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Few-fs resolution of a photoactive protein 
traversing a conical intersection

A. Hosseinizadeh1, N. Breckwoldt2,3,4, R. Fung1, R. Sepehr1, M. Schmidt1, P. Schwander1, 
R. Santra2,3,4 & A. Ourmazd1 ✉

The structural dynamics of a molecule are determined by the underlying potential 
energy landscape. Conical intersections are funnels connecting otherwise separate 
potential energy surfaces. Posited almost a century ago1, conical intersections remain 
the subject of intense scientific interest2–5. In biology, they have a pivotal role in vision, 
photosynthesis and DNA stability6. Accurate theoretical methods for examining 
conical intersections are at present limited to small molecules. Experimental 
investigations are challenged by the required time resolution and sensitivity. Current 
structure-dynamical understanding of conical intersections is thus limited to simple 
molecules with around ten atoms, on timescales of about 100 fs or longer7. 
Spectroscopy can achieve better time resolutions8, but provides indirect structural 
information. Here we present few-femtosecond, atomic-resolution videos of 
photoactive yellow protein, a 2,000-atom protein, passing through a conical 
intersection. These videos, extracted from experimental data by machine learning, 
reveal the dynamical trajectories of de-excitation via a conical intersection, yield the 
key parameters of the conical intersection controlling the de-excitation process and 
elucidate the topography of the electronic potential energy surfaces involved.

The quantum mechanical energies of molecular electrons as a function 
of molecular geometry give rise to effective potential energy surfaces 
for the motion of atomic nuclei. When there are d nuclear degrees of 
freedom, the potential energy surface (PES) is d dimensional. In the 
so-called Born–Oppenheimer (BO) approximation, the electronic and 
nuclear degrees of freedom are treated separately. When two PESs come 
into contact, the BO approximation is no longer valid.

A conical intersection is a region of such potential energy degen-
eracy, forming a (d – 2)-dimensional manifold with divergent, non-BO 
coupling between the participating electronic states. The resultant 
strong mixing of electronic and vibrational degrees of freedom opens 
a pathway by which dynamical changes in molecular geometry can 
cause a transition from one electronic state to another. As this gives 
rise to ultrafast, non-radiative relaxation of the excited state, conical 
intersections have an important role in numerous processes in nature. 
Trans-to-cis isomerizations of the p-coumaric acid chromophore in 
photoactive yellow protein (PYP)9,10 (Extended Data Fig. 1a) and retinal6,11 
are prime examples.

Accurate theoretical methods for treating coupled electronic and 
vibrational dynamics are currently restricted to small molecules.  
The quality of such simulations—using either a quantum or a classical 
treatment of nuclear motions—depends on the precise characterization 
and complexity of the PESs involved. PYP, for example, is composed of 
2,289 atoms12, exhibiting 6,861 vibrational degrees of freedom. This level  
of complexity renders rigorous, first-principles electronic structure 
calculations unfeasible for the foreseeable future. State-of-the-art 
density functional theory can be applied to molecules of comparable 

size13, but does not yet provide reliable chemical accuracy, particularly 
for conical intersections. Even if it were possible to solve the electronic 
Schrödinger equation for a single molecular geometry accurately, the 
total number of molecular geometries needed for adequate sampling 
of the potential energy landscape as a whole grows exponentially with 
the number of degrees of freedom.

Experimentally, conclusive observation of the structure-dynamical 
modes involved in electronic switching via conical intersections has 
remained elusive because high temporal and spatial resolutions must 
be combined to resolve the ultrafast dynamics with sufficient acuity.  
Optical pump–probe spectroscopy provides information on the 
electronic-state population dynamics with femtosecond time resolu-
tion, but it does not offer direct access to the structural properties 
of the system14. Similarly, time-resolved diffraction techniques, such 
as ultrafast electron diffraction (UED) and time-resolved X-ray dif-
fraction, have, up to now, lacked the temporal resolution needed to 
follow de-excitation via a conical intersection7,15. Recently, the com-
bination of UED experiments with extensive, sophisticated ab initio 
simulations accomplished the structural characterization of conical 
intersection-induced dynamics in an 11-atom molecule with a time 
resolution of 150 fs (ref. 7).

Here we report four key advances. First, structure-dynamical collec-
tive modes and trajectories of ultrafast de-excitation can be extracted 
with atomic spatial resolution and few-femtosecond time resolution 
from existing time-resolved crystallographic data. Second, in com-
bination with tractable and accurate computational methods, the 
topography of the electronic states involved in de-excitation via a 
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conical intersection can be determined. Third, our approach can be 
used to determine the key collective variables and boundary condi-
tions controlling the de-excitation dynamics of molecules consisting 
of thousands of atoms. Finally, the combination of data-driven machine 
learning with existing experimental and theoretical techniques offers 
the time resolution of spectroscopy and the spatial resolution of struc-
tural methods.

In the illustrative example of PYP, our approach provides the fol-
lowing new insights.
1.	 High-frequency charge oscillations are involved in the trans-to-cis 

isomerization process in PYP. These oscillations involve previously 
ignored ‘peripheral’ regions of the chromophore (Extended Data 
Fig. 1a).

2.	The presence of the above-mentioned oscillations in PYP has been 
independently corroborated in the spectroscopically accessible 
range of 3–30 THz, but with no direct structural information. Our 
work extends the experimentally accessible range to 100 THz, and 
provides high-resolution spatial information on the structural ele-
ments involved in these ultrafast oscillations.

3.	Photo-excited PYP proceeds towards the conical intersection via 
one of five conduits, revealing the structure-dynamical trajectories 
of approach to the conical intersection.

4.	Structure-dynamical trajectories of passage through the conical 
intersection have been determined, allowing measurement of the 
key parameters of the conical intersection in PYP. These parameters 
are essential for a quantitative understanding of the PES manifold 
and the isomerization process in PYP.

5.	 Our work establishes an important bridge between structural and 
spectroscopic studies. This link is essential for a complete under-
standing of PYP.
The above insights represent a clear advance in understanding of 

PYP and, by extension, a wide range of ‘ultrafast’ structure-dynamical 
systems.

The experimental data were obtained in a time-resolved (optical 
pump, X-ray probe) serial femtosecond crystallographic study of PYP, as 
reported in detail elsewhere10. This protein is known to undergo a rapid 
trans-to-cis isomerization reaction via a conical intersection10. The data  
consist of a time series of two-dimensional (2D) diffraction snapshots, 
each stemming from a different random central slice through the 
three-dimensional (3D) diffraction volume. Each ‘light’ 2D snapshot was 
recorded after optical excitation at a time point known to an accuracy  
of ~100 fs owing to unavoidable ‘timing jitter’ between the optical pump 
and X-ray probe pulses10,16. In addition, ‘dark’ snapshots were recorded 
without any optical excitation. Conventionally, enough light 2D snap-
shots from the same nominal time point are indexed and combined 
(merged) to obtain the 3D diffraction volume and, from there, the  
difference between the light and dark atomic structures at each 
time point (see, for example, ref. 10). The timing jitter limits the time  
resolution of the merged 3D volumes to ~100 fs. This is a severe limitation  
because de-excitation via a conical intersection is often complete within 
that timeframe (see below and ref. 8).

Analysis by machine learning
As outlined in Supplementary Information sections 1–4, we circumvent 
this problem by applying manifold-based machine learning16–20 to the 
same dataset of 2D diffraction snapshots, to reconstruct a time series 
of 3D diffraction volumes, each pertaining to a time point determined 
with an accuracy of about 1 fs (for details, see Methods sections ‘Over-
view of algorithmic approach’, ‘Data preprocessing’, ‘Data representa-
tion’ and ‘Manifold-based machine learning’, Supplementary Fig. 2 and 
ref. 16). In essence, our approach rests on the celebrated realization 
by Takens21 and Packard22 that dynamics tightly constrain the time 
evolution of a system. This means that much fewer data are needed to 
reconstruct dynamics than conventionally thought necessary. As an 

extreme example, Newton’s laws of motion require only one snapshot 
of the initial conditions (positions and momenta) and the forces acting 
on a system to predict the dynamical evolution of a non-chaotic system 
forever. In a similar vein, the time evolution of the diffraction signal 
is highly constrained by the charge dynamics of the photo-excited 
system under observation. This allows an essentially jitter-free time 
series of 3D diffraction volumes to be recovered from a time series of 2D 
central slices, each recorded with substantial timing uncertainty. This 
algorithmic approach has been validated with experimental data16,23,24 
and with data from synthetic models, where the actual ‘ground truths’ 
are known16,23,24 (see also Methods sections ‘Validating the time resolu-
tion by comparison with spectroscopic results’ and ‘Validation with 
synthetic data’, Extended Data Table 1, Extended Data Figs. 2–8 and 
Supplementary Figs. 1–5).

Armed with a series of accurately timestamped 3D diffraction vol-
umes, standard time-resolved crystallographic approaches25,26 can be 
used to compile jitter-free difference electron density (DED) videos, 
revealing the dynamics of the photo-excited charge distribution.  
As described in detail in ref. 16, using time-lagged embedding21,22, our 
data-analytical pipeline ‘learns’ the Riemannian manifold on which the 
dynamics unfold, and conducts all analysis, including (nonlinear) sin-
gular value decomposition, on that curved manifold16,19. This approach 
yields the characteristic collective modes of the charge distribution 
(‘topos’) and their respective time evolutions (‘chronos’). In essence, 
each topo represents a characteristic DED map, evolving in time as 
prescribed by its corresponding chrono (Fig. 1). Each topo–chrono 
pair thus represents a characteristic structure-dynamical mode of the 
charge distribution. These modes constitute the empirical basis func-
tions, which, in combination, describe the dynamical trajectories (‘the 
reaction paths’) of the system. Videos of the structure-dynamical modes 
with few-femtosecond time resolution are shown in Supplementary 
Videos 1–4. As shown in Extended Data Fig. 1b, c, these modes can be 
combined to describe the structural dynamics in terms of the more 
intuitive torsional angle as a reaction coordinate.

Validating the time resolution
Fourier analysis of the chronos by multi-taper methods27,28 reveals the 
clear presence of frequencies of up to 95 THz (10.5 fs) at signal-to-noise 
ratios of ~5 or higher (Extended Data Fig. 3). As the observation of a fre-
quency component in an initially non-uniform set of time points requires 
a time resolution ~5–10 times shorter than the period of the component29, 
the clear observation of a signal of 10.5 fs validates the few-femtosecond 
time resolution of our approach. This high time resolution is particularly 
remarkable because the data were obtained with a 140-fs optical pump 
pulse10. This suggests that, in the experiment, a temporal gating effect 
may have had a role, as a consequence of, for example, nonlinear mul-
tiphoton processes30 or light-induced structural disorder31.

Fourier analysis of the chronos before 615 fs, that is, before the 
encounter with the conical intersection brings multiple species into 
play, reveals three prominent peaks at 4, 21 and 33.5 THz in the spec-
troscopically well-explored region spanning the range from 3–30 THz 
and its vicinity. These peaks have been previously observed by ultrafast 
time-domain Raman spectroscopy of PYP before the conical inter-
section32. These spectroscopically measured PYP peak frequencies 
match those we observe to within 7% or better (see Methods section 
‘Comparison with spectroscopically determined PYP frequency spec-
trum’ and Extended Data Table 1). Such close agreement with inde-
pendently known ground truths is the ultimate test of any machine 
learning approach.

On the basis of the argument outlined above, the clear observation 
of the oscillatory signal at 33.5 THz (30 fs) already indicates a time 
resolution of 3–6 fs (ref. 29). The signal at 95 THz may be associated 
with a C–H bond stretch, typically observed in the band at 100 THz 
(10–12 fs) at moderate to high intensities. It is also possible that this 
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oscillatory signal stems from an N–H vibrational bond stretch, which 
typically results in an absorption band in the range of 9.5–10.4 fs (ref. 33).

Structure-dynamical modes
As mode 1 represents the moving average of the signal, its topo is added 
to each of the subsequent modes to facilitate comparison with DEDs 
obtained by conventional means. Supplementary Videos 1–4 reveal 
the nature of the structure-dynamical motifs involved in the relaxation 
of PYP. Supplementary Videos 5–9 display the combinations of these 
motifs, which reveal the actual isomerization trajectories at work (see 
also Extended Data Fig. 2 and below).

Mode 2, with a time evolution (chrono) resembling a step function 
(Fig. 1), represents the only structure-dynamical evolution not reversed 
within the picosecond timespan of the dataset. This mode also captures 
strong DED features in the vicinity of the C2–C3 and C3–C4 bonds in 
PYP (Extended Data Fig. 1a) associated with the trans-to-cis isomeriza-
tion in PYP34. The other chronos return roughly to their initial values 
in the course of the experimental timespan (Fig. 1). All modes reveal 
previously unreported rapid charge oscillations.

Structure-dynamical trajectories
Although the characteristic structure-dynamical modes (basis func-
tions) described above display key features of the system, they must 
be appropriately combined to reconstruct the trajectories (reaction 
pathways) associated with de-excitation via the conical intersection. 
As in standard singular value decomposition, additional information 

is needed to accomplish this task16,26,35. Away from the conical intersec-
tion, we determine the appropriate mode combinations as previously 
described in ref. 36, and extract structures from the resulting DEDs as 
outlined in ref. 34.

Near the conical intersection, the mode space is 2D, and the 
structure-dynamical trajectories of passage through the conical inter-
section can be determined as follows. We compare the six possible 
experimental trajectories obtained from pairwise combinations of 
experimental modes with simulated trajectories contained in a diction-
ary of half a million theoretically calculated de-excitation trajectories.

Specifically, using the 500,000 different combinations of the six 
model parameters, we determine, as a function of time, the expecta-
tion values of the position operators associated with each mode. In 
this way, we obtain dynamical trajectories in the 2D space spanned by 
two collective modes, denoted x and y for short.

A dynamical trajectory in this 2D space consists of a time-ordered 
sequence of points given by (x(t), y(t)). Each instance of x(t) and y(t) is 
associated with a characteristic DED map (a topo), whose time-varying 
contribution is determined by the associated chrono. Thus, in the space 
spanned by x and y, a potential dynamical trajectory is obtained by 
plotting two chronos against each other. (Of course, the choice of char-
acteristic modes is not unique; any linear combination, with or without 
sign inversion and scaling, provides an equally good basis set.) Using 
the bank of 500,000 quantum-dynamical de-excitation trajectories 
in the vicinity of a conical intersection, we identified the experimental 
trajectories leading to high-probability de-excitation of PYP via a coni-
cal intersection (see Methods section ‘Overview of theoretical model 
used to simulate dynamical trajectories’).
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PYP de-excitation trajectory
Of the six possible pairwise combinations of experimentally deter-
mined dynamical modes, five can be identified with simulated trajecto-
ries of de-excitation via the conical intersection (Extended Data Figs. 2, 
4–7) (the sixth combination does not correspond to any simulated 
trajectory in our databank). Identification of these experimental tra-
jectories and their simulated counterparts yields direct information 
on the structure-dynamical changes involved in the approach to, and 
the passage through, the conical intersection and the key parameters 
governing the properties of the PYP conical intersection itself, includ-
ing its topography (Extended Data Table 2 and Fig. 2).

The very similar parameters obtained from all five pairwise combina-
tions of experimentally determined structure-dynamical modes indi-
cate that, in the vicinity of the conical intersection, the five dynamical 
trajectories can be described in terms of the same underlying conical 
intersection. Further away from the conical intersection, however, 
our analysis reveals the presence of at least five distinct de-excitation 
trajectories in PYP. We interpret these segments as different conduits 
to and from the vicinity of the PYP conical intersection. In this vicinity, 
the trajectories represent high-probability de-excitation routes on the 
same 2D PES manifold. These insights are essential to understanding 
the structural dynamics of PYP relaxation.

We now summarize the primary conclusions of our work. First, our 
results demonstrate a novel data-driven approach that combines the 
superb spatial resolution of structural methods, such as crystallogra-
phy, with the exquisite time resolution of spectroscopy. In essence, 
this approach is tantamount to structure-dynamical spectroscopy 
with atomic spatial resolution and femtosecond timing acuity. Second, 
our results on the ultrafast atomic-level changes associated with the 
femtosecond de-excitation of PYP via a conical intersection reveal 
previously unobserved oscillatory charge dynamics involving often 
ignored regions surrounding the chromophore. Third, our results 
corroborate independent spectroscopic results on PYP in the usually 
accessed regime of 3–30 THz, provide direct structural information 
and extend the amenable range to ~100 THz. Fourth, our results reveal 
the structure-dynamical trajectories leading to the vicinity of, and 
through, the PYP conical intersection, and elucidate the properties 
of the PES manifold involved in PYP de-excitation.

More generally, by combining machine learning analysis of experi-
mental data with simple and numerically accurate quantum-dynamical 

simulations, we have demonstrated a powerful data-driven route to 
studying a wide variety of important processes in complex molecular 
systems inaccessible by first-principles calculations, and established 
a bridge between spectroscopic and structural techniques for inves-
tigating ultrafast processes.

Of course, future tasks remain. These include investigating the pos-
sible effects of crystallinity on the observed relaxation modes and 
trajectories and whether the small number of important collective 
variables revealed by our approach offers a route to more accurate 
theoretical calculations than hitherto possible. These future tasks 
notwithstanding, our present results already reveal the unanticipated 
trove of information that can be extracted from existing experimental 
data by a combination of data-driven machine learning and physically 
based theory.
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Methods

Overview of algorithmic approach
We use manifold-based machine learning to extract accurate 3D 
structure-dynamical information from 2D snapshots (central slices 
through the diffraction volume). The approach exploits time-lagged 
embedding, a powerful strategy for extracting accurate dynamical 
information from measurements of a subset (‘projections’) of the sys-
tem variables16,19,21–23.

Manifold-based machine learning recognizes that data reside on 
curved manifolds, which can be learned from the data17. All analytical 
operations, such as singular value decomposition, are then performed 
on the learned manifold, which reflects the information content of 
the entire dataset19. We have previously shown that such algorithmic 
approaches are highly robust against noise37 and timing uncertainty16. 
The work reported in this paper addresses the case where, in addition 
to substantial noise and timing uncertainty, the measurements are 
incomplete. Specifically, only a single 2D central slice is experimentally 
measured at each (inaccurately known) time point, but the 3D diffrac-
tion volume is required at accurately known time points.

The Diffusion Map embedding algorithm expresses the curved data 
manifold in terms of the eigenfunctions of the Laplace–Beltrami operator17. 
In the presence of data incompleteness, one can no longer assume that 
the manifold eigenfunctions pertain to the Laplace–Beltrami operator.

After preprocessing the experimental data as described below, data 
vectors are formed, each representing a 3D (crystal) diffraction volume 
at a given time point. As only one central slice of the diffraction volume 
is measured at each (approximately known) time point, the data vectors 
are incomplete, with many missing elements. A well-defined manifold 
can nonetheless be obtained by time-lagged embedding (time-ordered 
concatenation) of many snapshots ordered according to their nominal 
timestamps. As demonstrated previously16,37, this algorithmic approach 
is highly robust to noise and timing uncertainty.

Data preprocessing
Diffracted intensity data collected at the Linac Coherent Light Source 
were indexed, integrated, rescaled and detwinned as described in ref. 
34. In total, 337,852 light snapshots, each containing about 600 Bragg 
reflections, were recorded after exposure to a 140-fs optical pulse. With 
assistance from a timing tool, the pump–probe delay was recorded 
with an accuracy of ~100 fs owing to unavoidable timing uncertainty 
( jitter) between the optical pump and X-ray probe pulses.

In contrast to standard practice10, no time averaging or binning of 
snapshots was performed. Supplementary Fig. 1a shows the histogram 
of pump–probe delay times for light data. To ensure that all time points 
are equally weighted, 190,053 light snapshots were randomly removed, 
mostly from the highly populated regions at ~200 fs and ~900 fs (Sup-
plementary Fig. 1b). This resulted in a dataset of 147,799 light snapshots 
for further analysis. The data collected without exposure to a pump 
pulse (the dark dataset) consist of 79,937 snapshots whose reflections 
were mapped to the same asymmetric unit as the light data.

PYP forms crystals with P63 symmetry10. Mapping all collected reflec-
tions (Miller indices; kmax = 36, lmax = 26) to the asymmetric unit gives 
21,556 unique reflections. Reflections beyond the resolution window 
of 0.0667 Å–1 < |q| < 0.667 Å–1, as well as those that were their own twins, 
were removed, resulting in 15,498 unique reflections with an average 
of 500 reflections per 2D snapshot.

Data representation
In the representation used in this study, a data vector contains as many 
components as the number of reflections in a 3D volume. As only one 
central slice is accessed in each 2D snapshot, a data vector is highly 
incomplete. The data matrix consists of as many data vectors as 2D 
snapshots in the dataset. Specifically, the matrix has D = 15,498 rows 
and N = 147,799 columns, with each row corresponding to a unique 

reflection and each column corresponding to the preprocessed inten-
sity data recorded in a 2D snapshot. The columns were ordered accord-
ing to the experimentally measured (inaccurate) timestamps. With 
each snapshot containing only ~500 reflections, the data matrix is 
highly sparse (sparsity =  ~ 500

15,498
 = ~3.2%).

Applying the same preprocessing steps to the dark snapshots results 
in a data matrix of D = 15,487 rows and N = 79,937 columns. As no optical 
pump, and hence no pump–probe time delay, was involved in recording 
dark snapshots, these data were lexicographically sorted according to 
run numbers followed by event numbers.

Manifold-based machine learning
Preprocessed snapshots were analysed by time-lagged manifold embed-
ding, nonlinear spectral analysis (NLSA)19 and standard techniques for 
compiling DED maps10 (Supplementary Information). Manifold embed-
ding (Diffusion Map) was performed on supervectors with concatenation 
parameter c = 32,768, number of nearest neighbours nN = 15,000 and a 
Gaussian kernel σ = 1,420. This embedding results in four noise-reduced 
orthogonal eigenfunctions. NLSA on the manifold reveals five modes 
above the noise plateau. As in standard singular value analysis, the first 
mode represents the moving average, with subsequent modes represent-
ing deviations from the average. Reconstruction using the modes above 
the noise plateau yields single frames containing full diffraction volumes 
at uniformly spaced time points. The same procedure was applied to the 
dark dataset with N = 79,937, c = 32,768, nN = 1,000 and σ = 3,380. In this  
case, NLSA yielded only two identical modes differing only in scale, as 
expected from a single-parameter process (Extended Data Fig. 8).

To compute DED maps, we subtract the average reconstructed 3D 
diffraction volume of the dark data from the reconstructed 3D diffrac-
tion volume of the light data at each time point. The CCP4 package38 
was used to scale the light data to the dark data. The dark phases were 
obtained from the Protein Data Bank model of PYP deposited under 
accession code 5HD3 (ref. 10). The Coot toolbox39 was used to compile 
DED maps at 1.5-fs intervals and, from there, DED videos.

Validating the time resolution by comparison with 
spectroscopic results
The pump and probe pulses used in serial femtosecond crystallography 
are typically tens of femtoseconds long. In principle, simulation can 
be used to investigate the effect of the pulse characteristics on the 
achievable time resolution. However, extensive studies of the spatial 
and temporal characteristics of incident pulses30 have shown that it 
is extremely difficult, if not impossible, to determine the actual pulse 
characteristics in time-resolved serial femtosecond crystallography. 
We therefore follow a data-driven machine learning approach, whereby 
the veracity of our results is determined by the extent to which our 
algorithm reproduces independently known ground truths. Using 
experimental XFEL pump–probe data obtained with optical pulses as 
long as 75 fs, we have previously shown that the vibrational frequen-
cies revealed by our approach accurately match those of well-known 
systems such as N2, even when the incident pulse lengths are long when 
compared with the vibrational frequencies16. Similarly, in the spec-
troscopically examined frequency range, each of the PYP vibrational 
frequencies revealed by our present work has been independently 
observed by time-resolved Raman techniques32 (Extended Data Table 1). 
This clearly demonstrates that reliable dynamical information can be 
extracted with few-femtosecond time resolution.

Validation with synthetic data
We have previously demonstrated the efficacy of our approach by refer-
ence to synthetic models16. To confirm the validity of our approach for 
the present case, we generated a 3D diffraction volume whose structure 
and time evolution closely resembled the outcome of the analysis of 
the experimental data. The simulated and experimental data shared 
the same diffraction space sampling and level of data sparsity.
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2D snapshots were generated by taking Ewald cuts (central slices) 
from a jitter-free, noise-reduced model. The same set of indexed Bragg 
reflections and timestamps were used in analysis of the experimental 
data. For instance, let hj and tj be the set of indexed Bragg reflections 
and the measured (and jittered) timestamp of the jth experimen-
tal snapshot, respectively. The jth simulated snapshot consists of 
the same set of indexed Bragg peaks hj extracted from the full dif-
fraction volume in the jitter-free, noise-reduced video extracted 
from the experimental data with timestamp tj. In other words, on a 
snapshot-to-snapshot basis, the synthetic and experimental data have 
the same set of indexed Bragg peaks and the same nominal timestamps. 
Hence, the synthetic and experimental data have the same timing struc-
ture, the same diffraction space sampling and the same level of data  
incompleteness.

The resulting synthetic data, consisting of highly incomplete data 
vectors, were then passed through the same analytical pipeline as that 
used for experimental data, and the recovered structural dynamics were 
compared with the known ground truths pertaining to the input syn-
thetic model. This comparison was quantified in terms of the Pearson 
correlation coefficient between the synthetic model and the output of 
the analytical pipeline. As shown in the Supplementary Information, 
the correlation coefficients typically exceed 0.99 (Supplementary Fig. 
3a). In addition, the R factor between the synthetic input structural 
dynamics and the output of our data-analytical pipeline was used to 
validate the veracity of the outcome of our analysis as a function of 
spatial frequency. As shown in Supplementary Fig. 3b, the R factor is 
below 15%, even at the highest spatial frequency (1.6 Å).

Outcome of machine learning compared with results from 
conventional analysis
To validate our analytical pipeline further, we compare the DED at 3 ps 
obtained by our approach and the corresponding DED obtained by the 
standard methods10,25. The time point of 3 ps was chosen to be close 
to the femtosecond regime without being substantially impacted by 
timing uncertainty. As shown in Supplementary Fig. 4, the two DEDs 
are highly similar, with a correlation coefficient of 0.998 between the 
respective volumes and crystallographic R factors below 20% at the 
highest frequency. This validates the robustness of our algorithm to 
noise and data incompleteness.

Frequency content of the observed dynamical modes
The spectral features of the chronos were examined by Fourier and 
multi-taper analysis, the latter of which uses the Chronux package in 
MATLAB (http://chronux.org/). First, using mode 4 as an example, FFT 
analysis was performed with zero padding and a Hann window over 
the span of chrono 4 used in the NLSA reconstruction of mode 4. The 
Fourier spectrum shows clear peaks at frequencies exceeding 95 THz 
(shorter than 10.5 fs) (Extended Data Fig. 3). To verify the reliability 
of these FFT results, multi-taper F-test analysis was performed with 
padding parameter pad = 3 (default value) and time half-bandwidth 
products tw = 2, 3, 4, 5 (the number of tapers is 2 × tw – 1). The results 
for pad = 3 and tw = 3 are shown in Extended Data Fig. 3. The vertical 
axis represents, in essence, the signal-to-noise ratio of each Fourier 
component. Unless otherwise stated, we consider only peaks with 
F-ratio values above 5 in at least one set of taper parameters.

Each chrono displays a characteristic frequency spectrum, which 
sometimes includes a subset of the peaks observed in another chrono 
(Extended Data Table 1). The exact peak position can change by a few tera-
hertz as multi-taper parameters are varied. Such closely separated peaks 
are grouped together as one peak at the average frequency position.

Comparison with spectroscopically determined PYP frequency 
spectrum
Using time-resolved Raman spectroscopy, Kuramochi et al.32 have 
investigated the frequency range of ~3–30 THz in PYP. As shown in 

Extended Data Table 1, all frequency peaks in this frequency range 
revealed by multi-taper analysis of the chronos before the encounter 
with the conical intersection can be identified with a peak observed by 
Kuramochi et al. with a frequency accuracy of 7% or better. However, the 
time-resolved Raman spectra contain additional peaks (not shown) not 
observed in our analysis of the chronos. This suggests that not all spec-
troscopically observed frequencies pertain to the structure-dynamical 
collective variables we have extracted from time-resolved scattering 
data.

Overview of theoretical model used to simulate dynamical 
trajectories
A prerequisite for the theoretical description of an N-particle system 
is, in general, a set of (3N – 6) generalized coordinates, also referred to 
as normal modes, which correspond to the system’s internal degrees 
of freedom. However, to model the potential energy landscape in the 
vicinity close to the conical intersection in PYP, we take into considera-
tion only two normal modes that contribute to formation of the conical 
intersection. On the one hand, this is motivated by identifying pairs 
of collective modes in the experimental data and at least two degrees 
of freedom being required for a conical intersection to occur. On the 
other hand, we want to keep the number of model parameters as small 
as possible to avoid overfitting. The two modes considered, in turn, 
are related to 3N – 6 Cartesian real-space coordinates by a linear, yet 
unknown, transformation. Therefore, distinct structural modifications 
and the resultant effects on extrinsic quantities, for example, the elec-
tron density, are also expected to emerge in the two-mode description 
if these modifications are caused by the conical intersection.

The calculations use an effective model Hamiltonian in a compressed 
collective-mode space to capture the properties of a conical inter-
section and its vicinity. This allows numerically exact calculation of 
the nuclear quantum dynamics as a function of a small number of 
molecule-specific model parameters. By comparing the resulting 
simulated structure-dynamical trajectories with the experimentally 
determined trajectories provided by our data-analytical pipeline, we 
determine the numerical values that the model parameters assume in 
PYP. This provides detailed insight into the topography of this photo-
chemically exemplary conical intersection (see next section).

Our theoretical model is tantamount to the simplest possible reali-
zation of a conical intersection, implicitly assuming dissipation into 
additional modes is negligible on the timescale of 100 fs. The PESs 
are approximated by a second-order Taylor expansion, known as the 
vibronic coupling model40, and are assumed to be symmetric with 
respect to both normal modes, possibly differing in their respec-
tive vibrational frequencies. Inter-state coupling is mediated via one  
mode only.

To determine the dynamics in the space spanned by two modes, 
we numerically solve the time-dependent Schrödinger equation for 
a wave packet initially occupying the excited electronic state. We 
take into account a total of six model parameters, including the ref-
erence ground-state frequency related to the kinetic energy of the 
wave packet, the respective vibrational frequencies of both PESs, the 
coupling strength and the initial position of the wave packet relative 
to the conical intersection.

We describe the conical intersection and the potential energy 
landscape in the close vicinity of the conical intersection by a Taylor 
expansion of the diabatic PESs up to second order40,41. This model is 
well established for the description of molecular dynamics, and has 
been applied to the theoretical description of photo-excitation and 
photo-dissociation processes in molecules (see, for example, refs. 42,43).  
Recently, a two-mode vibronic coupling model was used to study  
electronic coherences in the presence of a conical intersection44.

The normal modes denoted x and y are considered in dimensionless 
coordinates normalized with respect to a reference vibrational 
ground-state frequency ω. The corresponding Hamiltonian, including 
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two electronic states, reads H = T + W, with the kinetic energy operator 
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Here V1,2(x, y) and W12(y), respectively, denote the diabatic PESs and 
the diabatic inter-state coupling between the two electronic states. By 
construction, the coupling depends solely on mode y, referred to as 
coupling mode, while x is known as the tuning mode. ΔE describes a rela-
tive energy offset at the origin of the coordinate system, (x, y)  = (0, 0).

The choice of the normal modes x and y is, to some extent, arbitrary as 
they are determined by the structure of the Hamiltonian. The inter-state 
coupling, for instance, is mediated only via the coupling mode y, by 
definition. In general, the normal modes of the vibronic coupling model 
do not coincide with the normal modes of motion that are assessed by 
experiments. However, the configuration spaces are connected via 
an orthogonal transformation. In principle, one would also have to 
individually rescale the modes to go back from dimensionless coor-
dinates to physical units. However, in our model, we assume equal 
scaling of the modes, that is, only one normalization frequency ω is 
used instead of ωx,y. This approach is used to reduce the total number 
of parameters. To transform from the normal modes of the model to 
the normal modes of motion, a possible 90º rotation angle (x, y swap) 
was used as a globally applied fitting parameter.

The PESs in adiabatic representation are given by the eigenvalues of 
the diabatic potential energy matrix W, that is:
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Following from the defining degeneracy of the adiabatic PESs, that is, 
ΔE = V1 – V2, the conditions W12 = 0 and V − V = 01

ad
2
ad  must be fulfilled for 

a conical intersection to occur. Because these conditions are solved 
independently, a conical intersection constitutes a (d – 2)-dimensional 
manifold (with d equal to the total number of degrees of freedom), requir-
ing at least two normal modes for modelling a conical intersection.

In our description of a conical intersection, we neglect intra-state 
coupling of the modes to further reduce the total number of param-
eters, and assume harmonic diabatic potentials of the general form
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whereas the inter-state coupling between the diabatic electronic states 
is assumed to be a linear function, that is, W12(y) = λy.

For simplicity, we assume the diabatic potentials to be symmetric with 
respect to both modes, that is, γ γ= > 0x y

1,2
( , )

1,2
 . The coefficients κ x y

1,2
( , ) are 

assumed to depend on the respective vibrational frequencies γ1,2, and 
the coupling strength λ is regarded as an independent parameter.

Without loss of generality, we fix the conical intersection coordinates 
at (xCI, yCI) = (0, 0) and, instead, vary the initial position of the wave 
packet relative to the conical intersection. Therefore, the energy offset 
is ΔE = 0. To determine the remaining four parameters κ x y

1,2
( , ), we make 

the following assumptions.
1.	 For γ1 = γ2, the adiabatic potentials are symmetric with respect to x 

and y:
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2.	The positions of the diabatic potential minima are fixed and inde-
pendent of the vibrational frequencies γ1,2.
Incorporating these assumptions, we obtain
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with ±x0 denoting the x coordinate of the diabatic potential minima. 
The final diabatic potentials read
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We chose x0 =  10 for all simulations. Although the diabatic potentials 
share the y coordinate of the minima (y = 0), the coupling parameter 
λ causes the adiabatic potential minima to be symmetrically shifted 
along the y axis.

The initial nuclear wave packet is chosen to be a Gaussian with an 
initial width ⟨Δx⟩ = ⟨Δy⟩ = 1 (with ⟨Δx⟩2 = ⟨x2⟩ – ⟨x⟩2), given by









χ x y

x r θ y r θ
( , ) =

1
π

exp −
( − cos ) + ( − sin )

20
0 0

2
0 0

2

Here r0 and θ0, respectively, denote the radius and polar angle of the 
initial wave packet position. Because the adiabatic potentials are sym-
metric with respect to y, that is, V x y V x y( , − ) = ( , )1,2

ad
1,2
ad , we restrict the 

initial positions to the lower semicircle. In all simulations, the wave 
packet is placed on the second diabatic potential V2. However, we take 
into consideration only those situations where the initial diabatic 
population of V2 corresponds to a population of the excited adiabatic 
state of at least 50%.

Our model is based on the six parameters listed in Extended Data 
Table 2 to generate a library of 500,000 different configurations. The sim-
ulations were carried out using the multi-configuration time-dependent 
Hartree method45–47 in its multiset implementation of the Heidelberg 
package, which allows efficient wave packet propagation. The wave func-
tion is represented on a grid of Hermite functions with 175 grid points 
between –35.0 and +35.0. We use 25 single-particle functions per degree 
of freedom and electronic state, such that the natural population of the 
highest single-particle function is below 10–4. The integration is carried 
out with a variable mean field scheme with an accuracy of 10–8.

Identifying each experimental trajectory with a simulated 
counterpart
The purpose of identifying simulated trajectories with experimental 
ones is to determine the set of parameters best able to describe each of 
the experimental trajectories. Identification proceeds by comparing 
simulated dynamical trajectories with experimental ones. In principle, 
one could simply select the simulated trajectory most closely resem-
bling (having the smallest χ2 value with respect to) a given experimental 
trajectory. In practice, the axes describing the experimental and simu-
lated trajectories may be rotated and/or rigidly shifted with respect to 
each other. Attenuation due to noise and timing jitter may also change 
the ‘unit length’ of each experimental axis by an unknown amount. The 
best-fit search must therefore allow rigid shifts in the origin, axis swap 



and scaling of the simulated trajectories. (Allowing frame rotations 
results in axis swaps.)

More specifically, we model the trans-to-cis isomerization of PYP as 
a wave packet de-exciting via a conical intersection. To extract model 
parameters, we numerically solve the time-dependent Schrödinger 
equation for this system, taking into account a total of six model 
parameters, as described above. Dynamical trajectories in the 2D 
space spanned by two collective modes are then compared with pairs 
of chronos recovered in our analytical pipeline.

In greater detail, we fit each of the simulated trajectories to the six 
experimental trajectories, using the smallest χ2 to identify the best 
match in each case (see, for example, Supplementary Fig. 5). In this, 
we consider both temporal and spatial translations of the simulated 
trajectories, and allow the simulated trajectories to be linearly scaled. 
Following this procedure, we are able to reproduce the observed 
collective-mode behaviour, and determine the geometric properties 
of the conical intersection and the uncertainties in our determination 
of these physically important parameters (see Extended Data Table 2 
and Methods section ‘Extracting parametric values and uncertainties’).  
pecifically, the parameter ω characterizes the kinetic energy, and (r0, θ0) 
characterizes the initial position of the wave packet. The shape of the 
PESs is determined mainly by the vibrational frequencies γ1 and γ2. The 
coupling parameter λ defines the probability of a transition between the 
two electronic states as a result of the wave packet moving through or 
close to the conical intersection. Vibrational frequencies and coupling 
strength together define the topography of the conical intersection.

Because of timing jitter, noise and data incompleteness, the experi-
mentally determined dynamical modes may be differently damped, and 
not appear in the correct order16. Also, any linear combination of the 
experimentally determined dynamical modes is, in principle, a valid 
dynamical mode. To correctly compare the simulated and experimental 
trajectories in two dimensions, we allow each coordinate axis to be 
shifted and stretched, with the two coordinate axes interchanged.

With four continuous degrees of freedom (two for scaling, two for 
translation and rotation proving unnecessary), the mutual identifi-
cation of experimental and simulated trajectories is achieved using 
a linear least-squares fit in the space of experimental data with the 
following cost function:

∑χ x a a x y b b y= [( − ( + )) + ( − ( + )) ]
i

N

i i i i
2

=1
1 2

2
1 2

2∼ ∼

Here, with N time points per trajectory, (xi, yi) and (∼ ∼x y,i i ) denote the 
simulated and experimental trajectories at the ith time point, respec-
tively, with (a1, b1) and (a2, b2) as the fitting parameters. In our analysis, 
1,001 time points span a total interval of 100 fs. Fits performed in the 
space of simulated data were prone to instability. In cases where stable 
solutions could be found, the extracted parameters agree with those 
presented in Extended Data Table 2.

Segment search in experimental trajectories
The starting time points for simulated and experimental trajectories are 
not necessarily identical. The simulated trajectories (each 100 fs long) 
are, therefore, compared with different 100-fs spans of the experimen-
tal trajectories to find the best match. Using tc to denote the centre of 
the 100-fs span, we repeated the χ2 analysis above for 66 values of tc: 
590 fs ≤ tc ≤ 655 fs in increments of 1 fs. This time range covers the region 
where trans-to-cis isomerization is expected to occur10, and includes the 
sharp turning points at 615 fs in the chronos considered in this analysis.

Extracting parametric values and uncertainties
With the fitting procedure described above, experimental trajectories 
can be identified with their simulated counterparts, from which the key 
physical parametric values pertaining to each experimental trajectory 
can be determined. In effect, the simulated trajectories constitute a bank 

of trajectories calculated for a range of physical parameters character-
izing the dynamical trajectories in the vicinity of a conical intersection. 
From 66 possible segments per experimental trajectory representing 
a shift of up to 65 fs in time, 500,000 simulated trajectories and swaps 
between x and y axes, a total of 66 million χ2 fits per experimental trajec-
tory, were performed, and the physical parameters were extracted. The 
parameter values obtained from the best fits are summarized in Extended 
Data Table 2. The uncertainties in the extracted parameters were estab-
lished by calculating the root mean square (r.m.s.) difference between 
the best-fit parameters and the parameters corresponding to all the simu-
lated trajectories with χ2 ≤ 1.2 relative to the best fit. For cases in which the 
r.m.s. difference is zero, the uncertainty is assumed to correspond to the 
parametric sampling interval used to generate the simulated databank.

Computational resources for manifold-based machine learning
Software. The NLSA pipeline and χ2 fittings were implemented using 
MATLAB (R2015b and R2019a, with parallel computing toolbox). DED 
calculations were performed using CCP4 v7.0, and Coot 0.8.9 was used 
to provide visualization of DEDs.

Hardware. Parallel computations were performed on an Intel CPU 
cluster (320 CPU cores, 2.6 GHz, arranged as 16 nodes, each with 128 GB 
of RAM). All other analyses were performed on a single Linux computer 
with 24 cores, a 3-GHz Intel Xeon CPU and 256 GB of RAM.

Computational resources for theoretical calculations. The wave 
packet propagations were carried out on 12-core Intel Xeon X5660 CPUs 
with 2.8 GHz and 96 GB of memory and 32-core Intel Xeon E5-2630L 
CPUs with 1.8 GHz and 126 GB of memory.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The structures have been deposited in the Protein Data Bank, together 
with their respective weighted difference structure factor amplitudes, 
under accession codes 5HD3, 5HDC, 5HDD, 5HDS and 5HD5. Source 
data are provided with this paper.

Code availability
The code will be made available on request.
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Extended Data Fig. 1 | PYP chromophore in trans configuration and 
structure dynamical modes obtained by our approach. a, The PYP 
chromophore in the trans configuration. The oval contains the primary 
structure-dynamically active region, with the numbered atoms and aromatic 
structures identified. C: carbon, N: nitrogen, O: oxygen, S: sulfur. b, c, The 
structure dynamical modes obtained by our approach can be combined to 
yield the more intuitive torsional angle, which is commonly chosen as the 

primary reaction coordinate for isomerization in PYP. Changes in the torsional 
angle and the bend of the chromophore axis relative to equilibrium values 
necessarily increase the energy of the ground state structure. Near the CI the 
structure on the ground state PES and that on the excited state PES are 
essentially identical with very similar energies. The structure on the excited 
state PES determined at 615 fs is therefore an excellent model for the electronic 
ground state structure near the PYP conical intersection.
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Extended Data Fig. 2 | Dynamical trajectories near the conical intersection. 
Unless otherwise stated, arbitrary units. a, b, Time evolutions (chronos) of 
modes 3 and 4, respectively. c, The experimental dynamical trajectory (in 
black) obtained from modes 3 and 4 as collective variables x and y, respectively, 
and the best-fit simulated trajectory, with color showing the passage of time 
(see color bar). The red dot indicates the position of the conical intersection. 

For additional trajectories, see Supplementary Information. d, The calculated 
de-excitation dynamics as reflected in the electronic state population for the 
trajectory shown in Panel c above. The brown and blue curves represent the 
populations of the upper and the lower adiabatic electronic states, 
respectively.



Extended Data Fig. 3 | Frequency content of a typical chrono, in this case chrono-4. a, Fourier power spectrum. b, Multi-taper analysis. The vertical axis of the 
latter essentially represents the signal-to-noise ratio. Each chrono displays a characteristic frequency spectrum.
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Extended Data Fig. 4 | Dynamical trajectories near the conical intersection. 
Unless otherwise stated, arbitrary units. a, b, Time evolutions (chronos) of 
modes 2 and 3, respectively. c, The experimental dynamical trajectory (in 
black) obtained from modes 2 and 3 as collective variables x and y, respectively, 
and the best-fit simulated trajectory, with color showing the passage of time 

(see color bar). The red dot indicates the position of the conical intersection.  
d, The calculated de-excitation dynamics as reflected in the electronic state 
population for the trajectory shown in Panel c above. The brown and blue 
curves represent the populations of the upper and the lower adiabatic 
electronic states, respectively.



Extended Data Fig. 5 | Dynamical trajectories near the conical intersection. 
Unless otherwise stated, arbitrary units. a, b, Time evolutions (chronos) of 
modes 2 and 4, respectively. c, The experimental dynamical trajectory (in 
black) obtained from modes 2 and 4 as collective variables x and y, respectively, 
and the best-fit simulated trajectory, with color showing the passage of time 

(see color bar). The red dot indicates the position of the conical intersection.  
d, The calculated de-excitation dynamics as reflected in the electronic state 
population for the trajectory shown in Panel c. The brown and blue curves 
represent the populations of the upper and the lower adiabatic electronic 
states, respectively.
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Extended Data Fig. 6 | Dynamical trajectories near the conical intersection. 
Unless otherwise stated, arbitrary units. a, b, Time evolutions (chronos) of 
modes 2 and 5, respectively. c, The experimental dynamical trajectory (in 
black) obtained from modes 2 and 5 as collective variables x and y, respectively, 
and the best-fit simulated trajectory, with color showing the passage of time 

(see color bar). The red dot indicates the position of the conical intersection.  
d, The calculated de-excitation dynamics as reflected in the electronic state 
population for the trajectory shown in Panel c above. The brown and blue 
curves represent the populations of the upper and the lower adiabatic 
electronic states, respectively.



Extended Data Fig. 7 | Dynamical trajectories near the conical intersection. 
Unless otherwise stated, arbitrary units. a, b, Time evolutions (chronos) of 
modes 4 and 5, respectively. c, The experimental dynamical trajectory (in 
black) obtained from modes 4 and 5 as collective variables x and y, respectively, 
and the best-fit simulated trajectory, with color showing the passage of time 

(see color bar). The red dot indicates the position of the conical intersection.  
d, The calculated de-excitation dynamics as reflected in the electronic state 
population for the trajectory shown in Panel c above. The brown and blue 
curves represent the populations of the upper and the lower adiabatic 
electronic states, respectively.
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Extended Data Fig. 8 | Comparing modes from light and dark data. a, The 
first five chronos obtained from light data ordered according to pump-probe 
delay. b, The first five chronos obtained from dark data lexicographically 
sorted according to run numbers followed by event numbers. The first two 
chronos are identical, except for scale. This is a hallmark of a one-parameter 

process. Correlation analysis shows the single-parameter process correlates 
with the integrated Bragg spot intensity (Pearson correlation: 0.93), most likely 
pertaining to drift in the incident beam intensity. The subsequent chronos 
represent noise.



Extended Data Table 1 | Peak positions obtained from multi-taper Fourier analysis of the chronos before the encounter with 
the conical intersection vs. peak positions obtained from time-resolved Raman spectra of PYP, all in THz

Each chrono displays a characteristic frequency spectrum, which sometimes includes a subset of the peaks observed in another chrono. The exact peak position can change by ~ 2 THz as 
multi-taper parameters are varied. Closely separated peaks are identified as one peak at the average frequency position. Using time-resolved Raman spectroscopy, Kuramochi et al.33 have 
investigated the approximately 3 – 30 THz frequency range in PYP. As shown in the Table, all frequency peaks in this frequency range revealed by multi-taper analysis of the chronos before the 
encounter with the conical intersection can be identified with a peak observed by Kuramochi et al. with a frequency accuracy of 7% or better. However, the time-resolved Raman spectra contain 
additional peaks (not shown) not observed in our analysis of the chronos. This suggests that not all spectroscopically observed frequencies pertain to the structure dynamical collective vari-
ables we have extracted from time-resolved scattering data.



Article
Extended Data Table 2 | Parameters of the potential energy surface and parametric grid of simulated trajectories near the 
conical intersection

a, Parameters of the potential energy surface near the conical intersection derived in this work. Radius r0 (dimensionless), and angle θ0 (degrees) together specify the initial position of wave 
packet. λ: coupling strength; ω: normalization frequency (kinetic energy); γ1,2: frequency on respective PES. Superscript Q indicates the accuracy is limited by the spacing in the parametric grid 
of simulated data. Unless stated otherwise, where appropriate, parameters in atomic units. b, The parametric grid used to simulate dynamical trajectories. ω: normalization frequency; λ: 
coupling strength; γ1,2: frequency on respective PES; angle θ0 (in degrees) and radius r0 (dimensionless) are the initial position of the wave packet. Except for θ0 with six different values, 
parameters take 10 values uniformly distributed in their respective intervals. Unless otherwise specified, all parameters in atomic units.
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The PYPref, PYPfast, PYPslow, PYP3ps, and PYP200ns structures are already deposited in the Protein Data Bank, together with their respective weighted difference 
structure factor amplitudes under accession codes 5HD3, 5HDC, 5HDD, 5HDS, and 5HD5, respectively.
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Sample size 337,852 light snapshots, and 79,937 dark snapshots were collected.

Data exclusions 190,053 light snapshots were randomly removed to yield a uniform delay-time histogram.

Replication No data were replicated. Repeating rows or columns of data in analyses involving matrix manipulation often leads to poor conditioning and 
errorneous results.

Randomization The experiment naturally captures snapshots of protein molecules in random orientations. We did not divide the data into random sub-
groups. Splitting data into smaller sub-groups would result in lower spatial resolution.

Blinding We did not divide the data into random sub-groups. Splitting data into smaller sub-groups would result in lower spatial resolution.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	Few-fs resolution of a photoactive protein traversing a conical intersection

	Analysis by machine learning

	Validating the time resolution

	Structure-dynamical modes

	Structure-dynamical trajectories

	PYP de-excitation trajectory

	Online content

	Fig. 1 Evolution of dynamical modes as a function of pump–probe delay time.
	Fig. 2 Topography of the conical intersection and the associated population dynamics in PYP, as deduced from five experimental dynamic trajectories.
	Extended Data Fig. 1 PYP chromophore in trans configuration and structure dynamical modes obtained by our approach.
	Extended Data Fig. 2 Dynamical trajectories near the conical intersection.
	Extended Data Fig. 3 Frequency content of a typical chrono, in this case chrono-4.
	Extended Data Fig. 4 Dynamical trajectories near the conical intersection.
	Extended Data Fig. 5 Dynamical trajectories near the conical intersection.
	Extended Data Fig. 6 Dynamical trajectories near the conical intersection.
	Extended Data Fig. 7 Dynamical trajectories near the conical intersection.
	Extended Data Fig. 8 Comparing modes from light and dark data.
	Extended Data Table 1 Peak positions obtained from multi-taper Fourier analysis of the chronos before the encounter with the conical intersection vs.
	Extended Data Table 2 Parameters of the potential energy surface and parametric grid of simulated trajectories near the conical intersection.




