
Impact of JVM Configurations on Test Runtime

Abdelrahman Baz

The University of Texas at Austin

Austin, TX, USA

ambaz@utexas.edu

Milos Gligoric

The University of Texas at Austin

Austin, TX, USA

gligoric@utexas.edu

August Shi

The University of Texas at Austin

Austin, TX, USA

august@utexas.edu

Abstract—JVM provides dozens of configuration flags, with
many flags intended for tuning application performance. We
empirically study the impact of JVM configuration flags on
software testing runtime. We focus on an extensive study that
shows not only the great impact of JVM configurations on
test runtime (up to 43.89% reduction in runtime when using
certain configurations) but also shows that those configurations
that reduce runtime are rare and thus hard to find. Modern
techniques based on machine learning or combinatorial testing
that search through combinations of configuration flags are still
not as effective at finding the best configurations for test runtime.
Finally, we show that JVM configurations that provide good
speedup retain this power over a number of commits. We believe
that this paper provides strong motivation for further work on
finding the best JVM configurations to optimize test runtime.

Index Terms—JVM configurations, regression testing, perfor-
mance.

I. INTRODUCTION

Regression testing is an important part of the software

development process, but can be very costly. In regression

testing, developers run an existing test suite every time they

make changes to the code as to check that their changes do

not break any existing functionality [1]. However, test suites

can take a long time to run. Further, developers are frequently

making changes, triggering running the test suite for all those

changes, compounding the cost of testing [2]. This high cost

of testing remains a problem for developers in industry, both

in the cost of developers waiting for test results and machine

cost for running these tests [3]–[7].

We explore a novel direction of reducing the cost of

regression testing. In particular, in Java projects, tests are all

run in a Java Virtual Machine (JVM), that both interprets

and compiles/optimizes an execution dynamically, including

test executions. This JVM is highly configurable with flags

that control memory limits, garbage collection, optimization

levels, and more [8]. Our insight is that the JVM configuration

can have a high impact on test runtime. As such, there

may be a specific JVM configuration that can be used to

greatly speed up the runtime for a specific test suite on a

specific project. Furthermore, developers are running the same

tests after every change, usually without any changes to the

tests. When developers do make changes to the code under

test, prior work found that these changes tend to be rather

small [2], so the same tests are run on similar code, resulting

in similar execution traces. Therefore, running a test suite

in a JVM specifically tuned to reduce its runtime can result

in these tests running faster on all future versions of code

as well, thereby reducing the runtime of regression testing.

Also, tuning configurations for a specific test suite run would

likely lead to greater reduction in runtime than finding the

best configuration in which to run the program for all general

inputs, like for compiler autotuning [9]–[13].

We conduct an empirical study to evaluate the impact of

configuring a JVM on test runtime and motivate future work

in this new space. We evaluate on 20 popular open-source Java

projects that were used in past work on software testing [2],

[14]–[16]. For each project, we take a commit within that

project’s version history and search for flags to use from

the flag space. We consider a combination of these flags to

form a JVM configuration. We then measure the difference in

test runtime within this configured JVM versus the runtime

within the default configured JVM. Developers can use the

configuration that results in the greatest reduction runtime for

future runs.

We evaluate different strategies that can search through this

configuration flag space. First, we evaluate random generation,

where we generate JVM configurations by randomly combin-

ing flags. Second, we evaluate using a state-of-the-art machine

learning-based compiler autotuning technique, BOCA [13].

BOCA was previously evaluated on GCC, searching for an

optimal combination of compiler flags to use for compiling

and optimizing a specific program. BOCA’s goal is to produce

a compiled binary that can be efficient in most scenarios,

whereas our goal is to optimize for when running a specific test

suite. However, BOCA’s approach in searching for an optimal

combination of flags matches this problem domain, and so we

use it for comparison. Third, we evaluate using combinatorial

testing [17]–[19] to generate JVM configurations. Combinato-

rial testing techniques aim to generate a minimal combination

of flags such that all t-tuples of flags are included within those

combinations. The intuition is to test the interactions between

flags, which we use here to see whether those interactions lead

to better test runtime.

We find that random generation can generate configurations

that reduces test runtime on average by 11.90% across all

projects (up to 42.13% for one project, and reduce test runtime

for 17 out of 20 projects). In comparison, BOCA was only

able to generate configurations that reduce test runtime by

on average 2.58% (and only reduce runtime for five out of

20 projects). Using combinatorial testing, we could generate

configurations that reduce test runtime by 7.84% on average

(and only reduce runtime for 14 out of 20 projects). Further,

when we evaluate using the best configuration across many

commits in the project’s history, we still observe a reduction

in test runtime, with an average of 7.43% at each commit for

each project. These results show that a configuration can still

be relevant on commits beyond the commit for which they

were generated, so developers can reuse them.

We also experiment with using the same configuration when

running tests across commits while applying a regression test

selection (RTS) technique [1], [2], [14], [15], [20]–[25], which

runs a subset of tests after every change, to see whether the

configuration still provides a reduction in runtime even if

a different set of tests are run after the code changes. We

see that the average reduction in runtime, when using the

best configuration commits where RTS selects to run some

tests, is 8.28% compared against running those same, selected

tests in the default configuration. As such, the use of a new

configuration for the JVM can result in runtime reduction even

if developers are not running all tests.

The main contributions of our work are:

• Idea. We propose to modify the JVM runtime envi-

ronment specifically for a given test suite by exploring

JVM configurations as to reduce the test runtime. This

is the first work on optimizing test runtime via JVM

configurations. Our proposal stands in sharp contrast to

prior work that usually run fewer tests to reduce test

runtime.

• Study. We designed a study to evaluate the impact

of JVM configurations on test runtime through random

generation, an existing compiler autotuning approach, and

combinatorial testing, as possible means to generate the

configurations.

• Findings. Our results, on 20 open-source projects, show

that randomly generating configurations can reduce the

runtime by 11.90% on average, but finding good config-

urations is non-trivial. This reduction is much greater than

that found using the prior compiler autotuning approach

or combinatorial testing. Further, we find the reduction

persist even across changes, with on average 7.43%

reduction on each commit. The reduction also happens

when running a subset of tests using RTS, at on average

8.28% compared against running the subset of tests with

the default JVM configuration.

• Artifact. We share our scripts for running experiments,

the configurations explored by each approach for all

projects, and the experiment results [26].

Overall, our findings demonstrate the benefit in searching for

an optimal configuration of JVM for testing, motivating future

work in ways to find even better configuration(s) or more

efficient ways to search for a good configuration.

II. METHODOLOGY

We conduct an empirical study to evaluate whether different

JVM configurations can have significant impact on test run-

time. A JVM configuration consists of a combination of JVM

flags. For example, the following JVM configuration changes

(a) the default JIT compilation, (b) garbage collection, and

(c) the JVM runtime behaviors:

java -XX:-DoEscapeAnalysis

-XX:+UseSerialGC -XX:-UsePerfData

-Xshare:off

where the flags, in order, disable escape analysis, use the serial

garbage collector, disable collecting performance data, and

disables class data sharing during the JVM execution.

We run tests within a configured JVM to see whether its

runtime changes significantly compared against when run in

the default configuration. Note that, by default configuration,

we mean whatever is the configuration the project sets for

running tests. For the most part, the default configuration is

simply running the JVM without additional flags. A developer

would be most interested to see whether they can use a custom

configuration specific for a test suite such that running those

tests within a JVM using that configuration would speed up

their test runtime. (Note that we are not concerned with trying

to find some configuration that provides the same benefits for

generally any project’s test suite.)

To generate the configurations, we evaluate three strategies:

(1) a random strategy, (2) an ML-based compiler autotuning

approach, and (3) combinatorial testing strategies. We first

describe the initial flag space from which these strategies will

sample from and then describe how each strategy works.

A. Flag Space

Figure 1 shows our process to define the flag space, i.e.,

valid flags and dependencies among those flags.

Initial set of flags. First, we construct an initial set of

JVM flags from which to sample (1 in Figure 1). We start

with 178 documented JVM flags available in Java 8 (the

version that we use) [8]. However, many of these flags would

not have any (positive) effect on JVM performance, e.g.,

+PrintCompilation only prints out details concerning

internal JVM compiler optimizations. As such, we manually

perform an initial filtering of these flags.

Filtering irrelevant flags. We manually check the description

of the available JVM flags in the official Java documenta-

tion [8] and choose a subset based on our understanding of

how they might affect the runtime (2). This subset of flags

can be divided into four categories. We include (1) four Non-

Standard Flags, which are general purpose flags, e.g., Xmx=s

configures the max heap memory to be s; (2) four Advanced

Runtime Flags, which control the runtime behavior of the

JVM, e.g., UseCompressedOops enables the use of com-

pressed pointers; (3) 13 Advanced JIT Compiler Flags, which

control the just-in-time (JIT) compilation and optimizations,

e.g., TieredStopAtLevel=2 stops the JIT compilation at

optimization level 2; and (4) 19 Advanced Garbage Collection

Flags, which control JVM garbage collection (GC), e.g.,

UseParallelGC forces the JVM to use the parallel garbage

collector.

Values for flags. For flags involving binary choices, we choose

the configuration that does the opposite of default, e.g., we use

2

1 def get_random_configurations(flag_space, budget):

2 # A list of configurations to configure the JVM

3 configurations = []

4 # The maximum number of of flags per combination

5 max_comb_size = len(flag_space)

6

7 while len(configurations) < budget:

8 # Randomly choose the size of the combination

9 comb_size = random.randint(2, max_comb_size)

10

11 # Randomly select flags without replacement to

form a combination

12 combination = random.sample(flag_space,

comb_size)

13

14 # Validate and adjust the combination

15 combination = validate_combination(combination)

16

17 configuration = ’ ’.join(combination)

18 # Check if it’s a new combination

19 if is_new(configuration, configurations):

20 configurations.append(configuration)

21 return configurations

Fig. 2: Algorithm for generating random configurations.

1 def boca_run(flag_space, initial_size, budget):

2 # A set of all configurations to configure the JVM

3 train = set()

4 result = 1e8 # Keep track of best runtime

5 for i in range(initial_size):

6 x = random.randint(0, 2 ** len(FLAGS))

7 x = generate_conf(x)

8 ...

9 # Run combination and train the model

10 ...

11 train.add((x, runtime(x)))

12

13 steps = 0

14 while initial_size + steps < budget:

15 ...

16 # Use train to generate candidates and predict

best solution based on a RF model

17 ...

18 train.add((best_solution, runtime(best_solution)

))

19 if best_result < result:

20 result = best_result

21 return train, result

Fig. 3: Algorithmic view of main BOCA steps.

the JVM for a specific test suite), we can still use the approach

to generate configurations, since they all consist of flags.

Figure 3 shows pseudocode representing a summary of a

BOCA run. Initially, BOCA constructs a surrogate model us-

ing Random Forest [27] based on an initial training set (lines 5-

11) that maps configuration to the runtime, so the model can

predict runtime per configuration. After training the model,

BOCA identifies a new set of candidate configurations, con-

sidering both exploitation and exploration of flags, and it uses

the model to predict the runtime for each one. BOCA takes the

generated configuration with the best expected improvement

and runs the tests five times in a JVM using that configuration

to get the actual test runtime. If tests fail to run under a

configuration, BOCA re-generates candidates again and tries

to run the best one until a configuration is successful. This

new pair of configuration and runtime is added to the training

set as to retrain the surrogate model for another iteration of

prediction and subsequent retraining (line 18). We configure

BOCA to run until observing runtime for 60 configurations,

the same as random generation. Finally, we have BOCA

return all configurations it ran, along with their runtimes. The

overall intuition behind BOCA is that the surrogate model can

quickly guide the search process towards the configurations

that provide the best runtime without actually needing to run

anything, and the multiple iterations allow for the model to

continuously be updated and improved.

While we evaluate BOCA using its default experimental pa-

rameters [13], we decide to modify some of these parameters

to improve the process. We find that the initial training set is

rather small (just two data points [13]), and training initially

on more data can make a better initial surrogate model for

predictions, so we change the initial training set size to 10.

Furthermore, we feel the amount of reruns that BOCA uses to

establish the actual runtime for a configuration to be too small

(only 5), so we update the number of reruns to be the same

used for establishing statistical significance (Section III). We

refer to this modified version of BOCA as BOCAm.

3) Combinatorial Testing: Combinatorial testing aims to

efficiently test interactions between configuration flags in a

system [17]–[19]. The intuition is that bugs in a configurable

system are due to the interactions between just a few of

those configuration flags, so the goal is to generate a minimal

number of combinations of flags that encompass all t-wise

tuples of those flags, where t is some small number like 2 or 3.

We can similarly apply combinatorial testing techniques to our

problem domain, with the intuition that interactions between

the flags impact the test runtime. Combinatorial testing then

outputs configurations that cover all t-wise tuples of flags.

We specifically use a state-of-the-art combinatorial testing

technique SamplingCA [19] that can efficiently generate com-

binations that cover all pair-wise (t=2) tuples of flags. We

ensure that the constraints between flags are preserved in each

combination and that all pairs of flags are covered by the

combinations. However, finding an optimal configuration for

the JVM to run tests may require more complex interactions

between flags, beyond just pairs. As such, we also evaluate

three-wise (t=3) combinatorial testing with our own code: 1)

we generate all possible three-wise tuples of all flags in the

flag space and consider them uncovered, 2) while we still have

uncovered tuples, we create a new empty combination of flags,

3) we iterate through the uncovered tuples and add each one

to the combination if adding it keeps the combination valid,

4) we remove all tuples covered by the new combination from

the uncovered set, and 5) we confirm that the combinations

together cover all three-wise combinations. Unlike for random

or BOCA, we only run as many configurations that these pair-

wise or three-wise strategies would generate, namely 15 and

45 configurations, respectively.

4

TABLE I: Evaluation projects. ‘Runtime’ is in seconds.

ID Project SHA # Tests Runtime

P1 google/compile-testing b6e19e9 231 5.15
P2 *apache/commons-email 00cc321 191 5.59
P3 logfellow/logstash-logback-encoder 7044d87 462 6.69
P4 *jhy/jsoup afc38d8 1181 6.96
P5 apache/commons-csv 547c5a2 829 8.60
P6 apache/commons-codec e2cecc7 1339 12.35
P7 apache/commons-collections dc6d9f8 6386 19.41
P8 *apache/commons-jexl f8725b2 964 24.29
P9 JSQLParser/JSqlParser 0ec2600 1608 24.94
P10 *apache/commons-configuration ed32b41 2873 27.81
P11 *apache/commons-beanutils 41f7b90 1353 35.49
P12 asterisk-java/asterisk-java 5c16184 358 36.08
P13 *apache/commons-imaging c021adf 991 41.72
P14 fasterxml/jackson-core 90eaabb 1291 56.39
P15 apache/commons-bcel c819e54 375 59.55
P16 apache/commons-compress 74256e9 2400 65.00
P17 apache/commons-net 26fbd9e 415 65.91
P18 *tabulapdf/tabula-java 8bfa3ad 210 73.83
P19 *apache/commons-dbcp 6f7ec82 1501 104.22
P20 addthis/stream-lib af045cb 137 142.78

III. EXPERIMENT SETUP

We address the following research questions:

• RQ1: How much reduction in test runtime can be

achieved by applying different JVM configurations?

• RQ2: How much can the best configuration be minimized

and which flags are the most common between projects?

• RQ3: How much reduction in test runtime can the best

configuration maintain across commits?

• RQ4: How much reduction in test runtime can the best

configuration maintain even when running different tests

using regression test selection (RTS)?

We address RQ1 to check whether running tests using a JVM

under different configurations can significantly reduce test

runtime. We address RQ2 to see whether a configuration can

be minimized, removing redundant/unnecessary flags while

preserving runtime reduction. We are interested to see whether

there are flags that are useful across different projects. We

address RQ3 to see whether the proposed configurations can

maintain a reduction in runtime even as developers make

changes to their project. Finally, we address RQ4 to see

whether the reduction in runtime persists even if developers are

not running all the tests. Since developers would commonly

use regression test selection (RTS) [2], [4]–[6] as part of their

development process, we want to see whether changing the

JVM configuration can help reduce runtime even further on

top of RTS.

Subjects. We perform our study on 20 open-source Java

projects from GitHub. We collect these projects based on prior

work on RTS [2], [14]–[16], where researchers evaluated their

test runtimes across many commits. We select single module

Maven projects that build using Java 8 and can finish the end to

end experiment within 24 hours. For each project, we take the

latest commit at the time of our experiments, and we generate

different configurations at this commit. Table I lists for each

projects an ID for use in later tables, the commit we use, the

number of tests, and test runtime (in seconds) in the default

configuration. If the project uses some JVM flags for their

testing, we mark that project with * in the table.

Experimental steps. To measure statistical significance in run-

time differences between configurations, we rerun all config-

urations 10 times to collect a distribution of test runtimes. We

compare this distribution of runtimes against the test runtimes

collected from running the tests in the default configuration the

same number of times, and we use the Student’s t-test [28] to

compare the two distributions.

Configuration minimization. To minimize the flags in a

configuration, we iteratively run tests under a JVM configured

using subsets of flags from the initial configuration. For

instance, if we have a set of flags represented as {f1, f2,

f3, f4}, the process begins by checking the impact of f1 on

test runtime. Subsequently, if this individual flag does not yield

the expected reduction in runtime over running in the default

configured JVM, we try the subset combination {f2, f3,

f4}. If this subset combination of flags provides a similar

or better improvement as the the original combination {f1,
f2, f3, f4} that we started with, then the subset {f2,
f3, f4} becomes the new subset we want to minimize.

This process continues, systematically evaluating different

combinations of flags, until either an individual flag is found to

be sufficient or all flags have been checked individually. In the

end, we sort all the configurations we tried during the process

and pick the best configuration that provides a similar or better

improvement as the initial starting one. We acknowledge that

different minimization techniques are possible, but we leave

exploring those for future work.

Running across commits. We run the tests under the best

configuration found for the project on the latest commit

across 50 commits going backwards in history from that

latest commit for the project. We also run using the best

configuration across commits while applying RTS. We use

STARTS, a static, class-level RTS technique [14], [15], [29].

If STARTS determines no tests should be run due to some

changes, we ignore these commits. For the other commits

where tests are run, we measure runtime when running those

tests with the best configuration and in the default JVM.

Hardware configurations. We run all our experiments in a

Docker container built from an Ubuntu 20.04 Docker image.

We use JDK 8 and Maven 3.8.3, and we use Python 3 for

data collection and analysis. We run each project in its own

container and we limit the container to use 2 CPUs and 8GB of

RAM, similar to resources available in continuous integration

services [30], [31].

IV. EVALUATION

A. RQ1: Reduction in Test Runtime

Figure 4 shows for each project a boxplot representing the

spread of runtime reduction achieved using the randomly gen-

erated 60 configurations, compared against using the default

JVM configuration. The dashed red line across the boxplots

represents 0%, namely having the same runtime as when

5

TABLE III: Reduction in runtime.

Project Rnd (%) BOCA (%) BOCA m (%) 2-wise (%) 3-wise (%)

P1 14.40 0.00 12.13 14.38 13.22
P2 7.25 12.46 5.40 0.00 11.75
P3 14.51 16.33 14.79 9.99 14.78
P4 8.28 0.00 0.00 0.00 10.09
P5 14.25 0.00 0.00 11.34 14.48
P6 13.23 11.12 0.00 0.00 3.86
P7 13.62 0.00 0.00 0.00 8.51
P8 20.93 0.00 24.41 0.00 0.00
P9 9.65 0.00 9.58 0.00 0.00
P10 7.75 10.12 11.17 16.21 14.56
P11 42.13 0.00 7.62 43.89 43.14
P12 4.91 0.00 0.00 0.00 3.11
P13 13.35 0.00 0.00 0.00 3.13
P14 13.25 0.00 0.00 0.00 0.00
P15 19.65 0.00 0.00 0.00 8.68
P16 8.72 0.00 0.00 0.00 3.36
P17 0.00 1.52 0.00 0.00 0.00
P18 0.00 0.00 0.00 0.00 0.00
P19 0.00 0.00 0.00 0.00 0.00
P20 12.11 0.00 0.00 0.00 4.03

Average 11.90 2.58 4.26 4.79 7.84

TABLE IV: Minimized configurations.

Min. Orig. Red.
Project len. len. inc. Single flag

P1 5 29 0.00 -
P2 1 7 2.91 XX:C1UpdateMethodData
P3 1 26 1.00 XX:TieredStopAtLevel=2
P4 1 32 0.85 XX:SurvivorRatio=16
P5 27 27 0.00 -
P6 1 11 17.05 XX:C1ProfileCalls
P7 28 34 0.00 -
P8 17 17 0.00 -
P9 5 21 0.53 -
P10 1 8 9.34 XX:TieredStopAtLevel=2
P11 7 11 1.43 -
P12 10 10 0.00 -
P13 1 4 1.34 Xnoclassgc
P14 1 11 10.94 XX:DoEscapeAnalysis
P15 11 11 0.00 -
P16 1 24 6.27 XX:NewRatio=1
P20 1 5 8.99 XX:C1OptimizeVirtualCallProfiling

TABLE V: Most common flags after minimization.

Flag # Projects

-XX:-C1ProfileCalls 5
-XX:TieredStopAtLevel=2 5
-XX:-UsePerfData 4
-Xshare:off 4
-XX:+UseCondCardMark 4

We see that the number of flags after minimization drops

substantially, with 10 projects having just one flag. Only

four projects have the same number of flags remaining after

minimization (projects P5, P8, P12, and P15), suggesting that

their runtime reductions require the interactions between all

flags in the configuration. On average, the number of flags

in each best configuration drops from 16.94 to 7.00 after

minimization. Interestingly, we observe that for cases where

we could remove flags, there is an even greater reduction in

runtime. We show the additional percentage-point increase in

reduction in the table per project; the average increase is 3.57

percentage-points.

Table V shows the top five flags found among the

minimized best configurations across all projects, ranked

by their frequency among projects (column “# Projects”).

The most common flags are -C1ProfileCalls and

TieredStopAtLevel=2, which are flags related to JVM

JIT optimizations. -C1ProfileCalls stops the JVM from

profiling method calls for information to make optimization

decisions; removing profiling can reduce runtime overhead.

TieredStopAtLevel=2 prevents the JIT compiler to op-

timize at the highest level, which requires more profiling that

adds overhead. The prevalence of these flags suggest that

projects’ tests are fast-running enough that it is not worth it

for the overhead needed to determine when to optimize at

the highest level. However, these flags only occur among five

projects, so most projects do not share any common flags,

suggesting that there is no “easy” solution of using just a few

flags that would generally reduce test runtime of any project.

RQ2: We can reduce the number of flags in the best

configurations while still preserving or even improving

the reduction in runtime. We observe some flags that are

in common among the best configurations after minimiza-

tion, but not among the majority of projects.

8

taken the proper steps to mitigate the noise from running our

experiments at different times.

Machine performance could be impacted by various factors,

e.g., background processes running on a machine, so runtime

might differ for the same experiment across several days. To

mitigate this problem, we compare any non-default run with

the default run that we ran closest in time to it.

VI. RELATED WORK

Regression test selection (RTS) aims to run only the tests

impacted by the changes as code evolves via analyzing the re-

lationship between code changes and tests [2], [15], [20]–[23],

[25], [32] or even through machine learning to predict which

tests’ outcomes differ after the change [6], [33]–[35]. However,

RTS techniques can be unsafe, i.e., they miss to select truly

impacted tests due to limitations in the selection approach [36],

[37]. Test-suite reduction (TSR) analyzes the tests on a single

code version, removing tests that are redundant w.r.t. some

metric, such as code coverage [38]–[45]. While the reduced

test suites run faster on future commits, they may still miss

to detect future faults because the relevant tests are not in the

reduced test suite anymore [46]. Finally, test-case prioritization

(TCP), in contrast with RTS and TSR, does run all tests, but

runs them in a different order as to prioritize the tests likely

to detect faults, based on metrics like code coverage or code

diversity [47]–[56]. While TCP does not miss to run relevant

tests, the runtime overall remains the same. In contrast with

all these techniques, we study the impact of using different

JVM configurations to speed up testing while running all tests,

without risk of missing to run key tests. We also evaluate how

this idea of using a custom JVM configuration for tests can be

combined with RTS to have additional reductions in runtime.

Prior work on configuration testing focused on exploring the

space of configurations to expose faults in highly configurable

software, both in how to efficiently explore that space while

avoiding the combinatorial explosion problem and to better test

configurations as software evolves [57]–[63]. While we also

evaluate searching through a configuration space, specifically

for the JVM, our focus is not on detecting faults that occur

due to these configurations, neither in the JVM itself or code

that runs on the JVM. We aim to evaluate the impact that

differences in configurations has on test runtime, leading to

configurations that reduce that runtime for future testing.

Compiler autotuning generates the best combination of

compiler optimization flags for compiling a program [9]–

[13]. These techniques use machine learning approaches to

search the compiler optimization flag space and find the best

combination of flags to create a compiled binary that is

generally performant, no matter the input. Opentuner [64] is

a general autotuning framework that relies on user-specified

search space. Canales et al. proposed to represent JVM flags as

features in a feature model and use this model as an input for

a genetic algorithm [65]. Our work evaluates the effectiveness

of tuning JVM flags specifically for executing specific tests,

not all possible inputs. Despite the difference in goals, the two

directions both similarly have to generate combination of flags,

so we use recent compiler autotuning technique BOCA [13] in

our evaluation, finding that BOCA on its own is not effective

in this specific problem domain.

There have been other proposed work for speeding up

testing. Dong et al. proposed saving and reusing common state

generated by tests across commits, with the intuition that the

time to generate this state normally is more time-consuming

than loading the state [66]. Saff et al. proposed reducing test

runtime by converting expensive parts of test execution to

instead use mocks [67]. Stratis and Rajan proposed a way

to reorder tests as to minimize cache misses, thereby reducing

test runtime for future versions while still running all tests [68].

Our work has a similar intuition in optimizing based on a

current version of code and reusing the optimizations for future

versions, except we focus on configuring the JVM.

VII. CONCLUSIONS

We evaluate the effects of different JVM configurations

on test runtime. The intuition is that, given developers are

rerunning the same tests during regression testing, if there

are configurations that reduce test runtime on one commit,

reusing these configurations can similarly reduce test runtime

for future commits. Our evaluation involves generating JVM

configurations, which are combinations of JVM configuration

flags, with which to apply to the JVM where tests are run. We

use different strategies for generating configurations: random

generation, machine learning-based compiler autotuning, or

combinatorial testing. Our evaluation on 20 open-source Java

projects shows that different JVM configurations can lead to

reductions in test runtime by 11.90% on average (and up to

43.89%). We find that random generation tends to produce the

best configurations that reduce runtime the most, suggesting

existing work in compiler autotuning or combinatorial testing

are still lacking in this domain. We further evaluate the best

configurations across commits, finding a similar reduction in

runtime. We also find that using the same configurations even

when not running the same tests every time, i.e., running

on top of RTS that runs a subset of tests, can still provide

significant reduction in runtime. Future work should develop

techniques to generate configurations that significantly reduce

runtime more efficiently than random generation. These future

techniques should also be more effective, generating configu-

rations that can result in even greater reductions in runtime.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their comments and

feedback. This work is partially supported by the US National

Science Foundation under Grant Nos. CCF-2107291, CCF-

2217696, and CCF-2313027.

REFERENCES

[1] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Journal of Software Testing, Verification and

Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[2] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in International Symposium

on Software Testing and Analysis, 2015, pp. 211–222.

11

[3] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of testing
less without sacrificing quality,” in International Conference on Software

Engineering, 2015, pp. 483–493.
[4] A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjørner, and J. Czerwonka,

“Optimizing test placement for module-level regression testing,” in
International Conference on Software Engineering, 2017, pp. 689–699.

[5] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco, “Taming Google-scale continuous testing,” in Interna-

tional Conference on Software Engineering, Software Engineering in

Practice, 2017, pp. 233–242.
[6] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive

test selection,” in International Conference on Software Engineering,

Software Engineering in Practice, 2019, pp. 91–100.
[7] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving

regression testing in continuous integration development environments,”
in International Symposium on Foundations of Software Engineering,
2014, pp. 235–245.

[8] “Java 8 documentation,” https://docs.oracle.com/javase/8/docs/technotes/
tools/unix/java.html, 2022.

[9] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano,
“A survey on compiler autotuning using machine learning,” ACM

Computing Surveys (CSUR), vol. 51, no. 5, pp. 1–42, 2018.
[10] A. H. Ashouri, G. Mariani, G. Palermo, and C. Silvano, “A bayesian

network approach for compiler auto-tuning for embedded processors,”
in 2014 IEEE 12th Symposium on Embedded Systems for Real-time

Multimedia (ESTIMedia). IEEE, 2014, pp. 90–97.
[11] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. O’Boyle,

J. Thomson, M. Toussaint, and C. K. Williams, “Using machine learning
to focus iterative optimization,” in International Symposium on Code

Generation and Optimization (CGO’06). IEEE, 2006, pp. 11–pp.
[12] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. O’Boyle, and

O. Temam, “Rapidly selecting good compiler optimizations using per-
formance counters,” in International Symposium on Code Generation

and Optimization (CGO’07). IEEE, 2007, pp. 185–197.
[13] J. Chen, N. Xu, P. Chen, and H. Zhang, “Efficient compiler autotuning

via bayesian optimization,” in 2021 IEEE/ACM 43rd International

Conference on Software Engineering (ICSE). IEEE, 2021, pp. 1198–
1209.

[14] O. Legunsen, A. Shi, and D. Marinov, “STARTS: STAtic Regression
Test Selection,” in International Conference on Automated Software

Engineering (Tool Demonstrations Track), 2017, pp. 949–954.
[15] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An

extensive study of static regression test selection in modern software
evolution,” in International Symposium on Foundations of Software

Engineering, 2016, pp. 583–594.
[16] M. Gligoric, L. Eloussi, and D. Marinov, “Ekstazi: Lightweight test

selection,” in International Conference on Software Engineering (Tool

Demonstrations Track), 2015, pp. 713–716.
[17] R. Kuhn, R. Kacker, and Y. Lei, Introduction to Combinatorial Testing.

Chapman and Hall, 2013.
[18] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM

Computing Surveys, vol. 43, no. 2, pp. 1–29, 2011.
[19] C. Luo, Q. Zhao, S. Cai, H. Zhang, and C. Hu, “SamplingCA: effective

and efficient sampling-based pairwise testing for highly configurable
software systems,” in European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, 2022, pp.
1185–1197.

[20] G. Rothermel and M. J. Harrold, “A safe, efficient regression test selec-
tion technique,” ACM Transactions on Software Engineering Methodol-

ogy, vol. 6, no. 2, pp. 173–210, 1997.
[21] L. Zhang, “Hybrid regression test selection,” in International Conference

on Software Engineering, 2018, pp. 199–209.
[22] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to

large software systems,” in International Symposium on Foundations

of Software Engineering, 2004, pp. 241–251.
[23] A. Shi, P. Zhao, and D. Marinov, “Understanding and improving regres-

sion test selection in continuous integration,” in International Symposium

on Software Reliability Engineering, 2019, pp. 228–238.
[24] A. Celik, M. Vasic, A. Milicevic, and M. Gligoric, “Regression test

selection across JVM boundaries,” in Symposium on the Foundations of

Software Engineering, 2017, pp. 809–820.
[25] A. Gyori, O. Legunsen, F. Hariri, and D. Marinov, “Evaluating regression

test selection opportunities in a very large open-source ecosystem,” in

International Symposium on Software Reliability Engineering, 2018, pp.
112–122.

[26] “Impact of JVM configurations on test runtime dataset,” https://sites.
google.com/view/jvm-impact-on-test-runtime, 2024.

[27] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32,
2001.

[28] Student, “The probable error of a mean,” Biometrika, pp. 1–25, 1908.
[29] “STARTS,” https://github.com/TestingResearchIllinois/starts, 2024.
[30] “GitHub Actions,” https://github.com/features/actions, 2024.
[31] “Travis-CI,” https://travis-ci.org, 2024.
[32] E. D. Ekelund and E. Engström, “Efficient regression testing based

on test history: An industrial evaluation,” in 2015 IEEE International

Conference on Software Maintenance and Evolution (ICSME), 2015, pp.
449–457.

[33] J. Zhang, Y. Liu, M. Gligoric, O. Legunsen, and A. Shi, “Comparing and
combining analysis-based and learning-based regression test selection,”
in International Conference on Automation of Software Test, 2022, pp.
17–28.

[34] D. Elsner, F. Hauer, A. Pretschner, and S. Reimer, “Empirically eval-
uating readily available information for regression test optimization in
continuous integration,” in International Symposium on Software Testing

and Analysis, 2021, pp. 491–504.
[35] Y. Wu, Y. Chen, X. Xie, B. Yu, C. Fan, and L. Ma, “Regression

testing of massively multiplayer online role-playing games,” in 2020

IEEE international conference on software maintenance and evolution

(ICSME), 2020, pp. 692–696.
[36] C. Zhu, O. Legunsen, A. Shi, and M. Gligoric, “A framework for

checking regression test selection tools,” in International Conference

on Software Engineering, 2019, pp. 430–441.
[37] A. Shi, M. Hadzi-Tanovic, L. Zhang, D. Marinov, and O. Legunsen,

“Reflection-aware static regression test selection,” Proceedings of the

ACM on Programming Languages, vol. 3, no. OOPSLA, pp. 187:1–
187:29, 2019.

[38] T. Y. Chen and M. F. Lau, “A new heuristic for test suite reduction,”
Journal of Information and Software Technology, vol. 40, no. 5-6, pp.
347–354, 1998.

[39] ——, “A simulation study on some heuristics for test suite reduction,”
Journal of Information and Software Technology, vol. 40, no. 13, pp.
777–787, 1998.

[40] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong, “Empirical
studies of test-suite reduction,” Journal of Software Testing, Verification

and Reliability, vol. 12, no. 4, pp. 219–249, 2002.
[41] H. Zhong, L. Zhang, and H. Mei, “An experimental study of four typical

test suite reduction techniques,” Journal of Information and Software

Technology, vol. 50, no. 6, pp. 534–546, 2008.
[42] J. Black, E. Melachrinoudis, and D. Kaeli, “Bi-criteria models for

all-uses test suite reduction,” in International Conference on Software

Engineering, 2004, pp. 106–115.
[43] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel, “On-demand test

suite reduction,” in International Conference on Software Engineering,
2012, pp. 738–748.

[44] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization
for modified condition/decision coverage,” in International Conference

on Software Maintenance, 2001, pp. 92–102.
[45] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “An empirical study

of JUnit test-suite reduction,” in International Symposium on Software

Reliability Engineering, 2011, pp. 170–179.
[46] A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov, “Evaluating

test-suite reduction in real software evolution,” in International Sympo-

sium on Software Testing and Analysis, 2018, pp. 84–94.
[47] J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, and L. Zhang,

“Optimizing test prioritization via test distribution analysis,” in European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering, 2018, pp. 656–667.
[48] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression

test case prioritization,” IEEE Transactions on Software Engineering,
vol. 33, no. 4, pp. 225–237, 2007.

[49] T. Mattis and R. Hirschfeld, “Lightweight lexical test prioritization for
immediate feedback,” Programming Journal, vol. 4, pp. 12:1–12:32,
2020.

[50] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive random test
case prioritization,” in International Conference on Automated Software

Engineering, 2009, pp. 233–244.

12

[51] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang,
“How does regression test prioritization perform in real-world software
evolution?” in International Conference on Software Engineering, 2016,
pp. 535–546.

[52] Q. Luo, K. Moran, and D. Poshyvanyk, “A large-scale empirical com-
parison of static and dynamic test case prioritization techniques,” in
International Symposium on Foundations of Software Engineering, 2016,
pp. 559–570.

[53] Q. Peng, A. Shi, and L. Zhang, “Empirically revisiting and enhancing
IR-based test-case prioritization,” in International Symposium on Soft-

ware Testing and Analysis, 2020, pp. 324–336.
[54] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information

retrieval approach for regression test prioritization based on program
changes,” in International Conference on Software Engineering, 2015,
pp. 268–279.

[55] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the
gap between the total and additional test-case prioritization strategies,” in
International Conference on Software Engineering, 2013, pp. 192–201.

[56] A. Sharif, D. Marijan, and M. Liaaen, “Deeporder: Deep learning
for test case prioritization in continuous integration testing,” in 2021

IEEE International Conference on Software Maintenance and Evolution

(ICSME), 2021, pp. 525–534.
[57] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and

Y. Le Traon, “Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test configurations for software product
lines,” IEEE Transactions on Software Engineering, vol. 40, no. 7, pp.
650–670, 2014.

[58] C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto, P. Barros,
and M. D’Amorim, “SPLat: Lightweight dynamic analysis for reducing
combinatorics in testing configurable systems,” in European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering, 2013, pp. 257–267.
[59] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A

comparison of 10 sampling algorithms for configurable systems,” in
International Conference on Software Engineering, 2016, pp. 643–654.

[60] M. Mukelabai, D. Nešić, S. Maro, T. Berger, and J.-P. Steghöfer,
“Tackling combinatorial explosion: A study of industrial needs and
practices for analyzing highly configurable systems,” in International

Conference on Automated Software Engineering, 2018, pp. 155–166.
[61] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-aware regression

testing: An empirical study of sampling and prioritization,” in Interna-

tional Symposium on Software Testing and Analysis, 2008, pp. 75–86.
[62] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and

S. Pasupathy, “Do not blame users for misconfigurations,” in Symposium

on Operating Systems Principles, 2013, pp. 244–259.
[63] R. Cheng, L. Zhang, D. Marinov, and T. Xu, “Test-case prioritization for

configuration testing,” in International Symposium on Software Testing

and Analysis, 2021, pp. 452–465.
[64] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,

U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible frame-
work for program autotuning,” in Proceedings of the 23rd international

conference on Parallel architectures and compilation, 2014, pp. 303–
316.

[65] F. Canales, G. Hecht, and A. Bergel, “Optimization of java virtual ma-
chine flags using feature model and genetic algorithm,” in Companion of

the ACM/SPEC International Conference on Performance Engineering,
2021, pp. 183–186.

[66] J. Dong, Y. Lou, and D. Hao, “SRRTA: Regression testing acceleration
via state reuse,” in International Conference on Automated Software

Engineering, 2021, pp. 1244–1248.
[67] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic test

factoring for Java,” in International Conference on Automated Software

Engineering, 2005, pp. 114–123.
[68] P. Stratis and A. Rajan, “Speeding up test execution with increased

cache locality,” Journal of Software Testing, Verification and Reliability,
vol. 28, no. 5, pp. 1–17, 2018.

13

