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M Check for updates

The structural dynamics of amolecule are determined by the underlying potential
energy landscape. Conical intersections are funnels connecting otherwise separate
potential energy surfaces. Posited almost a century ago’, conical intersections remain

the subject of intense scientific interest*>. In biology, they have a pivotal role in vision,
photosynthesis and DNA stability®. Accurate theoretical methods for examining
conical intersections are at present limited to small molecules. Experimental
investigations are challenged by the required time resolution and sensitivity. Current
structure-dynamical understanding of conical intersections is thus limited to simple
molecules with around ten atoms, on timescales of about 100 fs or longer”.
Spectroscopy can achieve better time resolutions®, but provides indirect structural
information. Here we present few-femtosecond, atomic-resolution videos of
photoactive yellow protein, a2,000-atom protein, passing through a conical
intersection. These videos, extracted from experimental data by machine learning,
reveal the dynamical trajectories of de-excitation viaa conical intersection, yield the
key parameters of the conical intersection controlling the de-excitation process and
elucidate the topography of the electronic potential energy surfaces involved.

The quantum mechanical energies of molecular electrons as afunction
of molecular geometry give rise to effective potential energy surfaces
for the motion of atomic nuclei. When there are d nuclear degrees of
freedom, the potential energy surface (PES) is d dimensional. In the
so-called Born-Oppenheimer (BO) approximation, the electronic and
nuclear degrees of freedom are treated separately. When two PESs come
into contact, the BO approximation is no longer valid.

A conical intersection is a region of such potential energy degen-
eracy, forminga (d - 2)-dimensional manifold with divergent, non-BO
coupling between the participating electronic states. The resultant
strong mixing of electronic and vibrational degrees of freedom opens
a pathway by which dynamical changes in molecular geometry can
cause a transition from one electronic state to another. As this gives
rise to ultrafast, non-radiative relaxation of the excited state, conical
intersections have animportant role in numerous processes in nature.
Trans-to-cis isomerizations of the p-coumaric acid chromophore in
photoactive yellow protein (PYP)*"° (Extended DataFig. 1a) and retinal®"
are prime examples.

Accurate theoretical methods for treating coupled electronic and
vibrational dynamics are currently restricted to small molecules.
The quality of such simulations—using either aquantum or a classical
treatment of nuclear motions—depends on the precise characterization
and complexity of the PESsinvolved. PYP, for example, iscomposed of
2,289 atoms?, exhibiting 6,861 vibrational degrees of freedom. Thislevel
of complexity renders rigorous, first-principles electronic structure
calculations unfeasible for the foreseeable future. State-of-the-art
density functional theory can be applied to molecules of comparable

size®® but does not yet provide reliable chemical accuracy, particularly
for conicalintersections. Evenifit were possible to solve the electronic
Schrédinger equation for a single molecular geometry accurately, the
total number of molecular geometries needed for adequate sampling
ofthe potential energy landscape as awhole grows exponentially with
the number of degrees of freedom.

Experimentally, conclusive observation of the structure-dynamical
modes involved in electronic switching via conical intersections has
remained elusive because high temporal and spatial resolutions must
be combined to resolve the ultrafast dynamics with sufficient acuity.
Optical pump-probe spectroscopy provides information on the
electronic-state population dynamics with femtosecond time resolu-
tion, butit does not offer direct access to the structural properties
of the system™. Similarly, time-resolved diffraction techniques, such
as ultrafast electron diffraction (UED) and time-resolved X-ray dif-
fraction, have, up to now, lacked the temporal resolution needed to
follow de-excitation via a conical intersection”. Recently, the com-
bination of UED experiments with extensive, sophisticated ab initio
simulations accomplished the structural characterization of conical
intersection-induced dynamics in an 11-atom molecule with a time
resolution of 150 fs (ref.”).

Here wereport four key advances. First, structure-dynamical collec-
tive modes and trajectories of ultrafast de-excitation can be extracted
with atomic spatial resolution and few-femtosecond time resolution
from existing time-resolved crystallographic data. Second, in com-
bination with tractable and accurate computational methods, the
topography of the electronic states involved in de-excitation via a
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conical intersection can be determined. Third, our approach can be
used to determine the key collective variables and boundary condi-
tions controlling the de-excitation dynamics of molecules consisting
ofthousands of atoms. Finally, the combination of data-driven machine
learning with existing experimental and theoretical techniques offers
the time resolution of spectroscopy and the spatial resolution of struc-
tural methods.

In the illustrative example of PYP, our approach provides the fol-
lowing new insights.

1. High-frequency charge oscillations are involved in the trans-to-cis
isomerization process in PYP. These oscillations involve previously
ignored ‘peripheral’ regions of the chromophore (Extended Data
Fig.1a).

2. The presence of the above-mentioned oscillations in PYP has been
independently corroborated in the spectroscopically accessible
range of 3-30 THz, but with no direct structural information. Our
work extends the experimentally accessible range to 100 THz, and
provides high-resolution spatial information on the structural ele-
ments involved in these ultrafast oscillations.

3. Photo-excited PYP proceeds towards the conical intersection via
one of five conduits, revealing the structure-dynamical trajectories
of approach to the conical intersection.

4. Structure-dynamical trajectories of passage through the conical
intersection have been determined, allowing measurement of the
key parameters of the conical intersectionin PYP. These parameters
are essential for a quantitative understanding of the PES manifold
and the isomerization process in PYP.

5. Our work establishes an important bridge between structural and
spectroscopic studies. This link is essential for a complete under-
standing of PYP.

The above insights represent a clear advance in understanding of
PYP and, by extension, awide range of ‘ultrafast’ structure-dynamical
systems.

The experimental data were obtained in a time-resolved (optical
pump, X-ray probe) serial femtosecond crystallographic study of PYP, as
reported in detail elsewhere'. This protein is known to undergo arapid
trans-to-cisisomerization reaction viaaconical intersection™. The data
consist of atime series of two-dimensional (2D) diffraction snapshots,
each stemming from a different random central slice through the
three-dimensional (3D) diffraction volume. Each light’ 2D snapshot was
recorded after optical excitation atatime point knowntoanaccuracy
of-100 fs owing to unavoidable ‘timingjitter’ between the optical pump
and X-ray probe pulses'®*.Inaddition, ‘dark’ snapshots were recorded
without any optical excitation. Conventionally, enoughlight 2D snap-
shots from the same nominal time point are indexed and combined
(merged) to obtain the 3D diffraction volume and, from there, the
difference between the light and dark atomic structures at each
time point (see, for example, ref. '°). The timing jitter limits the time
resolutionofthe merged 3D volumesto-100 fs. Thisisaseverelimitation
because de-excitation viaa conical intersectionis often complete within
that timeframe (see below and ref. §).

Analysis by machine learning

Asoutlined in Supplementary Information sections 1-4, we circumvent
this problem by applying manifold-based machine learning'®2°to the
same dataset of 2D diffraction snapshots, to reconstruct atime series
of 3D diffraction volumes, each pertaining to atime point determined
withanaccuracy of about 1fs (for details, see Methods sections ‘Over-
view of algorithmic approach’, ‘Data preprocessing’, ‘Datarepresenta-
tion”and ‘Manifold-based machine learning’, Supplementary Fig.2 and
ref. ). In essence, our approach rests on the celebrated realization
by Takens? and Packard® that dynamics tightly constrain the time
evolution of asystem. This means that much fewer dataare needed to
reconstruct dynamics than conventionally thought necessary. As an
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extreme example, Newton'’s laws of motion require only one snapshot
oftheinitial conditions (positions and momenta) and the forces acting
onasystemto predict the dynamical evolution of anon-chaotic system
forever. In asimilar vein, the time evolution of the diffraction signal
is highly constrained by the charge dynamics of the photo-excited
system under observation. This allows an essentially jitter-free time
series of 3D diffraction volumes to be recovered from a time series of 2D
centralslices, each recorded with substantial timing uncertainty. This
algorithmicapproach has been validated with experimental data'¢?***
and with datafrom synthetic models, where the actual ‘ground truths’
are known'*??* (see also Methods sections ‘Validating the time resolu-
tion by comparison with spectroscopic results’ and ‘Validation with
synthetic data’, Extended Data Table 1, Extended Data Figs. 2-8 and
Supplementary Figs.1-5).

Armed with a series of accurately timestamped 3D diffraction vol-
umes, standard time-resolved crystallographic approaches®? can be
used to compile jitter-free difference electron density (DED) videos,
revealing the dynamics of the photo-excited charge distribution.
As described in detail in ref. ¢, using time-lagged embedding®?, our
data-analytical pipeline ‘learns’ the Riemannian manifold on which the
dynamics unfold, and conducts all analysis, including (nonlinear) sin-
gularvalue decomposition, on that curved manifold'®. This approach
yields the characteristic collective modes of the charge distribution
(‘topos’) and their respective time evolutions (‘chronos’). In essence,
each topo represents a characteristic DED map, evolving in time as
prescribed by its corresponding chrono (Fig. 1). Each topo-chrono
pair thus represents a characteristic structure-dynamical mode of the
charge distribution. These modes constitute the empirical basis func-
tions, which, in combination, describe the dynamical trajectories (‘the
reaction paths’) of the system. Videos of the structure-dynamical modes
with few-femtosecond time resolution are shown in Supplementary
Videos 1-4. As shown in Extended Data Fig. 1b, ¢, these modes can be
combined to describe the structural dynamics in terms of the more
intuitive torsional angle as a reaction coordinate.

Validating the time resolution

Fourier analysis of the chronos by multi-taper methods*”*® reveals the
clear presence of frequencies of up to 95 THz (10.5 fs) at signal-to-noise
ratios of -5 or higher (Extended Data Fig. 3). As the observation of a fre-
quency componentinaninitially non-uniformset of time points requires
atimeresolution ~-5-10 times shorter than the period of the component?,
theclear observation of asignal of 10.5 fs validates the few-femtosecond
timeresolution of our approach. This high time resolutionis particularly
remarkable because the data were obtained witha140-fs optical pump
pulse’®. This suggests that, in the experiment, a temporal gating effect
may have had arole, as a consequence of, for example, nonlinear mul-
tiphoton processes® or light-induced structural disorder®.

Fourier analysis of the chronos before 615 fs, that is, before the
encounter with the conical intersection brings multiple species into
play, reveals three prominent peaks at 4, 21 and 33.5 THz in the spec-
troscopically well-explored region spanning the range from 3-30 THz
andits vicinity. These peaks have been previously observed by ultrafast
time-domain Raman spectroscopy of PYP before the conical inter-
section®. These spectroscopically measured PYP peak frequencies
match those we observe to within 7% or better (see Methods section
‘Comparison with spectroscopically determined PYP frequency spec-
trum’ and Extended Data Table 1). Such close agreement with inde-
pendently known ground truths is the ultimate test of any machine
learning approach.

Onthe basis of the argument outlined above, the clear observation
of the oscillatory signal at 33.5 THz (30 fs) already indicates atime
resolution of 3-6 fs (ref. *). The signal at 95 THz may be associated
with a C-H bond stretch, typically observed in the band at 100 THz
(10-12fs) at moderate to high intensities. It is also possible that this
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Fig.1|Evolution of dynamical modes asafunction of pump-probe delay time.
a,Chronos. Note the sharp turning pointat 615 fsinall chronos. b, Evolution of
DEDwithtime.Ineach case, model(notshown) represents the moving average,
andhasbeenadded to allow comparison with DEDs obtained by conventional

oscillatory signal stems from an N-H vibrational bond stretch, which
typically resultsin an absorption band in the range 0f9.5-10.4 fs (ref. **).

Structure-dynamical modes

Asmode 1represents the moving average of the signal, its topoisadded
to each of the subsequent modes to facilitate comparison with DEDs
obtained by conventional means. Supplementary Videos 1-4 reveal
the nature of the structure-dynamical motifsinvolvedin the relaxation
of PYP. Supplementary Videos 5-9 display the combinations of these
motifs, which reveal the actual isomerization trajectories at work (see
also Extended Data Fig. 2 and below).

Mode 2, with a time evolution (chrono) resembling a step function
(Fig.1), represents the only structure-dynamical evolution not reversed
within the picosecond timespan of the dataset. Thismode also captures
strong DED features in the vicinity of the C2-C3 and C3-C4 bonds in
PYP (Extended DataFig.1a) associated with the trans-to-cisisomeriza-
tionin PYP**, The other chronos return roughly to their initial values
inthe course of the experimental timespan (Fig. 1). All modes reveal
previously unreported rapid charge oscillations.

Structure-dynamical trajectories

Although the characteristic structure-dynamical modes (basis func-
tions) described above display key features of the system, they must
be appropriately combined to reconstruct the trajectories (reaction
pathways) associated with de-excitation via the conical intersection.
Asinstandard singular value decomposition, additional information
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means. The DED maps near the top of the oval region have been associated with
trans-to-cisisomerization. The patterns near the bottom of the oval region show
strongoscillatory charge dynamics. M, mode. Contourlevel, 30.

is needed to accomplish this task'®?**, Away from the conical intersec-
tion, we determine the appropriate mode combinations as previously
described in ref. *, and extract structures from the resulting DEDs as
outlinedinref.>*,

Near the conical intersection, the mode space is 2D, and the
structure-dynamical trajectories of passage through the conicaliinter-
section can be determined as follows. We compare the six possible
experimental trajectories obtained from pairwise combinations of
experimental modes with simulated trajectories containedinadiction-
ary of halfamillion theoretically calculated de-excitation trajectories.

Specifically, using the 500,000 different combinations of the six
model parameters, we determine, as a function of time, the expecta-
tion values of the position operators associated with each mode. In
thisway, we obtain dynamical trajectories in the 2D space spanned by
two collective modes, denoted x and y for short.

A dynamical trajectory in this 2D space consists of a time-ordered
sequence of points given by (x(t),y(¢)). Each instance of x(¢) and y(¢) is
associated withacharacteristic DED map (atopo), whose time-varying
contributionis determined by the associated chrono. Thus, inthe space
spanned by x and y, a potential dynamical trajectory is obtained by
plotting two chronos against each other. (Of course, the choice of char-
acteristicmodes is not unique; any linear combination, with or without
sign inversion and scaling, provides an equally good basis set.) Using
the bank of 500,000 quantum-dynamical de-excitation trajectories
inthevicinity of a conicalintersection, weidentified the experimental
trajectories leading to high-probability de-excitation of PYP via a coni-
calintersection (see Methods section ‘Overview of theoretical model
used to simulate dynamical trajectories’).

Nature | Vol599 | 25 November 2021 | 699



Article

a b 03;
400 - . ‘
=
200 ol
% Z’\\/O/_S
£ x0Ty
5 0-
3 0.031
L
-200 4 ]
-400 .l 0+ <,
5 “5 Ms
0 0 x0T Y
X
5 5 y t=610fs

Fig.2| Topography of the conicalintersection and the associated
populationdynamicsin PYP, as deduced from five experimental dynamic
trajectories. a, Reconstructed potential energy landscape in the close vicinity
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frequencies y,and y,and the coupling A between the two electronic states of
the underlying vibronic coupling model. The numerical values of the model

PYP de-excitation trajectory

Of the six possible pairwise combinations of experimentally deter-
mined dynamical modes, five can beidentified with simulated trajecto-
ries of de-excitation via the conicalintersection (Extended Data Figs. 2,
4-7) (the sixth combination does not correspond to any simulated
trajectory in our databank). Identification of these experimental tra-
jectories and their simulated counterparts yields direct information
onthe structure-dynamical changes involved in the approach to, and
the passage through, the conical intersection and the key parameters
governingthe properties of the PYP conical intersection itself, includ-
ingits topography (Extended Data Table 2 and Fig. 2).

The very similar parameters obtained from all five pairwise combina-
tions of experimentally determined structure-dynamical modes indi-
cate that, inthe vicinity of the conical intersection, the five dynamical
trajectories can be described in terms of the same underlying conical
intersection. Further away from the conical intersection, however,
our analysis reveals the presence of at least five distinct de-excitation
trajectories in PYP. We interpret these segments as different conduits
to and from the vicinity of the PYP conical intersection. In this vicinity,
the trajectories represent high-probability de-excitation routes onthe
same 2D PES manifold. These insights are essential to understanding
the structural dynamics of PYP relaxation.

We now summarize the primary conclusions of our work. First, our
results demonstrate a novel data-driven approach that combines the
superb spatial resolution of structural methods, such as crystallogra-
phy, with the exquisite time resolution of spectroscopy. In essence,
this approach is tantamount to structure-dynamical spectroscopy
with atomic spatial resolution and femtosecond timing acuity. Second,
our results on the ultrafast atomic-level changes associated with the
femtosecond de-excitation of PYP via a conical intersection reveal
previously unobserved oscillatory charge dynamics involving often
ignored regions surrounding the chromophore. Third, our results
corroborate independent spectroscopic results on PYP in the usually
accessed regime of 3-30 THz, provide direct structural information
and extend the amenable range to~100 THz. Fourth, our results reveal
the structure-dynamical trajectories leading to the vicinity of, and
through, the PYP conical intersection, and elucidate the properties
of the PES manifold involved in PYP de-excitation.

More generally, by combining machine learning analysis of experi-
mental datawith simple and numerically accurate quantum-dynamical
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parametersare deduced from the best fit between simulated trajectoriesin the
collective-mode space and their experimental counterparts. Both normal
mode coordinatesxand yare specified in dimensionless coordinates
normalized withrespecttothe frequency w.b-e, Time evolution of a Gaussian
wave packet onthe electronically excited state (top panels) and electronic
ground state (bottom panels) in the vicinity of the conical intersection. The
simulation stems from the best fit to the experimental trajectories of PYP.

simulations, we have demonstrated a powerful data-driven route to
studying awide variety of important processes in complex molecular
systems inaccessible by first-principles calculations, and established
abridge between spectroscopic and structural techniques for inves-
tigating ultrafast processes.

Of course, future tasks remain. These include investigating the pos-
sible effects of crystallinity on the observed relaxation modes and
trajectories and whether the small number of important collective
variables revealed by our approach offers a route to more accurate
theoretical calculations than hitherto possible. These future tasks
notwithstanding, our present results already reveal the unanticipated
trove of information that can be extracted from existing experimental
databyacombination of data-driven machine learning and physically
based theory.
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Methods

Overview of algorithmic approach

We use manifold-based machine learning to extract accurate 3D
structure-dynamical information from 2D snapshots (central slices
through the diffraction volume). The approach exploits time-lagged
embedding, a powerful strategy for extracting accurate dynamical
information from measurements of a subset (‘projections’) of the sys-
tem variables'*"*? 23,

Manifold-based machine learning recognizes that datareside on
curved manifolds, which can be learned from the data”. All analytical
operations, such as singular value decomposition, are then performed
on the learned manifold, which reflects the information content of
the entire dataset'. We have previously shown that such algorithmic
approaches are highly robust against noise” and timing uncertainty®.
The work reported in this paper addresses the case where, inaddition
to substantial noise and timing uncertainty, the measurements are
incomplete. Specifically, only asingle 2D central slice is experimentally
measured at each (inaccurately known) time point, but the 3D diffrac-
tion volume s required at accurately known time points.

The Diffusion Map embedding algorithm expresses the curved data
manifoldinterms of the eigenfunctions of the Laplace-Beltrami operator".
Inthe presence of dataincompleteness, one can no longer assume that
the manifold eigenfunctions pertain to the Laplace-Beltrami operator.

After preprocessing the experimental dataas described below, data
vectorsare formed, eachrepresenting a3D (crystal) diffraction volume
atagiventime point. As only one centralsslice of the diffraction volume
ismeasured at each (approximately known) time point, the data vectors
areincomplete, with many missing elements. A well-defined manifold
cannonetheless be obtained by time-lagged embedding (time-ordered
concatenation) of many snapshots ordered according to their nominal
timestamps. As demonstrated previously'®¥, this algorithmicapproach
is highly robust to noise and timing uncertainty.

Data preprocessing

Diffracted intensity data collected at the Linac Coherent Light Source
wereindexed, integrated, rescaled and detwinned as described in ref.
3 Intotal, 337,852 light snapshots, each containing about 600 Bragg
reflections, were recorded after exposure to a140-fs optical pulse. With
assistance from a timing tool, the pump-probe delay was recorded
with an accuracy of ~100 fs owing to unavoidable timing uncertainty
(jitter) between the optical pump and X-ray probe pulses.

In contrast to standard practice', no time averaging or binning of
snapshotswas performed. Supplementary Fig.1ashows the histogram
of pump-probe delay times for light data. To ensure that all time points
areequally weighted, 190,053 light snapshots were randomly removed,
mostly from the highly populated regions at-200 fs and ~900 fs (Sup-
plementaryFig.1b). Thisresulted inadataset 0f 147,799 light snapshots
for further analysis. The data collected without exposure to a pump
pulse (the dark dataset) consist of 79,937 snapshots whose reflections
were mapped to the same asymmetric unit as the light data.

PYP forms crystals with P6, symmetry'®. Mapping all collected reflec-
tions (Miller indices; Ky, = 36, [ = 26) to the asymmetric unit gives
21,556 unique reflections. Reflections beyond the resolution window
0f0.0667 A <|g| < 0.667 A, as well as those that were their own twins,
were removed, resulting in 15,498 unique reflections with an average
of 500 reflections per 2D snapshot.

Datarepresentation

Inthe representation usedin this study, a data vector contains as many
components as the number of reflections in a 3D volume. As only one
central slice is accessed in each 2D snapshot, a data vector is highly
incomplete. The data matrix consists of as many data vectors as 2D
snapshots in the dataset. Specifically, the matrix has D =15,498 rows
and N=147,799 columns, with each row corresponding to a unique

reflectionand each column corresponding to the preprocessed inten-
sity datarecorded ina2D snapshot. The columns were ordered accord-
ing to the experimentally measured (inaccurate) timestamps. With
each snapshot containing only ~500 reflections, the data matrix is
highly sparse (sparsity = 1”55:’9‘; =-3.2%).

Applying the same preprocessing steps to the dark snapshots results
inadatamatrix of D=15,487 rowsand N = 79,937 columns. As no optical
pump, and hence no pump-probetime delay, wasinvolved inrecording
dark snapshots, these data were lexicographically sorted according to
run numbers followed by event numbers.

Manifold-based machine learning

Preprocessed snapshots were analysed by time-lagged manifold embed-
ding, nonlinear spectral analysis (NLSA)" and standard techniques for
compiling DED maps'® (Supplementary Information). Manifold embed-
ding (Diffusion Map) was performed on supervectors with concatenation
parameter ¢ = 32,768, number of nearest neighbours ny,=15,000and a
Gaussiankernel 0=1,420. Thisembedding results in four noise-reduced
orthogonal eigenfunctions. NLSA on the manifold reveals five modes
above the noise plateau. As in standard singular value analysis, the first
moderepresents the moving average, with subsequent modes represent-
ingdeviations fromthe average. Reconstruction using the modes above
the noise plateau yields single frames containing full diffraction volumes
atuniformly spaced time points. The same procedure was applied tothe
dark dataset with N=79,937, ¢ =32,768, ny=1,000 and o = 3,380. In this
case, NLSAyielded only two identical modes differing only in scale, as
expected from a single-parameter process (Extended Data Fig. 8).

To compute DED maps, we subtract the average reconstructed 3D
diffraction volume of the dark data from the reconstructed 3D diffrac-
tion volume of the light data at each time point. The CCP4 package®
was used toscale the light datato the dark data. The dark phases were
obtained from the Protein Data Bank model of PYP deposited under
accession code SHD3 (ref.'°). The Coot toolbox*® was used to compile
DED maps at 1.5-fs intervals and, from there, DED videos.

Validating the time resolution by comparison with
spectroscopicresults

The pump and probe pulses used in serial femtosecond crystallography
are typically tens of femtoseconds long. In principle, simulation can
be used to investigate the effect of the pulse characteristics on the
achievable time resolution. However, extensive studies of the spatial
and temporal characteristics of incident pulses®® have shown that it
isextremely difficult, if not impossible, to determine the actual pulse
characteristics in time-resolved serial femtosecond crystallography.
Wetherefore follow a data-driven machine learning approach, whereby
the veracity of our results is determined by the extent to which our
algorithm reproduces independently known ground truths. Using
experimental XFEL pump-probe data obtained with optical pulses as
long as 75 fs, we have previously shown that the vibrational frequen-
cies revealed by our approach accurately match those of well-known
systemssuchasN,, even whentheincident pulse lengths are long when
compared with the vibrational frequencies'. Similarly, in the spec-
troscopically examined frequency range, each of the PYP vibrational
frequencies revealed by our present work has been independently
observed by time-resolved Raman techniques® (Extended Data Table 1).
This clearly demonstrates that reliable dynamical information can be
extracted with few-femtosecond time resolution.

Validation with synthetic data

We have previously demonstrated the efficacy of our approach by refer-
ence to synthetic models'. To confirm the validity of our approach for
the present case, we generated a 3D diffraction volume whose structure
and time evolution closely resembled the outcome of the analysis of
the experimental data. The simulated and experimental data shared
the same diffraction space sampling and level of data sparsity.
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2D snapshots were generated by taking Ewald cuts (central slices)
fromajitter-free, noise-reduced model. The same set of indexed Bragg
reflections and timestamps were used in analysis of the experimental
data. For instance, let h;and ¢; be the set of indexed Bragg reflections
and the measured (and jittered) timestamp of the jth experimen-
tal snapshot, respectively. The jth simulated snapshot consists of
the same set of indexed Bragg peaks h; extracted from the full dif-
fraction volume in the jitter-free, noise-reduced video extracted
from the experimental data with timestamp ¢, In other words, on a
snapshot-to-snapshotbasis, the synthetic and experimental data have
the same set of indexed Bragg peaks and the same nominal timestamps.
Hence, the synthetic and experimental data have the same timing struc-
ture, the same diffraction space sampling and the same level of data
incompleteness.

The resulting synthetic data, consisting of highly incomplete data
vectors, were then passed through the same analytical pipeline as that
used for experimental data, and the recovered structural dynamics were
compared with the known ground truths pertaining to the input syn-
thetic model. This comparison was quantified in terms of the Pearson
correlation coefficient between the synthetic model and the output of
the analytical pipeline. As shown in the Supplementary Information,
the correlation coefficients typically exceed 0.99 (Supplementary Fig.
3a). In addition, the R factor between the synthetic input structural
dynamics and the output of our data-analytical pipeline was used to
validate the veracity of the outcome of our analysis as a function of
spatial frequency. As shown in Supplementary Fig. 3b, the R factor is
below 15%, even at the highest spatial frequency (1.6 A).

Outcome of machine learning compared with results from
conventional analysis

Tovalidate our analytical pipeline further, we compare the DED at 3 ps
obtained by our approach and the corresponding DED obtained by the
standard methods'®%. The time point of 3 ps was chosen to be close
to the femtosecond regime without being substantially impacted by
timing uncertainty. As shown in Supplementary Fig. 4, the two DEDs
are highly similar, with a correlation coefficient of 0.998 between the
respective volumes and crystallographic R factors below 20% at the
highest frequency. This validates the robustness of our algorithm to
noise and dataincompleteness.

Frequency content of the observed dynamical modes

The spectral features of the chronos were examined by Fourier and
multi-taper analysis, the latter of which uses the Chronux package in
MATLARB (http://chronux.org/). First, using mode 4 asanexample, FFT
analysis was performed with zero padding and a Hann window over
the span of chrono 4 used in the NLSA reconstruction of mode 4. The
Fourier spectrum shows clear peaks at frequencies exceeding 95 THz
(shorter than 10.5 fs) (Extended Data Fig. 3). To verify the reliability
of these FFT results, multi-taper F-test analysis was performed with
padding parameter pad = 3 (default value) and time half-bandwidth
products tw =2, 3,4, 5 (the number of tapersis 2 x tw - 1). The results
for pad =3 and tw = 3 are shown in Extended Data Fig. 3. The vertical
axis represents, in essence, the signal-to-noise ratio of each Fourier
component. Unless otherwise stated, we consider only peaks with
F-ratio values above 5in at least one set of taper parameters.

Each chrono displays a characteristic frequency spectrum, which
sometimes includes a subset of the peaks observed in another chrono
(Extended Data Table1). The exact peak position can change by afew tera-
hertzas multi-taper parameters are varied. Such closely separated peaks
are grouped together as one peak at the average frequency position.

Comparison with spectroscopically determined PYP frequency
spectrum

Using time-resolved Raman spectroscopy, Kuramochi et al.>* have
investigated the frequency range of ~3-30 THz in PYP. As shown in

Extended Data Table 1, all frequency peaks in this frequency range
revealed by multi-taper analysis of the chronos before the encounter
withthe conicalintersection canbeidentified with a peak observed by
Kuramochietal. withafrequency accuracy of 7% or better. However, the
time-resolved Raman spectra contain additional peaks (not shown) not
observedin ouranalysis of the chronos. This suggests that not all spec-
troscopically observed frequencies pertain to the structure-dynamical
collective variables we have extracted from time-resolved scattering
data.

Overview of theoretical model used to simulate dynamical
trajectories

A prerequisite for the theoretical description of an N-particle system
is,ingeneral, aset of (3N - 6) generalized coordinates, also referred to
as normal modes, which correspond to the system’s internal degrees
of freedom. However, to model the potential energy landscape in the
vicinity closeto the conical intersectionin PYP, we take into considera-
tion only two normal modes that contribute to formation of the conical
intersection. On the one hand, this is motivated by identifying pairs
of collective modes in the experimental data and at least two degrees
of freedom being required for a conical intersection to occur. On the
other hand, we want to keep the number of model parameters as small
as possible to avoid overfitting. The two modes considered, in turn,
arerelated to 3N - 6 Cartesian real-space coordinates by a linear, yet
unknown, transformation. Therefore, distinct structural modifications
and theresultant effects on extrinsic quantities, for example, the elec-
trondensity, are also expected to emerge in the two-mode description
if these modifications are caused by the conical intersection.

The calculations use an effective model Hamiltonianinacompressed
collective-mode space to capture the properties of a conical inter-
section and its vicinity. This allows numerically exact calculation of
the nuclear quantum dynamics as a function of a small number of
molecule-specific model parameters. By comparing the resulting
simulated structure-dynamical trajectories with the experimentally
determined trajectories provided by our data-analytical pipeline, we
determine the numerical values that the model parameters assumein
PYP. This provides detailed insight into the topography of this photo-
chemically exemplary conical intersection (see next section).

Our theoretical model is tantamount to the simplest possible reali-
zation of a conical intersection, implicitly assuming dissipationinto
additional modes is negligible on the timescale of 100 fs. The PESs
are approximated by a second-order Taylor expansion, known as the
vibronic coupling model*°, and are assumed to be symmetric with
respect to both normal modes, possibly differing in their respec-
tive vibrational frequencies. Inter-state coupling is mediated via one
mode only.

To determine the dynamics in the space spanned by two modes,
we numerically solve the time-dependent Schrodinger equation for
a wave packet initially occupying the excited electronic state. We
take into account a total of six model parameters, including the ref-
erence ground-state frequency related to the kinetic energy of the
wave packet, the respective vibrational frequencies of both PESs, the
coupling strength and the initial position of the wave packet relative
to the conical intersection.

We describe the conical intersection and the potential energy
landscape in the close vicinity of the conical intersection by a Taylor
expansion of the diabatic PESs up to second order*®*, This model is
well established for the description of molecular dynamics, and has
been applied to the theoretical description of photo-excitation and
photo-dissociation processesinmolecules (see, for example, refs. **).
Recently, a two-mode vibronic coupling model was used to study
electronic coherences in the presence of a conical intersection**.

Thenormal modes denoted x andyare considered indimensionless
coordinates normalized with respect to a reference vibrational
ground-state frequency w. The corresponding Hamiltonian, including
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two electronicstates, reads H = T+ W, with the kinetic energy operator

T=- % 3_22 + "’_22 and the diabatic potential energy matrix of the gen-
ox ay
eral form

_(Mey) - W)
Wiz(y) VZ(xry) +AE

Here V,,(x,y) and Wy,(y), respectively, denote the diabatic PESs and
the diabaticinter-state coupling between the two electronic states. By
construction, the coupling depends solely on mode y, referred to as
coupling mode, while xis known as the tuning mode. AE describes arela-
tive energy offset at the origin of the coordinate system, (x,y) = (0, 0).

The choice of the normal modesxand yis, to some extent, arbitrary as
they are determined by the structure of the Hamiltonian. The inter-state
coupling, for instance, is mediated only via the coupling mode y, by
definition. Ingeneral, the normal modes of the vibronic coupling model
donot coincide with the normal modes of motion that are assessed by
experiments. However, the configuration spaces are connected via
an orthogonal transformation. In principle, one would also have to
individually rescale the modes to go back from dimensionless coor-
dinates to physical units. However, in our model, we assume equal
scaling of the modes, that is, only one normalization frequency w is
used instead of w,,.. Thisapproach is used to reduce the total number
of parameters. To transform from the normal modes of the model to
the normal modes of motion, a possible 90° rotation angle (x, y swap)
was used as a globally applied fitting parameter.

The PESsinadiabatic representation are given by the eigenvalues of
the diabatic potential energy matrix W, thatis:

Vi+Vo+AE 1

Vid= "2 (Vo AB) P )

Following from the defining degeneracy of the adiabatic PESs, that s,
AE=V, - V,,the conditions W;,= 0 and V34~ V9= O must be fulfilled for
aconical intersection to occur. Because these conditions are solved
independently, aconical intersection constitutes a (d - 2)-dimensional
manifold (with dequal tothe totalnumber of degrees of freedom), requir-
ing atleast two normal modes for modelling a conical intersection.

In our description of a conical intersection, we neglect intra-state
coupling of the modes to further reduce the total number of param-
eters, and assume harmonic diabatic potentials of the general form

Vi206y) = *(V(X)X +yy?) + kP +kDy

with potential minima at

(X) )

—K
+© 0 12
(12,150 = (x) )
1,2 Vl,Z

whereas theinter-state coupling between the diabatic electronic states
isassumed to be alinear function, thatis, Wy,(y) = Ay.

For simplicity, we assume the diabatic potentials to be symmetric with
respect to both modes, that s, y(x V) = ¥, > 0. The coefficients K(X V) are
assumed to depend on the respective vibrational frequencies y, ,, and
the coupling strength Ais regarded as anindependent parameter.

Without loss of generality, we fix the conical intersection coordinates
at (x¢g, Yo = (0, 0) and, instead, vary the initial position of the wave
packet relative to the conicalintersection. Therefore, the energy offset
is AE=0.To determine the remaining four parameters Kf‘z'y), we make
the following assumptions.

1. For y, =y,, the adiabatic potentials are symmetric with respect to x
andy:

V34(-x,) = V30, y)A Vix, -y) = Vi%(x, )

2. The positions of the diabatic potential minima are fixed and inde-
pendent of the vibrational frequencies y; ,.
Incorporating these assumptions, we obtain

K=y
K$)==yx
K?’)=K(2”=0

with +x, denoting the x coordinate of the diabatic potential minima.
The final diabatic potentials read

1
Vi, )) = SO +3%) + peox

1
Vo, 3) = Sh0c* +y?) — pprox

We chose x,= 10 forall simulations. Although the diabatic potentials
share the y coordinate of the minima (y = 0), the coupling parameter
A causes the adiabatic potential minima to be symmetrically shifted
along the y axis.

The initial nuclear wave packet is chosen to be a Gaussian with an
initial width (Ax) = (Ay) =1 (with {(Ax)* = (%) - (x)?), given by

1 (x=rycos8p)” + (y = rpsindy)’
Xo(xry)_ \/ﬁeXp[ 2

Herer,and 6,, respectively, denote the radius and polar angle of the
initial wave packet position. Because the adiabatic potentials are sym-
metric with respect to y, thatis, V3%(x, - y) = V%(x, ), we restrict the
initial positions to the lower semicircle. In all simulations, the wave
packetis placed onthe second diabatic potential V,. However, we take
into consideration only those situations where the initial diabatic
population of V, corresponds to a population of the excited adiabatic
state of at least 50%.

Our model is based on the six parameters listed in Extended Data
Table2togeneratealibrary of 500,000 different configurations. The sim-
ulations were carried out using the multi-configuration time-dependent
Hartree method®* in its multiset implementation of the Heidelberg
package, which allows efficient wave packet propagation. The wave func-
tionis represented on a grid of Hermite functions with 175 grid points
between -35.0 and +35.0. We use 25 single-particle functions per degree
offreedomand electronic state, such that the natural population of the
highest single-particle functionis below10™*. The integrationis carried
out with a variable mean field scheme with an accuracy of 108,

Identifying each experimental trajectory with a simulated
counterpart

The purpose of identifying simulated trajectories with experimental
onesistodetermine the set of parameters best able to describe each of
the experimental trajectories. Identification proceeds by comparing
simulated dynamical trajectories with experimental ones. In principle,
one could simply select the simulated trajectory most closely resem-
bling (having the smallest > value with respect to) a given experimental
trajectory. In practice, the axes describing the experimental and simu-
lated trajectories may be rotated and/or rigidly shifted with respect to
eachother. Attenuation due to noise and timingjitter may also change
the ‘unit length’ of each experimental axis by an unknownamount. The
best-fit search must therefore allow rigid shifts in the origin, axis swap



and scaling of the simulated trajectories. (Allowing frame rotations
results in axis swaps.)

More specifically, we model the trans-to-cisisomerization of PYP as
awave packet de-exciting via a conical intersection. To extract model
parameters, we numerically solve the time-dependent Schrodinger
equation for this system, taking into account a total of six model
parameters, as described above. Dynamical trajectories in the 2D
space spanned by two collective modes are then compared with pairs
of chronos recovered in our analytical pipeline.

In greater detail, we fit each of the simulated trajectories to the six
experimental trajectories, using the smallest x* to identify the best
match in each case (see, for example, Supplementary Fig. 5). In this,
we consider both temporal and spatial translations of the simulated
trajectories, and allow the simulated trajectories tobelinearly scaled.
Following this procedure, we are able to reproduce the observed
collective-mode behaviour, and determine the geometric properties
ofthe conicalintersection and the uncertainties in our determination
of these physically important parameters (see Extended Data Table 2
and Methods section ‘Extracting parametric values and uncertainties’).
pecifically, the parameter w characterizes the kinetic energy, and (r,, 6,)
characterizes the initial position of the wave packet. The shape of the
PESsis determined mainly by the vibrational frequencies y;and y,. The
coupling parameter A defines the probability of a transition between the
two electronic states as aresult of the wave packet moving through or
closetothe conicalintersection. Vibrational frequencies and coupling
strength together define the topography of the conical intersection.

Because of timingjitter, noise and dataincompleteness, the experi-
mentally determined dynamical modes may be differently damped, and
not appear in the correct order™. Also, any linear combination of the
experimentally determined dynamical modes s, in principle, a valid
dynamical mode. To correctly compare the simulated and experimental
trajectories in two dimensions, we allow each coordinate axis to be
shifted and stretched, with the two coordinate axes interchanged.

With four continuous degrees of freedom (two for scaling, two for
translation and rotation proving unnecessary), the mutual identifi-
cation of experimental and simulated trajectories is achieved using
alinear least-squares fit in the space of experimental data with the
following cost function:

N
x2=Y [~ (a,+a))*+ G - (by+ b))
i=1

Here, with Ntime points per trajectory, (x; y;) and (X, 3/) denote the
simulated and experimental trajectories at theith time point, respec-
tively, with (a,, b)) and (a,, b,) as thefitting parameters. In our analysis,
1,001 time points span a total interval of 100 fs. Fits performed in the
space of simulated datawere prone toinstability. In cases where stable
solutions could be found, the extracted parameters agree with those
presented in Extended Data Table 2.

Segment search in experimental trajectories

Thesstarting time points for simulated and experimental trajectories are
notnecessarily identical. The simulated trajectories (each100 fslong)
are, therefore, compared with different 100-fs spans of the experimen-
tal trajectories to find the best match. Using ¢ to denote the centre of
the 100-fs span, we repeated the y* analysis above for 66 values of ¢,
590 fs <t < 655 fsinincrements of 1 fs. Thistime range covers the region
where trans-to-cisisomerizationis expected to occur'®, and includes the
sharp turning points at 615 fsin the chronos considered in this analysis.

Extracting parametric values and uncertainties

With the fitting procedure described above, experimental trajectories
canbeidentified with their simulated counterparts, from which the key
physical parametric values pertaining to each experimental trajectory
canbe determined. Ineffect, the simulated trajectories constitute abank

of trajectories calculated for a range of physical parameters character-
izing the dynamical trajectories in the vicinity of a conical intersection.
From 66 possible segments per experimental trajectory representing
ashift of up to 65 fsin time, 500,000 simulated trajectories and swaps
betweenxandyaxes, a total of 66 million y*fits per experimental trajec-
tory, were performed, and the physical parameters were extracted. The
parameter values obtained fromthe best fits are summarizedin Extended
DataTable 2. The uncertainties in the extracted parameters were estab-
lished by calculating the root mean square (r.m.s.) difference between
thebest-fit parameters and the parameters corresponding to all the simu-
lated trajectories with x* < 1.2 relative to the best fit. For casesinwhich the
r.m.s. differenceiszero, the uncertainty isassumedto correspondtothe
parametric sampling interval used to generate the simulated databank.

Computational resources for manifold-based machinelearning
Software. The NLSA pipeline and x* fittings were implemented using
MATLAB (R2015b and R2019a, with parallel computing toolbox). DED
calculations were performed using CCP4 v7.0, and Coot 0.8.9 was used
to provide visualization of DEDs.

Hardware. Parallel computations were performed on an Intel CPU
cluster (320 CPU cores, 2.6 GHz, arranged as 16 nodes, each with 128 GB
of RAM). All other analyses were performed on asingle Linux computer
with 24 cores, a 3-GHz Intel Xeon CPU and 256 GB of RAM.

Computational resources for theoretical calculations. The wave
packet propagations were carried out on12-core Intel Xeon X5660 CPUs
with 2.8 GHz and 96 GB of memory and 32-core Intel Xeon E5-2630L
CPUs with1.8 GHz and 126 GB of memory.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Thestructures have been depositedin the Protein Data Bank, together
withtheir respective weighted difference structure factor amplitudes,
under accession codes SHD3, SHDC, SHDD, SHDS and SHDS5. Source
data are provided with this paper.

Code availability
The code will be made available on request.
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Extended DataFig.1|PYP chromophoreintrans configurationand
structure dynamical modes obtained by our approach. a, The PYP
chromophoreinthetrans configuration. The oval contains the primary
structure-dynamically active region, with the numbered atoms and aromatic
structures identified. C: carbon, N: nitrogen, O: oxygen, S: sulfur.b, ¢, The
structure dynamical modes obtained by our approach can be combined to
yield the more intuitive torsional angle, which iscommonly chosen as the

primaryreaction coordinate forisomerizationin PYP. Changesin the torsional
angle and the bend of the chromophore axis relative to equilibrium values
necessarilyincrease the energy of the ground state structure. Near the Cl the
structure onthe ground state PES and that on the excited state PES are
essentially identical with very similar energies. The structure on the excited
state PES determined at 615fsis therefore an excellent model for the electronic
ground state structure near the PYP conical intersection.
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Extended DataFig.2|Dynamical trajectories near the conicalintersection.

Unless otherwise stated, arbitrary units. a, b, Time evolutions (chronos) of
modes 3 and4, respectively.c, The experimental dynamical trajectory (in
black) obtained from modes 3 and 4 as collective variables xand y, respectively,
and the best-fit simulated trajectory, with color showing the passage of time
(seecolorbar). Thered dotindicates the position of the conical intersection.
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For additional trajectories, see Supplementary Information. d, The calculated
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populations of the upper and the lower adiabatic electronic states,
respectively.
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and the best-fit simulated trajectory, with color showing the passage of time
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Extended Data Table 1| Peak positions obtained from multi-taper Fourier analysis of the chronos before the encounter with
the conicalintersection vs. peak positions obtained from time-resolved Raman spectra of PYP, all in THz

Peak Position (£ 2 THz)

Chrono 2 70
Chrono 3 37
Chrono 4 3 21 30 58 64 72 98

Chrono 5 5 64 74 89 96

Average peak
frequencies 4 21 335 58 64 72 89 97

Time-resolved Raman
frequencies & 225 34.7

Not available
Difference 0% 7% 3%

Each chrono displays a characteristic frequency spectrum, which sometimes includes a subset of the peaks observed in another chrono. The exact peak position can change by ~2 THz as
multi-taper parameters are varied. Closely separated peaks are identified as one peak at the average frequency position. Using time-resolved Raman spectroscopy, Kuramochi et al.** have
investigated the approximately 3 - 30 THz frequency range in PYP. As shown in the Table, all frequency peaks in this frequency range revealed by multi-taper analysis of the chronos before the
encounter with the conical intersection can be identified with a peak observed by Kuramochi et al. with a frequency accuracy of 7% or better. However, the time-resolved Raman spectra contain
additional peaks (not shown) not observed in our analysis of the chronos. This suggests that not all spectroscopically observed frequencies pertain to the structure dynamical collective vari-
ables we have extracted from time-resolved scattering data.
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Extended Data Table 2 | Parameters of the potential energy surface and parametric grid of simulated trajectories near the
conical intersection

a
st M2-M3 M2-M4 M2-M5 M3-M4 M4-M5
Parameter
o 4.11+2.12 5.22 + 1.40 4.67 +1.24 3.56 + 0.98 3.00 + 1.67
0, —140 + 18 -100+26 | —120+20@ | —-120+6.70 | —120 +20@
w (x1073) 2.50 + 0.93 1.67+1.06 |2.08+042@ | 3331028 |2.08+0.42@
Ao 1.50 + 0.27 1.00+0.33 | 1.50+0.50@ | 1.00 +0.50@ | 1.50 + 0.50@
Y1/ 0.13 + 0.03 0.08 + 0.04 0.08 + 0.01 0.10 + 0.02 0.07 + 0.02
Y2/ 0.10 + 0.02 0.20 + 0.10 0.12 + 0.02 0.08 + 0.04 0.15 + 0.03
b
Parameter () Y1/ ® Y2/ ® A/ 6y To
Interval |[0.00125,0.005]| [0.05,0.2] [0.05,0.2] [0.5,5] [—180,0] [3,8]

a, Parameters of the potential energy surface near the conical intersection derived in this work. Radius rg (dimensionless), and angle 6 (degrees) together specify the initial position of wave
packet. A: coupling strength; w: normalization frequency (kinetic energy); v, ,: frequency on respective PES. Superscript Q indicates the accuracy is limited by the spacing in the parametric grid
of simulated data. Unless stated otherwise, where appropriate, parameters in atomic units. b, The parametric grid used to simulate dynamical trajectories. w: normalization frequency; A:
coupling strength; y, ,: frequency on respective PES; angle 8 (in degrees) and radius rg (dimensionless) are the initial position of the wave packet. Except for 8 with six different values,
parameters take 10 values uniformly distributed in their respective intervals. Unless otherwise specified, all parameters in atomic units.
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The PYPref, PYPfast, PYPslow, PYP3ps, and PYP200ns structures are already deposited in the Protein Data Bank, together with their respective weighted difference
structure factor amplitudes under accession codes 5HD3, 5HDC, 5HDD, 5HDS, and 5HD5, respectively.
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Data exclusions 190,053 light snapshots were randomly removed to yield a uniform delay-time histogram.

Replication No data were replicated. Repeating rows or columns of data in analyses involving matrix manipulation often leads to poor conditioning and
errorneous results.

Randomization  The experiment naturally captures snapshots of protein molecules in random orientations. We did not divide the data into random sub-
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