Evidence that specific interactions play a role in the cholesterol ?? sensitivity of G protein-coupled receptors ?? ?? James Geiger 19, Rick Sexton 29, Zina Al-Sahouri 1, Ming-Yue Lee 1, Eugene Chun 1, ?? ?? ?? ?? ¹ Center for Applied Structural Discovery at the Biodesign Institute, Arizona State University, ?? ?? Tempe, Arizona, United States of America 2 ² Department of Physics and Center for Biological Physics, Arizona State University, Tempe, ??? Arizona, United States of America 2 ??? ³ Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, ??? ??? Scottsdale, Arizona, United States of America 2 ??? ??? * Corresponding authors ??? E-mail: w.liu@asu.edu (WL), oliver.beckstein@asu.edu (OB) 2 ??? These authors contributed equally. ??? ??? ??? ??? ??? ???

??

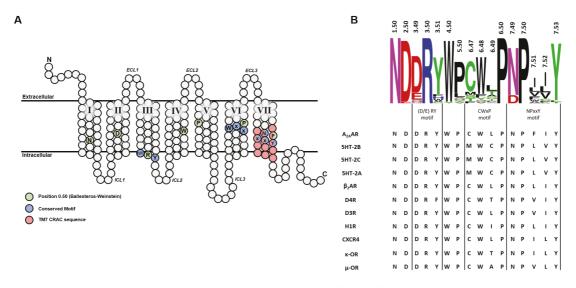
?

Abstract: 2

???

G protein-coupled receptors (GPCRs) are known to be modulated by membrane ??? cholesterol levels, but whether or not the effects are caused by specific receptor-??? cholesterol interactions or cholesterol's general effects on the membrane is not well-??? understood. We performed coarse-grained molecular dynamics (CGMD) simulations ??? ??? coupled with structural bioinformatics approaches on the □2-adrenergic receptor (□2AR) and the cholecystokinin (CCK) receptor subfamily. The □AR has been shown to be ??? ??? sensitive to membrane cholesterol and cholesterol molecules have been clearly resolved in numerous DAR crystal structures. The two CCK receptors are highly homologous and ??? preserve similar cholesterol recognition motifs but despite their homology, CCK₁R shows ??? ??? functional sensitivity to membrane cholesterol while CCK₂R does not. Our results offer ??? new insights into how cholesterol modulates GPCR function by showing cholesterol ??? interactions with AR that agree with previously published data; additionally, we ??? observe differential and specific cholesterol binding in the CCK receptor subfamily while revealing a previously unreported Cholesterol Recognition Amino-acid Consensus ??? (CRAC) sequence that is also conserved across 38% of class A GPCRs. A thermal ??? ??? denaturation assay (LCP-T_m) shows that mutation of a conserved CRAC sequence on ??? TM7 of the AR affects cholesterol stabilization of the receptor in a lipid bilayer. The ??? results of this study provide a better understanding of receptor-cholesterol interactions ???

Introduction


???

???

???

G protein-coupled receptors (GPCRs) are the largest family of integral membrane proteins in eukaryotic cells. Characterized by a conserved seven transmembrane helical

bundle, GPCRs are classified into five distinct phylogenetic families: class A/rhodopsin, class B/secretin, class C/glutamate, class F/frizzled, and Adhesion, with the vast majority of receptors being found in class A [1] (Fig. 1A). GPCRs play essential roles in physiological pathways and cell signaling events, making them important potential drug targets [2].

Figure 1. Location and conservation of important residues across Class A GPCRs. (A) Snake plot shows the location of well-conserved residues and motifs in class A GPCRs in the transmembrane bundle. (B) Cartoon visualization of the most conserved residues on each transmembrane helix as well as well-conserved motifs. Eleven well-studied GPCRs are shown.

GPCRs are commonly found residing in lipid rafts, which are highly ordered regions of the bilayer due to their high cholesterol content [3]. GPCR sequestration to these ordered microdomains had led to the hypothesis that cholesterol acts as an allosteric modulator for GPCR functions. Studies involving membrane cholesterol depletion showed specific altered signaling for the β_2 -Adrenergic Receptor (β_2 AR) [4] the cannabinoid receptor CB₁ [5], and serotonin receptor 5HT_{1A} [6, 7]; while cholesterol presence is required for the high affinity active state of the oxytocin receptor [8, 9]. Molecular spatial distribution analysis showed high density distribution of cholesterol

around Pro^{7.48} (Ballesteros-Weinstein numbering) [22] at the bottom of TM7 of rhodopsin associated with receptor activation [22] (Fig. 1A). 2

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

Additional evidence suggested that other receptors (e.g. Smoothened, chemokine receptor CXCR2, and GPR183) may directly bind cholesterol through specific interactions [2020] with multiple specific GPCR-cholesterol interaction sites having been identified [2020]. The CCM motif, first characterized from a structure of the DAR, is strictly conserved in 21% of class A GPCRs with 44% of class A receptors containing a slightly relaxed form of the motif [20]. CRAC sequences, defined as (-(L/V)-(X₁₋₅)-Y-(X₁₋₅)-(R/K)-), where X₁₋₅ represents 1-5 residues of any amino acid, are considered the most well-known cholesterol recognition motif in literature and are found on many GPCRs [20]. Cholesterol molecules were clearly resolved in the crystal structures of numerous receptors [20], but questions remain regarding whether the cholesterol molecules found in these crystal structures represent physiologically relevant and specific interactions, or if they are simply crystallization artifacts due to the abundance of cholesterol in the lipid bilayer and proximity to receptor molecules.

Alternatively, there is evidence suggesting that the observed cholesterol effects arise indirectly through the physical effects of cholesterol on the lipid bilayer [22]. Cholesterol is known to alter membrane fluidity [22], thickness [22], and curvature [22]. Membrane fluidity was shown to have a direct effect on ligand binding at the $5HT_{1A}$ [22] and the type-1 cholecystokinin receptor (CCK₁R) [2]. Similarly, membrane thickness and curvature is known to affect the active/inactive equilibrium of Rhodopsin [22]. Taken together, there is a critical need to address and reconcile the apparent ambiguities in how cholesterol exerts its effect on GPCR functions. 2

Here, we set out to probe the specificity of cholesterol-GPCR interactions through a combination of coarse-grained molecular dynamics (CGMD) simulations [22, 22] with structural bioinformatics and experimental validation using DAR as the model system and apply the structural dynamics and bioinformatics approaches to the CCK receptor family. CGMD has been widely used to predict and elucidate detailed interactions of GPCRs with lipids [22222], in particular the interaction of cholesterol with GPCRs [222 [22]. The MARTINI CG model that we are using here constrains the secondary structure and prevents conformational changes [22]; therefore, our results report on cholesterolprotein interactions with protein conformations close to the experimental crystal structures or models and do not include either conformational changes induced by cholesterol or different conformational states of the receptors. All-atom MD simulations do not share the same limitations but are computationally much more expensive and thus limited in the length of achievable simulations and sampling of protein-lipid interactions [20]. Given the previous successes of CGMD simulations [200200] and the need to collect statistics to obtain reasonable estimates of long cholesterol binding times, we chose CGMD as the appropriate level of approximation that generates sufficient sampling. Further, we focus the study on the CCK receptor family due to the differential effects cholesterol exerts: the CCK₁R ligand binding and downstream signaling are both modulated by membrane cholesterol levels, while the highly homologous (53% identity overall, and 69% in the transmembrane regions) gastrin receptor (CCK₂R) is unaffected by cholesterol [22]. Even though both CCK receptor subtypes share cholesterol recognition motif sites, the functional implications of membrane cholesterol composition are quite distinct. Our results show that the CCK receptors interact with cholesterol

???

???

???

???

???

???

???

???

???

???

???

????

????

?????

????

????

????

????

????

????

????

through different motifs despite similar recognition sequences on the primary level. The CRAC motif at the bottom of TM3 has been identified as the functionally important site in CCK₁R [36]. The CCK₁R has been implicated as a potential therapeutic target to treat metabolic syndrome and obesity, with an allosteric modulator designed that can prevent the inhibitory effects of the high cholesterol environment associated with obese patients [37, 38].

Lastly, we discover a new CRAC motif near the end of transmembrane-helix seven (TM7) that is conserved across 38% of class A GPCRs (Fig. 1A). The results reported herein elucidate GPCR-cholesterol interactions in greater detail and could prove insightful in the development of additional allosteric therapeutics specifically targeting the CCK₁R.

Results:

We performed CGMD simulations of β_2AR and the two CCK receptors in a mixed POPC:cholesterol membrane and analyzed the residency times of cholesterols at a per-residue resolution. Simulations were performed in 20% and 40% cholesterol. The 20% simulations appeared to better discriminate residues with long residency times from ones with shorter times and we therefore present the results for 20% cholesterol while results for 40% cholesterol are shown in the Supplementary Information. In the following discussion we focus on computational results that are consistent between the 20% and 40% simulations as the most robust findings. For the β_2AR , residues from the CCM motif including I153^{4,45} and W158^{4,50} showed peaks just below the labeling cutoff of our analysis (τ_{slow} = 140 and 86 ns, respectively). I55^{1,54} also showed prolonged interaction

times with cholesterol molecules (τ_{slow} =84 ns just below the labeling cutoff in Fig. 2A). In certain structure models (e.g., PDB: 2RH1) a cholesterol molecule is found within 5 Å from this residue. Some of the strongest signals arose from V157^{4,49}, T164^{4,56}, and W313^{7,40} (Fig. 2A). Though not observed in crystal structures, these residues have been implicated to interact with cholesterol as well [30, 39, 40].

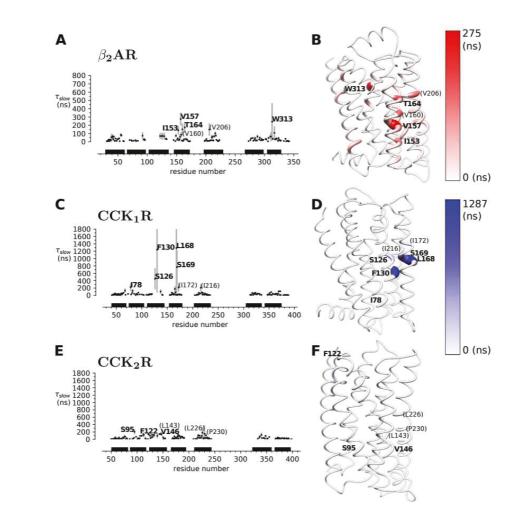


Figure 2. Cholesterol residency times τ_{slow} by residue from CGMD simulations with 20% cholesterol. (A), (C), (E): Residency times at the β_2AR , CCK₁R, and CCK₂R. Data points are the means over multiple simulation repeats and approximately 20- μ s simulation blocks, with the standard deviation shown as a symmetric bar. Residues for which the mean τ_{slow} is at least three times the overall mean over all residency times in the protein are explicitly labelled. Residues that show consistently high residency times in the 20% and 40% cholesterol simulations are bold-faced whereas other residues that are only apparent in either simulation set are shown in parentheses in normal typeface. In C, the error bars of F130 and L168 are truncated at high values to focus the range of the plot on the means (which is set to to be comparable between the 20% data here and the 40% data in Supplementary Fig. S2). (B), (D), (F): Structure models highlight residues with long residency times. The radius of the ribbon is scaled proportional to the average residency time and colored according to the color scale.

With the successful application of our CGMD approach to □AR, we next used the same methods to study the CCKRs. On the CCK₁R, we observed strong receptorcholesterol interactions surrounding TM3 with the highest residency time out of all of the receptor targets in this study. Furthermore, few CCK₁R residues have residency times higher than the background signal. A binding pocket at TM3 is further supported by long interactions at F130^{3.41}, L168^{4.52}, and S169^{4.53} (Fig. 2). While the CCK₁R-cholesterol interactions were mainly centered around TM3, the CCK₂R interactions were more spread throughout the receptor and residency times were all close to background. However, some interactions (such as at S95^{2.45}) suggest that CCK₂R may also interact with cholesterol molecules via the CCM motif mentioned above (Fig. 2, 3C). Direct comparison of the residency times for structurally equivalent residues between the two receptors demonstrated that residues in the CCK₁R typically bound cholesterol longer than the corresponding residues in CCK₂R (Fig. 3B). These results were consistent between the simulations with 20% and 40% cholesterol concentrations (Supplementary Fig. S3), implying that the CGMD simulations are able to differentiate which of the two homologous receptors interacts preferentially with cholesterol.

????

????

????

????

????

????

????

????

????

????

????

????

????

????

?????

????

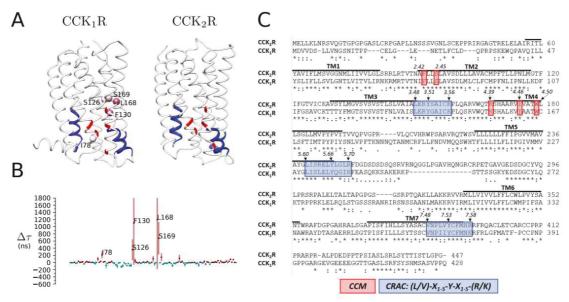


Figure 3. Differential interactions with cholesterol in the CCK subfamily. (A) Structure models of the CCK receptors. CRAC sequences are shown in blue and the CCM motif is shown in red. Spheres represent residues that showed differential cholesterol residency during the simulation and are colored by $\Delta \tau$. (B) Difference in residency times $\Delta \tau = \tau_{slow}(CCK_1R) - \tau_{slow}(CCK_2R)$ for equivalent residues according to the sequence alignment. Maroon represents residues residues that bind cholesterol for longer times (higher τ_{slow}) in CCK₁R whereas cyan represents residues with higher τ_{slow} in CCK₂R than in CCK₁R. Error bars on the differences represent the standard deviation. (C) Sequence alignment of the two CCK receptors. The CCM motif is highlighted in red and CRAC sequences are highlighted in blue. Arrows highlight the residues that make the recognition sequence. The specific fixed residues of these motifs are annotated with their canonical residue numbers.

During our analysis of the interactions observed on the β_2AR , we noticed a CRAC sequence made up of residues L324^{7.51}, Y326^{7.53}, and R328^{7.55} on the intracellular side of TM7. This CRAC site is centered around the highly conserved NPxxY motif in class A GPCRs [41]. Thus, we aligned all class A GPCRs (excluding olfactory receptors) using the structure-based alignment tool from the GPCR database [42] to see if this new CRAC site is also present in other class A GPCRs [42]. In all, 38% of the 285 class A GPCRs that were aligned and analyzed were found to contain a CRAC sequence surrounding the NPxxY motif (Supplementary File S1). On the CCK receptors, this novel CRAC sequence consists of V365^{7.48}, Y370^{7.53}, and K374^{7.57} on the CCK₁R, and V385^{7.48}, Y390^{7.53}, and R394^{7.57} on the CCK₂R (Fig. 3C).

To better understand possible cholesterol interactions on TM7, we performed a series of mutations on the □2AR and used the LCP-T_m assay to quantify the stabilizing effects of cholesterol binding to the receptor [22]. We analyzed single point mutations at the newly discovered CRAC sequence along with other residues on TM7. A summary of all mutations tested is shown in Table 1. Two mutations, Y326A^{7.53} and F336A^{8.54}, nearly abolished protein expression completely. Of the DAR constructs with reasonable expression, four of the seven remaining mutants were highly aggregated after purification in the presence of the high-affinity ligand timolol (Table 1). Due to poor protein expression and aggregation of most of the mutants, we were only able to collect LCP-T_m data on two mutant receptors alongside an unmutated receptor control sample. The first, F321A^{7.48} (located two helix turns near W313^{7.40}) was included as it could potentially interact with cholesterol molecules on the TM7 CRAC site. This residue has also been implicated to interact with cholesterol in previous studies [22]. Similarly, R328A^{7.55} was incorporated due to its position in the TM7 CRAC sequence (Fig. 4C). Previous studies showed the unmutated 2AR to be stabilized by 2.3°C when 10% (w/w) cholesterol was added to the host lipid monoolein relative to the monoolein-only sample [22]. In our experiments, the T_m of unmutated \Box_2AR is 43.45 ± 0.65 °C (monoolein-only) and $45.15 \pm$ 0.54 °C (monoolein with 10% cholesterol) resulting in a $\Box T_m$ of 1.71 \pm 0.85°C (Fig. 4A/B). The F321A and R328A mutations showed similar transition temperatures to the unmutated control in cholesterol-free assays, with T_m values of 42.65 \pm 0.21 and 43.10 \pm 0.74 °C, respectively. In cholesterol, the F321A mutant had a very slight increase in stability with a $\Box T_m$ value of 0.46 \pm 0.77 °C. Surprisingly, the R328A mutant had the largest $\Box T_m$ value at 5.75 \pm 1.65 °C with the addition of cholesterol into the host lipid

????

????

????

????

????

????

????

????

????

????

????

????

????

????

?????

????

????

????

????

????

????

????

????

(Fig. 4). Given that CGMD simulations showed a clear pattern of differential cholesterol binding in the CCKRs, we performed CGMD simulations of the R328A mutant to test if the mutation would have a strong effect on cholesterol binding as measured by our residence time analysis. The difference in residence times between WT and mutant receptor were not significantly different from 0 (Supplementary Fig. 4), unlike the case for CCK1R vs CCK2R.

????

????

????

????

????

????

????

????

????

???? ????

????

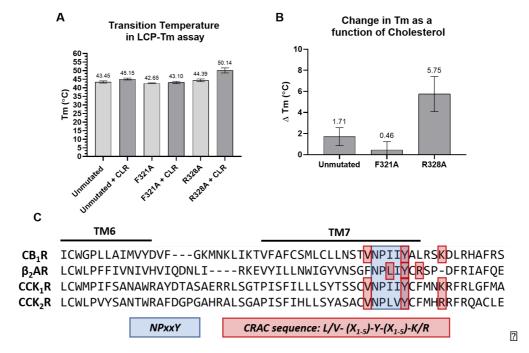


Figure 4. A conserved CRAC sequence modulates cholesterol-induced stability on the β_2AR . (A) Mean transition temperatures from LCP-Tm assay with and without cholesterol in the LCP. (B) $\Box T_{\Box}$ values for each mutant. (C) Alignment of CB₁R, \Box_2AR , and the CCK receptors. The conserved NPxxY motif on helix 7 is shown in blue. Residues fulfilling the CRAC sequence are shown in red. \Box

2222 TABLE 1. Summary of the mutations on the β_2AR and their results. 2

Construct	Purpose	Behavior	ΔTm(°C)
Unmutated	Control	Good 1.71±0.85 2	
W313A	Flagged in simulation	High Aggregation	-
S319A	Control mutation	Slight aggregation. Biphasic data could not be fit to Boltzmann	-

??

		curve in LCP-Tm	
I319A	Control mutation	Heavily Aggregated	-
F321A	Theoretical interaction with cholesterol on TM7	Good	0.46±0.77 🛽
L324A	Part of CRAC sequence on TM7	Heavily Aggregated	-
I325A	Control Mutation	Heavily Aggregated	-
Y326A	CRAC sequence	Expression Abolished	-
R328A	CRAC sequence	Good	5.75±1.65 🛽
F336A	Theoretical interaction with cholesterol	Expression Abolished	-

????

?????

????

?????

????

????

????

????

????

????

????

????

????

????

2222 Discussion:

The \square adrenergic receptor (\square AR) was initially used as the model system to initially test and validate the methods outlined in this study. The structure, function, and cholesterol sensitivity of the \square AR have been extensively characterized with multiple cholesterol recognition motifs (CCM, CRAC) already identified on this receptor [\square 2]. Overall, we found that our CGMD simulations on the \square AR revealed receptor-cholesterol interactions consistent with previously published literature results [\square 2, \square 2, \square 2, \square 2, \square 3.

Our simulations on the CCK receptor family showed differential cholesterol binding despite a high sequence homology between these receptors. Experiments on chimeras of the two receptors showed that the CRAC motif at the bottom of TM3 is responsible for the differential cholesterol sensitivity between the two receptors [22], consistent with our simulation data. Furthermore, the CCK₁R Y140A mutation at the bottom of TM3 within this CRAC motif has been shown to mimic the wildtype CCK₁R conformation in a high cholesterol environment along with the loss of cholesterol

sensitivity [22, 22]. Our simulations predict that the CCK₁R mainly interacts with cholesterol molecules via F130^{3.41}. Taken together, our results along with the previously published data suggest that cholesterol binds the CCK₁R on TM3. Strong cholesterol interactions around position 3.41 are intriguing as mutation of this position to tryptophan is commonly performed during receptor engineering for structural studies, and has been included in the thermo-stabilization of numerous receptors for crystallization [22222]. Initially discovered on DAR, mutation of the residue at this position (3.41) decreased affinity for small molecule ligands 2-fold while increasing recombinant expression by nearly 4-fold and purified monomer yield by 5-fold [22]. Position 3.41 mutations to tryptophan have also been successfully extended to chemokine, serotonin, and dopamine receptor structural studies [22]. Taken together, the ability to affect receptor expression, yield, and stability as well as broadly being applicable to other GPCRs underscore the potential importance of this residue in GPCR physiology. Therefore, it is not unreasonable to presume that cholesterol interactions at 3.41 could be responsible for the cholesterol sensitivity of the CCK₁R (without necessarily affecting the expression levels, given that tryptophan may lead to a stronger interaction with lipid or detergent headgroups that may compensate for missing stabilizing protein-cholesterol interactions) [22, 22].

?????

????

????

????

????

????

????

????

????

????

????

????

????

?????

????

????

????

?????

????

????

????

????

The CCK₂R seems to mainly interact with cholesterol via the CCM as one of the strongest signals was from S95^{2.45} at the bottom of TM2 but it appears to interact with cholesterol with lower specificity and affinity than CCK₁R. In the CGMD simulations, CCK₁R interacted with cholesterol for much longer and at more specific residues than its insensitive homolog CCK₂R (Fig. 3B). These results imply that specific cholesterol-

receptor binding and interaction could be responsible for the difference in physiological effects between the two CCK receptors seen in a high cholesterol environment. Although indirect effects of cholesterol on membrane curvature could be responsible for modulating receptor functions, our data suggest that CCKRs bind cholesterol specifically and differentially. Thus, the CCKRs may be insensitive to the global effects of cholesterol on lipid bilayer curvature, fluidity, and microdomain-receptor sequestration. Our simulations agree with previous literature results that TM3, and specifically F130, is responsible for the differential effect of membrane cholesterol on the CCK receptors [22],

????

?????

????

????

????

????

????

????

????

????

????

????

????

?????

????

????

????

????

????

????

????

Additionally, we discovered a new CRAC site on TM7 that overlaps with the highly conserved class A GPCR NPxxY motif; subsequent sequence alignment with all 285 class A GPCRs showed that 38% share a CRAC sequence in this region (Supplementary Fig. S1). Tyr^{7,53} of the NPxxY motif plays an essential role in class A GPCR activation, as mutation of Tyr^{7,53} on numerous receptors has shown a decrease or elimination of downstream signaling [\square \square]. Upon ligand binding, conformational changes in the transmembrane helices result in the formation of a water-mediated hydrogen-bond network that links Tyr^{7,53} to Tyr^{5,58}. This interaction helps facilitate the outward swing of helix VI which in turn allows for the G_{\square} subunit to bind the receptor and activate the signaling cascade \square [\square \square]. The importance of both the NPxxY motif and cholesterol in GPCR physiology have been extensively supported in the literature and it is well established that the NPxxY motif plays a significant role in stabilizing active state receptors [\square \square]. Our mutations on the \square 4R reinforce the importance of this region in

receptor stability and function as mutations to $Y326A^{7.53}$ and $F336A^{helix8}$ nearly abolished expression of the protein (Table 1). \square

????

Our LCP-T_m assay on the unmutated receptor showed that incorporating 10% ???? cholesterol into the host lipid increased the T_m by 1.71 ± 0.85 °C. F321^{7.48} is located on ???? TM7 three amino acids above the novel CRAC sequence. We expected that mutating this ???? residue (F321A) would alter cholesterol binding at this location and would thus decrease ???? the $\Box T_m$ value in the LCP- T_m assay. However, our $\Box T_m$ value of 0.46 \pm 0.77 °C from the ???? unmutated receptor was not found to be statistically significant at a 95% confidence ???? interval (p = 0.1310). R328^{7.55} is a key part of the CRAC sequence outlined above. Like ???? ???? our F321A mutation, we hypothesized that the R328A mutation would inhibit cholesterol interactions and lower the $\Box T_m$ value of the receptor. Surprisingly, the R328A mutant's ???? ???? T_m value increased from 44.39 ± 0.76 to 50.14 ± 1.47 °C with the addition of cholesterol, ???? yielding a $\Box T_m$ 5.75 ± 1.65 °C. This result was found to be significant at a 95% confidence interval (p=0.0194). This result is counterintuitive as we expected that the ???? positively charged arginine residue should interact favorably with the hydroxyl group of ????? cholesterol molecules, and thus the R328A mutation would result in a smaller $\Box T_m$ than ???? the unmutated control. CGMD simulations of the mutant receptor did not show a ???? ???? significantly increased binding of cholesterol compared to WT, although the large ???? standard deviations of the residence times leaves open the possibility that with much ???? longer sampling times (well in excess of 100 µs) more subtle effects might be discovered. In the absence of reliable molecular data we may speculate that the $\Box T_m$ of R328A could ???? be explained by the physical impact of cholesterol on lipid bilayers [22, 22, 22]. A ???? ???? mismatch between the length of the hydrophobic transmembrane helix and the width of

the lipid bilayer is known to destabilize proteins [22] an effect that cannot be captured by the MARTINI CG model because of its inherent secondary structure restraints). Hypothetically, these physical changes in the bilayer upon the addition of cholesterol could place the charged arginine residue into an environment that destabilizes the receptor (i.e., deeper into the hydrophobic membrane). Therefore, mutation to alanine would remove the potentially destabilizing effect of the charged arginine in the bilayer. Nevertheless, the difference in the experimental $\Box T_m$ values between the R328A mutant and the unmutated control were found to be statistically significant. Although our results from the biochemical assay and simulations were unexpected, and do not definitively show cholesterol binding at this CRAC, the data does suggest that R3287.55 may affect the receptor's behavior in a membrane with modulated cholesterol levels. Additionally, studies have shown that mutation of this CRAC sequence at the type-1 cannabinoid receptor inhibited the cholesterol sensitivity of the receptor [2], which may support the importance of this CRAC sequence in other receptors besides the □AR and the CCKRs. □ It should be noted that CRAC sequences, as well as CCM and other cholesterolrecognition motifs, provide little predictive value in how cholesterol will interact with the protein [22, 22]. CRAC sequences are ubiquitous in membrane proteins and the presence of a CRAC sequence does not ensure cholesterol binding. A case for this can be seen in our simulation data as the CCK receptors, though containing CRAC sequences in various locations (TM3, TM5, and TM7), were not found to bind cholesterol at all of these locations. Instead, cholesterol molecules may have an affinity for the region surrounding a CRAC sequence as the correct hydrophobic, aromatic, and polar groups are in place to

????

????

????

????

????

????

????

????

????

????

????

????

????

?????

????

????

????

????

????

????

222 facilitate protein-cholesterol interactions [22, 22], and in some cases, these 2222 interactions can have profound physiological effects.

Our study has shown that cholesterol interacts stronger with specific regions of ????? cholesterol-sensitive receptors compared to their insensitive homologs. These data imply ???? that specific receptor-cholesterol interactions play an important role in the modulation of ???? ???? receptors as a function of membrane cholesterol content. More detailed experimentation ???? to determine the conformational changes associated with cholesterol binding would be very helpful in understanding these phenomena. We have identified a CRAC sequence ???? that is conserved at the bottom of TM7 in 38% of class A GPCRs. Due to its overlap with ???? ???? the NPxxY motif, it is interesting to hypothesize that receptor-cholesterol interactions at TM7 could play an important role in cholesterol-mediated modulation throughout this ???? ???? family and detailed studies on other cholesterol sensitive receptors could yield more information. Additionally, downstream signaling assays could shed light on how these ???? CRAC sequences affect receptor function. Regarding the CCK subfamily, our data agrees ???? with previously published literature and could be helpful in the development of allosteric ????? modulators to treat metabolic syndrome and obesity. ????

Materials and Methods:

????

????

Model Preparation and Simulations

Models for CCK_1R and CCK_2R were generated using Modeller [22, 22] with the orexin receptors 1 and 2 (OX_1R and OX_2R) as templates (PDB codes: OX_1R : 4zj8 and 4zjc (Yin, 4374); OX_2R : 4s0v [22], 5wqc and 5ws3 [22]). Fusion protein inserts were removed from the crystal structures and a multi-sequence alignment was performed using Jalview [22] with the CCK_1R and CCK_2R sequences (Uniprot (https://www.uniprot.org) accession

???? numbers P32238 and P32239, respectively) independently. Modeller was used to create twenty models for each protein and the structure with the lowest normalized DOPE score ???? [22] for each was chosen (-0.52 and -0.40 for CCK₁R and CCK₂R, respectively). The ???? system setup for the 2-adrenergic receptor (2AR) began with removing the T4-???? lysozyme fusion from the third intracellular loop (ICL3) in the crystal structure (PDB ???? ???? 2rh1 (Rosenbaum, 2007 #60)). Modeller was used to fix the resulting gap in the structure ???? by joining the short loop segments left after removing the insert. Using the CHARMM-GUI server [22], each of the three models was coarse-grained using the MARTINI force ???? field [22, 22] with the ElNeDyn secondary structure restraints and inserted into a ???? membrane. Two separate systems were created for each protein: one with a 1:4 ???? cholesterol:1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane ("20% ???? ???? cholesterol") and one with a 2:3 cholesterol:POPC membrane ("40% cholesterol"). ???? Coarse-grained molecular dynamics (CGMD) was performed using Gromacs 2019 [20] at 303.15 K and 1 bar using semiisotropic Parrinello-Rahman pressure coupling [22] and ???? stochastic velocity-rescale temperature coupling [22] with a 20 fs time step. A reaction-????? field with a 1.1 nm cutoff was used for the electrostatic interactions and a single cutoff of ???? 1.215 nm was used for the van der Waal interactions [22]. Constraints were added ???? according to the MARTINI force field [22]. Simulation lengths for each system are ???? ???? reported in Table 2.2 Time series of the cholesterol-protein contacts were collected on a per residue basis for each trajectory using functionality in the MDAnalysis package [22], where a contact was ???? defined with a 7 Å cutoff. Survival functions were calculated from a histogram of the ????

waiting times for each residue. The survival functions were least-square-fitted with relative weights to a two-term hyperexponential with the form?

$$s(t) = ae^{-\alpha t} + (1 - a)e^{-\beta t}$$
 (1)

using the $curve_fit()$ function in SciPy [22]. Artifacts from the cutoff manifest themselves as spurious contacts with short waiting times, i.e., higher rates, so only the slower rates from the longer waiting times were taken to be indicative of cholesterol-protein interactions. Specifically, the slower of the two rates was used to calculate a mean waiting time \square low for each residue, termed the "residency time", as \square

????

????

????

????

????

????

????

????

????

????

????

????

$$\tau_{\text{slow}} = \frac{1}{\min(\alpha, \beta)}$$

???? (2)?

Further technical details on the methods will be published elsewhere (Sexton et al, in preparation). \$\int_{\text{low}}\$ was plotted against the residue number to compare mean waiting times across the protein using Matplotlib [20] \$\text{2E}\$ proves for \$\text{\$\structure{\text{low}}\$ values were obtained by dividing the trajectories into non-overlapping contiguous blocks of at least 20 \$\mu\$s and less than 21 \$\mu\$s and performing the contact analysis for each block. The mean and standard deviation were calculated from the \$\text{\$\structure{\text{low}}\$ values over all blocks. As shown in Supplementary Figs. 6 \$-13\$, a block length of \$\sim 20 \mu\$s provided a consistent picture compared to fewer but longer blocks and was chosen for its conservative (large) error estimate while still providing a sufficient number of events for the fitting procedure to converge. When we plotted residence times we only automatically labelled residues with a residence time at least three times greater than the overall background as computed by the mean over all residence times (excluding residues without data or with insufficient data for the

hyperexponential fit to converge). The residence times for the CCK homologues were compared by performing a sequence alignment and taking the difference (CCK1R - CCK2R) of the \square low values obtained, which was called \square The standard deviation of the difference was calculated from error propagation of the individual standard deviations of the \square low values. VMD [22] and Chimera [22] were used for molecular visualizations. 2

TABLE 2. Run times for the simulations in microseconds (μs)

20% Cholesterol	β ₂ AR 🛽	β ₂ AR_R328A2	CCK ₁ R ⁷	CCK₂R2
Run 1	121.5	??? ?? ?	100.3	103.3
Run 2	120.9	??? ?		
Run 3	123.8	??????		
Total	366.2	22212	100.3	103.3
40% Cholesterol				
Run 1	120.5	??? ?? ?	101.3	40.82
Run 2	121.9	??? ?		40.3
Run 3	122.4	??? ?? ?		
Total	364.8	?? ??? ?	101.3	81.1

????

????

????

????

????

????

????

????

????

????

????

????

????

????

Mutant Receptor Preparation

Site-directed mutagenesis was performed on \square AR using primers with internal mismatches (IDT) and Phusion polymerase (Thermo Fisher Scientific). Mutant receptors were verified via Sanger sequencing (Genewiz). Receptors were expressed and purified as previously described [22]. Receptors were analyzed for total and surface expression on a Guava flow cytometer (Millipore). Purified receptors were analyzed for purity and homogeneity via analytical size exclusion chromatography. Homogeneous receptors were further analyzed using the LCP-T_m assay. \square

LCP-T_m Assay 2

????

?!?!?!? Cholesterol binding to mutant receptors was quantified via a thermal denaturation assay in LCP as described [22]. Briefly, purified receptors were mixed in an ????? approximately 35% (v/v) ratio with molten monoolein (Nu-check) containing either 0 or ???? 10% cholesterol. Final protein concentrations were 0.015 mg/mL for each assay. ???? ???? Fluorescence signal was recorded using a Cary Eclipse Emission Spectrophotometer ???? (Agilent). Background signal from a blank LCP sample was subtracted from the protein sample and the inner filter effect was corrected for as described [22]. CPM (7-???? Diethylamino-3-(4'-Maleimidylphenyl)-4-Methylcoumarin (Sigma)) probe was added to ???? the protein at a final concentration of 0.004 mg/mL and allowed to incubate on ice, and in ???? the dark, for 30 minutes before incorporation into the LCP matrix. The excitation ???? ???? wavelength for fluorescence was 387 nm and emissions were recorded via scanning between 400 and 500 nm with a step size of 1 nm. Mathematical fitting and statistics ????? were carried out in Prism version 8.3.1(GraphPad) as described [22] The effects of ???? cholesterol were quantified as the change in denaturation temperature as a function of the ????? addition of cholesterol into the LCP matrix. $\Box T_m$ values for mutant receptors were ???? ???? compared to an unmutated control. 2

Acknowledgements:

????

Research reported in this publication was supported by the National Institute of

General Medical Sciences of the National Institutes of Health under Award Number

1R15GM124623-01A (O.B.), the National Institutes of Health grants R21DA042298

(W.L.) and R01GM124152 (W.L.), the STC Program of the National Science

Foundation through BioXFEL (No. 1231306; W.L.), a Mayo Clinic ASU Collaborative

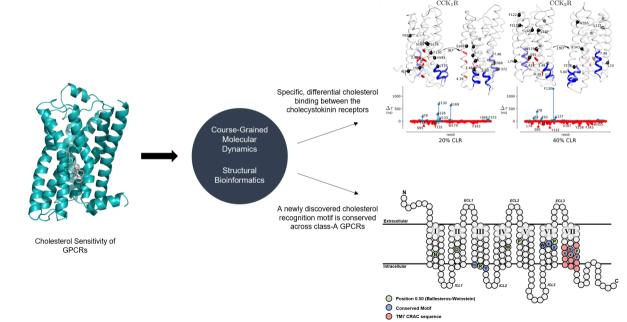
Seed Grant Award (W.L.), and the Flinn Foundation Seed Grant (W.L.) ???? The funders had no role in study design, data collection and analysis, decision to ???? publish, or preparation of the manuscript. ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? References ???? ???? Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB. The G-Protein-???? 1. Coupled Receptors in the Human Genome Form Five Main Families. Phylogenetic ???? ???? Analysis, Paralogon Groups, and Fingerprints. 2003;63(6):1256-72. doi: ???? 10.1124/mol.63.6.1256 %J Molecular Pharmacology. ???? 2. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nature Reviews Drug ???? ???? Discovery. 2017;16(12):829-42. doi: 10.1038/nrd.2017.178. Villar VAM, Cuevas S, Zheng X, Jose PA. Chapter 1 - Localization and signaling ???? of GPCRs in lipid rafts. In: K. Shukla A, editor. Methods in Cell Biology. 132: Academic ???? ???? Press; 2016. p. 3-23. Paila YD, Jindal E, Goswami SK, Chattopadhyay A. Cholesterol depletion ???? ???? enhances adrenergic signaling in cardiac myocytes. Biochimica et Biophysica Acta

22

(BBA) - Biomembranes. 2011;1808(1):461-5. doi:

https://doi.org/10.1016/j.bbamem.2010.09.006.

????


- 2222 5. Oddi S, Dainese E, Fezza F, Lanuti M, Barcaroli D, De Laurenzi V, et al.
- 2222 Functional characterization of putative cholesterol binding sequence (CRAC) in human
- type-1 cannabinoid receptor. Journal of Neurochemistry. 2011;116(5):858-65. doi:
- 2222 10.1111/j.1471-4159.2010.07041.x.
- 2222 6. Pucadyil TJ, Chattopadhyay A. Cholesterol modulates ligand binding and G-
- 2222 protein coupling to serotonin1A receptors from bovine hippocampus. Biochimica et
- 2222 Biophysica Acta (BBA) Biomembranes. 2004;1663(1):188-200. doi:
- 2222 https://doi.org/10.1016/j.bbamem.2004.03.010.
- 2222 7. Pucadyil TJ, Chattopadhyay A. Cholesterol modulates the antagonist-binding
- 2222 function of hippocampal serotonin1A receptors. Biochimica et Biophysica Acta (BBA) -
- 2222 Biomembranes. 2005;1714(1):35-42. doi: https://doi.org/10.1016/j.bbamem.2005.06.005.
- 2222 8. Gimpl G, Burger K, Fahrenholz F. Cholesterol as Modulator of Receptor
- 2222 Function. Biochemistry. 1997;36(36):10959-74. doi: 10.1021/bi963138w.
- 2222 9. Gimpl G, Wiegand V, Burger K, Fahrenholz F. Chapter 4 Cholesterol and steroid
- 2222 hormones: modulators of oxytocin receptor function. Progress in Brain Research. 139:
- 2222 Elsevier; 2002. p. 43-55.
- 222 10. Ballesteros JA, Weinstein H. Integrated methods for the construction of three-
- 2222 dimensional models and computational probing of structure-function relations in G
- protein-coupled receptors. In: Sealfon SC, editor. Methods in Neurosciences. 25:
- 2222 Academic Press; 1995. p. 366-428.
- 2222 11. Khelashvili G, Grossfield A, Feller SE, Pitman MC, Weinstein H. Structural and
- 2222 dynamic effects of cholesterol at preferred sites of interaction with rhodopsin identified
- from microsecond length molecular dynamics simulations. Proteins. 2009;76(2):403-17.
- 2222 doi: 10.1002/prot.22355. PubMed PMID: 19173312.
- 2222 12. Benned-Jensen T, Norn C Fau Laurent S, Laurent S Fau Madsen CM, Madsen
- 2222 Cm Fau Larsen HM, Larsen Hm Fau Arfelt KN, Arfelt Kn Fau Wolf RM, et al.
- 2222 Molecular characterization of oxysterol binding to the Epstein-Barr virus-induced gene 2
- 2222 (GPR183). (1083-351X (Electronic)).
- 2222 13. Byrne EFX, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, et al.
- 2222 Structural basis of Smoothened regulation by its extracellular domains. (1476-4687
- 2222 (Electronic)).
- 2222 14. Luchetti G, Sircar R, Kong JH, Nachtergaele S, Sagner A, Byrne EF, et al.
- 2222 Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog
- 2222 signaling. Elife. 2016;5:e20304. doi: 10.7554/eLife.20304. PubMed PMID: 27705744.
- 2222 15. Sensi C, Daniele S, Parravicini C, Zappelli E, Russo V, Trincavelli ML, et al.
- Oxysterols act as promiscuous ligands of class-A GPCRs: in silico molecular modeling
- 2222 and in vitro validation. (1873-3913 (Electronic)).
- 2222 16. Bukiya AN, Dopico AM. Common structural features of cholesterol binding sites
- 2222 in crystallized soluble proteins. 2017;58(6):1044-54. doi: 10.1194/jlr.R073452.
- 2222 17. Fantini J, Barrantes F. How cholesterol interacts with membrane proteins: an
- 2222 exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains.
- 2222 Frontiers in Physiology. 2013;4:31.
- 222 18. Gimpl G. Interaction of G protein coupled receptors and cholesterol. Chemistry
- 2222 and Physics of Lipids. 2016;199:61-73. doi:
- 2222 https://doi.org/10.1016/j.chemphyslip.2016.04.006.

- 2222 19. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola V-P, Chien EYT, et al.
- 2222 A Specific Cholesterol Binding Site Is Established by the 2.8 A Structure of the Human
- 2222 beta2-adrenergic Receptor. Structure. 2008;16(6):897-905. doi:
- 2222 10.1016/j.str.2008.05.001.
- 20. Jafurulla M, Aditya Kumar G, Rao BD, Chattopadhyay A. A Critical Analysis of
- 2222 Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GPCRs. In:
- 2222 Rosenhouse-Dantsker A, Bukiya AN, editors. Cholesterol Modulation of Protein
- 2222 Function: Sterol Specificity and Indirect Mechanisms. Cham: Springer International
- 222 Publishing; 2019. p. 21-52.
- 222 21. Cooper RA. Influence of increased membrane cholesterol on membrane fluidity
- 2222 and cell function in human red blood cells. Journal of Supramolecular Structure.
- 2222 1978;8(4):413-30. doi: 10.1002/jss.400080404.
- 22. Nezil FA, Bloom M. Combined influence of cholesterol and synthetic
- 2222 amphiphillic peptides upon bilayer thickness in model membranes. biophysical Journal
- 2222 61(0006-3495 (Print)):1176-83.
- 22. Chen Z, Rand RP. The influence of cholesterol on phospholipid membrane
- 2222 curvature and bending elasticity. (0006-3495 (Print)).
- 22. Pal S, Chakraborty H, Bandari S, Yahioglu G, Suhling K, Chattopadhyay A.
- 2222 Molecular rheology of neuronal membranes explored using a molecular rotor:
- Implications for receptor function. Chemistry and physics of lipids. 2016;196:69-75. doi:
- 2222 10.1016/j.chemphyslip.2016.02.004. PubMed PMID: 26879380.
- 222 25. Soubias O, Gawrisch K. The role of the lipid matrix for structure and function of
- 2222 the GPCR rhodopsin. Biochimica et Biophysica Acta (BBA) Biomembranes.
- 2012;1818(2):234-40. doi: https://doi.org/10.1016/j.bbamem.2011.08.034.
- 2222 26. Ingólfsson HI, Lopez CA, Uusitalo JJ, de Jong DH, Gopal SM, Periole X, et al.
- 2222 The power of coarse graining in biomolecular simulations. WIREs Computational
- 2222 Molecular Science. 2014;4(3):225-48. doi: 10.1002/wcms.1169.
- 222 27. Stansfeld PJ, Sansom MSP. Molecular simulation approaches to membrane
- 2222 proteins. Structure. 2011;19(11):1562-72. doi: 10.1016/j.str.2011.10.002.
- 2222 28. Hedger G, Sansom MSP. Lipid interaction sites on channels, transporters and
- 2222 receptors: Recent insights from molecular dynamics simulations. Biochimica et
- 2222 Biophysica Acta (BBA) Biomembranes. 2016;1858(10):2390 400. doi:
- 2222 10.1016/j.bbamem.2016.02.037.
- 22. Sengupta D, Chattopadhyay A. Molecular dynamics simulations of GPCR–
- 2222 cholesterol interaction: An emerging paradigm. Biochimica et Biophysica Acta (BBA) -
- 2222 Biomembranes. 2015;1848(9):1775 82. doi: 10.1016/j.bbamem.2015.03.018.
- 222 30. Genheden S, Essex JW, Lee AG. G protein coupled receptor interactions with
- 222 cholesterol deep in the membrane. Biochimica et Biophysica Acta (BBA) -
- 2222 Biomembranes. 2017;1859(2):268 81. doi: 10.1016/j.bbamem.2016.12.001.
- 222 31. Jafurulla M, Tiwari S, Chattopadhyay A. Identification of cholesterol recognition
- amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochemical and
- 222 Biophysical Research Communications. 2011;404(1):569-73. doi:
- 2222 https://doi.org/10.1016/j.bbrc.2010.12.031.
- 2222 32. Prasanna X, Chattopadhyay A, Sengupta D. Cholesterol modulates the dimer
- 2022 interface of the ⊞adrenergic receptor via cholesterol occupancy sites. Biophysical

- 2222 journal. 2014;106(6):1290-300. doi: 10.1016/j.bpj.2014.02.002. PubMed PMID:
- 2222 24655504.
- 222 33. Rouviere E, Arnarez C, Yang L, Lyman E. Identification of Two New Cholesterol
- Interaction Sites on the A\textsubscript2A Adenosine Receptor. Biophysical Journal.
- 2017;113(11):2415 24. doi: 10.1016/j.bpj.2017.09.027.
- 222 34. Periole X, Cavalli M, Marrink S-J, Ceruso MA. Combining an Elastic Network
- 2222 With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular
- 2222 Recognition. Journal of Chemical Theory and Computation. 2009;5(9):2531-43. doi:
- 2222 10.1021/ct9002114.
- 2222 35. Potter RM, Harikumar KG, Wu SV, Miller LJ. Differential sensitivity of types 1
- and 2 cholecystokinin receptors to membrane cholesterol. 2012;53(1):137-48. doi:
- 2222 10.1194/jlr.M020065.
- 2222 36. Desai AJ, Lam PCH, Orry A, Abagyan R, Christopoulos A, Sexton PM, et al.
- 2222 Molecular Mechanism of Action of Triazolobenzodiazepinone Agonists of the Type 1
- 2222 Cholecystokinin Receptor. Possible Cooperativity across the Receptor Homodimeric
- 2222 Complex. Journal of Medicinal Chemistry. 2015;58(24):9562-77. doi:
- 2222 10.1021/acs.jmedchem.5b01110.
- 2222 37. Miller LJ, Desai AJ. Metabolic Actions of the Type 1 Cholecystokinin Receptor:
- 2222 Its Potential as a Therapeutic Target. Trends in Endocrinology & Metabolism.
- 2016;27(9):609-19. doi: 10.1016/j.tem.2016.04.002.
- 2222 38. Miller LJ, Holicky EL, Ulrich CD, Wieben ED. Abnormal processing of the
- 222 human cholecystokinin receptor gene in association with gallstones and obesity.
- 2222 Gastroenterology. 1995;109(4):1375-80. doi: 10.1016/0016-5085(95)90601-0.
- 222 39. Cang X, Du Y, Mao Y, Wang Y, Yang H, Jiang H. Mapping the Functional
- 2222 Binding Sites of Cholesterol in □2-Adrenergic Receptor by Long-Time Molecular
- Dynamics Simulations. The Journal of Physical Chemistry B. 2013;117(4):1085-94. doi:
- 2222 10.1021/jp3118192.
- 2222 40. Lee AG. Interfacial Binding Sites for Cholesterol on G Protein-Coupled
- 2222 Receptors. Biophysical Journal. 2019;116(9):1586-97. doi:
- 2222 https://doi.org/10.1016/j.bpj.2019.03.025.
- 2222 41. Mirzadegan T, Benkö G, Filipek S, Palczewski K. Sequence Analyses of G-
- 2222 Protein-Coupled Receptors: Similarities to Rhodopsin. Biochemistry. 2003;42(10):2759-
- 2222 67. doi: 10.1021/bi027224+.
- 222 42. Pándy-Szekeres G, Munk C, Tsonkov TM, Mordalski S, Harpsøe K, Hauser AS,
- 2222 et al. GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids
- 2222 Research. 2017;46(D1):D440-D6. doi: 10.1093/nar/gkx1109 %J Nucleic Acids Research.
- 2222 43. Liu W, Hanson MA, Stevens RC, Cherezov V. LCP-Tm: An Assay to Measure
- 2222 and Understand Stability of Membrane Proteins in a Membrane Environment.
- 2222 Biophysical Journal. 2010;98(8):1539-48. doi: 10.1016/j.bpj.2009.12.4296.
- 2222 44. Desai AJ, Harikumar KG, Miller LJ. A Type 1 Cholecystokinin Receptor Mutant
- 2222 That Mimics the Dysfunction Observed for Wild Type Receptor in a High Cholesterol
- 2222 Environment. 2014;289(26):18314-26. doi: 10.1074/jbc.M114.570200.
- 2222 45. Heydenreich FM, Vuckovic Z, Matkovic M, Veprintsev DB. Stabilization of G
- protein-coupled receptors by point mutations. Frontiers in Pharmacology. 2015;6:82.
- 2222 46. Roth CB, Hanson MA, Stevens RC. Stabilization of the Human □2-Adrenergic
- 2222 Receptor TM4–TM3–TM5 Helix Interface by Mutagenesis of Glu1223.41, A Critical

- 2222 Residue in GPCR Structure. Journal of Molecular Biology. 2008;376(5):1305-19. doi:
- 2222 https://doi.org/10.1016/j.jmb.2007.12.028.
- 2222 47. Webb RJ, East JM, Sharma RP, Lee AG. Hydrophobic Mismatch and the
- 222 Incorporation of Peptides into Lipid Bilayers: A Possible Mechanism for Retention in the
- 2222 Golgi. Biochemistry. 1998;37(2):673-9. doi: 10.1021/bi972441.
- 2222 48. Sanchez KM, Kang G Fau Wu B, Wu B Fau Kim JE, Kim JE. Tryptophan-
- 2222 lipid interactions in membrane protein folding probed by ultraviolet resonance Raman
- and fluorescence spectroscopy. Biophysical Journal. 100:2121-30.
- 2222 49. Sansom MS, Bond Pj Fau Deol SS, Deol Ss Fau Grottesi A, Grottesi A Fau -
- 2222 Haider S, Haider S Fau Sands ZA, Sands ZA. Molecular simulations and lipid-protein
- 2222 interactions: potassium channels and other membrane proteins. (0300-5127 (Print)).
- 2222 50. Ragnarsson L, Andersson Å, Thomas WG, Lewis RJ. Mutations in the NPxxY
- 2222 motif stabilize pharmacologically distinct conformational states of the
- 222 Signaling. 2019;12(572):eaas9485. doi: 10.1126/scisignal.aas9485.
- 2222 51. Cherezov V, Clogston J, Misquitta Y, Abdel-Gawad W, Caffrey M. Membrane
- 2222 Protein Crystallization In Meso: Lipid Type-Tailoring of the Cubic Phase. Biophysical
- 2222 Journal. 2002;83(6):3393-407. doi: https://doi.org/10.1016/S0006-3495(02)75339-3.
- 222 52. Raffy S, Teissié J. Control of Lipid Membrane Stability by Cholesterol Content.
- 222 Biophysical Journal. 1999;76(4):2072-80. doi: 10.1016/S0006-3495(99)77363-7.
- 2222 53. Baier CJ, Fantini J, Barrantes FJ. Disclosure of cholesterol recognition motifs in
- 2222 transmembrane domains of the human nicotinic acetylcholine receptor. Scientific
- 2222 Reports. 2011;1(1):69. doi: 10.1038/srep00069.
- 222 54. Fiser A, Do RKG, Šali A. Modeling of loops in protein structures. Protein
- 2222 Science. 2000;9(9):1753-73. doi: 10.1110/ps.9.9.1753.
- 2222 55. Šali A, Blundell TL. Comparative Protein Modelling by Satisfaction of Spatial
- Restraints. Journal of Molecular Biology. 1993;234(3):779-815. doi:
- 2222 https://doi.org/10.1006/jmbi.1993.1626.
- 222 56. Yin J, Mobarec JC, Kolb P, Rosenbaum DM. Crystal structure of the human OX2
- orexin receptor bound to the insomnia drug suvorexant. Nature. 2015;519(7542):247-50.
- 2222 doi: 10.1038/nature14035.
- 2222 57. Suno R, Kimura KT, Nakane T, Yamashita K, Wang J, Fujiwara T, et al. Crystal
- 2222 Structures of Human Orexin 2 Receptor Bound to the Subtype-Selective Antagonist
- 2222 EMPA. Structure. 2018;26(1):7-19.e5. doi: 10.1016/j.str.2017.11.005.
- 2222 58. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version
- 2222 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics.
- 2009;25(9):1189-91. doi: 10.1093/bioinformatics/btp033.
- 2222 59. Eramian D, Eswar N, Shen M-Y, Sali A. How well can the accuracy of
- 2222 comparative protein structure models be predicted? Protein Science. 2008;17(11):1881-
- 2222 93. doi: 10.1110/ps.036061.108.
- 2222 60. Qi Y, Ingólfsson HI, Cheng X, Lee J, Marrink SJ, Im W. CHARMM-GUI Martini
- 2222 Maker for Coarse-Grained Simulations with the Martini Force Field. Journal of Chemical
- 2222 Theory and Computation. 2015;11(9):4486-94. doi: 10.1021/acs.jctc.5b00513.
- 2222 61. de Jong DH, Singh G, Bennett WFD, Arnarez C, Wassenaar TA, Schäfer LV, et
- 2222 al. Improved Parameters for the Martini Coarse-Grained Protein Force Field. Journal of
- 2222 Chemical Theory and Computation. 2013;9(1):687-97. doi: 10.1021/ct300646g.

- 2222 62. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS:
- 2222 High performance molecular simulations through multi-level parallelism from laptops to
- 2222 supercomputers. SoftwareX. 2015;1-2:19-25. doi:
- 2222 https://doi.org/10.1016/j.softx.2015.06.001.
- 2222 63. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new
- molecular dynamics method. Journal of Applied Physics. 1981;52(12):7182-90. doi:
- 2222 10.1063/1.328693.
- 2222 64. Bussi G, Donadio D Fau Parrinello M, Parrinello M. Canonical sampling
- through velocity rescaling. Journal of Chemical Physics 126(1). doi: 10.1063/1.2408420.
- 2222 65. de Jong DH, Baoukina S, Ingólfsson HI, Marrink SJ. Martini straight: Boosting
- 2222 performance using a shorter cutoff and GPUs. Computer Physics Communications.
- 2016;199:1 7. doi: http://dx.doi.org/10.1016/j.cpc.2015.09.014.
- 222 66. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S-J.
- 2222 The MARTINI Coarse-Grained Force Field: Extension to Proteins. Journal of Chemical
- 2222 Theory and Computation. 2008;4(5):819-34. doi: 10.1021/ct700324x.
- 2222 67. R. J. Gowers ML, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, D. L.
- 2222 Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein. . MDAnalysis: A
- 2222 Python package for the rapid analysis of molecular dynamics simulations. . Proceedings
- of the 15th Python in Science Conference, 2016:98/105. doi: 10.25080/majora-
- 2222 629e541a-00e.
- 222 68. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et
- al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature
- 2222 Methods. 2020;17(3):261-72. doi: 10.1038/s41592-019-0686-2.
- 2222 69. Hunter JD. Matplotlib: A 2D Graphics Environment. Computing in Science
- 2222 Engineering. 2007;9(3):90-5. doi: 10.1109/MCSE.2007.55.
- 2222 70. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. Journal
- 2222 of Molecular Graphics. 1996;14(1):33-8. doi: https://doi.org/10.1016/0263-
- 2222 7855(96)00018-5.
- 2222 71. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et
- 2222 al. UCSF Chimera—A visualization system for exploratory research and analysis. Journal
- 2222 of Computational Chemistry. 2004;25(13):1605-12. doi: 10.1002/jcc.20084.

