulk-edge correspondence to hold. There are already results that use the
K-theoretic and coarse geometry framework [27]; it would be nice to provide a spectral proof.

Another open problem is the spectral type of the edge spectrum, which is widely expected to be
absolutely continuous. In [9], the authors show that the edge spectrum is absolutely continuous when
the edge is straight. They rely on (a) the bulk-edge correspondence for straight edges with a new form
of edge conductance [17] and (b) a general result on the structure of unitary operators [2]. A follow-up
to BEC for curved boundaries is to show that the edge spectrum for curved boundaries is absolutely
continuous as well, extending the [9] result.

It has been shown that the bulk-edge correspondence holds when the gap condition (G N Z(Hy) is
empty) is replaced by a mobility gap condition (H. exhibits dynamical localization within G); see [16].
At this point, we do not know if relaxing Assumption 1 to a mobility gap gives rise to an edge spectrum.

1.7 Notations

We will use the following notations:

e X = (x1,X2) denotes an element of Z?.

e |x| = |x1] + |x2| denotes the ¢!-norm on Z2.

e B,(x):={yeZ’:|y—x| <r}is the ball of radius r € R* centered at x € Z°.

e If AcR?andx e R? d(x, A) denotes the distance from x to A.

e Given an operator H : 02(Z%) — €2(Z%), we let H(x,y) = (Héx, y) be the kernel of H; X (H) denote the
spectrum of H; P, (H) := L(—« ) (H) denote the spectral projection below energy A.

¢ In the whole paper, C, denotes a constant that can vary from line to line but depends only on the
parameter v from §1.2.

e Given u € £2(Z%), denote its Fourier transform over Z2 by {i(£) := > uye &,
nez?

2 Proof of Theorem 2

We proved Theorem 1 using Theorem 2 in §1.3. In this section, we prove Theorem 2 by assuming the
key Proposition 2.1 below. This proposition essentially asserts that two insulators that coincide on a
large enough ball (with a radius depending on v but not on the center of the ball) must have the same
bulk conductance.

Assumption 3. H is a self-adjoint, short-range operator on ¢2(7?; C%), such that for some 1 € R
and § € (0, 1),

A=8,2+8NXH) =0.

Proposition 2.1. There exists a constant C, > 1 such that the following holds: For any € > 0,7 > 0,
n € Z?, and any Hj, H, satisfy Assumption 3 with

[(Hi —Hy)X,y)| <€, X,yeByn),

we have:

Cu _or
lo(Hi, %) — o (Hy, M| < ﬁ(e +51/2).
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Proof of Theorem 2 assuming Proposition 2.1. 1. We recall that v is a fixed parameter. In this first

step, we set the values of the constants «, and R,. (The constants chosen below are not be optimal but

are good enough for the proof. Nevertheless, the order of §-dense in Theorem 2, that is, O (“‘TR) is most

likely nearly sharp under the current form of Proposition 2.1.)
Let C, be given by Proposition 2.1; we set o, = 600C,. Meanwhile, note that the quantity v=*/2R'?e"k/2
goes to 0 as R goes to infinity. Therefore, there exists R, > 4 such that for all R > R,,

vPRZE2 o % (2.1)

Fix now R > R, (in particular, (2.1) holds); and define

InR InR
8= O e = ZOOCUT‘ (2.2)

We will prove that G N Z(H,) is 3§-dense within G, that is, a, lnTR—dense within 2 (H,).
2. Let us assume for now that for some A, € G, we have

(e = 8,1 +8) N T(He) =4, (2.3)
()‘* — 8, A + 8) N E(H+) = Q,

Ay =8, A +8) NXEH-) =0,

and let us aim for a contradiction. Note that these statements imply that H,, H. satisfy Assumption 3.
Since @ has filling radius at least R, there exists n € 7? such that Bg,(n) C ©, r = R/8. We now look at
(He — Hy)(x,y) for %,y in B4 (n). Because X,y € ©, we have:

He —Hp) X y) = (He — 1IoH 1o — 1oeH_ L) (x,y) = E(x,y),
where E is the operator defined in Assumption 2. Moreover,
dx,9Q) > d(n,dQ) — |x —n| > 8r — 4r = 4r,
because Bg,(n) = Br(n) C Q. It follows from (1.2) that

|(He —Ho)x,y)| <v'e™,  x,yeByn).

Proposition 2.1 then yields

C, sr C\,V_l/z dor

512‘3 =+ 512 e

|”(H€:)‘*) - (T(H+YA‘*)| =<

We recall that § has the value (2.2). Therefore, since C, > 1and R > R, > 4,

Cv _ o C,)R12 _200CyInR _R
P = ——— o R T6Cy
512 (200C, InR)12

< R12R-25/2 _ R-1/2 < }
< =5

Likewise, because R satisfies (2.1),

_1 _1/2p12
v g _ GV PR < - 12R12-F
312 (200C, InR)12

N =
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Going back to (2.3), we conclude that
|o (He, 2) — o (Hy, )| < 1.

Since bulk conductances are integers (see [16, Proposition 3] and Remark 1 below), we conclude that
o (He, A) = o (Hy, As).

Similarly, we conclude that o (He, A+) = o(H_, 1,). This cannot be true, since o (H, A,) # o(H_, 1.). We
conclude that for each 1, € G, one of the statements among (2.3) must fail. In other words, for all A, € G,
there exists some A € £(H,) U X(H,)U Z(H_) such that [» — A,| < 8.

3. It remains to show that (H,) N G is 3§-dense within G. Write G = (a,b) with b — a > 3§ (otherwise
any subset is 3§-dense by definition). Let A, € (a+8,b —§) and » € Z(He) U £(H;) U T(H-) such that
[A — Ay < 8. In particular, A € (a,b) = G, which is a spectral gap of Hy, s0 A € Z(H,). Let now A, € (a, ),
Hs = a+28; sinceb—a > 38, u, € (a+48,b—6) and by the previous step there exists u € T(H,) such that
| — us| < 8. In particular, |u — A,| < 38. A similar argument works for 4, € (b — 2§, b). We conclude that
G N S(H,) is 35-dense within G. |

3 Proof of the Key Proposition

We prove Proposition 2.1 in this section.

3.1 On short-range Hamiltonians

Throughout the proofs below, we will use the following estimates, proved in Appendix A: For a € (0, 1],
R > 0, we have

1N

Z e—Za\s\ <

SEZ

4 8
z e—Qa\x\ < E’ and Z e—Za\x\ < Ee—aR' (31)
xez?

[X|>R xez’

We make here a few observations on the self-adjoint, short-range Hamiltonians H on ¢2(Z?, C%). First,
they are bounded in terms of the (fixed) parameter v € (0, 1] quantifying the short-range condition (1.1).
Specifically, an application of Schur’s test gives:

4
15N = - (3.2)

We refer to Appendix A for the proof.
Asin [1, 16], we introduce

Se :=sup > [H&,y)| (e*Y - 1).

2
XEZ yeZ2

We note that if H is short range under the definition (1.1), then for any « € (0,2v), S, < +o0. Also, for
later use, if @ € (O, v]:

R |
-
(o))

S
<=<
Y

= (3.3)

Again, see Appendix A for the proof.
We recall the Combes-Thomas inequality [10]:

Proposition 3.1. [1, Theorem 10.5] Let H be a selfadjoint, short-range operator on ¢2(Z*; C%). If
a € (0,2v) and z € C are such that A :=d(z, 2(H)) > S,, then we have

IH=-27 )l = -— g
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5
S(H) <>7\ S(H
A
<2[|H]|

Fig. 3. The contour y. We note that the spectrum of H is contained in [—||H|, ||H|], so it has a diameter of less than
2||H|. Since § < 1, the two half-circles have a perimeter of less than 2x, and the length of y is less than 4||H|| + 2x.
Note that y does not need to enclose A.

3.2 Spectral projections

Recall that P, (H) = L« (H) denotes the spectral projection below energy A. An application of the
Combes-Thomas inequality controls the kernel of spectral projections:

Lemma 3.1. There exists a constant C,, such that for any H, A satisfying Assumption 3:
Cv eyl
[PrE &, )| < Sec ¥l (3.4)

Proof. Seta = 27°v%5,sothate <vandS, < 1% < % see (3.3). Let y be a contour enclosing X (H)N(—oo, 1),
at least §-distant from X (H). For z € y, we have:

eyl (3.5)

e—alx=yl  pmalx=yl 9
H— -1 < < —
|H-2"x,y)| < 3

A—-S, 7 §-—

Integrating this over y, we have:
Py = |5 f -2 x| < ooy
* ' 27 J, ' 7 '

Note that we can always choose a tight loop y rounded around Z(H) N (—o0, 1), as shown in Figure 3,
such that |y| < 27 + 4|/ H]|.
From the bound (3.2) on ||H||, we deduce that

Iyl 6 8
— =2+ 5= (3.6)

We conclude that
8 vis
— 22 x|
[PrH) &, Y| < —5¢

This yields (3.4) (with for instance C, = 32v™*%). |

Remark 1. As a result, if H and 2 satisfy Assumption 3, then the open bounded interval (A —
8, A + §) satisfies condition [16,(1.2)]; it follows that o (H, A) is well defined and is an integer [16,
Proposition 3].

Lemma 3.2. There exists a constant C, such that the following holds: let r, e > 0, and two triplets
(Ha, A, 8) and (Hy, A, §) satisfying Assumption 3, such that for x, y € B4 (0),

[Hi(x,y) —Ho(x, y)| <. 3.7)

Then for (x,y) in By(0),

Co [ _»
IPA(HDX,y) = PuH) @ )| < 55 (75 +¢). (3.8)
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Proof. Let @ and y be as in the proof of Lemma 3.1. We have:
1
(Pr(H) = PuH)) X)) = D> 5= ¢ (Ho —2) 7 (¢, X) (Ho(X,y) — i, y)) Hi — 2) (Y, y)dz.
2l
Xy v

From (3.5) and using the bound (3.6) for |y|, we have

2 , ,
M Zefa\xfx |—aly-y'| |H2 &x,y) - Hl(x’,y’)| (3.9)

|(Pa(HD) =~ B HE)) Y| < —5 =

IA

24 4 ' ! ql /el
<=5 > e kXY, y) — Hi (%, ).
Xy

We split the RHS sum into two parts, depending on whether X', y’ € B4,(0) or not. When they do, we can
use the bound (3.7) on the kernel of H; — Hy. It yields

Z o~ IXx=X|—aly=y'| |H2 (X/Y y/) ~Hy (%, y/)‘

X',y'€Bsr (0)
<e Z o aX—X/|—aly-y'l
x’,y’eZz
2
, " 16
—a|X'|—aly'| —_
e D e =\a2)
xr’yrezZ

where in the last line we used (3.1).
When now restricting to x' ory’ € B4 (0)¢, we note thatfor x,y € By, (0), either [x—X| > 2r,0r |[y—y'| > 2.
Recall that by (1.1), |[Hi(x,y)| < v~! for any x,y, i = 1, 2. Hence, we have

Z e—a\x—x’\—a\y—y’| }HQ (X/Y y/) _ H1 (X/, y/)|

X' or y'eBg (0)¢

2 , / 4 .
<Z X=X |—aly-y'| o = e—alX'|—aly’|
= 2 =5 2

X' or y'e€By (0)° X'eByr (0)°,y €Z?

(2| (6] _ 8 (2 o
v \a? a? v \a* ’

In the last line, we applied (3.1). So, heading back to (3.9) and using the value « = 2>v*§ from the proof
of Lemma 3.1, we obtain

27 28 235 4
|(Ba(HD) — BAH)) . Y)| < —5 (5) €+ = Sz (7 +e).
This yields (3.8) (with C, = 2%°v=?°; we made no attempts to minimize this constant). |

3.3 Technical result
The key technical step in the proof of Proposition 2.1 is:

Proposition 3.2. Fixe > 0, C> 0, 1 > 0, 8 € (0,1]. Let Ag, A1, A, be three operators on ¢2(Z?, ch
with the following properties:

(i) Forj € {0,1,2}, |Aj(x, )| < Ce 1,
(i) There exists k € {0, 1,2} such that if x,y € By, (0),then |Ap(x,y)| < Ce.
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Then B := Ag[A1, A1][A2, Ay] is trace-class and

16
| Tr(B)| < CB% (e +&Y?).

Let us start with a simple result:

Lemma 3.3. Let A be a bounded operator on ¢2(Z?, C%) with |A(x,y)| < e=2#*¥| Then,
HAy Aﬂ(X,y)} < o= 2BX11=2B1y11=2B1x2 =y | (3‘10)
If moreover |A(x,y)| < ¢ for (x,¥) € By(0), then

HA' Al](x, Y)‘ < 61/267ﬁl><1|—5\y1\—ﬁIXszz\‘ X,y € By (0). (3‘11)

Proof. The kernel of [A, A1]is
[A, A1](x,Y) = AX, Y (A1) — A1(X)).

We note that |A1(y) — A1(®)| = 0 if x; and y; are both positive or both negative; and it is at most 1
otherwise, that is, if x1y; < 0. Therefore, we have the bound

[[A, A1](x, )| < Ce2PEVIL, 0 .
Whenever x;y1 < 0, we have
X =yl =Ix1 —yil + X2 = yo| = [Xa| + [y1] + |X2 — Y2l.
It follows that
I[A, Aq](x,y)| < e 2eyal=2B1sl=2plps 1

This completes the proof of (3.10). To prove (3.11), we recall that [A1(y) — A1(X)| < 1; which implies that
[[A, A1](x,y)| < e. It suffices to interpolate this bound with (3.10). |

For the proof of Proposition 3.2, we will use the following inequality: for g € (0, 1], x, w € Z?,

4
S e 2PRyI-2Bly |22l =2l -2pleal-2Bn| < (%) o~ BIXI—Blwl (3.12)

y,zeZ?

We refer to Appendix A for a proof.
Proof of Proposition 3.2. 1.By a scaling argument, we can assume that C = 1. We first control the kernel

of B:

Bx,w) =| > Aox,y)Bi(y,2)B(z,%)

y,zeZ?

)
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where B; = [Aj, Aj]. We control the kernels of Ao, By, B, using assumption (i) and (3.10). It yields:

Bx,w)=| > Ao(x,y)B1(y,2)Bs(2, w)

y,2eZ?

< z o~ 2B1X=Y|=2B1y2 =22 |=2B1y11=2BI21|=2B|21—W1|=2B22| =2 BIw;|

y,zeZ?

4
< (%) e Blxl—Blwl

Thus, |B(x, w)| decays exponentially, hence B is trace-class; moreover,

Tr(B) < Z IB(x, X)| < Z o= 2B1X=YI=2B1y2—22|=2BIy11=2121|=2B|21=X1|=2p|22|=2p1Xs| (3‘13)
xeZ? X,y,2€Z°
= > fOBxY2).
Xy, zeZ’

2. We now split the sum in (3.13) into two pieces: |x| > r and |x| < r. Thanks to (3.12) and (3.1), we
have

N < e (48, 2
Sresxyos(3) Tem<(3) per =

x|>r x|=7

We focus below on |x| < 1.
3.If k = 01in (ii), then we split the sum in (3.13) according to |y| > 2r and |y| < 2r. In the former case,
|x —y| > 1. Therefore, when |x| <1, |y| > 2r, we deduce that

|A0(x’ y)‘ < 281Xyl < e*ﬁT*ﬁ\X*Y\’ (3.14)

|Ao(x,¥)B1(y, 2)B2(2,%)| < eP'f(B,x,y,2).
If now |y| < 2r (and |x| <1 < 2r), then we can use (ii). Interpolating with (i) gives, for |x| <1, |y| < 2r,
|Ao(x, )| < '/2e PRy, (3.15)
|Ao(x,y)B1(¥, 2)B2 (2, )| < e*f(B,%,y,2).
Summing the bounds (3.14) and (3.15) produces:

> A yBiy. 2Bz )| <P > fBxy D+’ D f(Bxy.2)

|x|<r, |x|<r, |x|<r,
y,zeZ? |y|=2r,zeZ? lyl<2r,zez?
<@+ > f(B.xy.2) (3.16)
x,y,zeZ?
216

IA

E (e—ﬁr + 81/2) ,

where we used (3.12) and (3.1) to get

8\ <« s (8) 16 21
S soxyn<(3) Tem<(3) 5=

x,y,zeZ? xeZ?
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4. We now work on k = 1. We split the sum into two cases: y,z € B»(0), and y or z outside B,,(0). In
the latter case, either [x —y| > r or |z — x| > 1. So either
|[Aox,y)| < e e PV or |By(z,x)| < e FrePl=xl,

In either case, we recover the bound (3.14). In the first case, we use (3.11) to recover (3.15). Since both
(3.14) and (3.15) lead to (3.16), we obtain the desired bound.
5. The case k = 2 follows the same path as k = 0. This completes the proof. |

3.4 Comparison of bulk conductances

We will use the following result [16, Lemma 7(ii)], which essentially states that the bulk conductance is
independent of A1 and A;:

Proposition 3.3. Let H be a short-range operator on 02(Z%,C% and A ¢ T(H). For any n,

o (H,4) = =271 Tt (Po(H)[[P.(H), A1 (- — )], [Pr(H), Az(- = n)]]) .

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. 1. For simplicity, use the notation P; = P, (H;). Let T be the translation by n:
Tu(-) = u(- —n). We have A;j(- —nj) = TA;(-)T* and T*P,(H)T = P,(T*HT). Using these and Proposition 3.3,
as well as the cyclicity of the trace, we obtain

o (H;, 1) = =271 Tr (B[P}, TA1T*], [P}, TA,T*]))

= —2i Tx (Bj[T[T*P,T, A1]T*, T[T*P|T, A2]T*))

= —2xiTr (BT([T*P,T, A1), [T*FT, A,]]T*)
(T

= =2miTr (T*BT([T*P;T, A1], [T*PJT, Ao]]) = o (T*H;T, ).

Therefore, by replacing H; by T*H;T, we can simply assume thatn = 0.
2. Now we write

o(H1,2) —o(Hy, ) =T (P1 — Py, P1,P1) + T (Py,P1 — Py, P1) + T (P2, P2, P1 — Py), (3417)

where T (Ag, A1, Ap) is the trilinear form
T (Ao, A1, Ar) = —2miTr (Ao[A1, A1][As, As]) + 271 Tr (Ao[As, A2][A1, A1)

From Lemmas 3.1 and 3.2, we have (for a constant C, depending on v only):
Co -six-yi/c ;
[Py < Sre e, j=12
2 P < G —3|x—yl/C, B
[P1(x,y) — P2(x,y)| < N (e +€),  xYyeBym).

Therefore, the triplets (Ag, A1, A,) involved in (3.17) satisfy the assumptions of Proposition 3.2, with
constants

So, we deduce that

lo(H1,2) — o (Hy, V)| <

C,, ar 1 5 1 C or
S (e /2 2 (oot L L2
5556 (eu +85/2(e & +e€) =5 (e % 4€ )

This completes the proof of Proposition 2.1. |
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Fig. 4. The black arrows represent tunneling to the three nearest neighbors; the dashed blue arrows represent
complex coupling to six second-nearest neighbors in the Haldane model [14].

4 Violation of the Bulk-Edge Correspondence in Strips

In this section, we show that topological insulators lying within strips do not necessarily support edge
states along their boundary; this means that geometrically, @ needs to be unbounded in all directions
for the bulk spectral gaps to be systematically filled.

Specifically, for any L > 0, we construct an edge operator H, satisfying Assumption 2 with:

e The bulk operators H are insulating at energy 0, with bulk conductance 1,
* QCZx[-L,L],in particular Fr(Q) < L; and
e 0 ¢ X (H,): the bulk gap did not fully close.

Hence, although the bulk operators H. represent topologically distinct topological phases, the
interface 9 does not support conducting states for H,. In particular, a material made of topologically
distinct insulators across 92, @ = N x [—L, L], violates the bulk-edge correspondence. This was suspected
by G.M. Graf, but the problem was left open in an online talk by Thiang [21].

4.1 Haldane model

Our bulk operators are based on Haldane’s model [14], which we review briefly.

A honeycomb lattice is generated by the parallel translation of the two nearest vertices, denoted by
red and blue dots in Figure 4. Wave functions on the honeycomb lattice are denoted by ¢ = (¥4, v?)T,
where ¥* and ¥? denote wave functions on red and blue sites, respectively. The Haldane Hamiltonian
models tunneling to the three nearest neighbors (called the Wallace model [34], denoted by Hy below)
and complex coupling to the six second-nearest neighbors (denoted by S below); see Figure 4. We will use
a version based on the Z?-lattice (which only differs from the standard honeycomb version by a linear
change of variable):

Hy =Hp+S
where Hy and S are self-adjoint, short-range Hamiltonians on ¢ = (¢4, ¥2)T € £2(Z?, C?) given by

VEHYE ., + w&?ez]

(Hoy)n =
! [w? + Ule, + Vi,
(S¥)n = is |: '//rﬁrm - wrﬁm + '/f?—ez - wrﬁrez + ‘/f}ﬁrez—el - ‘Mﬁel—ez :| )

B B B B B B
_I//n+e1 + 1//n—e1 - wn—m + 1//Yl+92 - ‘pn+ez—el + Wn+e1—22

The parameter s above quantifies the ratio between first and second nearest neighbor coupling. We
restrict it to (0, 1] here.
As a result, the discrete Fourier transform w.rt. Z? is

. o5nE) @@ )
H = -7, ,
+®) [ 0(®) :Fzsn@)]' §€lmma]

() =1+ e,

n(§) 1= sin(&) — sin(&) + sin(é — &1).
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The eigenvalues of A (£) are £A(¢) with
rE) =V (2sn(E)? + lw(®)]?. (4.1)

The functions » and o do not vanish simultaneously; therefore, » never vanishes and the Hamiltonians
H, are insulating at energy 0: 0 ¢ X(H.), or equivalently, H, are invertible. Because of translational
invariance,itis known their bulk conductance equals the Chern number of their low energy eigenbundle
(see, e.g., [30, Equations (13) and Corollary 8.4.4]), and we have o(H;0) = F1, see [8,§8]. In particular,
the insulators described by H. are topologically distinct, and Hy satisfy Assumption 1.

4.2 Edge operator
Fix L > 0 and © C [-L,L] x N. We define the edge operator by

H, := Hy — 21g:Slge.

Then formally, He is Hy in Q and H_ in Q¢. We prove Theorem 3, formulated here as:

Proposition 4.1. H, satisfies Assumption 2 at energy 0; however, there exists a numerical constant
po > O such thatif 0 <s < pgL~%, then 0 ¢ X (H,).

This implies that an interface lying in a strip between two topologically distinct insulating phases
does not necessarily fill the bulk spectral gap.

Remark 2. Since the proof is perturbative, it can be adapted to show that a small neighborhood U
of 0 stays in the gap =(H,). Meanwhile, Theorem 2 implies that GN=(H,) is O (mTR)-dense ingG.
However, we do not know if this provides a complete picture of G N (H,), that is, for instance,
if G N X (H,) contains intervals.

Remark 3. A general argument implies that the edge conductance of H, across the x,-axis is O.
Indeed, this conductance is stable under perturbations within strips orthogonal to the x,-axis,
such as 21q:Slge; so it is equal to that of He + 21qeS1ge = Hy, which is 0.

To the best of our knowledge, there is no general argument that implies that H, has edge
conductance across the x;-axis equal to 0. For 0 < s < poL~!, it is a consequence of Proposition
4.1: H, has no states with energy near 0. For Q@ = N x [-L, L], this implies that no quantum
particle may travel from one end of 92 to the other with high probability.

Proposition 4.1 is a consequence of the uncertainty principle: a function localized in frequency may
not be localized in position. For s small, the Fourier transforms of H, have eigenvalues of order 1, unless
& is near the zeros & = +27/3(1,-1) of — w(§)in which case they are of order s. Therefore, a O(s)-
perturbation (such as S) may not close the gap unless it generates states for H, that are concentrated in
frequency near &;. By (a tailored version of) the uncertainty principle, such states may not be localized
within a strip (such as ).

4.3 Proof

We prove Proposition 4.1 here. We will need the following lemmas:

Lemma 4.1.

1) There exists Ao > 0, such that

AME) = ro-s, forall &e[-mn]? se(1]

2) There exists uo > 0 such that

lo@®)| = o - dg, (1), forall ¢ e[-m x]%
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Remark 4. At the physical level, these are well-known bounds; we tailor them here to our needs.
Part (1) means that Hy has a spectral gap at energy O; part (2) means that the Wallace
Hamiltonian Hy has a Dirac cone.

Proof of Lemma 4.1. (1) From (4.1) and s € (0, 1], we have

(&) = V(25n(E)? + [0 ©)2 > sV (2n(8))2 + [w (&) 2. (4.2)

Moreover,

2 34/3
0®)=0 & F=g=2T1-) = n(éi)=i7f»

Thus, w(¢) and n(§) cannot vanish simultaneously and /(2n(¢))? + |o(§)|? never vanishes. By continuity,

V(2n(€)? + |w(&)]? = Ao for some Ao > 0. This proves (1) by going back to (4.2).
(2) We first write down o as a function valued in R? instead of C:

(&) = (1 + cos(§1) + cos(&), sin(r) + sin(é)).
With this notation,

V(w@))z[—sin@o —sin(&)} V(w@):i[;ﬁ i\@}

cos(&1) cos(&2) -1 -1
As a result, for any u = (uq, up)7,

1 1
Vo EHul> = < [3ur — u)? + (U + u)?] = Z<4u% +4u3 — 4ugup) > §|u|?

NS

Assume for any n, there is &, # &f € [-n, 7]? such that

lwEn)l <

dén, {61 43)
— .

By compactness of [—r, 7], there exists a subsequence of &, that converges to some &,,. From (4.3) and
d(&n, {€1)) < 4m, we deduce |o(§5)| = 0 hence & is either &7 or £*. As a result, as n — oo,

1 - lw(&n) — w(Ex)l _ Vo (§s) (En — £s0)| + O(16n — £col®)
n- [6n — &l 16n — &l
> i+O(|§ —&xl) — 2
25 0 — € 7
We get a contradiction. Thus, there is some po > 0 such that |w(§)| > nolé — &51. |

Lemma 4.2. There exists Co > 0 such that for all s € (0,1], L > 0 and u € £2(Z?, C?):

Suppu C Z x [-L,1] = IH;'ullz < CoLY3s723jull,2.
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Proof of Lemma 4.2. Recall that w=(0) = {£*,&}. Since eigenvalues of H &) are £
we have

A(E), forany s > 0,

IHZ U g2y = IHT EOUE P (p ey

i
5/ (k(s))gu(sn 5
1
L aerd / aE)Pd
</Bb(i AZSQ\ WOrde [P

2w
= m e)rde + 2;2 Il

thanks to Plancherel’s formula ||0]l12(x =) = 27 Ul 222 - If Supp(u) C Z x [-L, L], then

U(&1,n) = > e ™S u(ng, ny) =0, if ny ¢ [-L,1].

ni

Here we only did the Fourier transformation on n;, but we abuse the notation and still use i to refer to
it. Since (a1 + - -- + an)? < n@? +--- +a?), we have

2

1 : ~
0@ Pde < —— / e b i(Ey ny)| de
/Bn(sg 13s? 2552 Jen

npe[—L,L]

1 / . ,
— 2L [TL(&1, o) | " dE
23s? Joyen 2

nye[—LL|

A

IA

| /\

Z |0(&1, ) &1 dE,

322
2987 Jigr—pro1<s J—x

2L - 48 85L - 21
- / >l e = = full
- 0

242
31352 )

where we use Plancherel’s formula on n;-coordinates only for the last line. Combining with the earlier
estimates, we get

1678L 4’
—1,,112 2
”H+ u“[z(zz) = ()L%T + ;1,%82) ”U”[zmz).

1
2262\ 3
”OS) , we get

In particular, taking § = ( 0L

2 2

—1,,12 2 L 3 2 1B 2 -2 -2

IH; u”gZ(ZZ) <G =) lullz, Co=2%mipy’rg’.

This completes the proof. |
Proof of Proposition 4.1. (1) We have

He=1gH ;l1qg+ lgc(Hy —2S)1gc + 1gH 1o + 1gcH 1o

= 1gH, 1o + loH lge + LoH, I + 1o H, 1g.
By (4.4),

E=H,— lqH lg+ lg-H lg = LoH; Lo + LoH, 1g.
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Since 1oH;1gc(X,y) = Lo(X)H(X,y) 1o (y) = 0if |x — y| > 2, we have E satisfies (1.2); thus, H. satisfies
Assumption 2.
(2) Recall that since A(¢) never vanishes, H, is invertible. Thus,

He =H; —21g:Slge ¢ Hi'He=1d-2H;'1o:Slge.
To show H, is invertible, it is enough to show \|2H;1]195511Qc || < 1. Since ||S|| < 6s,

I2H; 1 SLgeulle < CoL'?s™/ || LaeSTaculle2

1 1
< 6CoLZs¥ ||ullez.

Thus, when s < poL™1, po = 673C;2, we have ||2H;  1oeSlg:|| < 1. Thus, He is invertible. [ |
Remark 5. Numerics actually yield the values

3
ro=1, =_——_ ~0.18, Co ~ 31, s<1.5-1077L7%
0 Ho= V% °

Thatis, if the second-nearest neighbor hopping is much smaller than the first-nearest neighbor
hopping (depending on L), then a topological insulator fitting in a strip of width L may not have
an edge spectrum.
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Appendix. Proof of Some Estimates

Proof of (3.1). Fix a € (0, 1]. Then:

-2
3 e 2 _l4e* 12
g 1—e2a 1—e2a  tanh(a) ~ a’

where the last inequality follows from the fact that tanh(x) is concave when x > 0; thus, tanh(a) >
tanh(1l)a > a/2 for a € (0, 1]. This yields the first inequality in (3.1). The second inequality follows
immediately since e~2Xl = g=2alxilp=2alxal

Now fix r > 0.If |x| > 1, then either |x;| > r/2 or |x2| > r/2. This induces a splitting into two mutually
symmetric sums:

2 2
—2alx| <2 —2alx| <21z —ar'
E e < E e < (a) e

|X|=1 1X1121/2, X2€Z

This completes the proof. |
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Proof of (3.2). We apply Schur’s test. For a self-adjoint operator, it reads:

1 —2v|x—
~su e 2yl
LSuP 2

IH < sup > [Hx,y)| <
xeZ? yez? xeZ? yez?
2
1 oy 1 _ 4
I vyl — = 2vly1| -
Sizemed(ze) <
yez? y1€Z
In the last inequality, we used the first inequality in (3.1), which is valid since v € (0, 1]. |

Proof of (3.3). By the slope inequality for convex functions f(x) = e* with any s > 0, we have for 0 < « <
v:

es _ evs — 1

o %

By applying this inequality to s = |x — y|, we deduce that % < % We now estimate S,. We have

v

1 sup Z e 2vIx=yl (e"XY — 1)

S, =sup Y [Hx,y)| (e - 1) <
xeZ2 yezt VY xez? yez?
1 16
< = -yl < =2
== e
yez?
where we used (3.1) again. |

Proof of (3.12). 1. We first note that we have, by |t —s| + |s| > [t| and (3.1):

Ao Bltl
Ze*Qﬁ\t*S\*ZﬁIS\ < e~ Al Ze*ﬁltfs\*ﬁls\ < e~ Al Ze*ﬁ\s\ < . (A.l)
SeZ SEZ SEZ ﬂ

2. We now control S, the sum in the LHS of (3.12). To this end, we apply (A.1) four times: first to
(t,s) = (X1, y1), then (w1, z1), then (y,,z2) and finally (x2, y»). This gives:

wn
IA

e~ Blx11=2Blw| ZefZﬂ\Xzfyz\fZﬂ\yszzHﬂ\zl\fZﬂ\ZrMIfZﬂ\ZQI

Y22

2
) e BlXal=Blwil—-plw:| z e~ 2BIx2=y2|=2Bly2—25|=2Bl22|

Y2.22

3 4
) e Phal=pIwl 37 o282 1282l < (%) o BIXI=plwl

y2

IA

IA
~— ~— =
™|

™|

This is (3.12). |
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