
BYOG : Multi-Channel, Real-time LoRaWAN Gateway testbed
using general-purpose Software Defined Radio

MUHAMMAD OSAMA SHAHID, University of Wisconsin-Madison, USA
BHUVANA KRISHNASWAMY, University of Wisconsin-Madison, USA

Adaptive Data Rate (ADR) is used by multi-channel LoRaWANs to meet the demanding capacity needs of
LoRa networks. The network server running ADR in each channel determines the optimum data rate and
assigns the appropriate spreading factor for each LoRa device to maximize the network throughput. This in
turn requires the gateway to be capable of receiving LoRa packets of all possible spreading factors. Existing
gateways achieve this by using multiple RF front ends, increasing the overall cost and complexity. In this
work, we propose BYOG (Bring Your Own Gateway), a LoRaWAN receiver that can receive and decode 10
channels simultaneously in real-time. Towards this pipeline, we develop self-dechirping, an SF-agnostic packet
detection algorithm that also detects the spreading factor of the packet. This computationally lightweight
algorithm can be implemented on any general-purpose software-defined radio, bringing down the cost and
ease of LoRaWAN gateway implementations. BYOG will enable research and development in LoRaWAN ADR.
Using experimental, real-world datasets, we show that the proposed algorithm can detect the spreading factor
accurately and operate over a wide range of SNRs using three different SDRs (RTL-SDR, HackRF One, USRP
B210). BYOG performs as well as a high-end LoRaWAN gateway in terms of network throughput.

CCS Concepts: • Networks → Link-layer protocols.

Additional Key Words and Phrases: LoRa, Spreading Factor (SF), Self-Dechirping, BYOG

ACM Reference Format:
Muhammad Osama Shahid and Bhuvana Krishnaswamy. 2024. BYOG : Multi-Channel, Real-time LoRaWAN
Gateway testbed using general-purpose Software Defined Radio. Proc. ACM Netw. 2, CoNEXT2, Article 10
(June 2024), 17 pages. https://doi.org/10.1145/3656299

1 INTRODUCTION
LoRa has been developed to address the growing needs of low-power wide area networks (LPWAN)
that can reach long distances and have long battery life. The distributed nature of LoRa has
rendered itself to be one of the most adopted LPWAN technologies for outdoor as well as indoor
deployments [1–3]. This wide adoption has resulted in dense deployments with many low-power
wireless devices connecting to a LoRa gateway [4–6]. In order to manage the increasing number of
devices in the last-mile, LoRaWAN has been proposed as a medium access control built on top of
LoRa. As illustrated in Figure 1 [7], LoRaWAN network architecture consists of LoRa end nodes
communicating to a LoRaWAN gateway (GW in Fig. 1), which then connects to LoRa Network
Server through traditional backhaul [8]. The network server in turn decodes the messages and has
the option to send acknowledgments and other control messages back to the LoRa end devices.
Authors’ Contact Information: Muhammad Osama Shahid, University of Wisconsin-Madison, Madison, USA, mshahid2@
wisc.edu; Bhuvana Krishnaswamy, University of Wisconsin-Madison, Madison, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2834-5509/2024/6-ART10
https://doi.org/10.1145/3656299

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

https://doi.org/10.1145/3656299
https://doi.org/10.1145/3656299
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656299&domain=pdf&date_stamp=2024-06-13

10:2 Muhammad Osama Shahid and Bhuvana Krishnaswamy

Fig. 1. LoRaWAN network architecture

To meet the growing capacity needs of LoRaWAN, Adaptive Data Rate (ADR) has been pro-
posed [9]. ADR improves network capacity by allowing multiple LoRa transmitters to send at
different datarates within the same network. In a LoRaWAN, where devices are spread around
the gateway, ADR enables devices closer to the gateway to operate at a higher datarate and those
farther away at a lower datarate. Such a mechanism would improve the overall network capacity
since devices are not competing with each other for resources. The datarate of a LoRa transmitter
is determined by the two parameters viz., Spreading Factor (SF) and Bandwidth (BW). In a fixed
datarate network, all the transmitters and the gateway use the same SF and BW. In a network using
ADR, the transmitters can choose the most appropriate SF and therefore multiple SFs are supported
in a network. Unlike protocols like WiFi, where the packet header is always sent at a known
datarate and the datarate of the rest of the packet is mentioned in the header, LoRa transmitter uses
a predetermined SF to send the entire packet, including the header. Therefore, the receiver/gateway
and the transmitter must agree on the SF and BW used for the communication. Due to this, in order
to implement ADR, a LoRaWAN gateway must be capable of processing multiple SFs in parallel.

This need to receive multiple SFs parallelly is one of the key reasons for the limited capacity of
LoRaWAN gateways. For every LoRa channel, the gateway continuously searches for a preamble
corresponding to all possible SFs (SF7,8,..12) and hence the number of parallel preamble searches
increases by 6X [10]. Despite the availability of 64 LoRa channels with 125 kHz and 8 channels
with 500 kHz, most LoRaWAN gateways offer 8 channels [11–13] due to the high computational
complexity of running ADR (with some exceptions of 64 gateways costing over $3000 [14]). Utilizing
all the channels would help improve the network throughput significantly. Additionally, the com-
putational complexity restricts researchers from implementing real-time ADR on software-defined
radios (SDR), in turn, posing a hindrance to research and development in LoRa ADR [15].
In this work, we develop BYOG (Bring Your Own Gateway), a software, real-time Lo-

RaWAN receiver that can run 10 channels simultaneously on general-purpose SDRs. We
propose a lightweight, SF-agnostic preamble-search algorithm that reduces the complexity
by 6 times in a single channel as that of the standard preamble-search algorithm.

The software implementation of single-channel LoRa physical layer led to major breakthroughs
in LoRa packet collision resolution [16–18], machine learning-assisted LoRa receiver [19, 20],
among others [21–23]. Software implementation of multi-channel LoRaWAN gateway can kickstart
significant progress in ADR. However, the major bottleneck towards a software, multi-channel
gateway is the lack of hardware-software platforms that can leverage the entire band of 64 channels.
This is in turn caused by the computational complexity of searching for LoRa packets (preambles)
of all SFs [10]. To address this limitation, we propose self-dechirping, an SF estimation algorithm
that detects the presence of a LoRa preamble without prior knowledge of the transmitter’s SF. We
leverage the repeated upchirps in a LoRa packet header and the relationship between the chirps of
varying SFs to determine the presence of a LoRa preamble as well as estimate the SF of the packet.

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

BYOG : Multi-Channel, Real-time LoRaWAN Gateway testbed using general-purpose Software Defined Radio 10:3

We design the software pipeline that performs channelization and SF estimation in real-time on RF
samples streamed using off-the-shelf low-cost (RTL-SDR [24]), medium-cost (HackRF [25]), and
high-cost (USRP B210 [26]) SDRs. Any SDR that can stream raw RF samples to a computer can be
used to build our own LoRaWAN gateway with ADR capabilities. To the best of our knowledge,
this is the first multi-channel LoRaWAN gateway that is programmable, can operate in
real-time, and implemented on low-cost SDRs. We believe that the platform built here will
enable significant breakthroughs in maximizing LoRaWAN network capacity.

In summary, we make the following contributions in this paper:
• We build a multi-channel programmable LoRaWAN gateway that can capture 10 LoRa chan-
nels and decode packets in each of them in real time. Any Software Defined Radio that can
stream RF samples to a computer can be used as a LoRaWAN gateway.

• We design and implement self-dechirping, an SF-agnostic algorithm that can detect the
presence of a LoRa preamble and the corresponding SF without demodulating the packet.
This in turn allows us to scale to multiple channels.

• We implement self-dechirping and the receiver pipeline using Python on three different
SDRs - RTL-SDR, HackRF, and USRP, connected to a laptop. We show that we can detect all
the packets detected by standard LoRa and estimate their SFs with 100% accuracy.

• We perform extensive real-world experiments and show that BYOG can receive from 10 LoRa
channels using low-cost SDRs. Our datasets and source code are made publicly available1.

2 BACKGROUND AND MOTIVATION

Fig. 2. LoRa packet format : every symbol is transmitted with a predetermined SF

Fig. 3. Time-Frequency
variation of base upchirp 𝐶0 (𝑡)

Fig. 4. Time-Frequency
variation of downchirp 𝐶∗

0 (𝑡)
Fig. 5. Time-Frequency

variation of Datachirp 𝐶𝜙 (𝑡)

LoRa Modulation. LoRa uses chirp spread spectrum (CSS) modulation to communicate over long
distances. CSS uses linear chirps, whose frequency varies with time, to represent a data symbol.
A LoRa packet consists of a preamble of 8 consecutive upchirp (𝐶0) symbols, followed by two
SYNC symbols (𝐶𝑥 , 𝐶𝑦 (𝑥 ≠ 0, 𝑦 = 𝑥 + 8)) and 2.25 down-chirps (𝐶∗

0), as illustrated in Fig. 2. A base
upchirp 𝐶0 is that whose frequency increases linearly along with time from −𝐵

2 to 𝐵
2 over a symbol

duration 𝑇𝑠 , where 𝐵 is the bandwidth of transmission. An upchirp is shown in the continuous
chirp representation in Figure 3. A downchrip is the complex conjugate of an upchirp (Figure. 4).
LoRa modulates a data symbol by changing the starting frequency of the upchirp (Figure 5). The
upchirp and data chirp can be represented mathematically as below.
1 https://github.com/UW-CONNECT/BYOG.git

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

https://github.com/UW-CONNECT/BYOG.git

10:4 Muhammad Osama Shahid and Bhuvana Krishnaswamy

𝐶𝜙 (𝑡) = 𝐶0 (𝑡) · 𝑒 𝑗2𝜋 𝑓𝜙𝑡 ; (1)

𝐶0 (𝑡) = 𝑒
𝑗2𝜋

(
𝐵2

2×2𝑆𝐹
𝑡2− 𝐵

2 𝑡
)
, 0 ≤ 𝑡 ≤ 𝑇𝑠 (2)

𝑓 [𝑛] = 𝑗2𝜋
(
𝐵

𝑁
𝑛 − 𝐵

2

)
, 0 ≤ 𝑡 ≤ 𝑁, 𝑁 = 2𝑆𝐹 (3)

In Eqn 1, 𝜙 ∈ {0, 1, · · · , 2𝑆𝐹 − 1} and 𝑇𝑠 = 2𝑆𝐹
𝐵
. The spreading factor, 𝑆𝐹 that can take values

∈ {7, 8, 9, 10, 11, 12} is fixed for each LoRa packet and dictates the transmission data rate.

LoRa Demodulation. LoRa demodulates by continuously de-chirping the received samples.
Dechirping is the process of multiplying a window of I/Q samples with a downchirp, followed
by Fourier Transform (FFT). Multiplying with a downchirp results in a sinusoid of frequency
equaling the starting frequency of the chirp, which indicates the data symbol. Thus, performing
FFT accumulates the energy from the entire window into one FFT bin corresponding to the starting
frequency of the data chirp; we see a peak at that frequency in FFT. The length of the dechirping
window must be equal to that of the downchirp, to maximally accumulate energy.

LoRa receiver infers the start of a packet on detecting 8 consecutive peaks at the same frequency,
corresponding to 8 upchirps in the packet header. Therefore, in order to detect the start of the
packet, the receiver continuously dechirps with the known SF. SYNC words then locate the symbol
boundary and confirm the onset of a new packet.

LoRaWAN. LoRaWAN architecture, illustrated in Figure 1, consists of LoRa end device, LoRaWAN
network server, and application server. The end devices perform modulation and demodulation as
described above and take care of the physical layer processing. LoRaWAN provides medium access
control (MAC) algorithms through various device classes (Class A, B, and C). LoRaWAN gateway
receives the RF samples and relays them to the network server as IP packets through traditional
backhaul. Multiple gateways can receive the data broadcast by an end device. These copies are
used to improve reliability at the application server. In addition to the messages, metadata such as
signal strength, timestamp are used by the network server to respond to the received data with
acknowledgments, perform ADR, handling join requests, security, among other network activities.

Adaptive Data Rate. ADR is a mechanism for LoRaWAN gateways to optimize network through-
put [9]. ADR allows end devices to change their spreading factors and transmit powers based on
the perceived channel quality. ADR is typically initiated by the network server. Every device begins
with a default SF and transmit power. Upon receiving a request to update ADR settings, the network
server provides feedback that indicates the appropriate SF for the channel quality. Devices closest to
the gateway will be received with a high SNR and hence are instructed to operate at a low SF by the
server. Since lower SF is more suitable for a shorter range and offers a higher data rate; by choosing
lower SF for nearby devices, the overall network throughput can be improved. Packets from farther
devices will be received with a lower SNR and hence assigned a higher SF so that packets can be
received at the gateway. ADR is preferred for networks with stable RF conditions where the channel
does not change often. In a dynamic and/or mobile network, ADR might be initiated by the end
device. A key enabling factor for ADR is the capability of the LoRaWAN gateway to receive multiple
SFs simultaneously. Commercial LoRaWAN gateways include a preamble search engine [10],
as detailed in the patent for LoRaWAN gateway that searches through all SFs to determine the
appropriate SF. This exhaustive search increases the cost of commercial gateways and hence 64
channel gateways are only available for carriers. Such an exhaustive search also limits real-time
implementation on SDRs.

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

BYOG : Multi-Channel, Real-time LoRaWAN Gateway testbed using general-purpose Software Defined Radio 10:5

Fig. 6. Self-Dechirping: Top row shows the upchirps of various SFs. The gradient of each upchirp is a scaled
function of SF7. Middle row shows our choice of two windows𝑊1 and𝑊2 with a fixed size 𝑁0 = 128.𝑊1 and
𝑊2 capture the entire upchirp of SF7, half of SF8, quarter of SF9, and 1/8 th of SF10. In the bottom row, the

FFT of dechirping𝑊1 with𝑊2 shows that we can uniquely identify SF from the FFT of self-dechirping

3 PROPOSED WORK
In this work, our goal is to design a multi-channel LoRaWAN gateway that can receive a wide-band
spectrum, channelize, demodulate, and decode LoRa packets in real-time on a software-defined
radio. We propose BYOG that uses cascaded light-weight elliptical filters that can channelize
more than 10 channels in real-time and propose and implement self-dechirping, an SF-agnostic
preamble detection algorithm that has 6x fewer computations than that of a LoRaWAN gateway. It
also estimates the SF of the preamble detected, in turn avoiding the need for exhaustive SF search,
as is the norm in LoRaWAN gateways.

3.1 Self-Dechirping
As described in Section 2, a standard LoRa demodulator dechirps the received signal - it multiplies
the received window of samples with a downchirp whose spreading factor (SF) equals the SF of
the incoming signal. Such a dechirping process maximally accumulates energy into a single FFT
bin. Since the packet detection block of standard LoRa also needs to dechirp preamble sequence
composed of 8 base upchirps, off-the-shelf LoRaWAN gateway iteratively dechirps the preamble
sequence with 6 different downchirps, each with a unique SF. Of these 6 dechirping processes, that
which yields the maximum energy concentration into a single FFT bin for 8 consecutive windows
is determined to be the correct SF, which is then used for packet demodulation. However, each
dechirping requires multiplication followed by FFT, leading to a 6 fold increase in computations
compared to a fixed-SF LoRa receiver.

We propose a single dechirping process that reveals both the SF of the received signals and flags
the presence of preambles, thus saving up the resources to be used to scale to more channels. Our
design of self-dechirping is built on the following insights.

• Downchirp is simply the complex conjugate of a base UpChirp and hence can be obtained
from the received preamble.

• For a given bandwidth, downchirp of one SF is a scaled version of another downchirp.
• Data chirp is a scaled version of a linear upchirp.

Instead of locally creating downchirps of different SFs and then using it for dechirping, BYOG uses
the upchirp portion of the received preamble to generate the downchirp. Consider the preamble of an

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

10:6 Muhammad Osama Shahid and Bhuvana Krishnaswamy

SF7 packet in the top plot of Figure 6. If we look at the two consecutive windows𝑊1 and𝑊2, each
of length 𝑁0 = 128, the conjugate of the second window will yield a downchirp of SF7 as shown in
the first plot of second row and if we multiply these 2 windows, this will dechirp the signal in the
first window and an FFT will concentrate the energy into frequency index 0 as shown in the first
plot of bottom row. Therefore, we can dechirp without having to locally generate downchirp of
SF7. We define this approach as Self-Dechirping, where the dechirping process is performed by
leveraging the received signal rather than generating a new downchirp.

There are two challenges in generalizing this approach. First, in this case,𝑊1 and𝑊2 are aligned
with the start of a LoRa symbol. Second, the dechirping window length of 128 matches with the chirp
length of an SF7 symbol. However, aligning the windows requires accurate packet detection, which
would lead to a chicken-egg problem. The same applies to choosing the appropriate dechirping
window - which requires prior knowledge of SF.

We first address the choice of dechirping window length and then study the impact of aligning
the windows in the next subsection. We propose to use the smallest dechriping window of length
𝑁0 = 128, corresponding to SF7, regardless of the packet. We leverage our insight that a downchirp
of one SF is a scaled version of another downchirp. Consider the received buffer containing a
preamble of SF 8 packet in Figure 6, where a single SF 8 (𝑁 = 256) upchirp is split into two windows,
each of length 128. The slope of an SF8 chirp is half as that of SF7 chirp and hence its frequency
changes by 𝜋 within a window of length 128, while that of SF7 changes by 2𝜋 (from −𝜋 to +𝜋).
Similarly, if we maintain a window of length 𝑁0 on chirps corresponding to all the spreading factors,
their slope will keep reducing by a factor of 1

2𝑆𝐹−7 and the frequency change within 𝑁0 window
would be equal to 2𝜋

2𝑆𝐹−7 . Regardless of the SF of the packet in the receive buffer, taking conjugate of
the second window creates a downchirp from the rest of the chirp segment. For the downchirp
thus generated, the starting frequency equals the ending frequency of the chirp in the first window.
Therefore, when we multiply the two windows, it results in the dechirped signal whose frequency
equals the difference in the starting frequency of the chirps in the two windows. Therefore, an FFT
yields a peak at frequency equal to this difference given by 2𝜋

2𝑆𝐹−7 . Thus, not only can we dechirp
the signal without prior knowledge of SF, we can also determine the SF of the signal using the
fingerprint given by the unique peak position for each SF.
Let us view the process of self-dechirping through the window of initial frequencies of a chirp,
as shown in Equation 3. Let’s assume that our two self-dechirping windows of length 𝑁0 = 128
are aligning with the start of preamble of the received packet of any SF. The received buffer may
have a packet of any SF where 𝑆𝐹 ∈ {7, 8, 9, 10, 11, 12}. The time-frequency variation in𝑊1 of
self-dechirping window depending on the SF of underlying packet is given by Equation 4 given
sampling rate is equal to LoRa bandwidth. Similarly, Equation 5 gives the time-frequency variation
of𝑊 −1

2 (conjugate of𝑊2).

𝑓𝑆𝐹 [𝑛] = 𝑗
2𝜋
2𝑆𝐹

𝑛 − 𝑗𝜋, (4)

𝑓 −1𝑆𝐹 [𝑛 − 128] = − 𝑗 2𝜋
2𝑆𝐹

𝑛 + 𝑗2𝜋
128
2𝑆𝐹

+ 𝑗𝜋, 1 ≤ 𝑛 ≤ 𝑁0, 𝑁0 = 128 (5)

Upon performing self-dechirping (𝑊1 ×W−1
2), the phase in the exponent of the chirp equations

gets subtracted, therefore the frequency of the dechirped signal is given by Equation 6 and the
resultant frequency is wrapped into the range of −𝜋 to +𝜋 by adding or subtracting 2𝜋 in case if it
exceeds the range. FFT of this dechirped signal gives a peak at the same frequency as in Equation 6.

𝑓𝑆𝐹 [𝑛] − 𝑓 −1𝑆𝐹 [𝑛 − 128] = − 𝑗 2𝜋
2𝑆𝐹−7

(6)

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

BYOG : Multi-Channel, Real-time LoRaWAN Gateway testbed using general-purpose Software Defined Radio 10:7

Based on Equation 6, if our received buffer contains SF7 preamble, the peak appears at 2𝜋 that is
mapped to 0. Similarly, for SF8 the peak appears at frequency index −𝜋 , for SF9 the peak appears at
−𝜋
2 , for SF10 the peak appears at −𝜋

4 , for SF11 the peak appears at −𝜋
8 , for SF12 the peak appears at

−𝜋
16 . Therefore, we conclude that we can detect the presence of a packet by observing a peak at the
end of self-dechirping and the index of the peak uniquely maps to the SF of the packet received.
Our proposed SF and packet detection algorithm can be generalized to other chirp lengths as well.
In other words, with simple tweaks in the choice of the window length, this algorithm can be
generalized to a wider range of integer SFs, allowing it to be compatible to any future changes in
SF set in LoRa standard.

3.2 Effect of Time Offsets on Self-Dechirping
We have addressed the first challenge of choosing the dechirping window; our next challenge is in
aligning the window. So far we have assumed that window𝑊1 is aligning perfectly with the start of
the packet. However, this may not be the case with real captures as we are continuously searching
for packets. The received samples in the current buffer may not perfectly align with the start of
the packet. However, since a LoRa packet contains 8 consecutive upchirps as the start of packet, if
we dechirp windows𝑊1 and𝑊2 and jump these windows each of length 𝑁0 on the received buffer
for the next symbol, such that the two jumps are 𝑁0 samples apart, our windows will definitely
overlap with the preamble upchirps of the received packets regardless of the SF. In this section, we
show that even if𝑊1 and𝑊2 do not align with the start of the packet, we still observe peaks after
self-dechirping and can extract the SF fingerprint through these peak indices.
It can be noted that𝑊1 and𝑊2 are consecutive windows. Therefore, when𝑊1 is not aligned perfectly
with the start of a packet, we perceive this as a time offset in𝑊1 compared to the perfect alignment
case. Since𝑊1 and𝑊2 are consecutive windows, any time offset in the first window will also be
translated to the second window. Due to the time-frequency linearity of chirp signals, this time
offset appears as a frequency offset in both the windows as shown in Equation 7 and 8.

𝑓𝑆𝐹 [𝑛 + 𝜏] = 𝑗
2𝜋
2𝑆𝐹

𝑛 + 𝑗2𝜋
𝜏

2𝑆𝐹
− 𝑗𝜋, (7)

𝑓 −1𝑆𝐹 [𝑛 − 128 + 𝜏] = − 𝑗 2𝜋
2𝑆𝐹

𝑛 + 𝑗2𝜋
128
2𝑆𝐹

+ 𝑗2𝜋
𝜏

2𝑆𝐹
+ 𝑗𝜋, (8)

Since the offset appears in both thewindows, during self-dechirping, where the complex conjugate
of the second window is used, this offset gets cancelled and the unique frequency fingerprint given
by Equation 6 stays unaffected. Therefore, the second challenge of aligning with the start of the
packet is solved by self-dechirping, as misalignment is cancelled out.

3.3 Retaining SF Sensitivity
BYOG thus can detect the start of any LoRa packet and estimate its SF accurately using self-
dechirping. In a LoRaWAN network that uses ADR, devices closer to the gateway are assigned
lower SFs and those far away are assigned higher SFs. LoRa uses higher SFs as they offer higher
spreading. A higher SF symbol is longer than that of a lower SF packet. In other words, a transmitter
spreads its signal over a wider band. At the receiver, more energy accumulation is possible. For
example, an SF of 12 has a dechirping window that has 2𝑆𝐹−7 times more samples as compared
to SF 7 packets. Therefore, for similar SNRs, higher SF packets offer higher SNR gains since the
peaks in the FFT stand taller as opposed to lower SFs. Such SNR gains of higher SFs is lost once
we fix the self-dechirping window length corresponding to the symbol length of smallest SF, i.e.,

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

10:8 Muhammad Osama Shahid and Bhuvana Krishnaswamy

7. BYOG uses a pair of consecutive windows𝑊1 and𝑊2 each of length 𝑁0 = 128 for dechirping
which can only promise the SNR sensitivity corresponding to the smallest SF of value 7.

To retain the SF sensitivities over all Sfs, we accumulate energy across multiple self-dechirping
windows. We observe that largest symbol corresponding to SF 12 symbol is 32 times longer than
that of our self-dechirping window. Therefore, while jumping a pair of windows across the received
buffer, at each jump we not only record the peak heights but also add up the energy in the tallest
peak of the self-dechirped signal for 32 consecutive windows. If the underlying signal in the buffer
is an SF 12 preamble, we will be able to detect the packet without compromising on SF sensitivity.
Since all other SF symbols have lengths smaller than SF 12 symbol, energy accumulation across 32
self-dechirping windows retains their sensitivities as well.

Energy accumulation brings up a new challenge in self-dechirping. So far, we have assumed that
we will see repeating peaks only when we parse through the preamble of a packet and that results
in a unique frequency. This is true for an SF7 preamble upchirps for which we observe at least
6 peaks at frequency zero. As the self-dechirping window is smaller than the symbol length for
higher SFs, we observe unique peaks not only for preambles, but also for data chirps.

Fig. 7. Impact of self-dechirping on datachirps : Datachirp of an SF9 packet is shown here. In the first and
fourth jump,𝑊1 and𝑊2 capture two different data chirps and do not yield a peak. In the second and third

jump however, the windows capture the same datachirp and hence result in FFT peaks.

For example, in Figure 7, let us assume that while self-dechirping an SF 9 packet, the windows
𝑊1 and𝑊2 during the 1𝑠𝑡 jump overlap with a datachirp such that either of the windows contains
symbol transition i.e., frequency changes depending on the data to be sent in next symbol. In
this scenario, we will be getting multiple peaks in FFT since the symbol boundary introduces a
discontinuity in the linear frequency change of chirps. However, in the subsequent 2𝑛𝑑 jump, none
of the windows aligns with the data symbol boundary because SF 9 symbol duration is longer
than our fundamental window length of 𝑁0 (SF 9 symbol length is 4 times 𝑁0). Therefore, we get a
fingerprint peak in FFT at the unique index corresponding to SF 9 at 2𝑛𝑑 and 3𝑟𝑑 jumps. Two out of
four jumps yield SF fingerprint and accumulate energy. Whereas, 1𝑠𝑡 and 4𝑡ℎ jump is obstructed by
the data symbol boundaries. This observation can be extended to higher SFs as well. For SF 12, we
get 30 SF fingerprints for every 32 jumps on datachirps as well while maintaining SF sensitivity by
accumulating energy across these jumps. We take this into consideration in determining the SF, as
detailed in the next subsection.

3.4 Putting It All Together : BYOG Algorithm
We put all these together and present the algorithm for BYOG which detects the SF of incoming
packets and then demodulate them using standard LoRa. BYOG first filters the received I/Q samples
and channelizes them. In each channel, it runs 𝑁0 length of consecutive windows on the incoming

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

BYOG : Multi-Channel, Real-time LoRaWAN Gateway testbed using general-purpose Software Defined Radio 10:9

Fig. 8. Self-Dechirping on real data : Top row shows the real value of the received samples for an SF 8 and SF
11 signals. Their corresponding energy accumulation is shown in the middle row. As can be seen, higher SF
shows more energy accumulation. The bottom row shows the number of peak occurrences for each frequency
and hence the SF. The left table has the highest entry corresponding to SF8 and the right table to that of SF11

raw I/Q samples. It jumps the window on the received buffer such that two jumps are 𝑁0 samples
apart. At each jump, it first performs self-dechirping, computes the FFT and then records the
peak index and energy in the FFT. After the first 32 jumps, it accumulates the energies across all
FFT peaks in a variable 𝑡𝑝 to retain SF sensitivity while keeping the record of peak indices in a
variable 𝑖𝑛𝑑𝑒𝑥_𝑎𝑟𝑟𝑎𝑦 for the same set of 32 windows. For the first set of 32 windows, when there is
no transmission going on in the channel, BYOG uses the first value of 𝑡𝑝 to estimate noise floor
and maintains a threshold, 𝑡ℎ𝑟𝑒𝑠ℎ = 1.09 × 𝑡𝑝 . From this point, it uses this threshold to detect
any activity in the channel. Following this, sets of 32 windows are processed together. In each
set, the accumulated energy 𝑡𝑝 is compared against the noise floor 𝑡ℎ𝑟𝑒𝑠ℎ. If 𝑡𝑝 > 𝑡ℎ𝑟𝑒𝑠ℎ, it then
records that set to contain channel activity (records the sample #) and sets a flag 𝑓 𝑙𝑔 indicating the
possibility of a LoRa packet. Similarly, it looks for activity in the next set of 32 windows; if activity
is found in 2 consecutive sets, it keeps the 𝑓 𝑙𝑔 set, and appends the 𝑖𝑛𝑑𝑒𝑥_𝑎𝑟𝑟𝑎𝑦 of the two sets
into another variable 𝑏𝑖𝑔_𝑖𝑛𝑑𝑒𝑥_𝑎𝑟𝑟𝑎𝑦. This is continued until activity is found in consecutive sets.
As soon as 𝑡𝑝 drops below threshold for any 32 window set, it clears the 𝑓 𝑙𝑔, records the sample
to determine the end of activity. Moreover, variable 𝑏𝑖𝑔_𝑖𝑛𝑑𝑒𝑥_𝑎𝑟𝑟𝑎𝑦 so far contains the record
of all the peak indices during activity period in the channel. It then counts the number of times
each of the frequency 𝜔 ∈ {0,−𝜋,−𝜋

2 ,−
𝜋
4 ,−

𝜋
8 ,−

𝜋
16 }, appear in the 𝑏𝑖𝑔_𝑖𝑛𝑑𝑒𝑥_𝑎𝑟𝑟𝑎𝑦 and records

the frequency of these peak indices in 6 separate variables corresponding to each SF 7, 8, 9, 10, 11,
12. The highest frequency then denotes the SF fingerprint. This fingerprint maps to the correct SF
of the packet, which is then passed to the demodulation block. A LoRa demodulator performs fixed
SF demodulation on the received samples as recorded in the indices determined above.

In Figure 8, top plot shows the real part of SF 8 and 11 packets of SNR 20 dB and -9dB respectively,
captured using a Software Defined Radio (SDR). When the above algorithm is run on these samples,
we get middle-row plots that show energy accumulation 𝑡𝑝 along with samples. The black circles on
the plot denote the recorded start and end of channel activity. Since SF 11 packet has low SNR, we
can see how the 𝑡ℎ𝑟𝑒𝑠ℎ value gets estimated after first set of 32 windows. The bottom-most table
shows the number of times each of the 𝜔 appears in 𝑏𝑖𝑔_𝑖𝑛𝑑𝑒𝑥_𝑎𝑟𝑟𝑎𝑦. Clearly, the most occurring
frequency correspond to relevant SF, 𝜔 = −𝜋 for SF 8 and 𝜔 = −𝜋

8 for SF 11. The reason for having
more number of −𝜋

8 peaks as opposed to −𝜋 peaks is due to the fact that data symbols of SF 11
also give unique frequency fingerprint and higher SF packets are generally longer in time duration
as well. Therefore, by applying BYOG on real data, we show how it can reveal the SF and start of

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

10:10 Muhammad Osama Shahid and Bhuvana Krishnaswamy

Fig. 9. Deployment Scenario
Fig. 10. 3 Software Defined
Radios as Base Stations

Fig. 11. LoRa Transmitters
deployed in the building

underlying packet with a single dechirp run on the received signal. In the subsequent sections, we
deploy BYOG in a real network setting and evaluate its accuracy.

4 IMPLEMENTATION

Fig. 12. BYOG implementation framework

BYOG is implemented on general-purpose SDRs to realize LoRaWAN gateway capable of perform-
ing ADR. Our implementation includes the following modules: off-the-shelf LoRa end devices as
transmitters, LoRaWAN gateway implemented on SDRs, and a server computing unit implemented
on a laptop. We describe each of these modules in detail below.
LoRa Devices. We use commercially available LoRa Devices - Adafruit Feather M0 with RFM
95 [27]. We used 10 of these devices as shown in Figure 11, 𝑇𝑖 , 𝑖 = 1, 2, ...10 and using Arduino
Library RadioHead [28] configured each of these to transmit in separate channels in the range
[902.3MHz, 904.1MHz] with the center frequencies 200 kHz apart. We use a control channel in
915 Mhz - during system setup, devices listen at SF8, 250kHz to coordinate experimental setup.
We reserved an additional LoRa transmitter 𝑅 that served as a coordinator and sent SF 8, 250kHz
beacon packets in 915MHz which would specify the duty cycle, the duration for the experiment,
and a start message. All 𝑇𝑖 nodes upon hearing these beacons in order from 𝑅 would copy the
information and would switch to their respective channels and set their bandwidth to 125kHz. Due
to LoRa regulations, we only use 𝑆𝐹 ∈ {7, 8, 9, 10} in 125kHz BW. Each node then transmits packets
of random 𝑆𝐹 to emulate ADR, random length to emulate various co-existing applications and
random transmit power to emulate various distances, with uniformly distributed time intervals
such that the duty cycle follows the value defined by 𝑅. Experiments are performed for 20 minutes
in one session and repeated over multiple sessions. This is due to the streaming limitations posed
by the SDRs. In each session, all the nodes transmit LoRa packets at 15% duty cycle.
LoRaWAN gateway - SDR We use three general-purpose SDRs - USRP B200, Hack-RF, and
RTL-SDR as our RF-front (Figure 10). BYOG is implemented on a 12-core, 16GB RAM, Intel i5
laptop. As shown in Figure. 12, using GNU-Radio’s USRP, Hack-RF, and RTL-SDR source blocks,
we capture raw I/Q samples at a center frequency of 903.2MHz which is exactly the midpoint of the
10 channels of nodes 𝑇𝑖 . To capture 10 channels, we fixed the sampling rate of USRP and Hack-RF
to 4 MSamples/s which is sufficient as per Nyquist rate requirements. Due to RTL-SDR’s maximum

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

BYOG : Multi-Channel, Real-time LoRaWAN Gateway testbed using general-purpose Software Defined Radio 10:11

sampling rate limit of 2.56 MSamples/s [24], we can capture only 4 channels. Therefore, we only use
nodes 𝑇𝑖 , 𝑖 = 4, 5, 6, 7 while conducting experiments using RTL-SDR as the gateway. As shown in
Figure 12, we first perform channelization bringing all channels down to the baseband followed by
filtering. We use two cascaded elliptical filters for maximum out-of-band activity suppression. The
low complexity of elliptical filters make them a popular choice for real-time filtering. We design
4𝑡ℎ order elliptical filter with 100dB passband to stopband attenuation. After filtering each of the
10 channels, BYOG downsamples the incoming stream from 4 MSamples/s to 500 kSamples/s for
USRP and HackRF and from 2 MSamples/s to 500 kSamples/s for RTL-SDR. Each channel therefore
outputs I/Q samples at a rate of 4 × LoRa BW of 125kHz. This oversampling factor helps BYOG to
locate packets with better time resolution. The downsampled signal in each channel is dumped
into a separate UDP socket.
LoRaWAN gateway - Server laptop In a configuration file ’client_config.py’, users can specify
the experiment settings such as the number of channels, along with the LoRa parameters such as
the bandwidth of the signal and the rate at which incoming packets are oversampled. As shown in
Figure. 12, users first run Python implementation through ’main.py’ script in which BYOG starts
listening to each of the UDP sockets specified by the number of channels. After that, users run the
gnu-radio sketch for available SDR (the sketches for each SDR can be found in the gnuflow folder).
Upon receiving samples through each socket, BYOG initiates a process for each of the channel
that parallelly runs self-dechirping, which detects the presence of a packet, Self-dechirping block
takes 1s chunk of I/Q samples and runs self dechirping window. Since the received signal in each
channel is 4x oversampled, the length of the dechirping window also becomes 4×𝑁0. Each channel
first estimates its 𝑡ℎ𝑟𝑒𝑠ℎ value in the first second of SDR capture. It then performs self-dechirping
followed by FFT to get peak fingerprints and accumulates peak energy across 32 window jumps.
For the next incoming 1s chunk of I/Q samples, it appends 4×𝑁0 tail samples of the previous chunk
with the new chunk in order to preserve continuity. Whenever the presence of a LoRa packet is
detected in any channel along with estimated SF, raw I/Q samples for the corresponding period
along with the estimated SF value are appended to a shared multiprocessing queue. 10 parallel
standard LoRa processes then consume the queue and use estimated SF to demodulate and decode
the LoRa packets.

We may scale channels beyond 10 as well with the help of higher-end computing system. In order
to go beyond 10 channels, our sampling rate needs to be greater than 4 MSamples/s. Even though
both USRP and HackRF can support sample rates of upto 60 MSample/s [26] and 20 MSamples/s [25]
respectively, the limiting factor is the RAM, memory, and the number of cores in the system. We
tried to scale beyond 10 channels in real-time with the available laptop but started getting severe
SDR overflows. Moreover, as shown in Figure, 12, since we initiate 𝑁 (𝑤ℎ𝑒𝑟𝑒𝑁 = #𝑜 𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠)
pool of parallel processes for channelization, 𝑁 processes for BYOG ’s SF estimation block and
𝑁 processes for standard LoRa’s demodulation, as we scale beyond 10 channels, the cores in the
system are not able to cater to all the parallel processes, which leads to SDR overflows. Hence, the
entire pipeline fails to decode packets across all channels in real-time. With a system with more
cores, faster CPU, and more memory, we may scale up to 16 channels using USRP and HackRF.
Deployment Scenario For evaluation, we deploy 10 nodes 𝑇𝑖 at 10 different locations 𝐿1, 𝐿2, ...𝐿10
as shown in Figure. 9. These locations have different distances from the base station and are
completely non-Line of Sight. The packets from nodes closer to base stations have higher SNRs,
whereas packets received from distant nodes having concrete walls in between have very low SNRs.
For each session of experiments, we run BYOG in real time with one SDR as a gateway (3 total
sessions, each with a different SDR). While BYOG decodes packets across multiple channels in real
time, we also save the received I/Q samples from each SDR locally on the system.

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

10:12 Muhammad Osama Shahid and Bhuvana Krishnaswamy

Baselines comparedWe compare BYOG against two baselines using the samples stored in the
online experiments described above. We replay the samples and sequentially run standard LoRa
on each channel offline to emulate an ideal 10-channel LoRa Gateway. Standard LoRa exhaus-
tively searches for packet by iteratively dechirping the whole received buffer with all the SF
downchirps. Through the stored file, we estimate the duration of the experiment (20mins) and then
use Total number of decoded packets across all channels

session duration to estimate the throughput. We compare the real time
throughput of BYOG with the emulated throughput of the 10-channel LoRaWAN gateway. We also
emulate the throughput of an 8-channel LoRa gateway with the assumption that it decodes all
packets in a given session but only scales up to 8 channels.

5 EVALUATION
We answer the following questions towards evaluating BYOG .

• What is the achievable network throughput when the number of channels goes beyond 8?
• How many LoRa channels can we support using SDR as LoRa Gateway?
• What percentage of preambles are detected by the self-dechirping algorithm? How accurate
were the SF estimations?

• Can off-the-shelf low and medium-end SDRs operate as LoRaWAN ADR by accommodating
the different settings of a LoRaWAN gateway?

(a) (b)

Fig. 13. Throughput of BYOG with different SDRs along with std. LoRa (a) 15% Duty Cycle, (b) 30% Duty
Cycle (Emulated traffic)

5.1 Network Throughput of a Multi-Channel LoRaWAN
In this section, we evaluate the overall network throughput of a LoRaWAN with one transmitter per
channel. To emulate ADR, each transmitter switches its SF randomly and transmits packets with
15% duty cycle. We perform three sets of 20-minute experiments each using a different SDR and
present the average network throughput in Figure 13(a) for different SDRs. The maximum network
throughput depends on multiple factors including the sampling rate and in turn the number of
channels supported by the SDR, the noise floor of the SDR’s radio front end, preamble detection
accuracy, and SF estimation accuracy. USRP and HackRF show the largest network throughput of
362 and 363 bps respectively as both can support a sampling rate of 4 Msamples/s which in turn can
accommodate 10 channels each 125kHz. USRP’s throughput is closest to std. LoRa and differs by just
1 bps. HackRF similarly has high throughput since it supports 10 channels; however, its throughput
differs from std. LoRa by 4bps. HackRF has a higher noise floor than USRP resulting in lower
received SNR. Due to lower SNR, HackRF lags behind USRP in approaching network throughput of

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

BYOG : Multi-Channel, Real-time LoRaWAN Gateway testbed using general-purpose Software Defined Radio 10:13

std. LoRa. RTL-SDR on the other hand only offers 2 MSamples/s which only captures 4 channels.
RTL-SDR also has a high noise floor similar to HackRF for a given BW. But due to the lower
sampling rate, the noise floor stays low. Therefore, RTL-SDR approaches the network throughput
of std. LoRa. We also plot the maximum throughput achieved by an 8 Channel LoRaWAN Gateway
assuming it detects and decodes all the packets injected in the network. The number of channels
that can be supported also depends on the computing unit (laptop in our experiments) used. We
used a 12-core laptop where 1 core was dedicated to process each channel, one core to interface with
the SDR, perform channelization, and one core for background applications, storing the samples
among others. The number of channels that can be supported could be improved seamlessly by
using a computing unit with more cores and/or better parallelism, which is part of our future work.
It must be noted that the throughput performance of BYOG is the same as that of the emu-

lated high-end LoRaWAN gateway (orange bars in Figure 13). This shows that BYOG does not
tradeoff performance for computational complexity and can outperform an off-the-shelf 8-channel
LoRaWAN gateway (yellow bars in Figure 13).

To evaluate our system in higher network traffic, we emulated data in MATLAB where each node
transmitted packets at 30% duty cycle as shown in Figure13(b). We replayed data samples to BYOG
in real time and ran standard LoRa as well. To emulate data from USRP and HackRF, our data had 10
channels and to emulate data from RTL-SDR our data had 4 channels, as dictated by the respective
SDR’s sampling rates. In higher network traffic, BYOG outperforms standard LoRa as well. This is
because, for higher network traffic, standard LoRa sees more packets and runs preamble correlation
corresponding to each SF before demodulation. This incurs a lot more computations and std. LoRa
is not able to keep up real-time operations. Therefore, overall throughput decreases. With 4 channel
SDR, since the number of channels is lesser, std. LoRa is able to keep up real-time processing.

SF was varied uniformly across packets in each channel. Therefore, all SFs have approximately
same number of packets in the results presented. The received SNR cannot be tightly controlled
and varies significantly across the channels. SNR distribution of all the packets in each channel is
presented in Figure 14. We categorize packets in channel # 3, 4, 9 and 10 as low SNR distributed in
the range of [-20 0]dB. Channel # 1, 2, 7 and 8 fall under medium SNR category distributed in the
range [-10 10]dB. Channel # 5 and 6 are categorized as high SNR distributed in the range [0 20]dB.
Our careful design of the channelization block ensures that inter-channel interference is maximally
reduced.

Fig. 14. SNR distribution of packets in each channel

5.2 Per-channel Throughput using BYOG
Following the overall network throughput, we delve deeper into per-channel throughput to under-
stand fairness across channels in Figure 15. We plot the throughput in each of the channels for the
three SDRs considered. We observe that the throughput remains relatively the same across channels,

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

10:14 Muhammad Osama Shahid and Bhuvana Krishnaswamy

Fig. 15. Average per-channel throughput with BYOG compared against LoRaWAN

depsite the variabilities in the SNR range, as shown in Figure 14. This shows that BYOG can oper-
ate throughout the range of SNRs supported by standard LoRa gateway. RTL-SDR only captures
Channels 4 through 7. It must be noted that despite its low cost, the throughput performance
is in par with USRP and Hack-RF. This shows that our proposed framework can be used with
even low cost SDRs. The single channel performance of all the SDRs is comparable as it is not
impacted by the sampling rate. The per-channel throughput of BYOG suggests that we can scale to
multiple channels without loss of generality using general-purpose SDRs and build a multi-channel
LoRaWAN gateway.

Fig. 16. Accuracy of SF Estimation with different
SDRs as front-ends in Multi-Channel Experiment

Fig. 17. Percentage of False Positives in Packet
Detection in Multi-Channel experiment

5.3 Accuracy of Spreading Factor Estimation
In Figure 16, we plot the percentage of packets for which BYOG was able to detect SF accurately.
As shown, with USRP and RTL-SDR as gateways, BYOG estimates the SF of incoming packets with
99.86% and 99.97% accuracy computed over almost 10000 packets. This suggests that SF estimation
algorithm does not compromise accuracy for computational complexity. HackRF also achieves
similar accuracy but slightly suffers as compared to other base stations due to higher noise floor
that affects the peak position estimates in self-dechirping. We also present the % age of False
Positives (FP) detected and summed over all channels in Figure. 17. False positive is defined as a
session flagged by BYOG to contain a valid LoRa packet of an estimated SF but in reality it does not
contain any LoRa packet. With USRP and RTL-SDR, we detect 1.41% and 0.2% of such FPs. This
is made possible due to appropriate choice of threshold, i.e. 𝑡ℎ𝑟𝑒𝑠ℎ = 1.09 × 𝑡𝑝 where 𝑡𝑝 is sum of

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

BYOG : Multi-Channel, Real-time LoRaWAN Gateway testbed using general-purpose Software Defined Radio 10:15

energy value in 32 consecutive self-dechirping FFT peaks. This threshold as shown by orange line
in Figure. 8 is low enough to capture very low SNR packets and high enough to not capture random
peaks as LoRa activity. HackRF has higher FP rate due to same reason of higher noise floor. Due to
higher noise floor, random peaks qualify the threshold and therefore increased FP rate is observed.

Fig. 18. Throughput in a single 500kHz channel
with all SF

Fig. 19. SNR distribution in the single 500kHz
channel

5.4 Throughput performance in a single 500 kHz channel
So far, we evaluated the 125kHz LoRa channels. Due to LoRa regulations, we only used SFs 7
through 10 in the 125 kHz band. LoRa also allows 500kHz band where all the SFs are permitted. We
evaluate the throughput performance of each SDR operating in a single 500 kHz channel where
the transmitters go through all possible SFs during the transmission. For the given sampling rate
limitations, only one 500kHz (out of 8) is feasible. We deployed a LoRa Tx at location L2 in Figure. 9
that transmitted packets randomly of SF 7 though 12 at BW 500kHz. Figure 18 shows the throughput
performance of BYOG for each of the SDR in the x-axis. For this single channel all SF case, the
throughput achieved by BYOG is the same as that of standard LoRa. SNR distribution in Figure. 19
show that most of the packets were low SNR. Moreover, all the packets received in this experiment
had 100% SF estimation accuracy and with 0% FP. Therefore, this experiment proves the ability of
BYOG to estimate spreading factor of the entire range of SFs.

6 RELATEDWORK
Existing LoRaWAN Gateways are specialized hardware that run standard LoRa demodulator and
decoder. Commonly available Gateways support either 4 or 8 LoRa channels. As discussed in
Section 1, in order to support ADR, a LoRaWAN gateway must be capable of correlating the received
buffer with multiple Spreading Factors (SFs) in parallel. As the SF increases, the computational cost
of detecting SF increases. For higher SFs, we need to perform higher point correlation. This requires
a set of compute resources dedicated for SF identification of incoming LoRa packets. We argue that
if we could capture the SF of an incoming packet in a single shot correlation, the compute resources
could be used for scaling to multiple channels. Hou et al. [29], Koch et al. [30] and Cloud-LoRa [31]
propose algorithms to detect packets without correlating with all SFs in order to improve network
scale. They propose two correlations of received buffer: one with the superposition of even SFs and
second with the superposition of odd SFs. This technique saves computation but compromises on
LoRa’s sub-noise packet detection. Since, these works propose superposition of chirps of multiple
SFs, this decreases the SINR of the correlation which results in the energy of the received signal
being dominated by the superposition signal. Therefore, they fail to detect sub noise LoRa packets.
As opposed to these works, we propose a lightweight, SF-agnostic packet detection algorithm that
does not compromise on the SNR sensitivity of LoRa. We implement our proposed receiver design

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

10:16 Muhammad Osama Shahid and Bhuvana Krishnaswamy

on multiple software defined radios, thus showing the flexibility of our framework as opposed to
LoRa Gateways whose PHY layer cannot be modified to test other LoRa demodulators.

7 DISCUSSIONS AND LIMITATIONS
BYOG proposes an SF agnostic, real-time LoRa demodulator and decoder implementation that
can scale upto 10 channels. The current limit on the number of channels comes from the number
of cores in the laptop running BYOG algorithm. We spawn a new process for each channel and
stream upto 10 channels in real-time. We can scale to a maximum 64 channels using a NUC with
more cores. Existing LoRa gateways cannot be modified to run other physical layer demodulation
algorithms whereas our implementation is flexible to incorporate physical layer modifications that
further improve the network scale. We have made our framework open source and we believe that
our implementation will help researchers to rapidly deploy and test further improvements to LoRa’s
PHY layer as well as design new ADR algorithms for LoRaWAN. The real-time, multi-channel
operation of BYOG in SDRs enables design and testing of such future algorithms. We believe that
implementing BYOG using hardware radio with parallel receiver chains baked into its ASIC each
running our SF-agnostic packet detection and decoding will significantly bring down the cost of
LoRaWAN gateways; in turn realizing an affordable 64-channel LoRaWAN gateway.

8 CONCLUSIONS
In this work, we design and deploy BYOG , a software programmable LoRaWAN gateway that
can process 10 LoRa channels 125kHz each in using general-purpose SDRs. To the best of our
knowledge, this is the first real-time implementation of LoRaWAN gateway on SDRs. Towards this
design, we address the key limiting factor of preamble search at the gateways. We propose and
implement self-dechirping, an SF-agnostic, lightweight algorithm for LoRa preamble detection and
SF estimation. Self-dechirping is a novel packet detection algorithm that leverages the relationship
between the downchirps of the different SFs to uniquely map the received signal to the appropriate
SF. We implement BYOG using Python and perform real-world experiments using three different
SDRs as LoRaWAN gateways. We show that they are capable of processing LoRa packets with any
SF without any prior knowledge across multiple channels. This work does not raise any ethical
issues.

9 ACKNOWLEDGEMENTS
We would like to thank our shepherd and anonymous reviewers for the valuable comments and
helping us improve the paper. This work is supported by the National Science Foundation under
following grants: CNS-2142978, CNS-2213688 and CCSS-2034415.

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

BYOG : Multi-Channel, Real-time LoRaWAN Gateway testbed using general-purpose Software Defined Radio 10:17

REFERENCES
[1] Achim Walter, Robert Finger, Robert Huber, and Nina Buchmann. Opinion: Smart farming is key to developing

sustainable agriculture. Proceedings of the National Academy of Sciences, 114(24):6148–6150, 2017.
[2] Harsha V Madhyastha and Chinedum Okwudire. Remotely controlled manufacturing: A new frontier for systems

research. In Proceedings of the 21st Int’l Workshop on Mobile Computing Systems and Applications, pages 62–67, 2020.
[3] María V Moreno, Miguel A Zamora, and Antonio F Skarmeta. User-centric smart buildings for energy sustainable

smart cities. Transactions on emerging telecommunications technologies, 25(1):41–55, 2014.
[4] Aloÿs Augustin, Jiazi Yi, Thomas Clausen, and William Mark Townsley. A study of lora. Sensors, 16(9):1466, 2016.
[5] Branden Ghena, Joshua Adkins, Longfei Shangguan, Kyle Jamieson, Philip Levis, and Prabal Dutta. Challenge:

Unlicensed lpwans are not yet the path to ubiquitous connectivity. In MobiCom, 2019.
[6] Martin C Bor, Utz Roedig, Thiemo Voigt, and Juan M Alonso. Do lora lpwans scale? In Proceedings of the 19th ACM

Int’l Conf. on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pages 59–67, 2016.
[7] Gaia Codeluppi, Antonio Cilfone, Luca Davoli, and Gianluigi Ferrari. LORAFARM: a LORAWAN-Based smart Farming

Modular IoT architecture. Sensors, 20(7):2028, 4 2020.
[8] LoRa Vs LoRaWAN. https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/.
[9] LoRaWAN ADR. https://lora-developers.semtech.com/documentation/tech-papers-and-guides/understanding-adr/.
[10] Nicolas Sornin and Ludovic Champion. Signal concentrator device, October 17 2017. US Patent 9,794,095.
[11] 8 Channel LoRa Gateway. https://www.adafruit.com/product/4327.
[12] LoRa Transceivers. https://www.thethingsnetwork.org/docs/lorawan/transceivers/.
[13] SX1276 DataSheet. https://www.semtech.com/products/wireless-rf/lora-connect/sx1276#documentation.
[14] Tektelic KONA Mega 64-Channel LoRaWAN Gateway. https://www.embeddedworks.net/sens652/.
[15] Pieter Robyns, Peter Quax, Wim Lamotte, and William Thenaers. A multi-channel software decoder for the lora

modulation scheme. In IoTBDS, pages 41–51, 2018.
[16] Muhammad Osama Shahid, Millan Philipose, Krishna Chintalapudi, Suman Banerjee, and Bhuvana Krishnaswamy.

Concurrent interference cancellation: Decoding multi-packet collisions in lora. In Proceedings of ACM SIGCOMM 2021.
[17] Xianjin Xia, Ningning Hou, Yuanqing Zheng, and Tao Gu. Pcube: scaling lora concurrent transmissions with reception

diversities. ACM Transactions on Sensor Networks, 18(4):1–25, 2023.
[18] Zhenqiang Xu, Pengjin Xie, and Jiliang Wang. Pyramid: Real-time lora collision decoding with peak tracking. In IEEE

INFOCOM 2021-IEEE Conf. on Computer Communications, pages 1–9. IEEE, 2021.
[19] Chenning Li, Hanqing Guo, Shuai Tong, Xiao Zeng, Zhichao Cao, Mi Zhang, Qiben Yan, Li Xiao, Jiliang Wang, and

Yunhao Liu. Nelora: Towards ultra-low snr lora communication with neural-enhanced demodulation. In Proceedings
of the 19th ACM Conf. on Embedded Networked Sensor Systems, pages 56–68, 2021.

[20] Chenning Li, Xiuzhen Guo, Longfei Shangguan, Zhichao Cao, and Kyle Jamieson. {CurvingLoRa} to boost {LoRa}
network throughput via concurrent transmission. In USENIX NSDI 22.

[21] Raghav Subbaraman, Yeswanth Guntupalli, Shruti Jain, Rohit Kumar, Krishna Chintalapudi, and Dinesh Bharadia.
Bsma: scalable lora networks using full duplex gateways. In Proceedings of the 28th Annual Int’l Conf. on Mobile
Computing And Networking, pages 676–689, 2022.

[22] Ningning Hou, Xianjin Xia, and Yuanqing Zheng. Don’t miss weak packets: Boosting lora reception with antenna
diversities. ACM Transactions on Sensor Networks, 19(2):1–25, 2023.

[23] Manan Mishra, Daniel Koch, Muhammad Osama Shahid, Bhuvana Krishnaswamy, Krishna Chintalapudi, and Suman
Banerjee. OpenLoRa: Validating LoRa implementations through an extensible and open-sourced framework. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), pages 1165–1183, 2023.

[24] RTL-SDR. https://www.rtl-sdr.com/.
[25] HackRF One. https://www.adafruit.com/product/3583.
[26] USRP B210. https://www.ettus.com/all-products/ub210-kit/.
[27] Adafruit Feather M0 with RFM95 LoRa Radio. https://www.adafruit.com/product/3178.
[28] RadioHead Arduino Library. https://greatscottgadgets.com/hackrf/one/.
[29] Yujun Hou, Zujun Liu, and Dechun Sun. A novel mac protocol exploiting concurrent transmissions for massive lora

connectivity. Journal of Communications and Networks, 22(2):108–117, 2020.
[30] Daniel Jay Koch, Muhammad Osama Shahid, and Bhuvana Krishnaswamy. Spreading factor detection for low-cost

adaptive data rate in lorawan gateways. In Proceedings of the 20th ACM Conference on Embedded Networked Sensor
Systems, SenSys ’22, page 918–924, New York, NY, USA, 2023. Association for Computing Machinery.

[31] Muhammad Osama Shahid, Daniel Koch, Jayaram Raghuram, Bhuvana Krishnaswamy, Krishna Chintalapudi, and
Suman Banerjee. Cloud-LoRa: Enabling cloud radio access LoRa networks using reinforcement learning based
Bandwidth-Adaptive compression. In USENIX Symp. on Networked Systems Design and Implementation (NSDI 24).

Received December 2023; revised January 2024; accepted March 2024

Proc. ACM Netw., Vol. 2, No. CoNEXT2, Article 10. Publication date: June 2024.

https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/understanding-adr/
https://www.adafruit.com/product/4327
https://www.thethingsnetwork.org/docs/lorawan/transceivers/
https://www.semtech.com/products/wireless-rf/lora-connect/sx1276#documentation
https://www.embeddedworks.net/sens652/
https://www.rtl-sdr.com/
https://www.adafruit.com/product/3583
https://www.ettus.com/all-products/ub210-kit/
https://www.adafruit.com/product/3178
https://greatscottgadgets.com/hackrf/one/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Proposed Work
	3.1 Self-Dechirping
	3.2 Effect of Time Offsets on Self-Dechirping
	3.3 Retaining SF Sensitivity
	3.4 Putting It All Together : BYOG Algorithm

	4 Implementation
	5 Evaluation
	5.1 Network Throughput of a Multi-Channel LoRaWAN
	5.2 Per-channel Throughput using BYOG
	5.3 Accuracy of Spreading Factor Estimation
	5.4 Throughput performance in a single 500 kHz channel

	6 Related Work
	7 Discussions and Limitations
	8 Conclusions
	9 Acknowledgements
	References

