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We prove that if the boundary of a topological insulator divides the plane into two regions, each
containing arbitrarily large balls, then it acts as a conductor.Conversely,we construct a counterexample
to show that topological insulators that fit within strips do not need to admit conducting boundary
modes. This constitutes a new setup where the bulk-edge correspondence is violated. Our proof relies
on a seemingly paradoxical and underappreciated property of the bulk indices of topological insulators:
they are global quantities that can be locally computed.

1 Introduction and Main Results
1.1 Introduction
Topological insulators are novel materials with striking properties. They are phases of matter insulating

in their bulk (the Hamiltonian has a spectral gap), but turn into conductors when truncated to half-

spaces (the spectral gap fills). The resulting edge conductance is equal to the difference of the bulk

topological invariants across the cut, a principle known as the bulk-edge correspondence [3, 5, 12, 15, 16,

19, 20, 23, 27, 31]. Here, we consider truncations of topological insulators in regions more sophisticated

than half-spaces (e.g., sectors or filled parabolas).We investigate how the shape of the resultingmaterial

affects the spectrum.

The main operator in our analysis is approximately equal to

He :=

§

¨

©

H+ on �,

H− on �c = Z
2 \ �,

for two Hamiltonians H± on �2(Z2,Cd) with distinct bulk invariants within a joint spectral gap G

(potentially one of them representing the vacuum) and � a subset of Z2. We refer to §1.2 for precise

definitions and assumptions.We ask for geometric conditions on� that guarantee thatHe has spectrum

filling G.

Our main result, Theorem 1, asserts that if both � and �c contain arbitrarily large balls then He has

spectrum filling G (referred to as edge spectrum). Hence,He behaves like a conductor near ∂�. Examples

of such domains � include half-planes, sectors, regions enclosed by hyperbolas, and so on. They exclude

strips or half-strips; see Figure 1. In this last case, we actually show that there exist examples of distinct

topological insulators H± such that He remains an insulator (Theorem 3). Therefore, topological materi-

als fitting in strips can violate the bulk-edge correspondence: boundaries or interfaces are not system-

atic conductors. This violation was suggested in a question of Graf in an online talk by Thiang [21].
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Fig. 1. The first three truncations systematically give rise to the edge spectrum. In the last case, we construct
Haldane-type topological insulators H−,H+ such that He is also an insulator.

Our experience of the world is, by nature, an approximation of reality. Experiment samples (here,

�) are always finite, and spectral measurements are valid only up to an uncertainty δ > 0. Hence, in

practice � never contains arbitrarily large balls—but neither can experiments assess with full certainty

that spectral gaps completely fill: they can onlymeasure the emergence of a δ-dense set of the spectrum.

Theorem 2 is a quantitative formulation of Theorem 1 that relates to these observations. It predicts that

there exist constants α,R0 such that for all R ≥ R0, the following holds. Assume that both �,�c contains

a ball of radius R. Then the spectrum of He within G is α ln(R)/R-dense for some α > 0:

∀λ∗ ∈ G, ∃λ ∈ �(He), |λ − λ∗| ≤ α ln(R)

R
.

This justifies why topological insulators truncated to sufficiently large balls appear to conduct along

their boundaries in experiments.

1.2 Topological insulators and interface operators
Webriefly review standard facts fromcondensedmatter physics. Electronic propagation through a given

material is described via a self-adjoint operator H on a Hilbert space—here �2(Z2,Cd). The spectrum

�(H) of H characterizes the electronic nature of the material: H is a conductor at energy λ if and only

if λ ∈ �(H) (sometimes the definition of conductor requires λ ∈ �ac(H), which is an additional condition

on the spectral type at λ; see §1.6 for further discussion) and an insulator otherwise.

In the rest of this paper, ν ∈ (0, 1] is a fixed parameter.

We work here with short-range Hamiltonians: operators on �2(Z2,Cd) whose kernels satisfy

∀x, y ∈ Z2,
∣

∣H(x, y)
∣

∣ ≤ ν−1e−2ν|x−y|, |x − y| := |x1 − y1| + |x2 − y2|. (1.1)

Under (1.1), one can define the bulk conductance of H, denoted as σ(H, λ) at an insulating energy λ.

For λ /∈ �(H), let Pλ(H) = 1(−∞,λ)(H) be the spectral projector below energy λ, and �1 (respectively �2)

the indicator function of N × Z (respectively Z ×N). Then the operator Pλ(H)[[Pλ(H),�1], [Pλ(H),�2]] is

trace-class (see [16] and Remark 1 below) and

σ(H, λ) := −2π iTr
(

Pλ(H)[[Pλ(H),�1], [Pλ(H),�2]]
)

is well defined.We comment that if G is a subinterval of �(H)c (referred to below as a spectral gap), then

λ, λ′ ∈ G ⇒ σ(H, λ) = σ(H, λ′).

Therefore, there is no ambiguity in using the notation σ(H,G) for σ(H, λ), λ ∈ G. It represents the bulk

conductance for energies in G [4]. Under the gap condition λ /∈ �(H), σ(H, λ) is an integer that measures

topological aspects of the Hamiltonian H.

In this work, we ask under which conditions interfaces between two topologically distinct insulators

(the bulk materials) carry currents. We make the following assumption on the bulk components:

Assumption 1. H± are two self-adjoint, short-range Hamiltonians on �2(Z2,Cd), with a common

spectral gap G (an interval contained in �(H+)c ∩ �(H−)c) and distinct bulk conductances
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within G:

σ(H+,G) �= σ(H−,G).

Given a discrete domain � ∈ Z2, we define its boundary following the idea of [24, Sec. 5.2] by

∂� := {x ∈ �, B1(x) �⊂ �} ∪ {x ∈ �c, B1(x) �⊂ �c},

where Br(x) denotes the �1-ball of radius r centered at x in Z2. This definition is more commonly used

for sets in Z2, in comparison to the boundaries defined for sets inR2. We will denote the distance from

x to ∂� by d(x, ∂�). We make the following assumptions on the interface operator:

Assumption 2. He is a self-adjoint, short-range Hamiltonian on �2(Z2,Cd) satisfying the kernel

condition:

∀x, y ∈ Z2,
∣

∣E(x, y)
∣

∣ ≤ ν−1e−2νd(x,∂�), E := He − 1�H+1� − 1�cH−1�c . (1.2)

The condition (1.2) means that He is equal to H+ on � and H− on �c, up to corrections decaying

exponentially away from ∂�.

1.3 Main results
To formulate our main results, we will need the notion of filling radius for a subset � of Z2:

Fr(�) = sup{r : ∃ x ∈ Z2, Br(x) ∩Z2 ⊂ �}.

It measures the size of the largest ball contained in �: Fr(�) ≥ r if and only if � contains a ball of radius r.

Theorem 1. Let H±,He satisfying Assumptions 1 and 2. If Fr(�) = Fr(�c) = ∞, then G ⊂ �(He).

Thismeans that if the boundary of a topological insulator divides the plane into two regions of infinite

filling radius, then it is a conductor. In the context of translation-invariant bulk operators or Landau

Hamiltonian on the hyperbolic plane, this result was already proved using coarse geometric methods

by Ludewig–Thiang [26, 27]. We provide here a spectral approach that will rely on a novel quantitative

version of Theorem 1. Given δ > 0, we say that a set S ⊂ G is δ-dense within G if either |G| < δ or if

∀λ∗ ∈ G, ∃λ ∈ S s.t.|λ∗ − λ| ≤ δ.

Theorem 2. There exist constants αν > 0 and Rν > 0, depending on ν only, such that the following

holds. For H±,He satisfying Assumptions 1 and 2 and any R ≥ Rν :

Fr(�), Fr(�c) ≥ R ⇒ �(He) ∩ G is αν

lnR

R
-dense within G.

Theorem 2 has the following physical interpretation. Assume that He represents the truncation of a

topological insulator H+ in the ball BR(0), and that we have a measurement procedure that can infer

if energy is within δ of �(He). Theorem 2 asserts that if ln(R)/R � δ, then experiments measure that

the spectral gap of H+ closes when truncating it to BR(0). This imperfect conclusion (He actually has a

discrete spectrum when truncated to BR(0)) is due to the limitation of the measuring procedure.

Theorem 2 implies Theorem 1: if Fr(�) = Fr(�c) = ∞, then Fr(�) and Fr(�c) are larger than R for any

R, so �(He) ∩ G is δ-dense within G for any δ > 0. This means that �(He) ∩ G is actually dense within G;

since it is a closed subset of G we conclude that �(He) ∩ G = G, equivalently G ⊂ �(He).

A natural question is whether the conclusion of Theorem 1 fails for unbounded sets � with finite

filling radius (see Figure 2).

Theorem 3. Fix L > 0 and � ⊂ [−L, L] × Z. There exists operators H± satisfying Assumption 1 for

a gap G containing 0; and He satisfying Assumption 2 such that 0 /∈ �(He).
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Fig. 2. A region � that does not satisfy the assumption of Theorem 1: the largest ball that fits in �c has radius 1, so
Fr(�c) = 1 < ∞. There actually exist operators H±,He satisfying Assumptions 1, 2 such that G �⊂ �(He).

In other words, a topological insulator fitting in a strip does not have to be a conductor. This

constitutes a new setup with a violation of the bulk-edge correspondence: an interface between two

distinct topological phases does not have to support edge states, for instance, if the interface is the

boundary of a half-strip. This adds up to a number of other violations; see, for example, [11, 22, 25, 32].

1.4 Sketch of proof
We explain here the main ideas leading to Theorem 1. Strictly speaking, the paper will focus on

quantitative forms of these ideas to obtain Theorem 2, which (as explained above) implies Theorem 1.

Let H be a self-adjoint, short-range Hamiltonian on �2(Z2,Cd) and λ /∈ �(H). Our main argument is

the observation that σ(H, λ) can be computed from the sole knowledge of H within a ball centered at

any point n of Z2, as long as its radius R is sufficiently large (depending on ν, but independent of n).

While this may seem paradoxical, the global condition λ /∈ �(H) actually ensures that the result of the

computation is independent of n.

We proceed now by contradiction. Let H±,He satisfy the assumptions of Theorem 1, and assume that

λ ∈ G \ �(He). We can then define σ(He, λ), and, thanks to the above observations, compute it from sole

knowledge of He on balls of the form BR(n).

Pick now n so that BR(n) lies deep in �, that is, in � and far from ∂�; this is possible because under

Fr(�) = ∞, � contains arbitrarily large balls. From Assumption 2,He is roughly H+ there and we deduce

σ(He, λ) = σ(H+, λ). Likewise, pick n so that BR(n) lies deep in �c and deduce σ(He, λ) = σ(H−, λ). This

contradicts the assumption σ(H+, λ) �= σ(H−, λ). Therefore, λ ∈ �(He).

We comment that this proof also applies to materials made off three or more topological insulators,

with at least two of them with different bulk invariant filling regions with infinite filling radius.

1.5 Relation to existing results
The question of how the shape of the truncation affects the edge spectrum has been considered before.

The bulk-edge correspondence predicts the emergence of edge spectrum for half-space truncations: it

gives the resulting interface conductance as a difference of Chern numbers [3, 5, 12, 15, 16, 19, 23, 27].

In [18], the authors focus on truncated quantum Hall Hamiltonians and derive a global analytic

condition on � for the emergence of the edge spectrum. They verify that this condition holds for local

perturbations of sectors. It is not evident how their condition relates to ours.

More recently the techniques have shifted to coarse geometry and K-theory. In [28, 33] the authors

prove that magnetic Hamiltonians truncated to corners or sectors, and their local perturbations,

have edge spectrum. The furthest-reaching works are due to Ludewig-Thiang [26, 27]. For translation-

invariant bulk operators and Landau Hamiltonian on the hyperbolic plane, they produce a coarse-

geometric condition equivalent to ours: if d(·, ∂�) is unbounded on both � and �c, then edge spectrum

emerges between topologically distinct insulating phases.

Our proof uses spectral theory instead of coarse geometry. It has the benefit of being short and

intuitive, and coming up with a quantitative form of the result. This version explains in what sense

experimentalists observe edge spectrum in bounded samples. To the best of our knowledge, this is the

first time such a result has been provided.



13874 | A. Drouot and X. Zhu

The shape of edge states matters in technological applications: they are the vectors of conduction

along the edge.When the boundary is weakly curved – which corresponds to the adiabatic or semiclas-

sical regime – several works constructed edge states as wave packets [6, 7, 13, 29]. The assumptions

in the present work are significantly weaker (we only assume the existence of a spectral gap) but the

result is also significantly weaker: we only prove the existence of an edge spectrum.

1.6 Open problems
An open problem is whether the bulk-edge correspondence generalizes to truncations to domains �

satisfying Fr(�) = Fr(�c) = ∞. We believe that this condition will need to be strengthened to something

more quantitative for the bulk-edge correspondence to hold. There are already results that use the

K-theoretic and coarse geometry framework [27]; it would be nice to provide a spectral proof.

Another open problem is the spectral type of the edge spectrum, which is widely expected to be

absolutely continuous. In [9], the authors show that the edge spectrum is absolutely continuous when

the edge is straight. They rely on (a) the bulk-edge correspondence for straight edges with a new form

of edge conductance [17] and (b) a general result on the structure of unitary operators [2]. A follow-up

to BEC for curved boundaries is to show that the edge spectrum for curved boundaries is absolutely

continuous as well, extending the [9] result.

It has been shown that the bulk-edge correspondence holds when the gap condition (G ∩ �(H±) is

empty) is replaced by a mobility gap condition (H± exhibits dynamical localization within G); see [16].

At this point, we do not know if relaxing Assumption 1 to a mobility gap gives rise to an edge spectrum.

1.7 Notations
We will use the following notations:

• x = (x1, x2) denotes an element of Z2.

• |x| = |x1| + |x2| denotes the �1-norm on Z2.

• Br(x) := {y ∈ Z2 : |y − x| ≤ r} is the ball of radius r ∈ R+ centered at x ∈ Z2.

• If A ⊂ R
2 and x ∈ R2, d(x,A) denotes the distance from x to A.

• Given an operator H : �2(Z2) → �2(Z2), we let H(x, y) = 〈Hδx, δy〉 be the kernel of H; �(H) denote the

spectrum of H; Pλ(H) := 1(−∞,λ)(H) denote the spectral projection below energy λ.

• In the whole paper, Cν denotes a constant that can vary from line to line but depends only on the

parameter ν from §1.2.

• Given u ∈ �2(Z2), denote its Fourier transform over Z2 by û(ξ) :=
∑

n∈Z2

une−i〈n,ξ〉.

2 Proof of Theorem 2

We proved Theorem 1 using Theorem 2 in §1.3. In this section, we prove Theorem 2 by assuming the

key Proposition 2.1 below. This proposition essentially asserts that two insulators that coincide on a

large enough ball (with a radius depending on ν but not on the center of the ball) must have the same

bulk conductance.

Assumption 3. H is a self-adjoint, short-range operator on �2(Z2;Cd), such that for some λ ∈ R
and δ ∈ (0, 1),

(λ − δ, λ + δ) ∩ �(H) = ∅.

Proposition 2.1. There exists a constant Cν ≥ 1 such that the following holds: For any ε > 0, r > 0,

n ∈ Z2, and any H1, H2 satisfy Assumption 3 with

|(H1 − H2)(x, y)| ≤ ε, x, y ∈ B4r(n),

we have:

|σ(H1, λ) − σ(H2, λ)| ≤ Cν

δ12

(

e− δr
2Cν + ε1/2

)

.
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Proof of Theorem 2 assuming Proposition 2.1. 1. We recall that ν is a fixed parameter. In this first

step, we set the values of the constants αν and Rν . (The constants chosen below are not be optimal but

are good enough for the proof. Nevertheless, the order of δ-dense in Theorem 2, that is,O
(

lnR
R

)

is most

likely nearly sharp under the current form of Proposition 2.1.)

Let Cν be given by Proposition 2.1; we set αν = 600Cν . Meanwhile, note that the quantity ν−1/2R12e−νR/2

goes to 0 as R goes to infinity. Therefore, there exists Rν ≥ 4 such that for all R ≥ Rν ,

ν−1/2R12e−νR/2 <
1

2
. (2.1)

Fix now R ≥ Rν (in particular, (2.1) holds); and define

δ = αν

lnR

3R
= 200Cν

lnR

R
. (2.2)

We will prove that G ∩ �(He) is 3δ-dense within G, that is, αν
lnR
R -dense within �(He).

2. Let us assume for now that for some λ∗ ∈ G, we have

(λ∗ − δ, λ∗ + δ) ∩ �(He) = ∅, (2.3)

(λ∗ − δ, λ∗ + δ) ∩ �(H+) = ∅,

(λ∗ − δ, λ∗ + δ) ∩ �(H−) = ∅,

and let us aim for a contradiction. Note that these statements imply that He,H± satisfy Assumption 3.

Since � has filling radius at least R, there exists n ∈ Z2 such that B8r(n) ⊂ �, r = R/8. We now look at

(He − H+)(x, y) for x, y in B4r(n). Because x, y ∈ �, we have:

(He − H+)(x, y) = (He − 1�H+1� − 1�cH−1�c )(x, y) = E(x, y),

where E is the operator defined in Assumption 2. Moreover,

d(x, ∂�) ≥ d(n, ∂�) − |x − n| ≥ 8r − 4r = 4r,

because B8r(n) = BR(n) ⊂ �. It follows from (1.2) that

∣

∣(He − H+)(x, y)
∣

∣ ≤ ν−1e−8νr, x, y ∈ B4r(n).

Proposition 2.1 then yields

∣

∣σ(He, λ∗) − σ(H+, λ∗)
∣

∣ ≤ Cν

δ12
e− δr

2Cν + Cνν
−1/2

δ12
e−4νr.

We recall that δ has the value (2.2). Therefore, since Cν ≥ 1 and R ≥ Rν ≥ 4,

Cν

δ12
e− δr

2Cν = CνR12

(200Cν lnR)12
e− 200Cν lnR

R · R
16Cν

≤ R12R−25/2 = R−1/2 ≤ 1

2
.

Likewise, because R satisfies (2.1),

Cνν
−1/2

δ12
e−4νr = Cνν

−1/2R12

(200Cν lnR)12
e− νR

2 ≤ ν−1/2R12e− νR
2 <

1

2
.
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Going back to (2.3), we conclude that

∣

∣σ(He, λ∗) − σ(H+, λ∗)
∣

∣ < 1.

Since bulk conductances are integers (see [16, Proposition 3] and Remark 1 below), we conclude that

σ(He, λ∗) = σ(H+, λ∗).

Similarly, we conclude that σ(He, λ∗) = σ(H−, λ∗). This cannot be true, since σ(H+, λ∗) �= σ(H−, λ∗). We

conclude that for each λ∗ ∈ G, one of the statements among (2.3) must fail. In other words, for all λ∗ ∈ G,

there exists some λ ∈ �(He) ∪ �(H+) ∪ �(H−) such that |λ − λ∗| ≤ δ.

3. It remains to show that �(He) ∩ G is 3δ-dense within G. Write G = (a, b) with b − a > 3δ (otherwise

any subset is 3δ-dense by definition). Let λ∗ ∈ (a + δ, b − δ) and λ ∈ �(He) ∪ �(H+) ∪ �(H−) such that

|λ − λ∗| ≤ δ. In particular, λ ∈ (a, b) = G, which is a spectral gap of H±, so λ ∈ �(He). Let now λ∗ ∈ (a,μ∗),

μ∗ = a+ 2δ; since b− a > 3δ, μ∗ ∈ (a+ δ, b− δ) and by the previous step there exists μ ∈ �(He) such that

|μ − μ∗| ≤ δ. In particular, |μ − λ∗| ≤ 3δ. A similar argument works for λ∗ ∈ (b − 2δ, b). We conclude that

G ∩ �(He) is 3δ-dense within G. �

3 Proof of the Key Proposition

We prove Proposition 2.1 in this section.

3.1 On short-range Hamiltonians
Throughout the proofs below, we will use the following estimates, proved in Appendix A: For a ∈ (0, 1],

R > 0, we have

∑

s∈Z
e−2a|s| ≤ 2

a
,

∑

x∈Z2

e−2a|x| ≤ 4

a2
, and

∑

|x|≥R,x∈Z2

e−2a|x| ≤ 8

a2
e−aR. (3.1)

We make here a few observations on the self-adjoint, short-range Hamiltonians H on �2(Z2,Cd). First,

they are bounded in terms of the (fixed) parameter ν ∈ (0, 1] quantifying the short-range condition (1.1).

Specifically, an application of Schur’s test gives:

‖H‖ ≤ 4

ν3
. (3.2)

We refer to Appendix A for the proof.

As in [1, 16], we introduce

Sα := sup
x∈Z2

∑

y∈Z2

|H(x, y)|
(

eα|x−y| − 1
)

.

We note that if H is short range under the definition (1.1), then for any α ∈ (0, 2ν), Sα < +∞. Also, for

later use, if α ∈ (0, ν]:

Sα

α
≤ Sν

ν
≤ 16

ν4
, (3.3)

Again, see Appendix A for the proof.

We recall the Combes–Thomas inequality [10]:

Proposition 3.1. [1, Theorem 10.5] Let H be a selfadjoint, short-range operator on �2(Z2;Cd). If

α ∈ (0, 2ν) and z ∈ C are such that � := d(z,�(H)) > Sα , then we have

|(H − z)−1(x, y)| ≤ 1

� − Sα

e−α|x−y|.
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Fig. 3. The contour γ . We note that the spectrum of H is contained in [−‖H‖, ‖H‖], so it has a diameter of less than
2‖H‖. Since δ ≤ 1, the two half-circles have a perimeter of less than 2π , and the length of γ is less than 4‖H‖ + 2π .
Note that γ does not need to enclose λ.

3.2 Spectral projections
Recall that Pλ(H) = 1(−∞,λ)(H) denotes the spectral projection below energy λ. An application of the

Combes–Thomas inequality controls the kernel of spectral projections:

Lemma 3.1. There exists a constant Cν , such that for any H, λ satisfying Assumption 3:

∣

∣Pλ(H)(x, y)
∣

∣ ≤ Cν

δ
e− δ

Cν
|x−y|. (3.4)

Proof. Set α = 2−5ν4δ, so that α ≤ ν and Sα ≤ 16α

ν4
≤ δ

2 , see (3.3). Let γ be a contour enclosing�(H)∩(−∞, λ),

at least δ-distant from �(H). For z ∈ γ , we have:

∣

∣(H − z)−1(x, y)
∣

∣ ≤ e−α|x−y|

� − Sα

≤ e−α|x−y|

δ − δ
2

≤ 2

δ
e−α|x−y|. (3.5)

Integrating this over γ , we have:

∣

∣Pλ(H)(x, y)
∣

∣ =
∣

∣

∣

∣

1

2π i

∮

γ

(H − z)−1(x, y)dz

∣

∣

∣

∣

≤ |γ |
πδ

e−α|x−y|.

Note that we can always choose a tight loop γ rounded around �(H) ∩ (−∞, λ), as shown in Figure 3,

such that |γ | ≤ 2π + 4‖H‖.
From the bound (3.2) on ‖H‖, we deduce that

|γ |
π

≤ 2 + 16

πν3
≤ 8

ν3
. (3.6)

We conclude that

∣

∣Pλ(H)(x, y)
∣

∣ ≤ 8

ν3δ
e− ν4δ

32 |x−y|.

This yields (3.4) (with for instance Cν = 32ν−4). �

Remark 1. As a result, if H and λ satisfy Assumption 3, then the open bounded interval (λ −
δ, λ + δ) satisfies condition [16,(1.2)]; it follows that σ(H, λ) is well defined and is an integer [16,

Proposition 3].

Lemma 3.2. There exists a constant Cν such that the following holds: let r, ε > 0, and two triplets

(H1, λ, δ) and (H2, λ, δ) satisfying Assumption 3, such that for x, y ∈ B4r(0),

|H1(x, y) − H2(x, y)| ≤ ε. (3.7)

Then for (x, y) in B2r(0),

|Pλ(H1)(x, y) − Pλ(H2)(x, y)| ≤ Cν

δ6

(

e− δr
Cν + ε

)

. (3.8)
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Proof. Let α and γ be as in the proof of Lemma 3.1. We have:

(

Pλ(H1) − Pλ(H2)
)

(x, y) =
∑

x′ ,y′

1

2π i

∮

γ

(H2 − z)−1(x,x′)
(

H2(x
′, y′) − H1(x

′, y′)
)

(H1 − z)−1(y′, y)dz.

From (3.5) and using the bound (3.6) for |γ |, we have

∣

∣

(

Pλ(H1) − Pλ(H2)
)

(x, y)
∣

∣ ≤ 2|γ |
πδ2

∑

x′ ,y′

e−α|x−x′ |−α|y−y′ |∣
∣H2(x

′, y′) − H1(x
′, y′)

∣

∣ (3.9)

≤ 24

ν3δ2

∑

x′ ,y′

e−α|x−x′ |−α|y−y′ |∣
∣H2(x

′, y′) − H1(x
′, y′)

∣

∣.

We split the RHS sum into two parts, depending on whether x′, y′ ∈ B4r(0) or not. When they do, we can

use the bound (3.7) on the kernel of H1 − H2. It yields

∑

x′ ,y′∈B4r(0)

e−α|x−x′ |−α|y−y′ |∣
∣H2(x

′, y′) − H1(x
′, y′)

∣

∣

≤ε
∑

x′ ,y′∈Z2

e−α|x−x′ |−α|y−y′ |

≤ε
∑

x′ ,y′∈Z2

e−α|x′ |−α|y′ | ≤ ε

(

16

α2

)2

,

where in the last line we used (3.1).

When now restricting to x′ or y′ ∈ B4r(0)c, we note that for x, y ∈ B2r(0), either |x−x′| ≥ 2r, or |y−y′| ≥ 2r.

Recall that by (1.1), |Hi(x, y)| ≤ ν−1 for any x, y, i = 1, 2. Hence, we have

∑

x′ or y′∈B4r(0)c

e−α|x−x′ |−α|y−y′ |∣
∣H2(x

′, y′) − H1(x
′, y′)

∣

∣

≤2

ν

∑

x′ or y′∈B4r(0)c

e−α|x−x′ |−α|y−y′ | ≤ 4

ν

∑

x′∈B2r(0)c ,y′∈Z2

e−α|x′ |−α|y′ |

≤ 4

ν

(

32

α2
e−αr

) (

16

α2

)

= 8

ν

(

28

α4

)

e−αr.

In the last line, we applied (3.1). So, heading back to (3.9) and using the value α = 2−5ν4δ from the proof

of Lemma 3.1, we obtain

∣

∣

(

Pλ(H1) − Pλ(H2)
)

(x, y)
∣

∣ ≤ 27

ν4δ2

(

28

α4

)

(e−αr + ε) = 235

ν20δ6

(

e− ν4δ
32 r + ε

)

.

This yields (3.8) (with Cν = 235ν−20; we made no attempts to minimize this constant). �

3.3 Technical result
The key technical step in the proof of Proposition 2.1 is:

Proposition 3.2. Fix ε > 0, C > 0, r > 0, β ∈ (0, 1]. Let A0,A1,A2 be three operators on �2(Z2,Cd)

with the following properties:

(i) For j ∈ {0, 1, 2}, |Aj(x, y)| ≤ Ce−2β|x−y|.

(ii) There exists k ∈ {0, 1, 2} such that if x, y ∈ B2r(0),then
∣

∣Ak(x, y)
∣

∣ ≤ Cε.
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Then B := A0[A1,�1][A2,�2] is trace-class and

∣

∣Tr(B)
∣

∣ ≤ C3 2
16

β6

(

e−βr + ε1/2
)

.

Let us start with a simple result:

Lemma 3.3. Let A be a bounded operator on �2(Z2,Cd) with |A(x, y)| ≤ e−2β|x−y|. Then,

∣

∣[A,�1](x, y)
∣

∣ ≤ e−2β|x1 |−2β|y1 |−2β|x2−y2 |. (3.10)

If moreover |A(x, y)| ≤ ε for (x, y) ∈ B2r(0), then

∣

∣[A,�1](x, y)
∣

∣ ≤ ε1/2e−β|x1 |−β|y1 |−β|x2−y2 |, x, y ∈ B2r(0). (3.11)

Proof. The kernel of [A,�1] is

[A,�1](x, y) = A(x, y)(�1(y) − �1(x)).

We note that |�1(y) − �1(x)| = 0 if x1 and y1 are both positive or both negative; and it is at most 1

otherwise, that is, if x1y1 ≤ 0. Therefore, we have the bound

∣

∣[A,�1](x, y)
∣

∣ ≤ Ce−2β|x−y|
1x1y1≤0.

Whenever x1y1 ≤ 0, we have

|x − y| = |x1 − y1| + |x2 − y2| = |x1| + |y1| + |x2 − y2|.

It follows that

∣

∣[A,�1](x, y)
∣

∣ ≤ e−2β|x2−y2 |−2β|x1 |−2β|y1 |.

This completes the proof of (3.10). To prove (3.11), we recall that |�1(y) − �1(x)| ≤ 1; which implies that
∣

∣[A,�1](x, y)
∣

∣ ≤ ε. It suffices to interpolate this bound with (3.10). �

For the proof of Proposition 3.2, we will use the following inequality: for β ∈ (0, 1], x,w ∈ Z2,

∑

y,z∈Z2

e−2β|x−y|−2β|y2−z2 |−2β|y1 |−2β|z1 |−2β|z1−w1 |−2β|z2 |−2β|w2 | ≤
(

4

β

)4

e−β|x|−β|w|. (3.12)

We refer to Appendix A for a proof.

Proof of Proposition 3.2. 1. By a scaling argument,we can assume that C = 1.We first control the kernel

of B:

|B(x,w)| =

∣

∣

∣

∣

∣

∣

∑

y,z∈Z2

A0(x, y)B1(y, z)B2(z,x)

∣

∣

∣

∣

∣

∣

,
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where Bj = [Aj,�j]. We control the kernels of A0, B1,B2 using assumption (i) and (3.10). It yields:

|B(x,w)| =

∣

∣

∣

∣

∣

∣

∑

y,z∈Z2

A0(x, y)B1(y, z)B2(z,w)

∣

∣

∣

∣

∣

∣

≤
∑

y,z∈Z2

e−2β|x−y|−2β|y2−z2 |−2β|y1 |−2β|z1 |−2β|z1−w1 |−2β|z2 |−2β|w2 |

≤
(

4

β

)4

e−β|x|−β|w|.

Thus, |B(x,w)| decays exponentially, hence B is trace-class; moreover,

Tr(B) ≤
∑

x∈Z2

|B(x,x)| ≤
∑

x,y,z∈Z2

e−2β|x−y|−2β|y2−z2 |−2β|y1 |−2β|z1 |−2β|z1−x1 |−2β|z2 |−2β|x2 | (3.13)

:=
∑

x,y,z∈Z2

f (2β,x, y, z).

2. We now split the sum in (3.13) into two pieces: |x| ≥ r and |x| ≤ r. Thanks to (3.12) and (3.1), we

have

∑

|x|≥r

f (2β,x, y, z) ≤
(

4

β

)4
∑

|x|≥r

e−2β|x| ≤
(

4

β

)4 8

β2
e−βr = 211

β6
e−βr.

We focus below on |x| ≤ r.

3. If k = 0 in (ii), then we split the sum in (3.13) according to |y| ≥ 2r and |y| ≤ 2r. In the former case,

|x − y| ≥ r. Therefore, when |x| ≤ r, |y| ≥ 2r, we deduce that

∣

∣A0(x, y)
∣

∣ ≤ e−2β|x−y| ≤ e−βr−β|x−y|, (3.14)

∣

∣A0(x, y)B1(y, z)B2(z,x)
∣

∣ ≤ e−βrf (β,x, y, z).

If now |y| ≤ 2r (and |x| ≤ r ≤ 2r), then we can use (ii). Interpolating with (i) gives, for |x| ≤ r, |y| ≤ 2r,

∣

∣A0(x, y)
∣

∣ ≤ ε1/2e−β|x−y|, (3.15)

∣

∣A0(x, y)B1(y, z)B2(z,x)
∣

∣ ≤ ε1/2f (β,x, y, z).

Summing the bounds (3.14) and (3.15) produces:

∑

|x|≤r,
y,z∈Z2

∣

∣A0(x, y)B1(y, z)B2(z,x)
∣

∣ ≤ e−βr
∑

|x|≤r,
|y|≥2r,z∈Z2

f (β,x, y, z) + ε1/2
∑

|x|≤r,
|y|≤2r,z∈Z2

f (β,x, y, z)

≤
(

e−βr + ε1/2
)

∑

x,y,z∈Z2

f (β,x, y, z) (3.16)

≤ 216

β6

(

e−βr + ε1/2
)

,

where we used (3.12) and (3.1) to get

∑

x,y,z∈Z2

f (β,x, y, z) ≤
(

8

β

)4
∑

x∈Z2

e−β|x| ≤
(

8

β

)4 16

β2
= 216

β6
.
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4. We now work on k = 1. We split the sum into two cases: y, z ∈ B2r(0), and y or z outside B2r(0). In

the latter case, either |x − y| ≥ r or |z − x| ≥ r. So either

∣

∣A0(x, y)
∣

∣ ≤ e−βre−β|x−y| or
∣

∣B2(z,x)
∣

∣ ≤ e−βre−β|z−x|.

In either case, we recover the bound (3.14). In the first case, we use (3.11) to recover (3.15). Since both

(3.14) and (3.15) lead to (3.16), we obtain the desired bound.

5. The case k = 2 follows the same path as k = 0. This completes the proof. �

3.4 Comparison of bulk conductances
We will use the following result [16, Lemma 7(ii)], which essentially states that the bulk conductance is

independent of �1 and �2:

Proposition 3.3. Let H be a short-range operator on �2(Z2,Cd) and λ /∈ �(H). For any n,

σ(H, λ) = −2π iTr
(

Pλ(H)[[Pλ(H),�1(· − n1)], [Pλ(H),�2(· − n2)]]
)

.

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. 1. For simplicity, use the notation Pj = Pλ(Hj). Let T be the translation by n:

Tu(·) = u(· − n). We have �j(· − nj) = T�j(·)T∗ and T∗Pλ(H)T = Pλ(T∗HT). Using these and Proposition 3.3,

as well as the cyclicity of the trace, we obtain

σ(Hj, λ) = −2π iTr
(

Pj[[Pj,T�1T
∗], [Pj,T�2T

∗]]
)

= −2π iTr
(

Pj[T[T
∗PjT,�1]T

∗,T[T∗PjT,�2]T
∗]

)

= −2π iTr
(

PjT[[T
∗PjT,�1], [T

∗PjT,�2]]T
∗)

= −2π iTr
(

T∗PjT[[T
∗PjT,�1], [T

∗PjT,�2]]
)

= σ(T∗HjT, λ).

Therefore, by replacing Hj by T∗HjT, we can simply assume that n = 0.

2. Now we write

σ(H1, λ) − σ(H2, λ) = T (P1 − P2, P1, P1) + T (P2, P1 − P2, P1) + T (P2, P2, P1 − P2), (3.17)

where T (A0,A1,A2) is the trilinear form

T (A0,A1,A2) = −2π iTr
(

A0[A1,�1][A2,�2]
)

+ 2π iTr
(

A0[A2,�2][A1,�1]
)

.

From Lemmas 3.1 and 3.2, we have (for a constant Cν depending on ν only):

∣

∣Pj(x, y)
∣

∣ ≤ Cν

δ
e−δ|x−y|/Cν , j = 1, 2;

∣

∣P1(x, y) − P2(x, y)
∣

∣ ≤ Cν

δ6

(

e−δ|x−y|/Cν + ε
)

, x, y ∈ B2r(n).

Therefore, the triplets (A0,A1,A2) involved in (3.17) satisfy the assumptions of Proposition 3.2, with

constants

C = Cν

δ
, β = δ

2Cν

, ε = 1

δ5

(

e−δr/Cν + ε
)

.

So, we deduce that

∣

∣σ(H1, λ) − σ(H2, λ)
∣

∣ ≤ Cν

δ3+6

(

e
δr

2Cν + 1

δ5/2
(e− δr

Cν + ε)1/2

)

≤ Cν

δ12

(

e− δr
2Cν + ε1/2

)

.

This completes the proof of Proposition 2.1. �
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Fig. 4. The black arrows represent tunneling to the three nearest neighbors; the dashed blue arrows represent
complex coupling to six second-nearest neighbors in the Haldane model [14].

4 Violation of the Bulk-Edge Correspondence in Strips

In this section, we show that topological insulators lying within strips do not necessarily support edge

states along their boundary; this means that geometrically, � needs to be unbounded in all directions

for the bulk spectral gaps to be systematically filled.

Specifically, for any L > 0, we construct an edge operator He satisfying Assumption 2 with:

• The bulk operators H± are insulating at energy 0, with bulk conductance ∓1;

• � ⊂ Z× [−L, L], in particular Fr(�) ≤ L; and

• 0 /∈ �(He): the bulk gap did not fully close.

Hence, although the bulk operators H± represent topologically distinct topological phases, the

interface ∂� does not support conducting states for He. In particular, a material made of topologically

distinct insulators across ∂�,� = N×[−L, L], violates the bulk-edge correspondence. This was suspected

by G.M. Graf, but the problem was left open in an online talk by Thiang [21].

4.1 Haldane model
Our bulk operators are based on Haldane’s model [14], which we review briefly.

A honeycomb lattice is generated by the parallel translation of the two nearest vertices, denoted by

red and blue dots in Figure 4. Wave functions on the honeycomb lattice are denoted by ψ = (ψA,ψB)T,

where ψA and ψB denote wave functions on red and blue sites, respectively. The Haldane Hamiltonian

models tunneling to the three nearest neighbors (called the Wallace model [34], denoted by H0 below)

and complex coupling to the six second-nearest neighbors (denoted by S below); see Figure 4.We will use

a version based on the Z2-lattice (which only differs from the standard honeycomb version by a linear

change of variable):

H± = H0 ± S

where H0 and S are self-adjoint, short-range Hamiltonians on ψ = (ψA,ψB)T ∈ �2(Z2,C2) given by

(H0ψ)n =
[

ψB
n + ψB

n−e1
+ ψB

n−e2

ψA
n + ψA

n+e1
+ ψA

n+e2

]

,

(Sψ)n = is

[

ψA
n+e1

− ψA
n−e1

+ ψA
n−e2

− ψA
n+e2

+ ψA
n+e2−e1

− ψA
n+e1−e2

−ψB
n+e1

+ ψB
n−e1

− ψB
n−e2

+ ψB
n+e2

− ψB
n+e2−e1

+ ψB
n+e1−e2

]

.

The parameter s above quantifies the ratio between first and second nearest neighbor coupling. We

restrict it to (0, 1] here.

As a result, the discrete Fourier transform w.r.t. Z2 is

Ĥ±(ξ) =
[

±2sη(ξ) ω(ξ)

ω(ξ) ∓2sη(ξ)

]

, ξ ∈ [−π ,π ]2,

ω(ξ) := 1 + eiξ1 + eiξ2 ,

η(ξ) := sin(ξ1) − sin(ξ2) + sin(ξ2 − ξ1).
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The eigenvalues of Ĥ±(ξ) are ±λ(ξ) with

λ(ξ) =
√

(2sη(ξ))2 + |ω(ξ)|2. (4.1)

The functions η and ω do not vanish simultaneously; therefore, λ never vanishes and the Hamiltonians

H± are insulating at energy 0: 0 /∈ �(H±), or equivalently, H± are invertible. Because of translational

invariance, it is known their bulk conductance equals the Chern number of their low energy eigenbundle

(see, e.g., [30, Equations (13) and Corollary 8.4.4]), and we have σ(H±; 0) = ∓1, see [8,§8]. In particular,

the insulators described by H± are topologically distinct, and H± satisfy Assumption 1.

4.2 Edge operator
Fix L > 0 and � ⊂ [−L, L] ×N. We define the edge operator by

He := H+ − 21�cS1�c .

Then formally, He is H+ in � and H− in �c. We prove Theorem 3, formulated here as:

Proposition 4.1. He satisfies Assumption 2 at energy 0; however, there exists a numerical constant

ρ0 > 0 such that if 0 < s ≤ ρ0L−1, then 0 /∈ �(He).

This implies that an interface lying in a strip between two topologically distinct insulating phases

does not necessarily fill the bulk spectral gap.

Remark 2. Since the proof is perturbative, it can be adapted to show that a small neighborhood U

of 0 stays in the gap �(He)
c. Meanwhile, Theorem 2 implies that G∩�(He) isO

(

lnR
R

)

-dense in G.

However, we do not know if this provides a complete picture of G ∩ �(He), that is, for instance,

if G ∩ �(He) contains intervals.

Remark 3. A general argument implies that the edge conductance of He across the x2-axis is 0.

Indeed, this conductance is stable under perturbations within strips orthogonal to the x2-axis,

such as 21�cS1�c ; so it is equal to that of He + 21�cS1�c = H+, which is 0.

To the best of our knowledge, there is no general argument that implies that He has edge

conductance across the x1-axis equal to 0. For 0 < s ≤ ρ0L−1, it is a consequence of Proposition

4.1: He has no states with energy near 0. For � = N × [−L, L], this implies that no quantum

particle may travel from one end of ∂� to the other with high probability.

Proposition 4.1 is a consequence of the uncertainty principle: a function localized in frequency may

not be localized in position. For s small, the Fourier transforms of H± have eigenvalues of order 1, unless

ξ is near the zeros ξ∗
± = ±2π/3(1,−1) of – ω(ξ)in which case they are of order s. Therefore, a O(s)-

perturbation (such as S) may not close the gap unless it generates states for He that are concentrated in

frequency near ξ∗
±. By (a tailored version of) the uncertainty principle, such states may not be localized

within a strip (such as �).

4.3 Proof
We prove Proposition 4.1 here. We will need the following lemmas:

Lemma 4.1.

1) There exists λ0 > 0, such that

λ(ξ) ≥ λ0 · s, for all ξ ∈ [−π ,π ]2, s ∈ (0, 1].

2) There exists μ0 > 0 such that

|ω(ξ)| ≥ μ0 · d(ξ , {ξ∗
±}), for all ξ ∈ [−π ,π ]2.
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Remark 4. At the physical level, these are well-known bounds; we tailor them here to our needs.

Part (1) means that H± has a spectral gap at energy 0; part (2) means that the Wallace

Hamiltonian H0 has a Dirac cone.

Proof of Lemma 4.1. (1) From (4.1) and s ∈ (0, 1], we have

λ(ξ) =
√

(2sη(ξ))2 + |ω(ξ)|2 ≥ s
√

(2η(ξ))2 + |ω(ξ)|2. (4.2)

Moreover,

ω(ξ) = 0 ⇔ ξ = ξ∗
± = ±2π

3
(1,−1) ⇒ η(ξ∗

±) = ±3
√
3

2
.

Thus, ω(ξ) and η(ξ) cannot vanish simultaneously and
√

(2η(ξ))2 + |ω(ξ)|2 never vanishes. By continuity,
√

(2η(ξ))2 + |ω(ξ)|2 ≥ λ0 for some λ0 > 0. This proves (1) by going back to (4.2).

(2) We first write down ω as a function valued in R2 instead of C:

ω(ξ) = (1 + cos(ξ1) + cos(ξ2), sin(ξ1) + sin(ξ2)).

With this notation,

∇(ω(ξ)) =
[

− sin(ξ1) − sin(ξ2)

cos(ξ1) cos(ξ2)

]

, ∇(ω(ξ ∗
±)) = 1

2

[

∓
√
3 ±

√
3

−1 −1

]

.

As a result, for any u = (u1,u2)
T,

|∇ω(ξ ∗
±)u|2 = 1

4
[3(u1 − u2)

2 + (u1 + u2)
2] = 1

4
(4u2

1 + 4u2
2 − 4u1u2) ≥ 1

2
|u|2.

Assume for any n, there is ξn �= ξ∗
± ∈ [−π ,π ]2 such that

|ω(ξn)| ≤
d(ξn, {ξ∗

±})
n

. (4.3)

By compactness of [−π ,π ]2, there exists a subsequence of ξn that converges to some ξ∞. From (4.3) and

d(ξn, {ξ∗
±}) ≤ 4π , we deduce |ω(ξ∞)| = 0 hence ξ∞ is either ξ∗

+ or ξ∗
−. As a result, as n → ∞,

1

n
≥ |ω(ξn) − ω(ξ∞)|

|ξn − ξ∞| = |∇ω(ξ∞)(ξn − ξ∞)| + O(|ξn − ξ∞|2)
|ξn − ξ∞|

≥ 1√
2

+ O(|ξn − ξ∞|) → 1√
2
.

We get a contradiction. Thus, there is some μ0 > 0 such that |ω(ξ)| ≥ μ0|ξ − ξ∗
±|. �

Lemma 4.2. There exists C0 > 0 such that for all s ∈ (0, 1], L > 0 and u ∈ �2(Z2,C2):

Suppu ⊂ Z× [−L, L] ⇒ ‖H−1
+ u‖�2 ≤ C0L

1/3s−2/3‖u‖�2 .
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Proof of Lemma 4.2. Recall that ω−1(0) = {ξ ∗
+, ξ

∗
−}. Since eigenvalues of Ĥ−1

+ (ξ) are ± 1
λ(ξ)

, for any δ > 0,

we have

‖H−1
+ u‖2

�2(Z2)
= ‖Ĥ−1

+ (ξ)û(ξ)‖2L2([−π ,π ]2)

≤
∫

[−π ,π ]2

1

(λ(ξ))2
|û(ξ)|2dξ

≤
∫

Bδ (ξ
∗
±)

1

λ2
0s

2
|û(ξ)|2dξ +

∫

(Bδ (ξ
∗
±))

c

1

μ2
0δ

2
|û(ξ)|2dξ

≤
∫

Bδ (ξ
∗
±)

1

λ2
0s

2
|û(ξ)|2dξ + (2π)2

μ2
0δ

2
‖u‖2

�2

thanks to Plancherel’s formula ‖û‖L2([−π ,π ]2) = 2π‖u‖�2(Z2). If Supp(u) ⊂ Z× [−L, L], then

û(ξ1,n2) =
∑

n1

e−in1ξ1u(n1,n2) = 0, if n2 /∈ [−L, L].

Here we only did the Fourier transformation on n1 but we abuse the notation and still use û to refer to

it. Since (a1 + · · · + an)2 ≤ n(a21 + · · · + a2n), we have

∫

Bδ (ξ
∗
±)

1

λ2
0s

2
|û(ξ)|2dξ ≤ 1

λ2
0s

2

∫

Bδ (ξ
∗
±)

∣

∣

∣

∣

∣

∣

∑

n2∈[−L,L]

e−in2ξ2 û(ξ1,n2)

∣

∣

∣

∣

∣

∣

2

dξ

≤ 1

λ2
0s

2

∫

Bδ (ξ
∗
±)

2L
∑

n2∈[−L,L]

|û(ξ1,n2)|2dξ

≤ 2L

λ2
0s

2

∫

|ξ2−(ξ∗
±)2 |≤δ

∫ π

−π

∑

n2

|û(ξ1,n2)|2dξ1dξ2

= 2L · 4δ

λ2
0s

2

∫ π

−π

∑

n2

|û(ξ1,n2)|2dξ1 = 8δL · 2π

λ2
0s

2
‖u‖�2

where we use Plancherel’s formula on n1-coordinates only for the last line. Combining with the earlier

estimates, we get

‖H−1
+ u‖2

�2(Z2)
≤

(

16πδL

λ2
0s

2
+ 4π2

μ2
0δ

2

)

‖u‖2
�2(Z2)

.

In particular, taking δ =
(

πλ2
0s

2

4μ0L

)
1
3
, we get

‖H−1
+ u‖2

�2(Z2)
≤ C2

0

(

L

s2

) 2
3

‖u‖2
�2
, C0 = 2

13
6 π

2
3 μ

− 2
3

0 λ
− 2

3

0 .

This completes the proof. �

Proof of Proposition 4.1. (1) We have

He = 1�H+1� + 1�c (H+ − 2S)1�c + 1�H+1�c + 1�cH+1�

= 1�H+1� + 1�cH−1�c + 1�H+1�c + 1�cH+1�.
(4.4)

By (4.4),

E = He − 1�H+1� + 1�cH−1�c = 1�H+1�c + 1�cH+1�.
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Since 1�H+1�c (x, y) = 1�(x)H+(x, y)1�c (y) = 0 if |x − y| > 2, we have E satisfies (1.2); thus, He satisfies

Assumption 2.

(2) Recall that since λ(ξ) never vanishes, H+ is invertible. Thus,

He = H+ − 21�cS1�c ⇔ H−1
+ He = Id−2H−1

+ 1�cS1�c .

To show He is invertible, it is enough to show ‖2H−1
+ 1�cS1�c‖ < 1. Since ‖S‖ ≤ 6s,

‖2H−1
+ 1�cS1�cu‖�2 ≤ C0L

1/3s−2/3‖1�cS1�cu‖�2

≤ 6C0L
1
3 s

1
3 ‖u‖�2 .

Thus, when s < ρ0L−1, ρ0 = 6−3C−3
0 , we have ‖2H−1

+ 1�cS1�c‖ < 1. Thus, He is invertible. �

Remark 5. Numerics actually yield the values

λ0 = 1, μ0 = 3

π
√
26

� 0.18, C0 � 31, s < 1.5 · 10−7L−1.

That is, if the second-nearest neighbor hopping ismuch smaller than the first-nearest neighbor

hopping (depending on L), then a topological insulator fitting in a strip of width Lmay not have

an edge spectrum.

Funding

Alexis Drouot and Xiaowen Zhu are partially supported by the National Science Foundation Division

of Mathematical Sciences 2054589. Xiaowen Zhu is partially supported by the Pacific Institute for the

Mathematical Sciences. The contents of this work are solely the responsibility of the authors and do

not necessarily represent the official views of PIMS.

Acknowledgments

This problemwasmotivated in part by a question fromGraf at a lecture by Thiang [21] during the online

workshop “Mathematics of topological insulators” in 2020 at the American Institute of Mathematics.We

are very grateful to the staff at AIM and the organizers of the workshop (D. Freed, G.M. Graf, R. Mazzeo,

and M.I. Weinstein).

Appendix. Proof of Some Estimates

Proof of (3.1). Fix a ∈ (0, 1]. Then:

∑

s∈Z
e−2a|s| = 2

1 − e−2a
− 1 = 1 + e−2a

1 − e−2a
= 1

tanh(a)
≤ 2

a
,

where the last inequality follows from the fact that tanh(x) is concave when x > 0; thus, tanh(a) ≥
tanh(1)a ≥ a/2 for a ∈ (0, 1]. This yields the first inequality in (3.1). The second inequality follows

immediately since e−2a|x| = e−2a|x1 |e−2a|x2 |.

Now fix r ≥ 0. If |x| ≥ r, then either |x1| ≥ r/2 or |x2| ≥ r/2. This induces a splitting into two mutually

symmetric sums:

∑

|x|≥r

e−2a|x| ≤ 2
∑

|x1 |≥r/2, x2∈Z
e−2a|x| ≤ 2

(

2

a

)2

e−ar.

This completes the proof. �
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Proof of (3.2). We apply Schur’s test. For a self-adjoint operator, it reads:

‖H‖ ≤ sup
x∈Z2

∑

y∈Z2

∣

∣H(x, y)
∣

∣ ≤ 1

ν
sup
x∈Z2

∑

y∈Z2

e−2ν|x−y|

= 1

ν

∑

y∈Z2

e−2ν|y| = 1

ν

⎛

¿

∑

y1∈Z
e−2ν|y1 |

À

⎠

2

≤ 4

ν3
.

In the last inequality, we used the first inequality in (3.1), which is valid since ν ∈ (0, 1]. �

Proof of (3.3). By the slope inequality for convex functions f (x) = exs with any s ≥ 0, we have for 0 < α ≤
ν:

eαs − 1

α
≤ eνs − 1

ν
.

By applying this inequality to s = |x − y|, we deduce that Sα

α
≤ Sν

ν
. We now estimate Sν . We have

Sν = sup
x∈Z2

∑

y∈Z2

|H(x, y)|
(

eν|x−y| − 1
)

≤ 1

ν
sup
x∈Z2

∑

y∈Z2

e−2ν|x−y| (eν|x−y| − 1
)

≤ 1

ν

∑

y∈Z2

e−ν|y| ≤ 16

ν3
,

where we used (3.1) again. �

Proof of (3.12). 1. We first note that we have, by |t − s| + |s| ≥ |t| and (3.1):

∑

s∈Z
e−2β|t−s|−2β|s| ≤ e−β|t|

∑

s∈Z
e−β|t−s|−β|s| ≤ e−β|t|

∑

s∈Z
e−β|s| ≤ 4e−β|t|

β
. (A.1)

2. We now control S, the sum in the LHS of (3.12). To this end, we apply (A.1) four times: first to

(t, s) = (x1, y1), then (w1, z1), then (y2, z2) and finally (x2, y2). This gives:

S ≤ 4

β
e−β|x1 |−2β|w2 |

∑

y2 ,z

e−2β|x2−y2 |−2β|y2−z2 |−2β|z1 |−2β|z1−w1 |−2β|z2 |

≤
(

4

β

)2

e−β|x1 |−β|w1 |−β|w2 |
∑

y2 ,z2

e−2β|x2−y2 |−2β|y2−z2 |−2β|z2 |

≤
(

4

β

)3

e−β|x1 |−β|w|
∑

y2

e−2β|x2−y2 |−2β|y2 | ≤
(

4

β

)4

e−β|x|−β|w|.

This is (3.12). �
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