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A B S T R A C T

Grain boundary (GB) properties greatly influence the mechanical, electrical, and thermal response of poly-
crystalline materials. Most computational studies of GB properties at finite temperatures use molecular
dynamics (MD), which is computationally expensive, limited in the range of accessible timescales, and requires
cumbersome techniques like thermodynamic integration to estimate free energies. This restricts the reasonable
computation (without incurring excessive computational expense) of GB properties to regimes that are often
unrealistic, such as zero temperature or extremely high strain rates. Consequently, there is a need for simulation
methodology that avoids the timescale limitations of MD, while providing reliable estimates of GB properties.
The Gaussian Phase-Packet (GPP) method is a temporal coarse-graining technique that can predict relaxed
atomic structures at finite temperature in the quasistatic limit. This work applies GPP, combined with the
quasiharmonic approximation for computing the free energy, to the problem of determining the free energy
and shear coupling factor of grain boundaries in metals over a range of realistic temperatures. Validation
is achieved by comparison to thermodynamic integration and quasiharmonic approximation (QHA), which
confirms that the presented approach captures relaxed-energy GB structures and shear coupling factors at finite
temperature with a high degree of accuracy, and it performs significantly better than QHA on hydrostatically
expanded 0 K structures.

1. Introduction

Mechanical [1], thermal [2], electrical [3] or chemical [4] proper-
ties of polycrystalline materials are greatly influenced by grain bound-
ary (GB) properties [5]. For example, the mechanical strength of poly-
crystals can both increase and decrease due to the presence of grain
boundaries [6]. A well-known weakening mechanism is the segregation
of alloying solute atoms around GBs, which promotes intergranular
fracture, thus embrittling the material. On the other hand, Bechtle et al.
[4] showed that increasing the number of special boundaries (mostly
twin boundaries) in nickel to reduce hydrogen-induced intergranular
embrittlement can result in an increased tensile ductility. Another
work by Kuzmina et al. [7] showed that the driving force for solute
segregation is linked to the GB energy. By lowering the GB energy, the
driving force for segregation is decreased, delaying the embrittlement
temperature. GBs can also act as strengthening agents for a material by
impeding dislocation propagation. One of the well-known strengthen-
ing mechanisms is the Hall–Petch effect [8], by which the yield strength
of a solid can be increased by reducing the grain size. This increases
the density of GB area, resulting in an increasing competition between
GB phenomena and dislocation-mediated plasticity. For example, Taali
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et al. [9] showed that finer grains in copper sheets increased tensile
strength and by tuning grain size across the thickness of the sheet ten-
sile strength and ductility could be controlled. Hence, by engineering
the properties of GBs it is possible to substantially enhance mechanical
properties. This proves the need for an increased understanding and
modeling of GB properties.

Experimental methods are essential to the understanding of GBs, but
even modern experimental techniques suffer from significant challenges
when exploring GB intrinsic behavior [10] and cannot always provide
quantitative results [8]. For example, experimental measurements of
GB mobility during recrystallization are difficult to perform, and some
GB structures have rare natural occurrence or are experimentally inac-
cessible [10]. Therefore, the theoretical and computational modeling
of GBs is of great scientific and technological interest. Modeling of
GBs goes back to the classical low-angle model of Read and Shockley
[11] in the 1950s and the introduction of the coincident site lattice
(CSL) and structure identification [12]. Friedel et al. [13] performed
one of the first GB atomistic energy calculations, using an experimen-
tally calibrated interatomic potential for aluminum and iron. Other
early studies [14,15] showed the multiplicity of GB energy metastable
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states. In atomistic simulations, this necessitates the exploration of rigid
translations parallel to the GB plane to adequately sample the different
metastable states [16–18]. Over the past several decades, there have
been numerous robust computational studies of GB structures and
energies [19–26]. However, while most of these computational studies
have considered 0 K simulation conditions using Molecular Statics
(MS), finite-temperature effects are well-known to strongly influence
the mechanical properties of GBs [27].

To study GB properties under finite-temperature conditions, atom-
istic techniques such as Molecular Dynamics (MD) or Monte–Carlo
(MC) sampling methods are commonly used. These have provided
many insights into the effect of temperature on GB properties such as
the complex temperature dependence of GB mobility [28]. However,
their computational cost and complexity compared to 0 K MS limit
the explorable space of GBs. Moreover, MD calculations of the free
energy are complicated, as entropy is not directly accessible from the
generated atomic trajectories. Occasional finite-temperature atomistic
simulations that compute GB entropy (including anharmonic effects)
date back to the work of Yip et al. [29], who obtained a reference
entropy using the vibrational spectrum from the velocity autocorrela-
tion function at low temperatures (where the harmonic approximation
(HA) is valid). To compute entropies at the desired higher levels of
temperature, where anharmonic effects are important, thermodynamic
integration (TI) was used, with the aforementioned reference state
serving as the starting point of the thermodynamic path. The studies
that have been conducted since then (see, e.g., [30–33]) have computed
finite-temperature free energies using the Frenkel–Ladd path [34] and
an Einstein solid as the reference state. This methodology has also been
applied to GB phase transformations [35] by using non-equilibrium
states instead of equilibrium ones along the Frenkel–Ladd path to
improve the efficiency of the calculations [35,36].

An alternative family of techniques used for investigating the ther-
modynamic properties of GBs are free energy relaxation methods.
These methods are less accurate but computationally more accessi-
ble than MD. In these methods, the integration of the dynamical
equations of motion is bypassed by approximating the free energy
using a simplified vibrational density of states (DOS). Some of the
techniques of this type include the Local Harmonic approximation
(LH) [37,38], the Variational Gaussian (VG) approximation [37] and
the temperature-dependent interatomic forces introduced by Sutton
[39]. Such techniques rely on the assumption that atoms are uncoupled
harmonic oscillators, whose stiffness depends on the mean positions
of atoms through the interatomic potential V . The free energy of the
solid is then calculated by minimization with respect to the atomic
mean positions and vibrational frequencies. The combination with
spatial coarse-graining has also made such methods popular in the
quasicontinuum framework [40,41]. These techniques are accurate at
low temperature but become unreliable at higher temperature or for
complex crystalline defects. Improvements have been reported (up
to about half the melting temperature of a given potential) by rein-
troducing coupling, as in the Quasi–Harmonic approximation (QHA).
Although there has been some success using the QHA to investigate GB
energies [42–46] (by approximating the potential energy of the system
up to second order about the finite-temperature equilibrium atomic
positions), the free energy expression is too complex to be numerically
minimized. Therefore, the QHA does not offer a practical free energy
minimization alternative to the aforementioned techniques.

The limitation of the state of the art in finite temperature GB cal-
culations is computational efficiency. Surveys of finite-temperature GB
properties over the 5D GB orientation space demand a highly efficient
computational methodology, due to the number of boundaries and
the sometimes extremely large periodic cells necessary to resolve the
boundaries. This work aims to address this need by combining the QHA
with a statistical mechanics-based framework for solving quasistatic
atomic relaxation, referred to as the Gaussian Phase Packets (GPP)
approximation [47], to calculate GB properties at finite temperature

Fig. 1. Schematics of the different GB geometries used in this work, all with the
same dimensions Lx × Ly × Lz. (a) Geometry of a bicrystalline sample with two free
surfaces at the top and bottom, and the GB plane centered at y = 0. (b) Geometry of a
monocrystalline slab with the crystallographic orientation of one of the two grains and
the dimensions of the bicrystalline sample. (c) Bicrystalline sample with red shaded
regions representing the subset of atoms selected for the subsystem approach with
2dsub = Ly∕2, where Ly is the dimension of the samples in the y-direction.

efficiently. This enables the accelerated calculation of atomic positions
along with increased accuracy in the calculation of relaxed atomic
structures. The remainder of this work is structured as follows. In
Section 2, the methodologies used in this work for computing GB free
energy and quasistatic shear-coupling factors, using the GPP framework
and the QHA, are presented. Section 3 summarizes the set of investi-
gated GBs and reports the obtained free energies of the lowest-energy
metastable states from 100–500 K together with an analysis of their
shear coupled behavior. Finally, we summarize the highlights of the
current work, the advantages and disadvantages of the GPP framework
for the study of GB properties, and potential future applications in
Section 4.

2. Methodology

This work presents finite-temperature calculations of the structure
and free energy of a series of symmetric tilt grain boundaries (STGB)
of face-centered cubic (FCC) Cu at temperatures of 100, 200, 300,
400, and 500 K. The method is agnostic to the specific choice of
potential. For purposes of verification, the potential of Mishin et al.
[48] is used in this work, which has been fitted to ab initio results for
twin boundary energies and several other non-equilibrium structures.
While it remains difficult to validate this (or any) potential against
experimental GB energy data [49], it has been shown that potentials
exhibit a high degree of consistency in GB energy calculation up to a
potential-dependent scaling factor [50].

STGBs can be described by the relative orientation of the grains
forming the GB and the crystallographic orientation of the GB plane
normal n. The relative orientation of the grains is specified by the angle
� by which one grain is rotated with respect to the other about the tilt
axis ô (see Fig. 1). We have considered a total of 19 values of � for
ô = [0 0 1], and 30 values of � for ô = [0 1 1], each having a GB plane
with a unique n. We add two extra degrees of freedom s1 and s2 that
define the Cartesian components (along the x- and z-axes, respectively)
of the equal and opposite translation vectors s = [s1, 0, s2] and −s =

[−s1, 0,−s2], respectively, applied to each grain of the bicrystal parallel
to the GB plane, see Fig. 1a [21]. This allows the sampling of multiple
metastable states for each {ô, �,n} triplet. Additionally, for metastable
states with minimum free energy in each set of metastable states with
common triplet {�, ô,n}, we perform quasistatic displacement-driven
shear (DDS) simulations, as outlined in Section 2.4. Further details on
the sampled values of {s1, s2} and specific geometric parameters used
in the simulations will be presented along with the results in Section 3.
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2.1. Grain boundary free-energy calculation

The GB free energy 
gb is defined as the excess Gibbs free energy
per area induced by a GB in an otherwise defect-free crystal [51].
We consider stress-free grains, reducing the Gibbs to the Helmholtz
free energy [52]. To compute this quantity, we consider a bicrystalline
sample with the GB plane normal n aligned along the y-axis, GB tilt axis
ô aligned along the z-axis, and two free surfaces parallel to the GB plane
(Fig. 1a). To extract 
gb we consider two methods that we will refer to
as the ‘full-system’ approach and the ‘subsystem’ approach [35].

The full-system approach requires the absolute free energy of three
geometries. The first geometry is the aforementioned bicrystalline sam-
ple. The free energy of this bicrystal will be denoted by bi, the number
of atoms it contains by Nbi, and the area of the GB by Agb (which
is identical to the area of each free surface (Asurf )). The free energybi contains both the excess free energy introduced by the GB in the
bulk material and the excess free energy introduced by the two free
surfaces. We refer to this excess surface free energy per unit area as

surf . To compute the total surface free energy 2
surfAsurf , we use a
monocrystalline slab containing identical surfaces as the bicrystal, as
shown in Fig. 1b. This system has free energy slab and Nslab atoms.
Lastly, computing 
gb and 
surf requires the energy of atoms in the
bulk material. This is obtained by using a third, infinite (using fully
periodic boundary conditions) monocrystalline sample, having a free
energy bulk and Nbulk atoms, so the free energy per atom is simply
fbulk = bulk∕Nbulk. Having computed the free energy of these three
systems, the bulk and surface free energy contributions are subtracted
from bi to yield the GB free energy as


 full
gb

=
bi −Nbifbulk

Agb
− 2
surf , where 
surf =

slab −Nslabfbulk

2Agb
.

(1)

The subsystem approach is an efficient approximation that only
requires the first two geometries of the previous approach, namely the
bicrystalline and monocrystalline slabs. In this approach we compute
the free energy of the subset of atoms of the bicrystalline sample located
a distance smaller than dsub from the GB plane (highlighted in red in
Fig. 1c). We denote the free energy and the number of atoms of the
subset by ̃bi and Ñbi, respectively. ̃bi contains the full contribution of
the GB and none from 
surf for appropriately chosen dsub and sample
dimensions, which are detailed and justified in Section 3. Thus, by
subtracting the free energy of the bulk from ̃bi, we can directly
extract the excess energy introduced by the GB, while bypassing the
computation of the surface free energy. To obtain the free energy of
the bulk we select from the monocrystalline slab from the previous
approach an analogous subset of atoms with the same dimensions as
the subset selected in the bicrystal, as this subset is also free from 
surf .
We denote the free energy and the number of atoms of this subset
̃bulk and Ñbulk, respectively, and the bulk free energy per atom f̃bulk =̃bulk∕Ñbulk. The excess free energy per unit area of the GB obtained by
this subsystem approach is referred to as 
sub

gb
and given by


sub
gb

=
̃bi − Ñbif̃bulk

Agb

. (2)

Due to the higher efficiency of the subsystem approach, we use it for
all GB free energy calculations in this work. The full-system approach
is only used in the convergence analysis shown in Appendix A, where
both approaches are compared for validation.

On all samples we impose periodic boundary conditions in the x-
and z-directions and free boundary conditions in the y-direction for
the bicrystalline and monocrystalline slabs. The bulk sample has full
periodic boundary conditions and the same crystallographic orientation
as the monocrystalline slab and one of the grains of the bicrystal. The
three samples were chosen to have the same dimensions Lx, Ly, and

Lz, which were selected according to a convergence analysis (which
will be presented in Appendix A). Identical dimensions between the
samples ensure that the existing phonon modes in each sample are
constrained to the same range of wavelengths. (A bulk sample larger
than the bicrystalline sample includes bulk phonon modes absent in
the bicrystal sample, so that the larger-wavelength bulk modes not
captured in the bicrystal would incorrectly contribute to the GB excess
entropy.) Keeping the same dimensions when computing the spring
constants for an Einstein solid, as explained in [36], follows the same
argument. As a result of maintaining the same dimensions, the con-
verge to 
gb with sample dimensions is faster than when using an
independently converged fbulk, as shown in the convergence analysis in
Appendix A.

Prior to applying any of the above two methods, we must ensure
that the atomic structures of the samples correspond to a local min-
imum of the free energy. As an efficient and accurate technique for
computing such equilibrium structures, referred to as relaxed structures
hereafter, we here use the GPP framework of Gupta et al. [47] imple-
mented in the open-source code AQCNES [53], which is summarized
in the following.

2.2. Finite-temperature atomic structure relaxation via Gaussian phase
packets

In this section, we review the Gaussian Phase Packet (GPP) frame-
work to the extent relevant to this work. For a detailed explanation
of the approach, the reader is referred to Gupta et al. [47]. The GPP
framework is used in this work to find atomic configurations with
minimum free energy (i.e., the relaxed atomic structures).

Consider an atomic ensemble of N atoms defined by their positions
q = {qi(t) ∶ i = 1,… , N} and momenta p = {pi(t) ∶ i = 1,… , N} at
time t. Using the condensed representation z = (p(t), q(t)) ∈ R

6N of
the phase-space coordinate, the GPP framework defines a probability
distribution function f (z, t), which quantifies the probability density of
finding the atomic ensemble in a volume dz of the phase space at time t.
More specifically it proposes a multivariate Gaussian for the probability
distribution function, i.e.,

f (z, t) =
1

(t)
exp

[
−
1

2
(z − z̄(t)) T�−1(t) (z − z̄(t))

]
, (3)

where z̄(t) = ⟨z⟩ = ∫ zf (z, t) dz denotes the mean phase-space
coordinate, and � ∈ R

6N×6N is the covariance matrix of interatomic
positions and momenta. (t) is the partition function, defined via
∫ f (z, t) dz = ⟨1⟩ = 1, integrating over all of phase space (and de-
noting phase-space averages by ⟨⋅⟩). Any thermodynamical quantity of
interest can then be obtained as an integral of the observable weighted
by the distribution function f (z, t) over the full phase space. Hence,
determining the statistical parameters of the probability distribution
function is the main objective of this approach as opposed to computing
instantaneous degrees of freedom as in MD. The evolution equations
for these statistical parameters can be obtained by inserting the above
ansatz into Liouville’s equation [54]. Since solving for the evolution
of all parameters in the covariance matrix (�(t)) becomes intractable
for large systems, we resort to an approximation of the probability
distribution by assuming interatomic independence, which transforms
the total probability distribution function into a product of individual
Gaussian phase packets, according to

f (z, t) =

N∏
i=1

fi(zi, t) with

fi(zi, t) =
1

i(t)
exp

[
−
1

2

(
zi − z̄i(t)

)
T�−1

i
(t)

(
zi − z̄i(t)

)]
.

(4)

For further simplification (and numerical tractability), a hyper-
spherical shape of the Gaussian distribution function is assumed for
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every atom. This simplifies the local covariance matrix �i of atom i

into four diagonal matrices, such that

�
(p,p)

i
=

⎡
⎢⎢⎣


i 0 0

0 
i 0

0 0 
i

⎤
⎥⎥⎦
, �

(q,q)

i
=

⎡
⎢⎢⎣

�i 0 0

0 �i 0

0 0 �i

⎤
⎥⎥⎦
, and

�
(p,q)

i
= �

(q,p)

i
=

⎡⎢⎢⎣

�i 0 0

0 �i 0

0 0 �i

⎤⎥⎥⎦
.

(5)

The set of parameters to solve for every atomic site now reduces to
{p̄i, q̄i, 
i, �i, �i}. Since we are interested in the thermodynamic equi-
librium configuration of the atomic ensemble, we use the quasistatic
limit of the evolution equations for the statistical parameters. This leads
to a vanishing mean momentum p̄i and mean thermal momentum �i
for every atom. The equilibrium equations left to solve at every atomic
site are the vanishing of the mean physical and thermal forces, which
implies

⟨Fi⟩ = 0 and


i

mi

+
⟨Fi(q) ⋅ (qi − q̄i)⟩

3
= 0,

(6)

where mi denotes the mass of atom i, F i is the net force on atom i. The
solution of Eq. (6) is the set of mean positions q̄ = {q̄i ∶ i = 1,… , N}

and position variances � = {�i ∶ i = 1,… , N} for all atoms. This
solution may be re-interpreted as the minimizer of the free energy of
the system [47]. The momentum variance 
i is obtained by a-priori
knowledge of the thermodynamic process involved in equilibriating
the system. In this work, we are interested in equilibrium states of
a canonical ensemble, and thus we impose isothermal conditions by
setting 
i = mikBT for every atom [47], where T is the temperature of
the ensemble. For numerical computations, phase averages ⟨⋅⟩ in Eq. (6)
are computed using Gaussian quadrature, while iterative relaxation
is performed using the Fast Inertial Relaxation Engine (FIRE) [55],
starting from an initial guess {�i, q̄i}. Note that, in the quasistatic limit,
this becomes equivalent to the max-ent [56], DMD [57], and variational
Gaussian (VG) [37] frameworks.

The main difference between this approach and the local harmonic
(LH) approximation [37] is that the position variances here are al-
lowed to relax independently from the mean positions, whereas the
vibrational frequencies in the LH approximation are computed as the
eigenvalues of the local dynamical matrices at every relaxation step.
The GPP approach hence avoids the need for computing third-order
derivatives and provides an additional degree of freedom per atom
for the system to reach equilibrium. This approach has been shown
to yield computationally efficient and accurate finite-temperature pre-
dictions of surface energies and elastic parameters [58] as well as
free energy variations across phase transitions [59] when compared
to MD. However, it is important to note that the interatomic indepen-
dence assumption (or local harmonicity) destroys all information about
the complete phononic vibrational spectrum of the solid. Foiles [45]
showed that, while this assumption yields a fairly accurate prediction
of relaxed atomic mean positions, absolute free energy values in the
case of defects can be inaccurate [60]. This is because the free energy
is directly proportional to the system’s entropy, which is sensitive to
the eigenvalues of the dynamical matrix [61]. For a more detailed
discussion, see Appendix B.

A more accurate alternative for free energy estimation, given a
relaxed configuration pre-computed with GPP, is the fully coupled
QHA (see Section 2.3). This combined approach eliminates the need
to assume interatomic independence (improving the free energy esti-
mation) without the excessive cost of using QHA to find equilibrium
structures. In many works, the finite-temperature relaxed configuration
used under the quasiharmonic approximation is considered to be simply
a hydrostatic expansion of the 0 K relaxed configuration [30,35,45].
However, this discards the possibility of individual atomic relaxations

around defects as a function of temperature — which is of importance
when considering GBs at finite temperature. Therefore, we pursue a
two-step strategy in the following. We first use the above interatomic
independent GPP formulation to solve for relaxed structures of GBs at
finite temperature (in which anharmonic effects from the potential and
local effects of crystalline disorder are taken into account) and then, in
a post-processing step, use the QHA to recreate the complete dynamical
matrix about the GPP-computed mean atomic positions and calculate
the value of the free energy, as explained in the following.

2.3. Free energy calculation via quasi–harmonic approximation

The classical quasiharmonic approximation (QHA) relies on the as-
sumption that the atomic displacements in a solid can be approximated
as the superposition of the harmonic vibrational modes about their
equilibrium positions q0(T ) = {qi0(T ) ∶ i = 1,… , N} at a temperature
T . The potential energy of the ensemble is approximated by a Taylor
series expansion up to second order, yielding

V (q) ≈ V (q0) + (qi − qi0)
T 1

2

)2V

)qi)qj

|||||qi0 ,qj0
(qj − qj0). (7)

The 3N vibrational frequencies ! = {!n ∶ n = 1,… , 3N} and
the normal vibrational modes, dependent on the equilibrium posi-
tions, can be obtained by diagonalizing the dynamical matrix (i.e., the
mass-weighted force constant matrix)

D =
∑

Dij =
1√
mimj

)2V

)qi)qj

|||||qi0 ,qj0
. (8)

Once the vibrational frequencies are known, the free energy of the
ensemble can be computed from the QHA as [62]

QHA(T ) = V (q0) + kBT

3N−3∑
n=1

ln

(
ℏ!n(q0)

kBT

)
, (9)

where we discard the three null eigenvalues corresponding to rigid-
body modes (kB is Boltzmann’s constant, and ℏ = ℎ∕(2�) with Planck’s
constant ℎ). It must be noted that under the QHA, the expansion
in Eq. (7) is about the equilibrium positions q0(T ) at finite temper-
ature T . In practice, obtaining 0 K equilibrium positions is trivial in
comparison with their finite temperature counterparts. For that reason,
the finite temperature positions for the QHA are usually approximated
by hydrostatically expanding the 0 K equilibrium positions according
to the bulk thermal expansion coefficient. As mentioned above, this
discards the possibility of individual atomic relaxations at finite tem-
perature, which results in inaccuracies. As a remedy, we use the GPP
framework to efficiently obtain the minimum free energy structures and
then use the QHA as a mere post-relaxation step to obtain accurate free
energy values using the relaxed structures. Hence, the free energy, as
required, e.g., in Eq. (2), is obtained as

 (T ) = V (q̄) + kBT

3N−3∑
n=1

ln

(
ℏ!n(q̄)

kBT

)
, (10)

where q̄ is the set of mean atomic positions at finite temperature,
which satisfies Eq. (6) (note the subtle but important difference be-
tween Eqs. (9) and (10)). This allows us to exploit the computational
efficiency of the GPP framework for obtaining accurate relaxed mean
atomic positions at finite temperature with accurate free energy pre-
dictions using the complete vibrational spectrum about those relaxed
positions as obtained from the QHA.

2.4. Quasistatic shear coupling analysis

Plasticity mediated by grain boundaries is increasingly understood
to be a dominant deformation mechanism in many systems, including
nanocrystalline (e.g. [63,64]) and thin-film materials (e.g. [65]). A key
GB behavior that accommodates this phenomenon is shear-coupling,
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Fig. 2. Initial (top) and intermediate (bottom) atomic structures of a bicrystalline
sample containing a �17 GB in a quasistatic DDS simulation at 300 K.

i.e. the shearing of a region swept by a moving boundary. A key
property determining a GB’s shear-coupling behavior is the shear cou-
pling factor, �, which can be determined quasistatically at 0 K using
traditional atomistics [66]. Here, the quasistatic setting of GPP enables
the determination of the shear coupling factor at finite temperature.

To this end, we subject the different equilibrated GBs configurations
at each temperature T to a quasistatic, displacement-driven shear (DDS)
loading. To realize this in practice, we first select two slabs of atoms
at the free surfaces of the bicrystal, hereafter referred as the ‘driving
atoms’. The DDS simulation is then performed by displacing both slabs
in opposite directions along the x-axis in increments of 0.1 Å each.
After each displacement increment, a relaxation is performed to solve
Eq. (6) for all atoms except for the driving atoms, whose degrees of
freedom are kept fixed during this relaxation. This process is repeated
for 100 iterations achieving a total shear displacement of 20 Å. The
shear coupling factor is given by

� = ds∕dn, (11)

where ds is the total shear displacement and dn the migration distance
of the GB in the normal direction, as displayed in Fig. 2. To extract
� from the DDS simulations, we track the position of the GB plane by
performing common neighbor analysis (CNA) in OVITO [67]. We then
perform a linear fit from the first slip of the GB plane and obtain � as
the slope of the fitted function.

3. Results and discussion

Over 5,000 initial bicrystalline geometries and the corresponding
monocrystalline slabs, each corresponding to a unique set {�, ô,n,

s1, s2}, were structurally relaxed using GPP at temperatures of 100,
200, 300, 400 and 500 K. To create these initial structures, we used a
modified version of the script of Runnels et al. [68]. The in-plane trans-
lational degrees of freedom {s1, s2} along the x- and z-directions range
from 0 to 0.5

[
p1(T ) − 0.015a(T )

]
and 0 to 0.5

[
p2(T ) − 0.015a(T )

]
, respec-

tively, in steps of 0.015a(T ). Lattice spacing a(T ) is the temperature-
dependent bulk atomic spacing, which was set to aGPP from Table 1,
while p1(T ) and p2(T ) denote the periods of the CSL lattice in the
GB plane directions x and z, respectively. The bulk atomic spacing
aGPP(T ) was determined by solving Eq. (6) for a cube of 16 × 16 × 16
FCC unit cells with periodic boundary conditions in every direction
at temperature T with the constraint of zero hydrostatic mechanical
pressure. As shown by Saxena et al. [59], the inobjective nature of
the numerical quadrature used to compute phase averages in Eq. (6)
leads to slight variations in the relaxed lattice spacing values for
different initial lattice orientations of the bulk. Since the quadrature

Table 1
Bulk equilibrium lattice spacings at different temperatures, obtained with GPP as well
as from a zero-pressure, isothermal ensemble using MD.

T (K) 100 200 300 400 500

aGPP (Å) 3.6208 3.6262 3.6315 3.6366 3.6416
aMD (Å) 3.6205 3.6260 3.6316 3.6378 3.6442

perturbations in this work are always chosen to be aligned with the
Cartesian directions, monocrystalline slabs with the same orientation
as the bicrystal are used and relaxed to match the bulk lattice spacing
in both samples and thus to improve the accuracy when computing the
GB energy. Lastly, when setting up the initial GBs, one of the atoms in
every pair of atoms closer than ddel = 0.5a(T ) is deleted to avoid atoms
being too close for relaxation. The critical value was selected, as it was
verified to identify minimum-energy metastable states with the same
energies reported by Cahn et al. [69] at 0 K.

To determine the computationally optimal size of the bicrystalline
samples (sufficiently large for accuracy but sufficiently small for nu-
merical efficiency), we performed a convergence analysis to assess
the influence of Lx, Ly, and Lz on 
sub

gb
and 
 full

gb
of a �5 GB (details

are summarized in Appendix A). Based on the convergence study, all
samples were constructed with a GB plane area larger than 7.5 nm2 with
Lz = 32.5872 Å for the cases with ô = [0 0 1] and Lz = 30.7235 Å for
ô = [0 1 1] at 100 K. At higher temperatures, these dimensions were ex-
panded according to the bulk thermal expansion predicted by the GPP
framework (Table 1). The distance between the GB plane and the free
surfaces in the bicrystalline samples was at least 40 Å, so Ly ≥ 80 Å in
all initial geometries. Moreover, the distance used to choose the subset
of atoms needed in the subsystem method (detailed in Section 2) was
dsub = Ly∕4 (see Fig. 1). Lastly, as explained in Section 2, we compute
free energies of stress-free grains, so that the periodic dimensions of the
bicrystalline and monocrystalline geometries along the x- and z-axes
were constant during relaxation. Following Freitas et al. [35], this is
equivalent to computing 
gb in a stress-free, infinite bulk, thus avoiding
grain size effects. Investigating the stress dependence of the GB free
energy, as reported by Frolov and Mishin [51,52], is a potential further
step, which lies outside the scope of this work.

3.1. Grain boundary free energies and structures

After relaxing the initial geometries and computing their free ener-
gies using Eq. (10), we select for each GB configuration those
metastable states with the lowest GB free energy 
gb. The GB free ener-
gies of these metastable states are shown in Fig. 3 for the temperature
range from 100 to 500 K. For comparison, the initial geometries yield-
ing these selected metastable states were subjected to non-equilibrium
thermodynamic integration (TI) [36] along the Frenkel–Ladd path, and
the resulting GB free energies are also shown in Fig. 3. (For a descrip-
tion of the Frenkel–Ladd TI method and details of the simulation setup,
see Appendix C.) Overall, the GPP-relaxed structures in combination
with free energy determination by QHA show good agreement with the
TI results — in all those cases were the latter yield reasonable results.
TI simulations, especially at elevated temperature, are less reliable for
the following reason (as reflected in the reported TI data in Fig. 3).

For the non-equilibrium Frenkel–Ladd TI method to provide reliable
data, energy dissipation errors introduced by the non-equilibrium na-
ture of the method must be cancelled by combining the forward and
backward paths. However, atomic diffusion can break this condition,
introducing errors in the TI data [36]. During TI simulations, the atomic
mean squared displacement (MSD) was collected for every atom to
extract a measure of atomic diffusion. Cases with at least one atom
having a MSD greater than the squared nearest-neighbor distance are
shown in Fig. 3 as open square markers, whereas all other TI data are
shown by solid square markers. Most [0 0 1] GBs at 400 K and above
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Fig. 3. Free energies of selected metastable states with lowest 
gb as obtained from GPP vs. from TI. Squares represent the average value of 5 TI runs with error bars extending from
minimum to maximum values among the 5 runs. Open squares represent energy values obtained from TI runs (some atoms diffused further than a2∕2, so that the non-equilibrium
Frenkel–Ladd path does not provide correct data).

Fig. 4. (a) Maximum number of atoms with mean squared displacement (MSD) larger than the FCC squared nearest-neighbor distance a
√
2∕2, registered among 5 TI runs for each

GB case with tilt axis ô = [0 0 1] at different temperatures. (b) Maximum MSD registered among 5 TI runs for each GB case with tilt axis ô = [0 0 1] at different temperatures. (The
�-axes are not to scale for improved visibility.).

present at least one atom with a MSD larger than the squared nearest-
neighbor distance (implying significant deviations from their initial
positions), whereas none of the [0 1 1] cases do.

To further illustrate the degree of diffusion during the TI runs for
each case, Fig. 4 shows the number of atoms presenting MSDs larger
than the squared nearest-neighbors distance for each case, together
with the maximum atomic MSD recorded during the simulation. At
400 K, those cases with � = 16.26◦, � = 18.93◦ show one to two
orders of magnitude more atoms with a MSD larger than the squared
nearest-neighbor distance than the other cases. Moreover, at 400 K
they show maximum MSD values over 100Å

2
. This indicates structural

instability and hops of the system from one minimum to another in
the potential energy landscape. Notably, out of the selected metastable
states displayed in Figs. 3 and 4, only the two cases mentioned above
showed at least one negative eigenvalue (excluding the three lowest
ones, which correspond to rigid-body motion and are numerically 0).1

More specifically, for � = 16.26◦ negative eigenvalues were obtained
at 100 K and higher temperatures, and for � = 18◦ at 300 K and
above. This overall clearly highlights the limitations of TI, especially
at temperatures at and above 400 K, where the presented GPP/QHA
strategy still presents reliable data without numerical complications.

1 Note that negative eigenvalues here do not imply instability, as those are
computed with the Hessian of the potential at 0 K.

Additionally, as shown later in Appendix A, our approach yields
results more accurate than the classic QHA approach (see Fig. 10). The
average relative errors across the ô = [0 0 1] cases are approximately
0.02%, 0.08%, 0.15%, and 0.38% for 100, 200, 300 and 400 K, re-
spectively, where the cases corresponding to � = 16◦ and 18° have
been discarded due to structural instability and thus large errors in
the TI data, as discussed above. Relative errors at 500 K are not
reliable by the same argument, as most GBs show instabilities at this
temperature. Similar errors across the ô = [0 1 1] cases are observed,
approximately 0.2%, 0.06%, 0.14%, 0.25%, and 0.28% for 100, 200,
300, 400 and 500 K respectively. The higher average relative error at
100 K compared to the [0 0 1] counterpart is due to the higher relative
errors of the cases with � = 117.56◦ and � = 121◦. When neglecting
these two cases, the error decreases to 0.03% at 100 K, which is
comparable to the cases with tilt axis [0 0 1].

Inspection of the structures for the aforementioned cases of � =

117.56◦ and � = 121◦ exposes that the TI simulations yield a higher-
energy metastable state than that obtained from GPP at 100 K. The
two different minimum-energy metastable states for the case with
� = 117.56◦ are shown in Fig. 5. They correspond to the 100 K
structure (different to the metastable state predicted by GPP) and 200 K
structure (equivalent to the GPP predicted metastable state) from the
TI simulations. As detailed in Appendix C, the initial geometries for
each GB at each temperature that relaxed to the metastable states with
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Fig. 5. Two different �67(7 7 6)[0 1 1](� = 117.56◦) metastable states, resulting from 0 K relaxation prior to TI from the same initial geometries (only differing by the lattice spacing
aMD(T ), as given in Table 1).

Fig. 6. 
gb from twenty different initial geometries with {ô, �} = {[0 1 1], 117.56◦}

relaxed with GPP and computed using Eq. (10) (circles) and 
gb obtained from initial
geometry with id = 16 through TI (lines).

lowest free energy (those shown in Fig. 3) are subjected to TI. Before
the TI, a relaxation at 0 K and an NVT equilibration are performed
to prepare the structure for the TI path. For these two angles, the
initial relaxation and equilibration of the selected initial structures for
the 100 K case yield a different metastable state compared to that
obtained from GPP for this same initial geometry at 100 K. This is
consistent with the observed discrepancies in energy between GPP and
TI at 100 K for these two angles and the associated jump in free energy
shown by TI (Fig. 3). As noted above, the initial geometries have
different lattice spacings (and therefore in-plane displacements s1, s2)
at different temperatures according to the bulk thermal expansion,
which can potentially lead to different relaxed structures at different
temperatures for equivalent initial geometry parameters. Furthermore,
we note that among the different relaxed structures obtained from GPP
for � = 117.56◦, we can find states with energies in the same range
to the higher-energy state obtained from TI at 100 K and shown in
Fig. 5(a). This is depicted in Fig. 6, which presents the GB free energies
obtained with GPP for a subset of the relaxed initial geometries with � =

117.56◦. The metastable states with highest energies are consistent with
the results obtained by TI, and the jump in the free energy decrease
can also be observed. More notably, some of these cases, specifically
geometries with IDs 11 and 19, switched to a lower energy metastable
state at higher temperatures as observed in the TI data. Hence, using the
GPP for sampling metastable states can yield different GB metastable
states when starting from the same initial geometry as temperature
increases, thus demonstrating its ability to access a large number of GB
structures and to capture shifts in minimum-energy GB configurations
with temperature.

3.2. Shear coupled motion

The shear-coupled motion of those minimum-energy states shown in
Fig. 3 was studied at temperatures between 100 and 500 K. To this end,
the GPP framework was used to perform quasistatic DDS simulations

Fig. 7. Computed shear coupling factor � for different metastable states of [0 0 1] tilt
boundaries at different temperatures. Solid lines represent the analytical values of the
two possible perfect coupling modes.

and compute their shear coupling factors �, following the methodology
detailed in Section 2.

Let us first discuss the data obtained for the [0 0 1] tilt GBs, which
are shown in Fig. 7. (Cases where � cannot be resolved, such as
in cases where the GB structure becomes unstable and diffuses into
scattered defects impeding the identification of the GB position, are
not included.) Most of the [0 0 1] tilt GBs move under perfect coupling
following one of the two modes predicted by the Frank–Bilby equation

�⟨100⟩ = 2 tan
(
�

2

)
and �⟨110⟩ = −2 tan

(
�

4
−

�

2

)
(12)

as reported by Cahn et al. [69]. While most GBs show perfect coupling
in the ⟨110⟩-mode, lower-angle cases with � = 14.25◦, 16.26◦, 18.94◦

show coupling values close to the perfect ⟨100⟩-mode. Deviations from
perfect coupling in these three cases can be attributed to the loss of
their initial perfect kite structure in favor of disordered structures as
the shear displacement increased. This is in line with the observed
structural instability that these metastable states presented during TI, as
discussed above. Overall, these results agree partially with [69], as the
value of the shear coupling factors for each mode are constant across
temperatures and are thus a geometric factor. However, Cahn et al. [69]
also observed cases with angles � = 22.62◦ and � = 28.07◦ to move in
the ⟨100⟩-mode in MD simulations at 200 K and 400 K, respectively.
The reason for the disagreement between the present work and the
latter might be explained by the same argument proposed by Cahn et al.
[69], namely that the ⟨1 0 0⟩ is accessible only by thermal activation of
out-of-plane atomic movement.

Fig. 2 (top) shows the kite structures highlighted in red in the center
of the bicrystal, and Fig. 2 (bottom) shows the kite structures and the
adjacent B structures also highlighted in red. For the ⟨110⟩-mode, B
structures transform into adjacent kite structures and vice versa by
in-plane (perpendicular to the tilt axis) atomic movements. These in-
plane movements are driven by the applied shear displacement, and
therefore the direction of the shear with respect to the orientation of the
kite structures determines the migration direction. For the ⟨100⟩-mode,



M. Spínola et al.

Fig. 8. GB structures during quasistatic DDS simulations at 300 K for bicrystals containing (a) a �67(� = 62.4◦), (b) a �3(� = 70.5◦), and (c) a �43(� = 80.6◦) GB. Colors indicate
crystal lattice structure according to common neighbor analysis: white for FCC, blue for HCP, red for other. Shading according to crystallographic planes with out-of-page normal.

C structures [69] transform into kite structures. For this mechanism
to be possible, the out-of-plane symmetry of the lattice must be bro-
ken, which in [69] was promoted by thermal fluctuations of the MD
simulations. Nonetheless, in this work, we observed migration close
to this mode in a quasistatic setting for the three lowest-angle cases,
which became disordered with increasing shear displacement due to
their structural instability, as discussed above. This instability and loss
of perfect kite structure could be assisting the out-of-plane movements
required for the ⟨100⟩-mode to unfold.

In contrast to the [0 0 1] tilt boundaries, most of the tested [0 1 1]

tilt boundaries do not present perfect coupling. Homer et al. [70] also
observed this general lack of coupling behavior in [0 1 1] boundaries.
Instead, a myriad of behaviors were observed. Notably, some general-
ities can be extracted for boundaries with similar [0 1 1] tilt angle and
free energy, as they share the same type of structural features. The
most interesting behavior was found for intermediate [0 1 1] tilt angles
from � = 58.88◦ to � = 102.12◦. All these boundaries present stacking
faults on one of the grains. As the tilt angle approaches 90° from
below, the distance between stacking faults becomes smaller, as shown
in Fig. 8. Instead of preserving their structure, their stacking faults
extended forming a new migrating boundary and nucleating a new
phase between the grains. Specifically, the �3(1 1 2)[0 1 1](� = 70.5◦)

boundary grows a 9R phase, as has been observed experimentally for
example in [71], see Fig. 8b. Moreover, for the �43(3 3 2)[0 1 1](� =

80.6◦) boundary the stacking faults become sufficiently close so that a
hexagonal close packed (HCP) phase is formed in between, see Fig. 8c.
As the [0 1 1] tilt angle approaches 90° from above (� = 102.12◦ to
� = 93.37◦), the distance between the stacking faults also decreases.
These boundaries, in contrast, maintain their structure and undergo
GB motion as a whole, see Fig. 9a. Higher [0 1 1] tilt angle boundaries
from � = 117.56◦ to � = 124.12◦ contained stacking faults in both
grains in an alternating fashion, whose reach into the grain decreases
with increasing angle. These boundaries were mostly immobile as the
shear displacement progressively shifted all stacking faults to one of the
grains, as depicted in Fig. 9b. On the high-angle end, a few GBs with
high tilt angles presented stick–slip behavior. Specifically, boundaries
�9 (� = 141.06◦) and �33 (� = 159.95◦), the latter presenting perfect
coupling with � ≈ 0.354, see Fig. 9(c). Boundary �19 (� = 153.5◦)
also presented stick–slip behavior, but it changed migration direction
staying close to its initial position.

4. Conclusions

In this work, we have studied the relaxed GB structures, free ener-
gies, and shear coupling factors of a series of [0 0 1] and [0 1 1] STGBs
at finite temperature, using the quasistatic setting of the Gaussian
Phase Packets (GPP) framework. GPP is a free-energy minimization
framework that allows to perform computationally efficient structural
relaxation at finite temperature. This enables a more accurate predic-
tion of the relaxed GB structure at finite temperature compared to a
simple hydrostatic expansion about the 0 K relaxed structure, as seen
in previous works on GB free energies. Over 5,000 bicrystals spanning a
total of 49 different GBs have been relaxed using this approach, leading
to the identification of different metastable states for each of these
GBs as a function of temperature. Interestingly, some GB configura-
tions showed shifts in metastable state (starting from the same initial
bicrystalline geometries) with increasing temperature. The free energy
of these metastable states has been obtained using the QHA as a post-
relaxation step and, for comparison, using thermodynamic integration,
yielding excellent agreement between the two. We have also computed
shear coupling factors under quasistatic conditions through the GPP
framework. The shear coupling factors of GBs with [0 0 1] tilt axis have
been correctly predicted for most boundaries, confirming that they
do not depend on temperature and agreeing with results from Cahn
et al. [69] and others. We have also confirmed the general lack of
perfect shear coupling in GBs with [0 1 1] tilt axis [70], reported general
trends in their kinetics according to energy and structural features, and
identified interesting cases where intermediate phases are nucleated,
such as the 9R phase in �3 twin boundaries.

Overall, the GPP framework has proven to be a valuable tool for the
study of GB properties at finite temperature, as it can sample larger sets
of GB structures more efficiently than MD-based methods (see also [58]
for a discussion of the computational expenses of the GPP framework).
The assumption of interatomic independence makes the method com-
putationally efficient and accurate for structural relaxations but results
in considerable errors when computing the vibrational entropies and
therefore free energies for complex crystallographic defects such as
GBs. This is the reason why the QHA has been used to restore the vibra-
tional spectra as a post-processing step for the GPP finite-temperature
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Fig. 9. GB structures during quasistatic DDS simulations at 300 K for bicrystals containing (a) a �17[0 1 1](� = 93.34◦), (b) a �67[0 1 1](� = 117.56◦), and (c) a �33[0 1 1](� =

159.95◦) GB. Colors indicate crystal lattice structure according to common neighbor analysis: white for FCC, blue for HCP, red for other. Shading according to crystallographic
planes with out-of-page normal.

structural relaxations. This provides accurate GB free energies at low to
intermediate temperatures, but still suffers from inaccuracies at higher
temperatures due to the harmonic nature of the method. However,
it does significantly improve the results of QHA on hydrostatically
expanded 0 K structures. The GPP framework has also proven valuable
to investigating the shear coupled motion of GBs in a quasistatic
setting, though one downside of this setting is that thermally activated
processes are difficult to capture. Thus, two of the low-angle [0 0 1]

tilt GBs were not found to move under the thermally-activated ⟨100⟩-
mode as predicted by Cahn et al. [69]. Possible extensions with the
introduction of stochasticity would extend its capability for capturing
the impact of thermal fluctuations.
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Appendix A. Convergence analysis

To minimize size effect in the computed GB free energies and the
presented shear coupling behavior reported above, the dimensions of
the simulated samples were determined in a convergence analysis of the
GB free energy with varying sample dimensions. Specifically, the con-
vergence of 
sub

gb
and 
 full

gb
with dimensions Lx, Ly, Lz for the full-system

and subsystem approaches was performed for a �5(3 1 0)[0 0 1] GB at
300 K as a representative example with the objective of demonstrating
convergence of both approaches to the same GB free energy and
selecting the dimensions of the samples that yield sufficiently con-
verged values. In this analysis, Ly was assigned 3 values: 6p[3 1 0], 8p[3 1 0]
and 10p[3 1 0], where p[3 1 0] is the period of the CSL lattice for the
�5(3 1 0)[0 0 1] boundary. Each of these 3 values was combined with
four increasing values of the GB area Agb = Lx × Lz, totaling 12 sets
of samples. Each set consists of a bicrystalline slab, a monocrystalline
slab, and a bulk sample — all with the same sizes and crystallographic
orientations, as described in Section 2. For the full-system approach, all
three samples are needed, while the subsystem approach requires only
the first two. 
 full

gb
and 
sub

gb
were computed according to Eqs. (1) and (2),

respectively. In addition, a modified version of the full-system method
was explored by replacing fbulk in Eq. (1) by the per-atom free energy
obtained from a larger sample of bulk material of 16 × 16 × 16 FCC
unit cells, denoted by fbulk,lim. We refer to this approach as the ‘bulk
limit approach’’ and denote the excess free energy density obtained from
it by 
 lim

gb
.
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Fig. 10. Convergence of 
gb with Agb and Ly for �5(3 1 0)[0 0 1] at 300 K. Red and
green markers represent values obtained with the full-system approach (Eq. (1)) and
the subsystem approach (Eq. (2)), respectively. Blue markers represent results obtained
from the bulk limit approach. The solid line denotes the average value from 5 TI runs,
and the gray area extends from the minimum to the maximum values among these 5
runs. The dashed line represents the value obtained using the classical QHA, where
the equilibrium positions were obtained by expanding the 0 K relaxed structure by the
thermal expansion of the potential (Without the use of GPP).

Fig. 10 shows the GB free energies obtained with each approach
for each of the 12 sets. The subsystem approach shows the fastest
convergence with Agb and Ly among the three approaches. The full-
system approach has similar convergence but requires the use of an
extra sample and the computation of the dynamical matrix of a larger
set of atoms. The bulk limit approach shows the lowest convergence
rate, which may be explained as follows. In the latter approach, the
subtracted bulk free energy includes more vibrational modes with
larger wavelengths than the bicrystalline and monocrystalline samples
due to its larger dimensions, while in the subsystem and full-system
approaches the same dimensions of the bicrystal, monocrystal, and bulk
samples result in vibrational modes limited to the same wavelengths
for each sample. As a consequence, the bulk limit approach converges
more slowly, as it requires larger bicrystal and monocrystalline samples
with dimensions equivalent to the larger bulk sample used to compute
the bulk free energy, so that the contributions of all bulk modes are
cancelled. Based on this data, we selected the subsystem approach for
all calculations, as its convergence is the fastest and its computational
cost is lower than that of the full-system approach. Based on Fig. 10 and
aiming for a good trade-off between sufficiently converged values and
low computational cost, the dimensions of the samples were chosen as
Agb ≥ 7.5 nm2 and Ly ≥ 8 nm (which is larger than 6p[3 1 0]).

It is important to note that the convergence of 
gb with sample
size is different for GPP and MD simulations. The dimensions required
for convergence in MD [35] are typically larger than those obtained
in this convergence analysis for GPP. Both techniques need samples
sufficiently large to resolve the full elastic fields arising from the GB
into the grains and to capture the significant phonons introduced by the
GB. However, MD generally requires large system sizes to explore a suf-
ficiently large fraction of phase space, which is critical for the entropic
contributions to the free energy. (Moreover, statistical fluctuations in
MD require several runs per TI simulation for averaging.) By contrast,
the GPP formulation [47] approximates phase averages by Gaussian
quadrature, resulting in every equivalent cluster of atoms yielding the
same thermodynamical properties without fluctuations, thus allowing
for the use of significantly smaller samples (e.g., for bulk samples only
a single atomic neighborhood) and hence accelerating the free energy
computation.

Appendix B. Vibrational entropies: GPP vs. QHA

To illustrate the effect of discarding interatomic correlations in the
GPP framework, we here compare the GPP and QHA vibrational spectra
and vibrational entropies for two defects: an FCC �5(3 1 0)[0 0 1] GB and

a [3 1 0] surface. First, consider the canonical probability distributions
under the QHA and the GPP ansatz in Eq. (3), both under isothermal
equilibrium conditions (based on an NVT ensemble):

fQHA =
1
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1

kBT
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where fGPP is a simplified version of Eq. (3) with vanishing mean
momenta p̄ → 0 and momentum-position correlations � → 0 due to
equilibrium. Consequently, under the aforementioned conditions, the
dynamical matrix D containing the Hessian of the potential energy
(see Eq. (8)) and �(q,q)−1 containing the position–position variances,
are related by
[
�(q,q)

]−1
m

=
D

kBT
(15)

for particles of identical masses m. Thus, the eigenvalues {�i} of the
position-position variance matrix and those of the dynamical matrix
{!2

i
} (the squared frequencies of the harmonic oscillators) are related

by !2
i

= kBT ∕(m�i). However, this equality does not hold when

assuming interatomic independence for fGPP, as
[
�(q,q)

]−1
becomes a

diagonal matrix composed of individual matrices �(q,q)

i
(see Eq. (5)).

To shed light on the influence of this interatomic independence
assumption on the vibrational spectra of atoms, we compare in Fig. 11
two sets of vibrational frequencies. In both cases, structures are relaxed
by GPP (assuming interatomic independence), so that the same mean
atomic positions are used. The difference between GPP (top row) and
QHA (bottom row) is the following. From GPP, the vibrational frequen-
cies are obtained directly from the �(q,q) values resulting from relax-
ation, which assumes interatomic independence (violating the equality
in Eq. (15)). From QHA, vibrational frequencies are obtained by com-
puting D (Eq. (8)) by setting qi0, qj0 to the mean positions obtained
by the GPP relaxation and diagonalizing it. Both frequency spectrum
calculations were applied to (a) a bulk sample, (b) a monocrystalline
slab containing two [3 1 0] surfaces, and (c) a bicrystal containing a
�5(3 1 0)[0 0 1] GB and two [3 1 0] surfaces. As can be expected, the
GPP output includes only a single frequency for the bulk, characteristic
of an Einstein solid and resulting from the interatomic independence
assumed in the position covariance matrix. Using the QHA for the
bulk system results in the characteristic signature of the FCC density
of states. For the monocrystalline slab, GPP captures the presence of
lower frequencies, and for the bicrystal, it captures the presence of
both lower and higher frequencies. While it is simple to recognize those
additional frequencies introduced by the defects in the GPP data, is not
as simple in the QHA vibrational spectra. As a remedy, we subtract
DOSs in an analogous procedure as followed when subtracting free
energies to extract surface and GB free energies in Eq. (1). The resulting
excess DOS for each defect is presented in Fig. 12 together with
the entropic contribution of each frequency. The data shows that the
surface introduces lower frequencies compared to the bulk, while the
GB introduces both lower and higher frequencies — which is consistent
with the GPP observations. Compared to the monocrystalline slab, the
excess DOS of the bicrystal involves more lower frequencies. Being a
logarithmic function of the frequencies, the absolute entropy is more
sensitive to changes in frequencies at the lower end of the spectrum, see
Fig. 12. Therefore, the free energy computed using the GPP-obtained
frequency spectrum is more erroneous for a bicrystal (consisting of a
GB) as compared to a monocrystalline slab with surfaces. Moreover, as
shown by the QHA results, the GB excess entropy accounts for a larger
fraction of the GB free energy than the surface excess entropy does for
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Fig. 11. Distributions of phonon mode frequencies for (a) a bulk sample, (b) a monocrystalline slab with two [3 1 0] surfaces, and (c) a bicrystal with a �5(3 1 0)[0 0 1] boundary
and two [3 1 0] surfaces, all obtained from the same atomic mean positions (obtained from relaxation with GPP) but using different approaches to compute the eigenfrequency
spectra: (top tow) using GPP, (bottom row) using the QHA.

Fig. 12. Relative excess distribution of phonon mode frequencies for a [3 1 0] surface and �5(3 1 0)[0 0 1] boundary (left), and entropic contribution of each mode’s frequency at
different temperatures under the QHA (right).

the surface free energy, so that inaccuracies of the entropy penalize
the GB free energy more, as seen in Fig. 13. This proves that the
interatomic independence assumed throughout this work introduces
large errors in the excess vibrational entropies of GBs compared to
those of free surfaces — even though relaxed atomic positions obtained
from GPP are highly accurate. Therefore, we use the QHA to rebuild the
vibrational spectra on GB structures that were efficiently relaxed by the
GPP framework.

Appendix C. Calculation of the GB free energy by thermodynamic
integration

We provide a brief description of the non-equilibrium thermody-
namic integration (TI) method used to compute GB free energies by
MD. This method was introduced in [36] and applied to compute the
free energy of two different phases of a �5(3 1 0)[0 0 1] GB in [35]. We
adopt this method to compute the absolute free energy of different GBs
by using three different samples: a bicrystal containing the studied GB
and two free surfaces with equivalent crystallographic orientation as
the GB, a monocrystalline slab containing the same free surfaces, and

Fig. 13. Comparison of the different terms contributing to the free energy of a [3 1 0]

surface and �5(3 1 0)[0 0 1] boundary obtained using the GPP framework and the QHA.
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a bulk sample. The absolute free energies of these samples are used in
Eq. (1) to extract the GB free energy. We repeat the TI calculation for
each sample five times and take the average of the obtained absolute
free energies as the final values used in Eq. (1).

Thermodynamic integration is based on the Frenkel–Ladd met-
hod [34]: the change in free energy between two equilibrium states
is computed by calculating the reversible work performed by taking
a sample from an ‘initial’ state (for which we seek the absolute free
energy) to a ‘final’ state (for which we know the free energy a priori)
through a series of equilibrium intermediate states forming the ‘switch-
ing’ path. The initial state is chosen to be described by a Hamiltonian
Hi, assuming that all particles interact by the chosen interatomic
potential, whereas the final state is described by an Einstein solid with
Hamiltonian Hf , assuming that particles do not interact and behave
as uncoupled harmonic oscillators with frequency ! about each lattice
point. The final state hence has the a-priori known free energy

f (N,V , T ) = 3NkBT ln

(
ℏ!

kBT

)
. (16)

The switching path is parameterized by H(�) = (1−�)Hi+�Hf , so that
switching � from 0 to 1 takes the Hamiltonian from Hi to Hf . At any
point on the switching path, the free energy of the system is

 (N,V , T ; �) = −kBT ln

(
1

ℎ3N ∫ e−H(�)∕kBT dpdq

)
. (17)

It can be shown [36] that

)
)�

=
⟨
)H

)�

⟩
�
= ⟨Hi −Hf ⟩�, (18)

where ⟨⋅⟩� is a phase average under the canonical ensemble at fixed �.
Integrating this equation from � = 0 to � = 1 yields

i(N,V , T ) = f (N,V , T ) + ∫
1

0

⟨Hi −Hf ⟩�d�, (19)

thus allowing to find the free energy of interest, i, by tracking the
phase average of the difference in Hamiltonians along the path. In
equilibrium TI methods, the integral is numerically evaluated by dis-
cretizing the switching path in a series of equilibrium states with
fixed �-increments, each requiring a separate MD simulation to obtain
⟨Hi −Hf ⟩�. As mentioned above, in this work we use non-equilibrium
TI, which consists of a forward (� = 0 to � = 1) and a backward
(� = 1 to � = 0) integration step, where the intermediate states for
each � are not in equilibrium. This results in errors in ⟨Hi − Hf ⟩ due
to dissipation of the non-equilibrium nature of the process, which can
be cancelled by combining the results of the forward and backward
processes, if they are performed sufficiently slowly for linear response
theory to be accurate. As a result, a single MD simulation is sufficient,
which improves the efficiency.

In practice, forward and backward switching were performed using
the ti/sping fix [36] in LAMMPS [72]. Using this command, we
equilibrated the states before forward and backward switching for 2⋅106

timesteps, using a timestep size of dt = 1 fs, and performed the
switching in the same number of timesteps and with the same timestep
size. The spring constant k used to model the harmonic oscillators
of the Einstein solid state was independently obtained from MD on
a bulk sample in the canonical ensemble at each studied temperature
by computing the mean-squared displacement (MSD) of the atoms and
using the relation k(T ) = 3kBT ∕MSD(T ) [35]. Prior to switching, the
selected initial geometries that yielded minimum-energy states using
the GPP framework were relaxed under 0 K conditions. The dimensions
of these initial geometries were expanded for the TI integration to
achieve dimensions according to the convergence analysis of GB free
energy performed by Freitas et al. [35] using TI for a �5(3 1 0)[0 0 1].
Thus, we used samples with dimensions Lx, Ly, Lz larger than 72 Å.
Lastly, we note that the lattice spacing used for the samples in the
TI simulations differs from the one used in the GPP relaxations, as
explained in Appendix A (see also Table 1).
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