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ABSTRACT: Here, we present a new approach for the activation
of donor−acceptor cyclopropanes in ring-opening reactions, which
does not require the use of a Lewis or Brønsted acid as a catalyst.
Donor−acceptor cyclopropanes containing a phenolic group as the
donor undergo deprotonation and isomerization to form the
corresponding quinone methides. This innovative strategy was
applied to achieve (4 + 1)-annulation of cyclopropanes with sulfur
ylides, affording functionalized dihydrobenzofurans. Additionally,
the generated ortho- and para-(aza)quinone methides can be
trapped by various CH-acids.

Cyclopropane is an archetypical small carbocycle which is
kinetically stable despite its high strain energy (ca. 27.6

kcal/mol).1 The introduction of a donor and an acceptor to
the vicinal positions of the cyclopropane ring polarizes the C−
C bond between atoms bearing these groups. Such donor−
acceptor (DA) cyclopropanes2,3 are activated for wide range of
ring-opening reactions. However, these compounds still need
extra activation in most processes.
Thermal activation of DA cyclopropane ring opening is

limited by low reaction selectivity under harsh conditions.4

Alternative strategies, which do not alter the overall donor/
acceptor framework, such as radical,5 organocatalytic, and
nucleophilic6 activation are uncommon, with only a few of
such ring openings reported.
Over the past two decades, the rapid expansion of DA

cyclopropane research has been driven by the extensive use of
Lewis acids (LA, Scheme 1a): the coordination of LA to
acceptor substituent(s) enhances their electron-withdrawing
ability that increases the polarization of the C(1)−C(2) bond
facilitating its heterolysis.2,3 Lewis acids have been widely used
as effective ring cleavage initiators in various synthetic
transformations of DA cyclopropanes, including nucleophilic
ring openings, cycloadditions, annulations, rearrangements,
ring expansions, dimerization, and 1,3-difunctionalizations.2,3

Brønsted acids also catalyze DA cyclopropane reactions via a
similar activation mechanism, but they are less commonly used
now.7 Our group contributed to this area of research by
developing the protic ionic liquids as triplex reagents serving as

(a) a regenerable solvent, (b) a source of Brønsted acid for DA
cyclopropane activation, and (c) a source of a nucleophile.7c,d

For activation of DA cyclopropanes via acceptor group
modification, diverse modes of organocatalysis are applied,
depending on the nature of acceptor group(s).8 For example,
DA cyclopropanes with the aldehyde group as an acceptor
were activated by the treatment with secondary amines,
generating iminium ions with a higher electron-withdrawing
ability than the starting aldehyde group.8b,c For the activation
of nitrocyclopropanecarboxylates, ureas capable of forming H-
bonds between their NH groups and both oxygens of the nitro
group were applied.8d

In contrast to the activation of DA cyclopropanes through
modifications to the acceptor, the activation of small ring
opening by altering the electron-donating group has been less
studied.9 The pioneering work of Reissig,9a who introduced the
concept of DA-substituted cyclopropanes, serves as an example
of such a re-editing of donor structure. It has been known that
the ease of ring opening of DA cyclopropane with siloxy
substituents depends on the in situ release of the corresponding
alkoxy anion (Scheme 1b). In recent years, other strategies
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involving photocatalytic9c,d and electrochemical9e,g (Scheme
1c) conversions of DA cyclopropanes have attracted increased
attention from mechanistic, theoretical, and synthetic view-
points. Despite this, the activation modes utilized in the
modifications of the donor group are relatively constrained,
leaving considerable space for further studies.
Intrigued by this scarcity, we focused on synthetically

available (ortho-hydroxyaryl)-substituted cyclopropanes 1,
which have been previously used in LA-initiated (4 + 2)-
annulation with alkenes10a and in intramolecular nucleophilic
ring opening.10b We hypothesized that the deprotonation of
the phenol group in cyclopropanes 1 could lead to the
spontaneous three-membered ring opening to deliver an ortho-
quinone methide (o-QM) based intermediate that can be
trapped by suitable nucleophiles (Scheme 1d). In this study,
we investigated reactions of cyclopropanes 1 with sulfur ylides
as well as various C-nucleophiles, such as anions of selected
CH-acids. We have shown that (4 + 1)-annulation of o-QMs,
generated from DA cyclopropanes 1, with sulfur ylides could
lead to 2,3-dihydrobenzofurans, an important structural unit of
some modern FDA-approved drugs.11 Moreover, we found
that not only ortho- but also para-quinone methides as well as
their aza-analogs could be obtained by this method from the
corresponding precursors as intermediates that can be trapped
with CH-acids to give access to polyfunctional derivatives of γ-
disubstituted butanoic acids.
Furthermore, this transformation is conceptually interesting

as a new approach to highly reactive QMs12 and their aza-
analogs based on the cyclopropane−QM isomerization in
which the release of energy strain during small ring opening

compensates for the loss of aromaticity energy resulting from
QM formation. Herein, we report the results of our
investigation.
We started our study by optimization of model (4 + 1)-

annulation of cyclopropane 1a as a promising four-atom
component with dimethylsulfoxonium methylide (DMSOM,
Corey ylide). The main results of the screening of reaction
conditions (solvent, type of base, and ratio of reagents) are
presented in Supporting Information.11 To summarize, the
optimal conditions for carrying out the process under study are
the reaction of a 0.1 M DMSO solution of cyclopropane 1a
with 2.1 equiv of Corey ylide at room temperature for 0.5 h.
With the optimized conditions in hand, the substrate scope

of the disclosed (4 + 1)-annulation was evaluated, and the
results were summarized in Scheme 2. Reaction of 1 with

DMSOM had good tolerance to halogen, methyl, and methoxy
substituents in ortho- and para-positions relative to the OH
moiety, affording the desired products 2b−d,f−i in 77−87%
yield (Scheme 2a). On the contrary, the presence of electron-
withdrawing groups at the same positions decelerated the
three-membered ring-opening stage (see the reaction mecha-
nism below). For this reason, yield of substrate 2e, bearing two
bromine atoms, decreased to 68% compared to 87% for 2d.
For cyclopropane 1j with a 5-NO2 group in the benzene ring,
this effect was revealed to a greater extent. To accelerate the
annulation process, this reaction was performed with a 3-fold
excess of Corey ylide. As a result, dihydrobenzofuran 2j was

Scheme 1. Examples of Activating Modes of Donor−
Acceptor Cyclopropanes

Scheme 2. Substrate Scope for Synthesis of
Dihydrobenzofurans 2a

aReaction conditions: NaH (2.1 equiv), Me3SOI or Me2SCH2RBr
(2.1 equiv), DMSO (0.1 M for 1); yields of isolated products are
given. b3.0 equiv of Me3SOI and 3.0 equiv of NaH were used.
cReaction time was 3 h. dReaction time was 2 h.
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obtained in 68% yield after being stirred for 3 h. Next,
compound 1k with a nitrile group as an acceptor in ring was
tested, and compound 2k was isolated as the mixture of two
diastereoisomers in a nearly equal ratio in 61% yield. The
lower efficiency of (4 + 1)-annulation for this substrate
presumably results from the realization of some side reactions
with participation of the cyano group. Additionally, the
structure of 2d was unambiguously proven by single-crystal
X-ray diffraction. The scalability was illustrated by converting
1.20 g of 1i into 1.16 g of 2i in 92% yield.
To better understand the scope and limitations of this

protocol, we studied the reactivity of cyclopropane 1i toward
diverse stabilized sulfonium ylides (Scheme 2b). Reaction of
substrate 1i with bulky ylides, bearing CO2Et, CO2tBu, or
COPh moieties, led to 2-substituted dihydrobenzofurans 2l−n
in 78−80% yield as single diastereomers. The trans-arrange-
ment of substituents was proved by X-ray data for compound
2n. In contrast, the reaction of the less hindered ylide Me2S�
CHCN afforded dihydrobenzofuran 2o in 86% yield as a
mixture of diastereomers in a 62:38 ratio with a predominance
of trans-isomer.
The synthetic utility of obtained 2,3-dihydrobenzofurans 2

was further studied (Scheme 3). Compound 2a was

successfully aromatized with DDQ to form benzofuran 4 in
70% yield. In contrast to unsubstituted dihydrobenzofurans,
the synthetic potential of substrates 2 is primarily conditioned
by the carbon chain, implemented in their structures. This
fragment can be used as a linker to bind the dihydrobenzofuran
core with other moieties, which was demonstrated by
alkylation of 2i with ethyl and tert-butyl bromoacetates to
afford products 5a,b in 89% and 86% yield, respectively.
Moreover, compounds 2 are preorganized for intramolecular
annulation: Friedel−Crafts acylation of dealkoxycarbonylated
product 6 (43% yield from 2n) furnished tricyclic compound 7
in 63% yield. The latter is a structural analogue of
hydrocodone�the main component of Vicodin analgesic.
To demonstrate the versatility of this DA cyclopropane

activating mode, compound 1i was introduced into the
reaction with a series of typical CH-acids, such as dimethyl
malonate and dibenzoylmethane. Under treatment with 2.0
equiv of carbonyl compound and 4.0 equiv of potassium
carbonate, polyfunctional products 3a and 3b were obtained in
0.5 h in 81% and 52% yields, respectively (Scheme 4). Next,
we applied the same strategy to DA cyclopropanes, whose
anions are capable of undergoing isomerization to the ortho-

azaquinone methide. For this purpose, we tested cyclopropane
1l, bearing the NHTs moiety at the ortho-position of the donor
aromatic substituent, in reaction with an excess of dimethyl
malonate in the presence of potassium carbonate. To our
delight, after stirring at room temperature for 3 h, the product
of small ring opening 3c was observed; however, a significant
portion of starting material remained unreacted. We associate
the reaction deceleration with the high stability of the anion of
1l that results in a low concentration of the azaquinoid form in
the reaction mixture. To achieve the full conversion,
cyclopropane 1l was stirred in the presence of a large excess
of reagents for 5 days affording compound 3c in 63% yield.
Moreover, the strategy under investigation was applied to
substrates 1m and 1n, bearing −OH and −NHTs groups in
the para-position relative to the cyclopropane ring. Under mild
conditions, products of ring opening with dimethyl malonate
3d and 3e were obtained after 6 h in 86% and 87% yields,
respectively.
To better understand the mechanism of these trans-

formations, we have analyzed the reaction between anion of
1a and DMSOM with DFT calculations (Scheme 5a).11,13

Unlike the parent phenol/dienone tautomerization, which is
∼20 kcal/mol uphill, the anionic cyclopropane/quinone
methide rearrangement is exergonic. Despite the loss of
aromaticity, the isomerization of phenoxide A into ortho-
quinone methide B is favorable both kinetically (ΔG‡

AB = 6.4
kcal/mol) and thermodynamically (ΔGAB = −3.0 kcal/mol)
and proceeds effectively at room temperature. Considering the
similar stability of phenoxide and malonate anions, which can
be evaluated from their basicity (pKas of both conjugate acids
are ∼18−19 in DMSO),14 the ∼22−23 kcal/mol increase in
exergonicity should largely stem from the strain stored in the
cyclopropane moiety (∼28 kcal/mol). Upon attack by the
DMSOM molecule, the quinoid intermediate B restores
aromaticity to form much more stable sulfoxonium salt C.
Subsequent intramolecular 5-exo-tet nucleophilic substitution
of DMSO by the phenolate anion results in a five-membered
ring closure, leading to compound D. Finally, intermediate D is
protonated to yield dihydrobenzofuran 2. Annulation with the
stabilized sulfonium ylides follows a similar path. However, in
this case, intermediate C′ is formed as a mixture of syn- and
anti-isomers (Scheme 5b). As shown in the Newman
projections, in the conformation favored for the 5-membered
ring closure, the bulky substituents are pushed apart in anti-
betaine, while in syn-betaine their proximity causes significant
steric repulsion. This leads to a faster consumption of anti-
betaine and the formation of predominantly trans-2,3-

Scheme 3. Synthetic Applications of Dihydrobenzofurans 2

Scheme 4. Other Applications of the New DA
Cyclopropane-Activating Mode

aCH2(CO2Me)2 (5.0 equiv) and K2CO3 (6.0 equiv) were used.
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dihydrobenzofurans 2l−o. Moreover, stabilized sulfonium
ylides are known to add reversibly,15 which shifts the
equilibrium completely toward the formation of the trans-
isomer of 2l−o when bulky sulfonium ylides were applied.
In conclusion, we have developed a conceptually new

method for activation of DA cyclopropanes based on ring
opening by rapid isomerization of deprotonated donor
aromatic substituents into ortho- or para-(aza)quinone
methide intermediates. The cyclopropanes, bearing a 2-
hydroxyphenyl moiety, can be annulated with sulfur ylides,
affording substituted dihydrobenzofurans in good yields.
Computational analysis of the reaction path confirmed that
spontaneous in situ isomerization of deprotonated substrate to
ortho-quinone methide plays a crucial role in the small ring
activation. Moreover, being applied to DA cyclopropanes,
bearing appropriate phenolic or aniline substituents, this
method allows the generation of ortho- or para-quinone
methides and their aza-analogs and traps them with CH-acidic
compounds as nucleophiles, providing an effective route
toward acyclic polyfunctional derivatives of γ-disubstituted
butanoic acids as promising building blocks. Having demon-
strated this concept, studies are currently underway to exploit
this activation in the design of other transformations.
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