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Abstract

Continuous time Markov chains are frequently used to model the stochastic
dynamics of (bio)chemical reaction networks. However, except in very special
cases, they cannot be analysed exactly. Additionally, simulation can be
computationally intensive. An approach to address these challenges is to
consider a more tractable diffusion approximation. In [17], Leite and Williams
proposed a reflected diffusion as an approximation for (bio)chemical reaction
networks, which they called the Constrained Langevin Approximation (CLA)
as it extends the usual Langevin approximation beyond the first time some
chemical species becomes zero in number. Further explanation and examples
of the CLA can be found in Anderson et al. [2].
In this paper, we extend the approximation of [17] to (nearly) density dependent
Markov chains, as a first step to obtaining error estimates for the CLA, when
the diffusion state space is one-dimensional and we provide a bound for the
error in a strong approximation. We discuss some applications for chemical
reaction networks and epidemic models, and illustrate these with examples.
Our method of proof is designed to generalize to higher dimensions, provided
there is a Lipschitz Skorokhod map defining the reflected diffusion process. The
existence of such a Lipschitz map is an open problem in dimensions more than
one.
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1. Introduction

1.1. Background

Stochastic dynamics in chemistry and biology are often modeled by continuous-time
Markov chains. While intuitive to formulate, these models often cannot be analysed
exactly and can be computationally intensive to simulate. A way to tackle this problem
is by considering a diffusion approximation, i.e., a continuous-path strong Markov
process that approximates the Markov chain model. The diffusion approximations
are usually more amenable to analysis, involving differential equations rather than
difference equations (see Anderson et al. [2] and Linetsky [18]). Also, their simulation
is typically less computationally intensive (see e.g., Leite & Williams [17]).

In the seminal work of Kurtz [16], a Langevin-type diffusion approximation was
proposed under the assumption of density dependence for the Markov chain. Density
dependent Markov chains were introduced earlier by Kurtz in [14] as a class of Markov
processes which keep track of the number of individuals in a stochastic system, where a
volume, area or total population parameter is considered. Kurtz [14] showed that under
a suitable rescaling using this parameter, these Markov chains exhibit a functional Law
of Large Numbers (LLN), where the deterministic limit is a solution of an ordinary
differential equation. In [15], Kurtz proved a functional Central Limit Theorem (CLT)
for these processes, rigorously establishing the Linear Noise Approximation (LNA) or
van Kampen Approximation. Later, in [16], Kurtz developed the Langevin diffusion
approximation for density dependent processes, which is valid until the first time
that the concentration for a given species of individuals reaches zero. An extension
of this approximation beyond such a stopping time, called a Constrained Langevin
Approximation, is the object of attention in this paper.

A slight generalization of density dependence called nearly density dependence ap-
pears in Ethier & Kurtz ([9], chapter 11, equation 1.13) although the term was later
introduced by Angius et al. [4], who proposed a hybrid diffusion approximation for
nearly density dependent processes. Nearly density dependent processes include an
important collection of Markov chain models called chemical reaction networks, which
will be one of our main sources of examples.

Chemical reaction networks (CRNs) are models used to describe the stochastic
dynamics of a chemical system (see Anderson & Kurtz [3] for an introduction to this
subject). In these models, we have d ≥ 1 different species subject to n ≥ 1 different
reactions. The system has a parameter r ≥ 1, thought of as volume, area or total
population. As time goes by, reactions are triggered randomly. A continuous-time
Markov chain Xr(t) = (Xr

1 (t), . . . , X
r
d(t)) tracks the count for each species through

time. Throughout this paper we will consider models of CRNs satisfying stochastic
mass action kinetics and with rates scaled by r under the classical scaling (see Sections
2.1 and 2.2 of [2] for an exposition of these concepts). Using the results in Kurtz [16],
it is possible to construct a Langevin diffusion approximation Y r for the concentration
processX

r
:= 1

rX
r until the first time that Y r reaches the boundary of the nonnegative

d-dimensional orthant, Rd
+.

In [17], Leite & Williams proposed an extension Zr of this stopped Langevin ap-
proximation, which is defined for all time and which is such that when it hits the
boundary of Rd

+, it is instantaneously pushed back into Rd
+. Leite & Williams called

this the Constrained Langevin Approximation (CLA), since it behaves like the Langevin
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approximation in the interior of the orthant and it is constrained to remain in the
orthant for all time. Leite & Williams proved, under some assumptions on the CRN,
that the CLA is well defined and that it can be obtained as a weak limit of certain jump
diffusion extensions of the Langevin approximation. However, no bounds were given
for the error in their approximation. We note that although the CLA was proposed for
chemical reaction networks, it can be formulated for nearly density dependent processes
as well.

1.2. Overview of this paper

In this paper, we provide error bounds for the Constrained Langevin Approximation
to nearly density dependent Markov chains when the diffusion state-space is either a
bounded interval or the nonnegative halfine. While much of our method of proof
generalizes to higher dimensions, one element, namely the Lipschitz continuity of the
Skorokhod map (see Appendix B) is not generally known for smoothly varying oblique
reflection vector fields on the boundary of Rd

+ for d > 1.
We first give conditions under which our approximation exists, allowing for Hölder-

continuous dispersion coefficients that could vanish at the boundary, extending the
work of Leite & Williams [17] when d = 1. Then, we construct a coupling of the CLA
and the Markov chain, where an explicit bound is given for the distance between the
paths of these processes. This coupling is often referred to as a strong approximation.

The construction of this coupling provides a template for how we could estimate
error bounds for diffusion approximations in higher dimensions. Despite the limitation
to a one-dimensional setting, more complex models can sometimes be reduced to one
dimension, for example, due to the presence of conservation laws or due to multiscaling.

The paper is organized as follows. We begin in Section 1.3 by establishing the
notation that will be used throughout the paper. In Section 2, we give the precise def-
initions of a nearly density dependent family and its associated Constrained Langevin
Approximation (CLA). In Section 3, we describe the main results in this work for the
two cases: when the diffusion state space is a bounded interval and when it is the
nonnegative halfline. We provide examples of our results applied to chemical reaction
networks and epidemic models in Section 4. In Section 5, we give the notion of a
Stochastic Differential Equation with Reflection (SDER) and use this in establishing
existence and uniqueness for the CLA. In Section 6 we provide proofs of our main
results and corollaries. Two of the main ingredients of the proofs are a variant of the
Komlós, Major & Tusnády (KMT) approximation [11, 12] (see Appendix A) and the
known existence of a Lipschitz map defining the solution of the Skorokhod Problem on
a bounded or unbounded real interval (see Appendix B).

1.3. Preliminaries and notation

For any integer d ≥ 1, let Rd denote the d-dimensional Euclidean space. We usually
write R for R1. For x ∈ Rd, let |x| = (

∑d
i=1 x

2
i )

1/2 be the usual Euclidean norm. We
denote by Rd

+ the set of vectors x ∈ Rd such that xi ≥ 0 for i = 1, . . . , d. The subset
of Rd

+ consisting of vectors with integer entries will be denoted by Zd
+.

We denote by C the set of continuous functions x : [0,∞) −→ R, equipped with
the topology of uniform convergence on compact sets. This topology makes C a Polish
space (metrizable, complete and separable). We endow C with its Borel σ-algebra
M. We denote by D the set of functions x : [0,∞) −→ R that are right-continuous
on [0,∞) with finite left-hand limits on (0,∞). The space D will be equipped with



Error bounds for 1D Constrained Langevin Approximations 5

Skorokhod’s J1-topology, which makes D a Polish space. We also denote by M the
Borel σ-algebra associated with this topology. For T > 0, we denote by D[0, T ] the set
of functions x : [0, T ] −→ R that are right-continuous on [0, T ) with finite left-hand
limits on (0, T ]. The space D[0, T ] will be equipped with Skorokhod’s J1-topology,
which also makes D[0, T ] a Polish space. The space D[0, T ] is endowed with its Borel
σ-algebra MT . We denote by C[0, T ] the subset of continuous functions in D[0, T ]. For
any T > 0 and x ∈ D, let ∥x∥T = sup0≤t≤T |x(t)|. For an integer k ≥ 1 and an interval

I ⊆ R (possibly unbounded), we denote by Ck(I) the set of functions f : I −→ R for
which the first k derivatives exist on I and define continuous functions there.

A d-dimensional process {B(t), 0 ≤ t <∞} will be called a d-dimensional Brownian
motion if it has continuous paths, independent increments and for every 0 ≤ s < t the
increment B(t)−B(s) is distributed as a multivariate Gaussian vector with mean vector
0 and covariance matrix (t− s)Id, where Id is the d× d identity matrix. In particular,
the component processes of a d-dimensional Brownian motion are independent. We
will call the d-dimensional Brownian motion standard, if in addition B(0) = 0 a.s.

Given a complete probability space (Ω,F ,P), denote by N the collection of P-null
sets in F . A filtration {Ft : 0 ≤ t < ∞} is an increasing family of sub-σ-algebras of
F . A quadruple (Ω,F , {Ft},P), called a filtered probability space, is said to satisfy
the usual conditions if (Ω,F ,P) is a complete probability space and {Ft} is a filtration
such that F0 contains N and Ft = ∩t<uFu for every t ≥ 0. A d-dimensional process
{X(t), 0 ≤ t < ∞} will be called an {Ft}-martingale if X is adapted to {Ft} and
each component is a martingale with respect to {Ft}. All of the stochastic processes
considered in this paper have sample paths that are right-continuous with finite left-
hand limits, and some will have continuous sample paths.

Let (S, d) be a complete and separable metric space, endowed with its Borel σ-
algebra H. For P and P̃ , probability measures on (S,H), we denote by Π(P, P̃ ) the set
of all probability measures on the product space (S ×S,H⊗H) whose first and second
marginals are P and P̃ , respectively. Furthermore, for p ∈ [1,∞), Wp will denote the
Wasserstein distance, defined by:

Wp(P, P̃ ) = inf
π∈Π(P,P̃ )

(∫
S×S

d(x, y)pdπ(x, y)

)1/p

.

2. Key stochastic processes

2.1. Nearly density dependent families

Let I ⊆ R+ be a closed interval. In this article, we consider two cases: I is either
[0, a], where a > 0, or [0,∞). Consider a positive parameter r > 0, which can be
thought, for example, as representing volume, area or total population. Define,

Ir := rI ∩Z = {k ∈ Z | k = rx, for some x ∈ I},

Ir
:= I ∩

{
k

r
| k ∈ Z

}
.

Notice that Ir
= 1

rI
r. Let R = {rn}n≥1 be a positive increasing sequence such that

rn → ∞ as n→ ∞.

Definition 2.1. (NDDF) A family {Xr}r∈R of continuous-time Markov chains with
state spaces {Ir}r∈R, will be called a nearly density dependent family (NDDF)
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if there exist a function β : I × (Z \ {0}) −→ [0,∞) which does not depend on r, and
a family of functions {ϵr : I × (Z \ {0}) −→ R}r∈R such that (i)-(iv) below hold. For
convenience, we define

λr(x, ℓ) := β(x, ℓ) + ϵr (x, ℓ) , x ∈ I, ℓ ∈ Z \ {0}, r ∈ R. (2.1)

(i) For each ℓ ∈ Z \ {0}, β(·, ℓ) is continuous.

(ii) For each compact subset K ⊆ I and ℓ ∈ Z \ {0},

sup
x∈K

|ϵr(x, ℓ)| ≤ MK,ℓ

r
for every r ∈ R, (2.2)

where MK,ℓ > 0 is a constant not depending on r.

(iii) For each r ∈ R, k ∈ Ir and ℓ ∈ Z \ {0}, if k + ℓ /∈ Ir, then λr(kr , ℓ) = 0.

(iv) For each r ∈ R, Xr has an infinitesimal generator Qr = (qrk,j)k,j∈Ir whose
off-diagonal entries are given by:

qrk,k+ℓ = rλr
(
k

r
, ℓ

)
, k ∈ Ir, ℓ ∈ Z \ {0}, k + ℓ ∈ Ir. (2.3)

As a special case, if the family {ϵr : I × (Z \ {0}) −→ R}r∈R is such that ϵr(·, ·) = 0,
for every r ∈ R, then {Xr}r∈R will be called a density dependent family (DDF).

Definition 2.1 is a blend of definitions in Kurtz [14], Ethier & Kurtz ([9], Chapter
11, (1.13)) and Angius et al. ([4], Definition 2). Their definitions are valid in a
finite-dimensional space. Here, we focus on one-dimension, but this definition can be
generalized to higher dimensions. Ethier & Kurtz [9] introduced the notion of nearly
density dependence, although the term was coined afterwards by Angius et al. [4],
motivated by chemical reaction networks. Our notion of density dependent family (a
special case of Definition 2.1) is consistent with the one introduced by Kurtz [14]. It
is implicit in Definition 2.1 that the Markov chains do not explode in finite time. We
will assume this throughout the paper.

In Section 4 we provide examples of NDDFs, including CRNs with only one species
(Examples 4.2 and 4.3) and CRNs reduced by mass-conservation conditions (Examples
4.1 and 4.5). Some of these examples will be density dependent families, such as the
SIS and SI models for epidemics (Examples 4.4 and 4.6 respectively).

Throughout this paper, for any NDDF {Xr}r∈R, we make the following additional
assumption.

Assumption 2.1. There exists a finite set L = {ℓ1, . . . , ℓn} ⊆ Z \ {0} such that for
each r ∈ R and for each j = 1, . . . , n, λr(·, ℓj) is not identically zero and

λr(·, ℓ) = 0, for each ℓ /∈ L. (2.4)

We regard L as the set of possible jumps. Assumption 2.1 asserts that the whole
family {Xr}r∈R shares a common finite set of possible jumps. Under this condition,
because of (2.2), β(·, ℓ) = 0 for a given ℓ /∈ L and, for a given compact set K, the
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constants MK,ℓ in (2.2) can be chosen independent of ℓ. We suppress the ℓ and denote
this constant by MK.

For NDDFs coming from chemical reaction networks, Assumption 2.1 is usually
satisfied. In this context, each ℓ ∈ L comes from a reaction, and usually only finitely
many reactions are possible.

By the reasoning of Theorem 6.4.1 of Ethier & Kurtz [9], we can construct a realiza-
tion of a NDDF {Xr}r∈R on a probability space (Ω,F ,P) equipped with independent
unit rate Poisson processes N1, . . . , Nn such that the following holds:

Xr(t) = Xr(0) +
n∑

j=1

ℓjNj

(∫ t

0

rλr
(
Xr(s)

r
, ℓj

)
ds

)
(2.5)

for every r ∈ R and for every t ≥ 0, whereXr(0) ∈ Ir. We normalizeXr by considering
the concentration process X

r
:= 1

rX
r, which takes values in Ir ⊆ I.

We next introduce the Constrained Langevin Approximation of X
r
. This is a slight

generalization to NDDFs of the CLA introduced by Leite & Williams [17] for chemical
reaction networks.

2.2. Constrained Langevin Approximation

Consider a NDDF {Xr}r∈R with its corresponding function β. Consider the con-
tinuous coefficients µ, σ : I −→ R defined for x ∈ I by

µ(x) :=
n∑

j=1

ℓjβ(x, ℓj), σ(x) :=

 n∑
j=1

ℓ2jβ(x, ℓj)

1/2

. (2.6)

Consider the function γ : I −→ R defined by:

γ =

{
1{0} − 1{a} if I = [0, a] for a > 0,

1{0} if I = [0,∞).
(2.7)

It can be verified, under the conditions of Definition 2.1, that µ(x)γ(x) ≥ 0 for each
x ∈ ∂I where ∂I = {0, a} if I = [0, a] and ∂I = {0} if I = [0,∞). Consider a family
{νr}r∈R of Borel probability measures on I.

Definition 2.2. (CLA) For each r ∈ R, a Constrained Langevin Approxima-
tion (CLA) Zr with initial distribution νr is a process defined together with processes
W r, Lr on (Ωr,Fr, {Fr

t },Pr) such that

(i) (Ωr,Fr,Pr) is a probability space and {Fr
t } is a filtration on Fr such that the

filtered probability space (Ωr,Fr, {Fr
t },Pr) satisfies the usual conditions,

(ii) Zr = {Zr(t), 0 ≤ t < ∞} is a continuous, {Fr
t }-adapted process such that Pr-

a.s. Zr(t) ∈ I for all t ≥ 0 and Zr(0) has distribution νr,

(iii) W r = {W r(t), 0 ≤ t <∞} is a one-dimensional standard Brownian motion and
an {Fr

t }-martingale under Pr,
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(iv) Lr = {Lr(t), 0 ≤ t < ∞} is a continuous, {Fr
t }-adapted, one-dimensional

process, that is non-decreasing Pr-a.s., such that Pr[Lr(0) = 0] = 1, and Pr-
a.s:

Lr(t) =

∫ t

0

1{Zr(s)∈∂I}dL
r(s), for every t ≥ 0, (2.8)

(v) Pr-a.s. for every t ≥ 0:

Zr(t) = Zr(0)+

∫ t

0

µ(Zr(s))ds+
1√
r

∫ t

0

σ(Zr(s))dW r(s)+
1√
r

∫ t

0

γ(Zr(s))dLr(s).

(2.9)

Remark 2.1. Using the language of Section 5, (Ωr,Fr, {Fr
t },Pr, Zr,W r, Lr), the

tuple of elements from Definition 2.2, is a (weak) solution of the Stochastic Differential
Equation with Reflection (SDER) (2.9). Conversely, a (weak) solution to equation
(2.9) produces a CLA Zr. Here we allow (Ωr,Fr, {Fr

t },Pr) to depend on r in the
definition. In Theorems 3.2 and 3.4 we will prove that this filtered probability space
can be chosen to be the same for all r.

The CLA Zr behaves like the Langevin Approximation to X
r
in the interior of I.

By (2.8), the continuous process Lr can only increase when Zr is at the boundary of
I and this is used to keep the process Zr in the interval I.

3. Main results

We present our main results for the two cases, where I is a bounded interval or the
nonnegative halfline. In either case, functions β and {ϵr}r∈R are associated with a
NDDF and µ and σ are defined by (2.6).

3.1. Bounded interval case

We make the following assumption in this section.

Assumption 3.1. The interval I is of the form I = [0, a] where a > 0. Furthermore,
there exists a constant A > 0, such that

|β(x, ℓj)− β(y, ℓj)| ≤ A|x− y| (3.1)

for every x, y ∈ I and 1 ≤ j ≤ n.

Then for each r ∈ R, Ir is a finite set and this implies that the Markov chain Xr

automatically does not explode in finite time. Additionally, by (2.2), we can pick a
constant MI > 0, not depending on r or ℓ, such that:

sup
x∈I

|ϵr(x, ℓj)| ≤
MI

r
(3.2)

for every r ∈ R and 1 ≤ j ≤ n. Under Assumption 3.1, we can prove that the CLA is
well defined.

Theorem 3.1. Suppose Assumption 3.1 holds. Then, for every r ∈ R and every Borel
probability measure νr on I, there exists a CLA Zr with initial distribution νr and
associated tuple (Ωr,Fr, {Fr

t },Pr, Zr,W r, Lr). Furthermore, if Z̃r is another CLA
with initial distribution νr and tuple (Ω̃r, F̃r, {F̃r

t }, P̃r, Z̃r, W̃ r, L̃r), then (Zr, Lr) and
(Z̃r, L̃r) have the same law.
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This result is a consequence of Theorem 5.2 and Proposition 5.1. In Theorem 5.2
and Corollary 5.1 we show that strong existence and pathwise uniqueness in fact hold
for equation (2.9). We focused on existence and uniqueness in law here, because those
are the notions needed for the next theorem. Note that by (3.1), the coefficient σ is
Hölder continuous and not necessarily Lipschitz continuous.

Now, we give our main result.

Theorem 3.2. Suppose Assumption 3.1 holds. Then, there exists a filtered probability
space (Ω,F , {Ft},P) satisfying the usual conditions, such that for each r ≥ 8 in R
and xr0 ∈ Ir

, there exist processes Zr,W r, Lr, Xr and a family of nonnegative random
variables {Θr

T }T≥1 defined on (Ω,F ,P) such that:

(i) Xr is a continuous-time Markov chain with infinitesimal generator Qr such
that P-a.s. X

r
(0) = xr0,

(ii) Zr is a CLA with associated tuple (Ω,F , {Ft},P, Zr,W r, Lr) such that P-a.s.
Zr(0) = xr0,

and

(iii) for every T ≥ 1,

sup
0≤t≤T

|Xr
(t)− Zr(t)| ≤ Θr

T

log r

r
P− a.s. (3.3)

and

P[Θr
T > CT + x] ≤ KT

r2
exp (−λTx log r) for all x ≥ 0, (3.4)

where λT , CT and KT are positive constants depending on T, I,L,MI and β.

Remark 3.1. Using the language of Section 5 we note the following. Although strong
existence holds for equation (2.9) (under the given assumptions), the solution in The-
orem 3.2 is a weak solution. In particular, the filtration {Ft} there is generated by a
multidimensional Brownian motion W that occurs in the precursor equation (5.6). See
Section 6.1 for further discussion.

Loosely speaking, this result proves that the pathwise error of the Constrained
Langevin Approximation on a bounded interval is of order O( log r

r ) on compact time
intervals. The proof of Theorem 3.2 can be found in Section 6.2. This constructs an
appropriate coupling of the processes Zr and X

r
.

We can derive from Theorem 3.2 the following result concerning the Wasserstein
distance Wp between the laws of X

r
and Zr. For r ∈ R and T > 0, denote by P r

T

the probability measure on (D[0, T ],MT ) that is the law of {Xr
(t), 0 ≤ t ≤ T} under

X
r
(0) = xr0, P-a.s. Also, denote by P̃ r

T the probability measure on (D[0, T ],MT ) that
is the law of {Zr(t), 0 ≤ t ≤ T} under the initial condition Zr(0) = xr0, P

r-a.s.

Corollary 3.1. Suppose Assumption 3.1 holds. Then, for every T, p ≥ 1, there exists
a constant C = C(T, p, I,L,MI , β) > 0 depending only on T, p, I,L,MI and β such
that

Wp(P
r
T , P̃

r
T ) ≤ C

log r

r
(3.5)

for every r ≥ 8 in R.

The proof of this result is given in Section 6.3.
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3.2. Halfline case

We make the following assumption in this section.

Assumption 3.2. The interval I is of the form I = [0,∞). Furthermore, the follow-
ing hold:

(i) for every compact set K ⊆ I, there exists a constant AK > 0, such that

|β(x, ℓj)− β(y, ℓj)| ≤ AK|x− y| (3.6)

for every x, y ∈ K and 1 ≤ j ≤ n,

(ii) there exists a constant C > 0 such that for each x ≥ 0,

xµ(x) ≤ C(1 + x2),

σ2(x) ≤ C(1 + x2),
(3.7)

(iii) no member of the NDDF associated with β, {ϵr}r∈R explodes in finite time.

Under (3.6), both µ and σ2 are locally Lipschitz continuous on [0,∞). Also, (3.7)
implies that β(x, ℓj) ≤ Cℓ−2

j (1+x2) for x ≥ 0 and 1 ≤ j ≤ n. In the context of CRNs,
this allows for the possibility of some binary reactions (see Example 4.3). Observe that
conditions (3.6) and (3.7) alone may not prevent the explosion of the members of the
NDDF. Consequently, we include (iii) in our assumptions.

As in the previous case, we can prove that the CLA Zr is properly defined.

Theorem 3.3. Suppose Assumption 3.2 holds. Then, for every r ∈ R and every Borel
probability measure νr on I, there exists a CLA Zr with initial distribution νr and
associated tuple (Ωr,Fr, {Fr

t },Pr, Zr,W r, Lr). Furthermore, if Z̃r is another CLA
with initial distribution νr and tuple (Ω̃r, F̃r, {F̃r

t }, P̃r, Z̃r, W̃ r, L̃r), then (Zr, Lr) and
(Z̃r, L̃r) have the same law.

Similar to Theorem 3.1, this result is a consequence of Corollary 5.1, Theorem 5.2
and Proposition 5.1. Strong existence and pathwise uniqueness hold for equation (2.9).
The following is our main result for the halfline case.

Theorem 3.4. Suppose Assumption 3.2 holds. Then, there exists a filtered probability
space (Ω,F , {Ft},P) satisfying the usual conditions, such that for each r ≥ 8 in R and
xr0 ∈ Ir

, there exist processes Zr,W r, Lr, Xr defined on (Ω,F ,P) such that:

(i) Xr is a continuous-time Markov chain with infinitesimal generator Qr such
that P-a.s. X

r
(0) = xr0,

(ii) Zr is a CLA with associated tuple (Ω,F , {Ft},P, Zr,W r, Lr) such that P-a.s.
Zr(0) = xr0,

and

(iii) for every compact set K ⊆ I such that xr0 ∈ K, there is a family of nonnegative
random variables {Θr

T,K}T≥1 defined on (Ω,F ,P) such that for every T ≥ 1

sup
0≤t≤T∧τr

K

|Xr
(t)− Zr(t)| ≤ Θr

T,K
log r

r
P− a.s. (3.8)
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and

P[Θr
T,K > CT,K + x] ≤ KT,K

r2
exp (−λT,Kx log r) for all x ≥ 0, (3.9)

where τ rK = inf{t ≥ 0 | Xr
(t) /∈ K or Zr(t) /∈ K} and λT,K, CT,K and KT,K are

positive constants depending on T,K,L,MK and β.

The proof of this result can be found in Section 6.4. In this case, the coefficients
β(·, ℓj) could be unbounded. This is the main reason for truncation by τ rK in Theorem
3.4. As in the bounded interval case, an analogue of Remark 3.1 holds here.

4. Examples

In this section we give several examples of Density Dependent Families (DDF),
Nearly Density Dependent Families (NDDF) and the associated Constrained Langevin
Approximations (CLA). These examples mostly come from stochastic chemical reaction
network models. For a general description of these models, see Anderson & Kurtz [3].

Example 4.1. This example was considered in Anderson et al. [2]. Consider the
following chemical reactions:

S1
α1−→ S2, S2

α2−→ S1

where α1, α2 > 0. For a volume parameter r > 0, the process

X̃r = {(X̃r
1 (t), X̃

r
2 (t)), 0 ≤ t <∞}, (4.1)

which tracks the amount of S1 and S2, respectively, over time, is a continuous-time
Markov chain taking values in Z2

+ with infinitesimal generator given by:

q̃r
k̃,k̃+v

=


α1k1 if v = (−1, 1),

α2k2 if v = (1,−1),

0 otherwise,

where k̃ = (k1, k2) ∈ Z2
+, v ∈ Z2 \ {0} and k̃ + v ∈ Z2

+. This model exhibits the
following conservation of mass:

X̃r
1 (t) + X̃r

2 (t) = X̃r
1 (0) + X̃r

2 (0) for every t ≥ 0.

Suppose ar := X̃r
1 (0) + X̃r

2 (0) > 0 is deterministic and define Xr := X̃r
1 . Then Xr

is a continuous-time Markov chain taking values in {0, 1, . . . , ar} with infinitesimal
generator given by:

qrk,k+ℓ =


α1k if ℓ = −1,

α2 (a
r − k) if ℓ = 1,

0 otherwise,

where k ∈ {0, 1, . . . , ar}, ℓ ∈ Z \ {0} and k + ℓ ∈ {0, 1, . . . , ar}. We can re-write these
“birth-death” rates as:

qrk,k−1 = rα1

(
k

r

)
, qrk,k+1 = rα2

(
ar − k

r

)
, for suitable k,
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where ar := r−1ar.
In order to construct a DDF, consider a constant a > 0, and a positive increasing

sequence R = {rn}n≥1 that tends to infinity, such that ar := ar is an integer for every
r ∈ R. This can be achieved by choosing R = 1

aZ>0 or R = Z>0 (the latter provided
a is an integer). For r ∈ R, consider Xr to be the continuous-time Markov chain
described previously with total mass ar = ar, so that ār = a for all r ∈ R. Under these
conditions, {Xr}r∈R is a DDF for I = [0, a] with function β : I × (Z \ {0}) −→ [0,∞)
given by

β(x, ℓ) =


α1x if ℓ = −1,

α2 (a− x) if ℓ = 1,

0 otherwise.

Additionally, the coefficients {λr}r∈R defined in (2.1), are given by λr(x, ℓ) = β(x, ℓ)
for r ∈ R. Consequently, Assumptions 2.1 and 3.1 hold with L = {−1, 1}. The
coefficients for the Constrained Langevin Approximation (CLA) Zr are given by:

µ(x) = α2a− (α1 + α2)x, σ(x) =
√
α2a+ (α1 − α2)x for x ∈ I.

By Theorem 3.1, for a prescribed initial distribution, existence and uniqueness in law
hold for Zr. Furthermore, Theorem 5.2 shows that strong existence and uniqueness
hold for equation (2.9). Finally, by Theorem 3.2, given an initial condition xr0 ∈ Ir

, we
can realize a version of Zr and X

r
on the same probability space satisfying the error

estimates (3.3) and (3.4). From Remark 3.1, this version of Zr is a (weak) solution of
(2.9).

In Figure 1 we show a (kernel) density estimate plot of sample path simulations for
the continuous-time Markov chain X

r
and the CLA Zr. We simulated the Markov

chain Xr using the Doob-Gillespie algorithm. For the CLA Zr we used an Euler-
Maruyama scheme where the discretized process is projected back to the interval in
the event of escaping it. More precisely, let 0 = t0 < t1 < . . . < tN = T be a uniform
partition of [0, T ] with step size h := tn+1 − tn. For a > 0, I = [0, a] and an initial
condition xr0 ∈ Ir

, define Zr
h(0) := xr0 and for 0 ≤ n ≤ N − 1:

Zr
h(tn+1) := πI [Zr

h(tn) + µ(Zr
h(tn))h+ σ(Zr

h(tn))(W (tn+1)−W (tn))] (4.2)

where W is a standard Brownian motion and πI : R −→ I is given by, πI(x) = 0 if
x < 0, x if x ∈ I and a if x > a. For Figure 1 we used an Euler step size of h = 0.04,
which is comparable to the mean time until the next reaction when the Markov chain
X

r
is at the initial level xr0 = 0.1. We chose this step size and the time length T = 10

to illustrate transient behavior.
Since µ and σ are Lipschitz continuous and bounded, it can be shown that the

approximation Zr
h to Zr is of strong order h1/2−ε for every ε > 0, i.e., for every

ε, T > 0 there exists a constant Cε,T > 0 such that:(
E

[
sup

0≤t≤T
|Zr(t)− Zr

h(t)|2
])1/2

≤ Cε,Th
1/2−ε, (4.3)

for sufficiently small h > 0. See Slominski [20] for a proof.
Although our justification of the CLA approximation Zr for the continuous-time

Markov chain X
r
is over a finite time horizon, it is interesting to compare long run
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Figure 1: Kernel density estimate plot for the paths of the CLA Zr (top panel) and the
Markov chain X

r
(bottom panel) from time 0 to T = 10, for Example 4.1. The plot was

generated from 500 simulation runs of each process with parameters α1 = 2, α2 = 0.01,
r = 100, ār = a = 4 and xr

0 = 0.1. The figures were generated with the ggplot2 R package.

behavior, in particular, stationary distributions. For this simple model, a comparison
of exact formulas for the stationary distributions of the continuous-time Markov chain
X

r
, the CLA Zr and the linear noise approximation (LNA) was given in Example 2

of Anderson et al. [2]. We refer the interested reader to that work, especially Figure
2 there, where it is seen that the continuous-time Markov chain and CLA results
have good agreement, and that the CLA is considerably more accurate than the LNA.
Beyond such specific examples, obtaining general error estimates between stationary
distributions for the continuous-time Markov chain and the CLA is an interesting topic
for future investigation.

Example 4.2. Consider the following production-degradation chemical reactions:

ϕ
α1−→ S1, S1

α2−→ ϕ

where α1, α2 > 0. This example, also considered in Anderson et al. [2], corresponds
to an M/M/∞ queue. For a volume parameter r > 0, the process Xr = {Xr(t), 0 ≤
t < ∞}, which tracks the amount of S1 over time, is a continuous-time Markov chain
taking values in Z+ with infinitesimal generator given by:

qrk,k+ℓ =


α1r if ℓ = 1,

α2k if ℓ = −1,

0 otherwise,
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where k ∈ Z+, ℓ ∈ Z \ {0} and k + ℓ ∈ Z+. With R = {rn}n≥1 being any positive
increasing sequence converging to ∞, the family {Xr}r∈R is a DDF with I = [0,∞)
and β : I × (Z \ {0}) −→ [0,∞) given by:

β(x, ℓ) =


α1 if ℓ = 1,

α2x if ℓ = −1,

0 otherwise.

The coefficients {λr}r∈R defined in (2.1), are given by λr(x, ℓ) = β(x, ℓ). Assumption
2.1 holds with L = {−1, 1}. Regarding Assumption 3.2, condition (3.6) is satisfied,
and the coefficients

µ(x) = α1 − α2x, σ(x) =
√
α1 + α2x, x ∈ I, (4.4)

satisfy condition (3.7). Finally, it is well known that Xr does not explode in finite
time for each r > 0. Consequently, Assumption 3.2 is satisfied. By Theorems 3.3 and
5.2 existence and uniqueness in law, as well as strong existence and uniqueness hold
for equation (2.9). The process Zr is a nonnegative diffusion that is instantaneously
reflected upon touching 0. Also, Theorem 3.4 shows that given an initial condition
xr0 ∈ Ir

, we can realize Zr and X
r
on the same probability space so that (3.8) and

(3.9) hold.

Figure 2: Kernel density estimate plot for the paths of the CLA Zr (top panel) and the
Markov chain X

r
(bottom panel) from time 0 to T = 2, for Example 4.2. The plot was

generated from 500 simulation runs of each process with parameters α1 = 1, α2 = 10, r = 100,
and xr

0 = 0. The figures were generated with the ggplot2 R package.
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In Figure 2 we show a (kernel) density estimate plot of sample path simulations
for the continuous-time Markov chain X

r
and the CLA Zr for Example 4.2. As for

Example 4.1, we simulated the Markov chain Xr using the Doob-Gillespie algorithm
and the CLA Zr using an Euler-Maruyama scheme where the discretized process is
projected back to the interval in the event of escaping it. For Figure 2 we used an
Euler step size of h = 0.01, which is comparable to the mean time until the next
reaction when the Markov chain X

r
is at the initial level xr0 = 0 and is twice the mean

time until the next reaction when the Markov chain X
r
is at the level 0.1, where the

production and degradation rates are balanced.
Also, for this example, a comparison of exact formulas for the stationary distribu-

tions of the continuous-time Markov chain X
r
, the CLA Zr and the LNA was given

in Example 1 of Anderson et al. [2]. We refer the interested reader to that work,
especially Figure 1 there, where it is seen that the Markov chain and CLA results have
good agreement, and that the CLA is considerably more accurate than the LNA.

Example 4.3. The following example shows how, in the halfline case, our assumptions
allow for reactions with more than one unit of a given species in the input. Consider
the chemical reactions:

ϕ
α1−→ S1, 2S1

α2−→ S1

where α1, α2 > 0. For a volume parameter r > 0, with standard mass action kinetics,
the process Xr = {Xr(t), 0 ≤ t < ∞}, which tracks the amount of S1 over time, is a
continuous-time Markov chain taking values in Z+ with infinitesimal generator given
by:

qrk,k+ℓ =


α1r if ℓ = 1,
α2

r k(k − 1) if ℓ = −1,

0 otherwise,

where k ∈ Z+, ℓ ∈ Z \ {0} and k + ℓ ∈ Z+. With R = {rn}n≥1 being any positive
increasing sequence converging to ∞, the family {Xr}r∈R is a NDDF in the case
I = [0,∞) with β : I × (Z \ {0}) −→ [0,∞) given by:

β(x, ℓ) =


α1 if ℓ = 1,

α2x
2 if ℓ = −1,

0 otherwise,

and

ϵr(x, ℓ) =


0 if ℓ = 1,

−α2x
r if ℓ = −1,

0 otherwise.

The function β satisfies the local Lipschitz condition (3.6). The collection {λr}r∈R
is given by λr(x, ℓ) = β(x, ℓ) + ϵr(x, ℓ). Consequently, Assumption 2.1 holds with
L = {−1, 1}. The coefficients in (2.6) are given by:

µ(x) = α1 − α2x
2, σ(x) =

√
α1 + α2x2, x ∈ I, (4.5)

and they satisfy condition (3.7). Since the Markov chain is dominated by a Poisson
process, it does not explode in finite time. Consequently, Assumption 3.2 is satisfied.
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For r ∈ R, the Constrained Langevin Approximation (CLA) Zr satisfies existence and
uniqueness in law as well as strong existence and uniqueness. A coupling construction
of X

r
and Zr is provided by Theorem 3.4.

In Figure 3 we show a (kernel) density estimate plot of sample path simulations
for the continuous-time Markov chain X

r
and the CLA Zr for Example 4.3. As for

prior examples, we simulated the Markov chain Xr using the Doob-Gillespie algorithm
and the CLA Zr using an Euler-Maruyama scheme where the discretized process is
projected back to the interval in the event of escaping it. For Figure 3 we used an
Euler step size of h = 0.01, which is comparable to the mean time until the next
reaction for the Markov chain X

r
at the initial level xr0 = 0 and is twice the mean

time until the next reaction when the Markov chain X
r
is at the level 0.125, where the

production and degradation rates are balanced.

Figure 3: Kernel density estimate plot for the paths of the CLA Zr (top panel) and the
Markov chain X

r
(bottom panel) from time 0 to T = 2, for Example 4.3. The plot was

generated from 500 simulation runs of each process with parameters α1 = 1, α2 = 64, r = 100,
and xr

0 = 0. The figures were generated with the ggplot2 R package.

The above examples share the property of having σ2(x) > 0 for x ∈ ∂I. It is not
hard to see that this implies∫ ∞

0

1{Zr(s)∈∂I}ds = 0, Pr − a.s.

for the CLA Zr. When σ2 vanishes at the boundary, Zr can be absorbed at the
boundary, as described in the next example.
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Example 4.4. The SIS model, where SIS stands for Susceptible-Infected-Susceptible,
is a stochastic epidemic model where an infection is transmitted and cured in a popu-
lation of susceptible and infected individuals. Each susceptible individual acquires the
infection at a rate proportional to the fraction of the total population that is infected.
On the other hand, each infected individual has a chance of becoming cured at a
constant rate. Once cured, the individual becomes susceptible again. This model can
be described by the following chemical reactions:

S + I
α1−→ 2I, I

α2−→ S

where α1, α2 > 0 and I, S stand for infected and susceptible respectively. For a
population size parameter r > 0, the process X̃r = {(X̃r

1 (t), X̃
r
2 (t)), 0 ≤ t <∞}, which

tracks the number of infected and susceptible individuals over time, is a continuous-
time Markov chain taking values in Z2

+ with infinitesimal generator given by:

q̃r
k̃,k̃+v

=


α1

k1k2

r if v = (1,−1),

α2k1 if v = (−1, 1),

0 otherwise,

where k̃ = (k1, k2) ∈ Z2
+, v ∈ Z2 \ {0} and k̃ + v ∈ Z2

+. Similar to Example 4.1, this
model exhibits the following conservation of mass:

X̃r
1 (t) + X̃r

2 (t) = X̃r
1 (0) + X̃r

2 (0) for every t ≥ 0. (4.6)

For r ∈ Z>0, suppose X̃r
1 (0) + X̃r

2 (0) = r and define Xr := X̃r
1 . Then, Xr is a

continuous-time Markov chain taking values in {0, 1, . . . , r} which tracks the number
of infected individuals. It has infinitesimal generator given by:

qrk,k+ℓ =


α1k

(
1− k

r

)
if ℓ = 1,

α2k if ℓ = −1,

0 otherwise,

where k ∈ {0, 1, . . . , r}, ℓ ∈ Z \ {0} and k + ℓ ∈ {0, 1, . . . , r}. We choose R =
{rn}n≥1 = Z>0. Under these conditions, {Xr}r∈R is a DDF with I = [0, 1] and
β : I × (Z \ {0}) −→ [0,∞) given by:

β(x, ℓ) =


α1x(1− x) if ℓ = 1,

α2x if ℓ = −1,

0 otherwise.

The coefficients {λr}r∈R are given by λr(x, ℓ) = β(x, ℓ). Consequently, {Xr}r∈R
satisfies Assumptions 2.1 and 3.1, with L = {−1, 1}. The coefficients for the CLA are
given by

µ(x) = α1x(1− x)− α2x, σ(x) =
√
α1x(1− x) + α2x, x ∈ I. (4.7)

Again, existence and uniqueness in law holds for (2.9) as well as strong existence and
uniqueness. Theorem 3.2 shows that we can realize versions of Zr and X

r
on the same
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probability space satisfying (3.3) and (3.4). Our error estimates show Zr and X
r
are

close over compact time intervals. However, hitting times can also be close as we show
below.

In this model, σ vanishes at 0. Since µ also vanishes at 0, pathwise uniqueness
for equation (2.9) (see Corollary 5.1) implies that 0 is an absorbing state for Zr. The
processX

r
also has 0 as an absorbing state, which is the state of no infected individuals.

The other boundary point of I is at 1, and this state is not absorbing for X
r
or Zr.

Indeed, Zr is reflected back into I at 1, whereas without reflection, the diffusion with
coefficients given by (4.7) would exit I by going above 1.

In Figure 4 we show a (kernel) density estimate plot of sample path simulations
for the continuous-time Markov chain X

r
and the CLA Zr for Example 4.4. As for

prior examples, we simulated the Markov chain Xr using the Doob-Gillespie algorithm
and the CLA Zr using an Euler-Maruyama scheme where the discretized process is
projected back to the interval in the event of escaping it. For Figure 4 we used an
Euler step size of h = 0.01, which is comparable to the mean time until the next
reaction for the Markov chain X

r
at the initial level xr0 = 0.99.

Figure 4: Kernel density estimate plot for the paths of the CLA Zr (top panel) and the
Markov chain X

r
(bottom panel) from time 0 to T = 20, for Example 4.4. The plot was

generated from 500 simulation runs of each process with parameters α1 = 1, α2 = 0.8,
r = 100, and xr

0 = 0.99. The figures were generated with the ggplot2 R package.

The Markov chain X
r
has one transient class and one absorbing state, 0, which can

be reached from the transient class. Therefore, X
r
will hit 0 with probability 1, and

in fact, one can show that the mean time for X
r
to hit 0 will be finite when started

from any of the states 1
r ,

2
r , . . . , 1. The time for Zr to hit 0 is also finite, although this

is not obvious a priori. In fact, as we show next, T r
0 := inf{t ≥ 0 : Zr(t) = 0} has



Error bounds for 1D Constrained Langevin Approximations 19

finite mean when Pr-a.s. Zr(0) = x, for x ∈ I.

Figure 5: Empirical density for the hitting time to 0 (absorbing time) for the Markov chain
X

r
and the CLA Zr. The plot was generated by 500 simulations of each process with

parameters α1 = 1, α2 = 0.95, r = 100 and xr
0 = 0.99. The curves are kernel density

estimates, generated with the ggplot2 R package.

Define the function w(u) := 2r
∫
(0,u]

µ(s)
σ2(s)ds for u ∈ (0, 1] and w(0) := 0. Although

σ2(0) = 0, the function s ∈ (0, 1] → µ(s)
σ2(s) can be continuously extended to [0, 1],

making w a function of class C1[0, 1]. Now, define for u ∈ (0, 1], x ∈ [0, 1],

g(u) := 2re−w(u)

∫
(u,1]

ew(s)

σ2(s)
ds, f(x) :=

∫ x

0

g(u)du. (4.8)

The function g is nonnegative and, since σ2(s) = sh(s) for every s ∈ [0, 1], where
h : [0, 1] −→ R is continuous and doesn’t vanish, g is integrable over (0, 1]. With these
facts, the reader may verify that f is of class C2(0, 1] ∩ C[0, 1], with boundary values

f(0) = 0 and f ′(1) = 0, and such that Lf = −1 in (0, 1], where Lf = σ2

2r f
′′ + µf ′. We

can use these properties, together with Itô’s formula applied to a family of stopped
processes, to conclude that for any x ∈ I = [0, 1] and any CLA Zr with associated tuple
(Ωr,Fr, {Fr

t },Pr, Zr,W r, Lr), where Zr(0) = x, Pr-a.s., we have Er
x[T

r
0 ] = f(x) <∞.

In Figure 5 we show a comparison between the empirical distribution densities of
the hitting time to 0 (absorbing time) for the continuous-time Markov chain X

r
and

the CLA Zr. As in Example 4.1, we simulate the Markov chain Xr using the Doob-
Gillespie algorithm and the CLA Zr using an Euler-Maruyama scheme where the
discretized process Zr

h is projected back to the interval in the event of escaping from it.
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In this example though, the coefficient σ fails to be Lipschitz and therefore, the strong
order of h1/2−ε, for every ε > 0, is not guaranteed for the approximation Zr

h to Zr.

Example 4.5. We next consider the crazy clock reaction, discussed in Angius et al.[4].
This model can be described by the following chemical reactions:

A+B
α1−→ 2B, A

α2−→ B

where α1, α2 > 0. This example differs from Example 4.4 in the dynamics of the
species A (species S in Example 4.4), which in this case monotonically decreases. For
r ∈ Z>0, we let r be the total mass and, following [4], we define the process Xr(t) to
be the amount of species A at time t. The process Xr is a continuous-time Markov
chain taking values in {0, 1, . . . , r} with infinitesimal generator given by:

qrk,k+ℓ =

{
α1k

(
1− k

r

)
+ α2k if ℓ = −1,

0 otherwise,

where k ∈ {0, 1, . . . , r}, ℓ ∈ Z \ {0} and k+ ℓ ∈ {0, 1, . . . , r}. For R = {rn}n≥1 = Z>0,
{Xr}r∈R is a DDF with I = [0, 1], and β : I × (Z \ {0}) −→ [0,∞) given by:

β(x, ℓ) =

{
α1x(1− x) + α2x if ℓ = −1,

0 otherwise.

Then Assumptions 2.1 and 3.1 hold with L = {−1} and so by Theorem 3.2, given an
initial condition xr0 ∈ Ir

, Zr and X
r
can be realized on the same probability space so

that (3.3) and (3.4) hold. The coefficients for the CLA are given by

µ(x) = −α1x(1− x)− α2x, σ(x) =
√
α1x(1− x) + α2x, x ∈ I.

The coefficients satisfy σ(0) = µ(0) = 0 which, by pathwise uniqueness (see Corollary
5.1), implies that 0 is an absorbing state for Zr. Similarly, the process X

r
has 0 as

an absorbing state, which will be attained with probability 1, and the mean time for
X

r
to reach 0 is finite starting from any of the states 1

r ,
2
r , . . . , 1. The process X

r
is

decreasing, whereas Zr is not monotone and is reflected at the upper boundary point
1 of I. Using the same approach as in Example 4.4, for T r

0 := inf{t ≥ 0 | Zr(t) = 0},
we can prove that T r

0 has finite mean when Pr-a.s. Zr(0) = x, for x ∈ I. In fact, since
µ
σ2 can be defined continuously up to 0 and x 7→

∫ 1

x
du

σ2(u) ≤ −C log x is integrable on

(0, 1], we can define f and g as in (4.8) and draw this conclusion.
In Figure 6 we show a (kernel) density estimate plot of sample path simulations

for the continuous-time Markov chain X
r
and the CLA Zr for Example 4.5. As for

prior examples, we simulated the Markov chain Xr using the Doob-Gillespie algorithm
and the CLA Zr using an Euler-Maruyama scheme where the discretized process is
projected back to the interval in the event of escaping it. For Figure 6 we used an
Euler step size of h = 0.02, which is comparable to the mean time until the next
reaction for the Markov chain X

r
at the initial level xr0 = 1.

Example 4.6. Our final example shows how the long-run behaviour of the CLA Zr

can differ from that of the Markov chain X
r
. Consider an epidemic model as in
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Figure 6: Kernel density estimate plot for the paths of the CLA Zr (top panel) and the
Markov chain X

r
(bottom panel) from time 0 to T = 10, for Example 4.5. The plot was

generated from 500 simulation runs of each process with parameters α1 = 0.1, α2 = 0.5,
r = 100, and xr

0 = 1. The figures were generated with the ggplot2 R package.

Example 4.4, with the difference that no recovery is allowed for infected individuals.
This is called the SI model and can be described by the chemical reaction:

S + I
α1−→ 2I

where α1 > 0 and I, S stand for infected and susceptible individuals, respectively. As in
Example 4.4, we define the continuous-time Markov chain X̃r = (X̃r

1 , X̃
r
2 ). In this case,

there are no transitions in the direction v = (−1, 1). However, conservation of mass
(4.6) holds in this case as well. For an integer-valued population size parameter r ≥ 1,
we consider the process Xr := X̃r

1 which tracks the number of infected individuals for
a total population of r individuals. This process is a continuous-time Markov chain
taking values in {0, 1, . . . , r}, with infinitesimal generator given by:

qrk,k+ℓ =

{
α1k

(
1− k

r

)
if ℓ = 1,

0 otherwise,
(4.9)

where k ∈ {0, 1, . . . , r}, ℓ ∈ Z\{0} and k+ℓ ∈ {0, 1, . . . , r}. Equation (4.9) shows that,
if at least one infected individual is present, the absence of recovery leads to a monotone
increase of the infected population until everyone is infected. For R = {rn}n≥1 = Z>0,
{Xr}r∈R is a DDF with I = [0, 1] and function β : I × (Z \ {0}) −→ [0,∞) given by:

β(x, ℓ) =

{
α1x(1− x) if ℓ = 1,

0 otherwise.
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Then Assumptions 2.1 and 3.1 hold with L = {1}. For r ∈ R, the coefficients for the
CLA are given by

µ(x) = α1x(1− x), σ(x) =
√
α1x(1− x), x ∈ I.

In this model, both X
r
and Zr have 0 and 1 as absorbing states. If X

r
(0) ∈ (0, 1), then

X
r
will monotonically increase up to 1. On the other hand, when Zr(0) ∈ (0, 1), Zr will

not be monotonic. Moreover, as we show next, under the condition Zr(0) = x ∈ (0, 1),
the process Zr will escape the interval (0, 1) Pr-a.s. and it may do it through 0 or 1
with positive probability for each case. Although escaping through 0 is an undesirable
property of Zr in this example, in (4.11) below, we show that the actual probability
of escaping through 0 decays exponentially as r → ∞. Figure 7, has a (kernel) density
estimate plot of sample path simulations for the continuous-time Markov chain X

r

and the CLA Zr for Example 4.6. Here, the same simulation methods as for the other
examples were used, and we used an Euler step size of h = 0.1, which is comparable
to the mean time until the next reaction for the Markov chain X

r
at the initial level

xr0 = 0.1.

Figure 7: Kernel density estimate plot for the paths of the CLA Zr (top panel) and the
Markov chain X

r
(bottom panel) from time 0 to T = 10, for Example 4.6. The plot was

generated from 500 simulation runs of each process with parameters α1 = 1, r = 100, and
xr
0 = 0.1. The figures were generated with the ggplot2 R package.

To justify (4.11), consider x ∈ (0, 1), r ∈ R and a CLA Zr with Pr [Zr(0) = x] = 1.
Let T r

0,1 := inf{t ≥ 0 | Zr(t) /∈ (0, 1)}. Then, since µ and σ vanish on the set {0, 1},
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Zr
0,1 := {Zr(t ∧ T r

0,1) , 0 ≤ t <∞} is a solution of equation:

Zr
0,1(t) = x+

∫ t

0

µ(Zr
0,1(s))ds+

1√
r

∫ t

0

σ(Zr
0,1(s))dW

r(s), t ≥ 0. (4.10)

The scale function p and speed measure m(dy) of (4.10) are given by:

p(y) =
er

2r

(
e−r − e−2ry

)
, m(dy) =

(
2re−r

α1

)
e2ry

y(1− y)
dy,

where y ∈ (0, 1) and where we choose c = 1
2 as the value for which p(c) = 0. Note that

p easily extends continuously to [0, 1]. Let

v(y) :=

∫ y

1
2

p′(z)

(∫ z

1
2

m(du)

)
dz =

2r

α1

∫ y

1
2

e−2rz

(∫ z

1
2

e2ru

u(1− u)
du

)
dz, y ∈ (0, 1).

The reader may verify that v(0+), v(1−) < ∞. By Proposition 5.5.32 in Karatzas &
Shreve [10], we conclude that Er

x[T
r
0,1] < ∞. Finally, Proposition 5.5.22 in [10] yields

the formula:

Er
x

[
1{Zr(T r

0,1)=0}

]
=
p(1)− p(x)

p(1)− p(0)
= e−2rx

(
1− e−2r(1−x)

1− e−2r

)
≤ e−2rx. (4.11)

In the above examples, simulation of the Markov chain using the Doob-Gillespie
algorithm and of the CLA using an Euler-Maruyama scheme generally produces similar
results when the mean time until the next reaction for the Markov chain is comparable
to the Euler step size in the CLA simulation (and thereby the computation times are of
similar order). In examples with more reactions versus the number of species, the mean
time until the next reaction for the Markov chain is typically reduced, requiring more
simulation time, while the Euler step size for the CLA can be held fixed. The simulation
advantage of the CLA then becomes more apparent as parameters for the CLA come
from combining reactions, whereas simulation of the Markov chain involves simulating
each reaction individually. Examples of this in one-dimension may be limited due to the
restriction to one effective species, however, examples in higher dimensions (for which
there are not error bounds yet), such as those in [2, 17], indicate that accurate results
can be achieved with the CLA with a considerable reduction in computation time
compared with that for the Markov chain. A further advantage of the CLA versus the
Markov chain, especially in the one-dimensional case, is that to analytically compute
closed form expressions for quantities of interest, for the CLA one uses differential
equations, whereas for the Markov chain one uses difference equations, which tend to
be more combinatorially complex. See [2] for some one-dimensional examples of such
computations.

5. Existence and uniqueness for the CLA

In this section we study Stochastic Differential Equations with Reflection (SDERs).
These equations are intimately related to the Constrained Langevin Approximation
(CLA), since, as indicated in Remark 2.1, a CLA is (part of) a solution to a SDER.
We start by giving the appropriate definitions regarding SDERs in Section 5.1, followed
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by a result on uniqueness in Section 5.2. In Section 5.3 we provide an auxiliary result,
Lemma 5.1. In Section 5.4 we give conditions for existence of solutions to SDERs, and
follow with our main result for this Section 5, namely Theorem 5.2, where we give an
existence and uniqueness result for the equation involving the CLA. Finally, in Section
5.5 we provide a time change result (Lemma 5.2) which will be useful in the proofs of
Theorems 3.2 and 3.4.

5.1. SDER

As before, let I ⊆ R+ be a closed interval of the form [0, a], where a > 0, or the
interval [0,∞). Let d ≥ 1 be an integer and let b : I −→ R and ρ : I −→ Rd be Borel-
measurable functions. Additionally, consider a real number α > 0 and the function
γ : I −→ R given by (2.7).

Definition 5.1. Given (b, ρ, α, γ), we say that (Ω,F , {Ft},P, Z,W,L) is a solution
of the following SDER

Z(t) = Z(0) +

∫ t

0

b(Z(s))ds+

∫ t

0

ρ(Z(s))dW (s) + α

∫ t

0

γ(Z(s))dL(s), (5.1)

where

(i) (Ω,F ,P) is a probability space and {Ft} is a filtration on F such that the filtered
probability space (Ω,F , {Ft},P) satisfies the usual conditions,

(ii) Z = {Z(t), 0 ≤ t < ∞} is a continuous, {Ft}-adapted process such that P-a.s.
Z(t) ∈ I for all t ≥ 0,

(iii) W = {W (t) = (W1(t), . . . ,Wd(t)), 0 ≤ t < ∞} is a d-dimensional standard
Brownian motion and an {Ft}-martingale under P,

(iv) L = {L(t), 0 ≤ t < ∞} is a continuous, {Ft}-adapted, one-dimensional, P-a.s.
non-decreasing process, with P[L(0) = 0] = 1 and such that P-a.s:

L(t) =

∫ t

0

1{Z(s)∈∂I}dL(s), for every t ≥ 0, (5.2)

(v) for every t ≥ 0, P-a.s.∫ t

0

|b(Z(s))|ds <∞, and

∫ t

0

|ρ(Z(s))|2ds <∞, (5.3)

(vi) and the triple (Z,W,L) P-a.s. satisfies:

Z(t) = Z(0)+

∫ t

0

b(Z(s))ds+
d∑

i=1

∫ t

0

ρi(Z(s))dWi(s)+α

∫ t

0

γ(Z(s))dL(s) (5.4)

for every t ≥ 0.

For a Borel probability measure ν on I, we will say that a solution to (5.1) has initial
distribution ν, provided Z(0) is distributed as ν, under P.
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The notion in Definition 5.1 is commonly referred to as a weak solution. For the
sake of simplicity, we will just call it a solution in this paper. Additionally, we will
say that Z is a solution of (5.1), meaning that (Ω,F , {Ft},P, Z,W,L) is a solution of
(5.1).

Remark 5.1. We introduce the parameter α for convenience. In fact, for a solution
(Ω,F , {Ft},P, Z,W,L) to (5.1) with coefficients (b, ρ, α, γ), we can define L̃ := αL
and get a solution (Ω,F , {Ft},P, Z,W, L̃) to (5.1) with coefficients (b, ρ, 1, γ), and vice
versa. The reason for introducing the parameter α > 0 is to emphasize the order of the
reflection term α

∫ t

0
γ(Z(s))dL(s) because in the context of the CLA (equation (2.9)),

α takes the value r−1/2, for r ∈ R.

For a better understanding of the CLA, we explore further properties of SDERs.
We start by describing two notions of uniqueness for equation (5.1).

Definition 5.2. We say that uniqueness in law or weak uniqueness holds for
equation (5.1) if for every pair of solutions

(Ω,F , {Ft},P, Z,W,L) and (Ω̃, F̃ , {F̃t}, P̃, Z̃, W̃ , L̃)

with the same initial distribution (Z(0)
d
= Z̃(0)), we have that (Z,L) and (Z̃, L̃) have

the same law.

Definition 5.3. We will say that pathwise uniqueness holds for equation (5.1) if
for every pair of solutions:

(Ω,F , {Ft},P, Z,W,L) and (Ω,F , {Ft},P, Z̃,W, L̃)

with common Brownian motion W , common filtered probability space (Ω,F , {Ft},P)
and such that P[Z(0) = Z̃(0)] = 1, we have that:

P[Z(t) = Z̃(t) , L(t) = L̃(t) for every 0 ≤ t <∞] = 1. (5.5)

The relation between these two notions is stated in Proposition 5.1.
A second type of solution is the so-called strong solution. Let (Ω,F ,P) be a complete

probability space with a standard d-dimensional Brownian motion W defined there,
together with a random variable ξ taking values in I such that ξ is independent of
W . For the filtration {Gt := σ(ξ,W (s); 0 ≤ s ≤ t) : 0 ≤ t < ∞} and the collection
of null sets N := {N ∈ F | P(N) = 0}, we define F̂W

t := σ(Gt ∪ N ) for t ≥ 0. Then
(Ω,F , {F̂W

t },P) satisfies the usual conditions. In addition, ξ is F̂W
0 -measurable and

W is an {F̂W
t }-martingale. We call (Ω,F , {F̂W

t },P,W, ξ) a setup.

Definition 5.4. Given (b, ρ, α, γ) and a setup (Ω,F , {F̂W
t },P,W, ξ), a strong solu-

tion to the SDER (5.1) with initial condition ξ, is a pair (Z,L) of one-dimensional
processes defined on (Ω,F ,P) such that:

(i) Z = {Z(t), 0 ≤ t <∞} is a continuous, {F̂W
t }-adapted process such that P- a.s.

Z(t) ∈ I for all t ≥ 0, and P[Z(0) = ξ] = 1,

(ii) L = {L(t), 0 ≤ t < ∞} is a continuous, {F̂W
t }-adapted, P-a.s. non-decreasing

process, with P[L(0) = 0] = 1 and such that P-a.s. (5.2) holds.
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(iii) Conditions (5.3) and (5.4) hold.

In this article we will always emphasize strong when working with a strong solution.
Note that in Definitions 5.1 and 5.4, Z is one-dimensional, whereas W can be mul-
tidimensional. This formulation will be used in constructing the CLA, in the proofs
of Theorems 3.2 and 3.4. In Lemma 5.1 we will show how to merge the d stochastic
integrals of (5.4) into one.

Definition 5.5. We say that existence holds for equation (5.1) if for every Borel
probability measure ν on I, there exists a solution (Ω,F , {Ft},P, Z,W,L) to (5.1) with
initial distribution ν. Additionally, we say that strong existence holds for equation
(5.1) if for every setup (Ω,F , {F̂W

t },P,W, ξ), a strong solution (Z,L) to equation (5.1)
with initial condition ξ, exists. Finally, we say that strong uniqueness holds for
equation (5.1) if for every setup (Ω,F , {F̂W

t },P,W, ξ) and for every pair of strong
solutions (Z,L) and (Z̃, L̃) with initial condition ξ, (5.5) holds.

A famous result of Yamada & Watanabe [24] can be readily generalized from SDEs
to SDERs. Accordingly, we state the following proposition without proof.

Proposition 5.1. (Yamada & Watanabe.) Pathwise uniqueness implies unique-
ness in law for equation (5.1). Additionally, existence and pathwise uniqueness for
equation (5.1) implies strong existence and uniqueness.

Along the same lines, we state the next technical result, which will be used in the
sequel. The proof follows in the same way as for Corollary 5.3.23 in Karatzas & Shreve
[10] and it is therefore omitted.

Proposition 5.2. Suppose pathwise uniqueness holds for equation (5.1). Let ν be a
Borel probability measure on I. If there exists a solution (Ω,F , {Ft},P, Z,W,L) to

equation (5.1) with initial distribution ν, then, for every setup (Ω̃, F̃ , {F̂W̃
t }, P̃, W̃ , ξ̃),

where ξ̃ has distribution ν, there exists a strong solution (Z̃, L̃) to equation (5.1) with
initial condition ξ̃.

Equation (2.9) is of the form of (5.1) with b = µ, ρ = 1√
r
σ, α = 1√

r
, γ as in (2.7)

and d = 1. In addition, we will also consider solutions of

Zr(t) = Zr(0) +

∫ t

0

µ(Zr(s))ds+
1√
r

n∑
j=1

∫ t

0

ℓj

√
β(Zr(s), ℓj)dWj(s)

+
1√
r

∫ t

0

γ(Zr(s))dLr(s),

(5.6)

for each r ∈ R, which corresponds to (5.1) with b = µ, ρj = 1√
r
ℓj
√
β(·, ℓj) for j =

1, . . . , n, α = 1√
r
, γ as in (2.7) and d = n. These equations are needed for technical

reasons, as a key step in constructing the coupling in Theorems 3.2 and 3.4.
In the following, we study equations of the form (5.1), with an eye towards (2.9)

and (5.6). We start by studying uniqueness in the next section.

5.2. Uniqueness

We could not find any place in the literature where the conditions in this section
were given before for SDERs. We allow both the drift and dispersion coefficient to be
more general than locally Lipschitz.
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Theorem 5.1. Consider equation (5.1) with coefficients (b, ρ, α, γ). Suppose that for
every compact set K ⊆ I, there exist strictly increasing functions hK, gK : [0,∞) −→
[0,∞) with gK(0) = hK(0) = 0, where gK is continuous and concave, and such that:∫

(0,ε)

1

gK(u)
du =

∫
(0,ε)

1

h2K(u)
du = ∞, for every ε > 0, (5.7)

and
|b(x)− b(y)| ≤ gK(|x− y|), |ρi(x)− ρi(y)| ≤ hK(|x− y|) (5.8)

for every x, y ∈ K and i = 1, . . . , d. Then, pathwise uniqueness holds for (5.1). In
particular, it holds for gK(u) = AKu and hK(u) = AKu

α with α ≥ 1/2, where AK > 0
is a constant.

Yamada in [23] proved this result for the case I = [0,∞) and d = 1, under the
assumptions gK(u) = Au, where A > 0 is a constant, and hK being the same function
for every compact set K ⊆ I. The technique used in [23] can be extended to the more
general case described above, as we now show.

Proof. We first consider the case where I = [0, a], for some a > 0. Because of this,
we only consider the functions hI and gI and omit the subscript I. Under condition
(5.7) we can construct an increasing sequence {ψm}m≥1 of real-valued C2(R) functions
such that the following properties (i)-(iii) hold for every m ≥ 1 (for an illustration
of how to construct such an increasing sequence see Proposition 5.2.13 in Karatzas &
Shreve [10]) :

(i) ψm is even, ψm ≥ 0, ψm(0) = 0, ψm(x) ≤ ψm+1(x) and limm→∞ ψm(x) = |x| for
every x ∈ R,

(ii) |ψ′
m| ≤ 1, ψ′

m(x) ≥ 0 for x ≥ 0 and ψ′
m(x) ≤ 0 for x ≤ 0,

(iii) ψ
′′

m ≥ 0 and ψ
′′

m(x)h2(|x|) ≤ 2
m for every x ∈ R.

Let (Ω,F , {Ft},P, Z1,W,L1) and (Ω,F , {Ft},P, Z2,W,L2) be two solutions of (5.1)
with common Brownian motion W , common probability space (Ω,F ,P), common
filtration {Ft} and such that P[Z1(0) = Z2(0)] = 1. We define ∆(t) := Z1(t) − Z2(t)
for t ≥ 0. For m ≥ 1, we apply Itô’s formula and obtain that P-a.s. for all t ≥ 0,
ψm(∆(t)) equals∫ t

0

ψ′
m(∆(s))(b(Z1(s))− b(Z2(s)))ds+ α

∫ t

0

ψ′
m(∆(s))γ(Z1(s))dL1(s)

− α

∫ t

0

ψ′
m(∆(s))γ(Z2(s))dL2(s) +

1

2

d∑
i=1

∫ t

0

ψ
′′

m(∆(s))(ρi(Z1(s))− ρi(Z2(s)))
2ds

+

d∑
i=1

∫ t

0

ψ′
m(∆(s))(ρi(Z1(s))− ρi(Z2(s)))dWi(s).

(5.9)

Fix t ≥ 0. We claim that

α

∫ t

0

ψ′
m(∆(s))γ(Z1(s))dL1(s) ≤ 0, P− a.s. (5.10)
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For this, observe first that

α

∫ t

0

ψ′
m(∆(s))γ(Z1(s))dL1(s) = α

∫ t

0

ψ′
m(∆(s))1{Z1(s)=0}dL1(s)

− α

∫ t

0

ψ′
m(∆(s))1{Z1(s)=a}dL1(s).

Now, for 0 ≤ s ≤ t, if Z1(s) = 0, then ∆(s) = −Z2(s) ≤ 0 and ψ′
m(∆(s)) ≤ 0.

So, P-a.s., α
∫ t

0
ψ′
m(∆(s))1{Z1(s)=0}dL1(s) ≤ 0. On the other hand, for 0 ≤ s ≤

t, if Z1(s) = a, then ∆(s) = a − Z2(s) ≥ 0 and ψ′
m(∆(s)) ≥ 0. Then, P-a.s.

−α
∫ t

0
ψ′
m(∆(s))1{Z1(s)=a}dL1(s) ≤ 0. Thus, (5.10) holds. In a similar fashion, we

can show that −α
∫ t

0
ψ′
m(∆(s))γ(Z2(s))dL2(s) ≤ 0, P-a.s. Combining these results

with the martingale property of the stochastic integrals, the bound of one on |ψ′
m|,

using (5.8), on taking expectations in (5.9) we obtain

E[ψm(∆(t))] ≤ E

[∫ t

0

ψ′
m(∆(s))(b(Z1(s))− b(Z2(s)))ds

]
+

1

2
E

[
d∑

i=1

∫ t

0

ψ
′′

m(∆(s))(ρi(Z1(s))− ρi(Z2(s)))
2ds

]

≤
∫ t

0

E[g(|∆(s)|)]ds+ td

m
≤
∫ t

0

g(E[|∆(s)|])ds+ td

m
,

where the last inequality follows by the concavity of g and Jensen’s inequality. On
letting m→ ∞ and applying Lemma 1.4.1. in Agarwal & Lakshmikantham [1] (related
to Osgood’s criterion), we obtain that for every t ≥ 0, E[|∆(t)|] = 0. This implies that
P[Z1(t) = Z2(t), for every t ≥ 0] = 1.

For k = 1, 2 define Yk(t) :=
∫ t

0
γ(Zk(s))dLk(s), for t ≥ 0. Since both (Z1, L1) and

(Z2, L2) satisfy (5.4) with common Brownian motion, and Z1 = Z2 P-a.s. by the
previous analysis, we must have P [Y1(t) = Y2(t), for every t ≥ 0] = 1. Next, observe

that P-a.s. for every t ≥ 0 and k = 1, 2:
∫ t

0
γ(Zk(s))dYk(s) =

∫ t

0
γ2(Zk(s))dLk(s) =∫ t

0
1{Zk(s)∈∂I}dLk(s) = Lk(t), where we used (5.2). We conclude that P[L1(t) = L2(t),

for every t ≥ 0] = 1.

For the case I = [0,∞), consider K > 0 and define TK = inf{t ≥ 0 | Z1(t) ≥
K or Z2(t) ≥ K}. This case follows by choosing K = [0,K], constructing the family
{ψK

m}m≥1 related to hK, replacing t with t∧TK in (5.9), estimating in a similar manner
to the previous case and then letting K → ∞. □

Corollary 5.1. Suppose Assumption 3.1 or 3.2 holds. Then, pathwise uniqueness
(and uniqueness in law) holds for equation (2.9) and also for (5.6).

Proof. Under either Assumption 3.1 or 3.2, the functions β(·, ℓj), j = 1, . . . , n
are locally Lipschitz continuous on I. Therefore, the functions µ and σ2 are locally
Lipschitz continuous on I. By using the fact that x 7→ x1/2 is Hölder continuous of
order 1/2 on [0,∞), we see that condition (5.8) holds for (2.9) and (5.6) and pathwise
uniqueness follows for these equations by Theorem 5.1. By Proposition 5.1, uniqueness
in law holds for (2.9) and (5.6). □
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5.3. Merging stochastic integrals

Equations (2.9) and (5.6) are related in the following way. Denote the dispersion

coefficient of (5.6) by ρr := (ρr1, . . . , ρ
r
n), where ρ

r
j(x) :=

ℓj√
r

√
β(x, ℓj) for j = 1, . . . , n

and x ∈ I. Then,

n∑
j=1

(ρrj(x))
2 =

(
1√
r
σ(x)

)2

for x ∈ I. (5.11)

The next lemma implies that we can merge the n stochastic integrals of (5.6) into a
single stochastic integral in (2.9). We state this in the general context of equation (5.1)
and the equation:

Z(t) = Z(0) +

∫ t

0

b(Z(s))ds+

∫ t

0

Υ(Z(s))dŴ (s) + α

∫ t

0

γ(Z(s))dL(s), (5.12)

where Υ(x) :=
(∑d

i=1 ρ
2
i (x)

)1/2
for x ∈ I, and Ŵ is a one-dimensional standard Brow-

nian motion. The following is similar to results in the literature on the representation
of continuous local-martingales, such as Theorem 3.4.2 in Karatzas & Shreve [10].

Lemma 5.1. Let (Ω,F , {Ft},P, Z,W,L) be a solution of equation (5.1). Then, there
exists a one-dimensional standard Brownian motion Ŵ = {Ŵ (t), 0 ≤ t <∞}, defined
on (Ω,F ,P), which is an {Ft}-martingale there and such that (Ω,F , {Ft},P, Z, Ŵ , L)
is a solution of equation (5.12).

Proof. The process M = {M(t), 0 ≤ t <∞}, defined by

M(t) :=

d∑
i=1

∫ t

0

ρi(Z(s))dWi(s), t ≥ 0,

is a continuous {Ft}-local martingale such that P[M(0) = 0] = 1. Its quadratic

variation process is given by ⟨M⟩(t) =
∫ t

0
Υ2(Z(s))ds for t ≥ 0. Consider the process

Ŵ (t) :=

∫ t

0

1

Υ(Z(s))
1{Υ(Z(s)) ̸=0}dM(s) +

∫ t

0

1{Υ(Z(s))=0}dW1(s), t ≥ 0. (5.13)

Then Ŵ = {Ŵ (t), 0 ≤ t < ∞} is a continuous {Ft}-local martingale, such that
P[Ŵ (0) = 0] = 1 and with quadratic variation process given by

⟨Ŵ ⟩(t) =
〈∫ •

0

1

Υ(Z(s))
1{Υ(Z(s)) ̸=0}dM(s)

〉
(t) +

〈∫ •

0

1{Υ(Z(s))=0}dW1(s)

〉
(t)

=

∫ t

0

1{Υ(Z(s)) ̸=0}ds+

∫ t

0

1{Υ(Z(s))=0}ds = t,

for every t ≥ 0. By Levy’s characterization, Ŵ is a standard Brownian motion and an
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{Ft}-martingale. Moreover, for t ≥ 0,∫ t

0

Υ(Z(s))dŴ (s) =

∫ t

0

Υ(Z(s))
1{Υ(Z(s)) ̸=0}

Υ(Z(s))
dM(s)

+

∫ t

0

Υ(Z(s))1{Υ(Z(s))=0}dW1(s)

=

∫ t

0

1{Υ(Z(s)) ̸=0}dM(s).

Since ⟨M⟩(t) =
∫ t

0
Υ2(Z(s))ds, it follows that

∫ t

0
1{Υ(Z(s))=0}dM(s) = 0 for every

t ≥ 0. Hence,
∫ t

0
Υ(Z(s))dŴ (s) = M(t) for every t ≥ 0 and we can conclude the

desired result. □

Corollary 5.2. For r ∈ R, if (Ω,F , {Ft},P, Zr,W,Lr) is a solution to (5.6), then
there exists a standard Brownian motion W r such that (Ω,F , {Ft},P, Zr,W r, Lr) is
a solution to (2.9).

5.4. Existence and uniqueness

Tanaka in [22] studied SDERs like (5.1) in a more general setting. Namely, he
considered the process Z to be multi-dimensional, taking values in a convex set and
with reflection at the boundary given by the inward pointing normal. The following is
a direct consequence of Theorem 4.2 in [22] applied in the one-dimensional case.

Proposition 5.3. (Tanaka.) Let x0 ∈ I. If b and ρ are bounded and continuous, then
there exists a solution (Ω,F , {Ft},P, Z,W,L) to equation (5.1) such that Z(0) = x0
P-a.s.

Using this result as a starting point, we proceed to establish strong existence for
equations (2.9) and (5.6). We include strong uniqueness and uniqueness in law in the
statement below, which comes from Corollary 5.1.

Theorem 5.2. Suppose Assumption 3.1 or 3.2 holds. Then, existence and uniqueness
in law hold for equations (2.9) and (5.6), as well as strong existence and uniqueness.

Proof. It suffices to prove existence for (5.6). Indeed, by Corollary 5.2, a solution to
(5.6) with initial distribution ν will generate a solution to (2.9) with initial distribution
ν. Then pathwise uniqueness (established in Corollary 5.1) and Proposition 5.1 enable
us to conclude that strong existence holds for both (2.9) and (5.6).

In order to prove existence for (5.6), first consider the case I = [0, a]. Under
Assumption 3.1, Proposition 5.3 implies the existence of solutions to (5.6) for initial
distributions charging a single point. Now, consider an initial distribution ν on I
and a setup (Ω,F , {F̂W

t },P,W, ξ), where W is an n-dimensional Brownian motion
and ξ has distribution ν. Then, for r ∈ R, for each integer k ≥ 1, let ξk :=∑∞

m=0
m
2k
1{ m

2k
≤ξ<m+1

2k
}. Then, ξk ↗ ξ as k → ∞. By Proposition 5.2, for each pair of

integers k ≥ 1 and 0 ≤ m ≤ ⌊a2k⌋ there is a strong solution (Zr,m
k , Lr,m

k ) to equation

(5.6) on (Ω,F , {F̂W
t },P,W, ξ), with Zr,m

k (0) = m
2k
. Then

Zr
k(t) :=

⌊a2k⌋∑
m=0

Zr,m
k (t)1{ξk= m

2k
}, Lr

k(t) :=

⌊a2k⌋∑
m=0

Lr,m
k (t)1{ξk= m

2k
}, t ≥ 0, (5.14)
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is a strong solution (Zr
k , L

r
k) on (Ω,F , {F̂W

t },P,W ) to equation (5.6) with initial con-
dition ξk. The sequence {(Zr

k , L
r
k,W )}k≥1 can be proved to be C-tight and moreover,

it can be proved that every subsequential weak limit generates a solution to (5.6) with
initial distribution ν. By weak uniqueness, the sequence actually converges weakly
and generates a (weak) solution to (5.6) with initial distribution ν. By Proposition
5.1, there exists a strong solution to (5.6) on (Ω,F , {F̂W

t },P,W ).
For the case I = [0,∞), the coefficients in (5.6) are not necessarily bounded and, we

cannot apply Proposition 5.3 directly. For any integer k ≥ 1, define µk(x) := µ(x ∧ k)
and ρrj,k(x) := ρrj(x ∧ k) for x ∈ I and 1 ≤ j ≤ n, where ρrj(x) :=

ℓj√
r

√
β(x, ℓj) for

x ∈ I and 1 ≤ j ≤ n. Additionally, consider the following equation for t ≥ 0:

Zr
k(t) = Zr

k(0) +

∫ t

0

µk(Z
r
k(s))ds+

n∑
j=1

∫ t

0

ρrj,k(Z
r
k(s))dWj(s)

+
1√
r

∫ t

0

γ(Zr
k(s))dL

r
k(s).

(5.15)

For each k ≥ 1, the coefficient µk is Lipschitz continuous and bounded, while the
ρrj,k are Hölder continuous of order 1/2, and bounded, for every 1 ≤ j ≤ n. For

x0 ∈ I, consider a setup (Ω,F , {F̂W
t },P,W, ξ) where P[ξ = x0] = 1. By combining

Theorem 5.1, Proposition 5.3 and Proposition 5.2 we obtain a sequence of processes
{(Zr

k , L
r
k)}k≥1, where for every k ≥ 1, (Zr

k , L
r
k) is a strong solution to (5.15) with

initial condition ξ on the setup (Ω,F , {F̂W
t },P,W, ξ). Following an approach similar

to the proof of Theorem 10.6 in Chung & Williams [8], and by using the linear growth
condition (3.7), we can show that P-a.s. the limits Zr(t) := limk→∞ Zr

k(t) and L
r(t) :=

limk→∞ Lr
k(t) exist for every t ≥ 0 and they define a strong solution to equation (5.6)

with initial condition Zr(0) = x0.
For an arbitrary initial distribution ν, we prove existence in a similar manner to

that for the case of a bounded interval I. □

5.5. Time change

We end this section with a result needed in the proofs of Theorems 3.2 and 3.4.

Lemma 5.2. Let (Ω,F , {Ft},P, Zr,W,Lr) r ∈ R, be a family of solutions of (5.6)
and, by extending the probability space if needed, let W̃ be an n-dimensional standard
Brownian motion defined on (Ω,F ,P) that is independent of Zr,W,Lr. Then, for each
r ∈ R, there exists an n-dimensional standard Brownian motion Br = (Br

1 , . . . , B
r
n)

defined on (Ω,F ,P) such that P-a.s., Zr(t) is equal to

Zr(0) +

∫ t

0

µ(Zr(s))ds+
n∑

j=1

ℓj
r
Br

j

(
r

∫ t

0

β(Zr(s), ℓj)ds

)
+

1√
r

∫ t

0

γ(Zr(s))dLr(s)

(5.16)
for every t ≥ 0. Furthermore, σ(B) ⊆ σ(Zr,W, W̃ ,N ) where N is the collection of
null sets in (Ω,F ,P).

The statement of Lemma 5.2 is similar to that for Theorem 6.5.3.b in Ethier & Kurtz
[9], except that here, (5.16) has an additional reflection term. The underlying idea of
the proof is similar, namely, a continuous local martingale can be time-changed to a
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Brownian motion. Moreover, for a vector of continuous local martingales with cross
variation equal to zero, we can time-change each component and obtain, by means of
Knight’s Theorem (Theorem V.1.9 and V.1.10 in Revuz & Yor [19]), a multidimensional
Brownian motion. For completeness, we provide a proof of Lemma 5.2.

Proof. For j = 1, . . . , n define:

Mr
j (t) :=

∫ t

0

√
rβ(Zr(s), ℓj)dWj(s), t ≥ 0. (5.17)

Then, Mr := (Mr
1 , . . . ,M

r
n) is a vector of continuous {Ft}-local martingales with

⟨Mr
j ⟩(t) = r

∫ t

0
β(Zr(s), ℓj)ds for t ≥ 0, Mr

j (0) = 0 P-a.s., and with cross variation
⟨Mr

i ,M
r
j ⟩(t) = 0 for i ̸= j and t ≥ 0. By Proposition 1.26 in Chapter IV of Revuz

& Yor [19], limt→∞Mr
j (t) exists P-a.s. on {⟨Mr

j ⟩(∞) < ∞} and we let Mr
j (∞) be a

random variable that is P-a.s. equal to this limit on {⟨Mr
j ⟩(∞) <∞}. Now, for s ≥ 0

and j = 1, . . . , n, define

T r
j (s) := inf{t ≥ 0 | ⟨Mr

j ⟩(t) > s}

and

Br
j (s) :=

{
Mr

j (T
r
j (s)) if s < ⟨Mr

j ⟩(∞),

Mr
j (∞) + W̃j(s− ⟨Mr

j ⟩(∞)) if s ≥ ⟨Mr
j ⟩(∞).

(5.18)

By Knight’s Theorem (as in Theorem V.1.9 and V.1.10 in Revuz & Yor [19]), the
process Br := (Br

1 , . . . , B
r
n) is an n-dimensional Brownian motion. For j = 1, . . . , n,

P-a.s. Br
j

(
⟨Mr

j ⟩(t)
)
=Mr

j (t) for every t ≥ 0. We conclude by using these identities in
(5.6). □

6. Proofs of main results

In this section we give the proofs for our main results. We start by providing an
outline.

6.1. Outline for the proofs of Theorems 3.2 and 3.4

(i) Given a probability space (Ω,F ,P) with an n-dimensional Brownian motion W
defined there, for each r ≥ 8 in R and xr0 ∈ Ir

, consider a strong solution (Zr, Lr)
to equation (5.6). Existence is guaranteed by Theorem 5.2.

(ii) Using the solution of (5.6), we construct a solution (Ω,F , {Ft},P, Zr,W r, Lr)
to (2.9) and thereby, obtain a CLA Zr. The construction is given in Lemma 5.1.

(iii) Using a time change, we obtain an n-dimensional Brownian motion Br, and Zr

can be described as a solution to equation (5.16) involving Br.

(iv) From the Brownian motion Br, and independent uniform random variables, we
construct independent Poisson processes Nr

1 , . . . , N
r
n coupled appropriately to Br

(see Theorem A.1).

(v) Using these Poisson processes we generate the process Xr, as a solution to
equation (6.2), following Theorem 6.4.1 in Ethier & Kurtz [9].

(vi) Having constructed both processes on the same space, we compare their paths.
A critical property is the Lipschitz continuity of the Skorokhod map (see in
Appendix B).
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6.2. Proof of Theorem 3.2

Let β and {ϵr}r∈R be the functions associated to a given NDDF under Assumptions
2.1 and 3.1. Consider a complete probability space (Ω,F ,P) on which there is a
standard n-dimensional Brownian motion W = {W (t), 0 ≤ t < ∞}, a standard n-
dimensional Brownian motion W̃ = {W̃ (t), 0 ≤ t < ∞} and n double sequences
U1 = (U1

i,j)i,j≥1, . . . , U
n = (Un

i,j)i,j≥1 of i.i.d. random variables with common uniform

distribution on (0, 1), such that the elements W, W̃ , U1, . . . , Un are independent. Con-
sider {FW

t } to be the natural filtration for W where FW
t = σ(W (s) ; 0 ≤ s ≤ t) for

each t ≥ 0, and let N denote the null sets in (Ω,F ,P). Define the filtration {Ft} as
Ft := σ(FW

t ∪ N ) for t ≥ 0. This filtration is such that the quadruple (Ω,F , {Ft},P)
satisfies the usual conditions.

Fix an r ≥ 8 in R and xr0 ∈ Ir
. Define the random variable ξxr

0
(·) := xr0. The σ-

algebra σ(ξxr
0
) is trivial and therefore, independent from σ(W (s) : s ≥ 0). As for Defi-

nition 5.4, we can construct the filtration {F̂W
t } and obtain a setup (Ω,F , {F̂W

t },P,W,
ξxr

0
). Since σ(ξxr

0
) is trivial, {F̂W

t } = {Ft}. By Theorem 5.2, there is a strong
solution (Zr, Lr) of (5.6) with initial condition ξxr

0
. By Corollary 5.2, there is a

one-dimensional Brownian motion W r = {W r(t),Ft, 0 ≤ t < ∞} on (Ω,F ,P) so
that (Ω,F , {Ft},P, Zr,W r, Lr) is a solution to (2.9). In other words, Zr is a CLA
associated with (Ω,F , {Ft},P, Zr,W r, Lr). In addition, P-a.s. Zr(0) = xr0.

Since W̃ is independent of W , and for each r ∈ R, (Zr, Lr) is a strong solution for
(5.6) driven by W , then W̃ will be independent of W,Zr, Lr. By Lemma 5.2, for each
r ∈ R, we can construct an n-dimensional standard Brownian motion Br = (Br

1 , . . . ,
Br

n) such that P-a.s. the time-change equation (5.16) holds.

We continue by coupling Br to a vector of n independent Poisson processes. First,
note that by Lemma 5.2, σ(Br) ⊆ σ(W, W̃ ,N ) and so Br is independent of U1 =
(U1

i,j)i,j≥1, . . . , U
n = (Un

i,j)i,j≥1. By Theorem A.1, there are n mutually independent
unit rate Poisson processes Nr

1 , . . . , N
r
n defined on (Ω,F ,P) such that for each 1 ≤ j ≤

n,

P

[
sup

0≤s≤t
|Nr

j (s)− s−Br
j (s)| > (C + θ) log t+ x

]
≤ Kt−θλe−λx (6.1)

for every t > 1, x > 0 and θ > 0, where C,K, λ > 0 are universal constants. Recall
the definition of λr(·, ·) from (2.1). Consider the following equation:

Xr(t) = rxr0 +

n∑
j=1

ℓjN
r
j

(
r

∫ t

0

λr
(
Xr(s)

r
, ℓj

)
ds

)
, t ≥ 0. (6.2)

By Theorem 6.4.1 of Ethier & Kurtz [9], this equation has a unique solution Xr =
{Xr(t), 0 ≤ t <∞} on (Ω,F ,P), and the solution is a continuous-time Markov chain
taking values in Ir with infinitesimal generator given by Qr. Then, X

r
= 1

rX
r satisfies:

X
r
(t) = xr0 +

n∑
j=1

ℓj
r
Nr

j

(
r

∫ t

0

λr
(
X

r
(s), ℓj

)
ds

)
, for all t ≥ 0.

Define νr(x) :=
∑n

j=1 ℓjϵ
r(x, ℓj) for x ∈ I, and Y r

j (t) := Nr
j (t) − t for 1 ≤ j ≤ n and
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t ≥ 0. Then, for t ≥ 0:

X
r
(t) = xr0 +

n∑
j=1

ℓj
r

[
Y r
j

(
r

∫ t

0

λr(X
r
(s), ℓj)ds

)
+ r

∫ t

0

λr(X
r
(s), ℓj)ds

]

= xr0 +
n∑

j=1

ℓj
r

[
Y r
j

(
r

∫ t

0

λr(X
r
(s), ℓj)ds

)
−Br

j

(
r

∫ t

0

λr(X
r
(s), ℓj)ds

)]

+
n∑

j=1

ℓj
r
Br

j

(
r

∫ t

0

λr(X
r
(s), ℓj)ds

)
+

∫ t

0

µ(X
r
(s))ds+

∫ t

0

νr(X
r
(s))ds.

On the other hand, note that Zr(t) = χr(t) + 1√
r

∫ t

0
γ(Zr(s))dLr(s) for every t ≥ 0,

where

χr(t) := xr0 +

∫ t

0

µ(Zr(s))ds+

n∑
j=1

ℓj
r
Br

j

(
r

∫ t

0

β(Zr(s), ℓj)ds

)
, t ≥ 0. (6.3)

Now, fix T ≥ 1. Unless indicated otherwise, the following inequalities and estimates
hold P-a.s. for all 0 ≤ t ≤ T ,

|Xr
(t)− χr(t)| ≤ 1

r

n∑
j=1

|ℓj |
∣∣∣∣Y r

j

(
r

∫ t

0

λr(X
r
(s), ℓj)ds

)
−Br

j

(
r

∫ t

0

λr(X
r
(s), ℓj)ds

)∣∣∣∣︸ ︷︷ ︸
I1(t)

+
1

r

n∑
j=1

|ℓj |
∣∣∣∣Br

j

(
r

∫ t

0

λr(X
r
(s), ℓj)ds

)
−Br

j

(
r

∫ t

0

β(Zr(s), ℓj)ds

)∣∣∣∣︸ ︷︷ ︸
I2(t)

+

∣∣∣∣∫ t

0

µ(X
r
(s))− µ(Zr(s))ds

∣∣∣∣︸ ︷︷ ︸
I3(t)

+

∣∣∣∣∫ t

0

νr(X
r
(s))ds

∣∣∣∣︸ ︷︷ ︸
I4(t)

.

(6.4)

In the following, we estimate each element I1, . . . , I4 by using a different method.
In the following, define

Mβ := sup
1≤j≤n

sup
x∈I

β(x, ℓj). (6.5)

For I1 we use (6.1). Note first that for s ∈ [0, T ],

rλr(X
r
(s), ℓj) = r[β(X

r
(s), ℓj) + ϵr(X

r
(s), ℓj)] ≤ r[Mβ +MI ], (6.6)

whereMI is defined in (3.2). Then, for 0 ≤ t ≤ T , r
∫ t

0
λr(X

r
(s), ℓj)ds ≤ r[Mβ+MI ]T .

By (6.1) and Lemma C.1, choosing v := [Mβ +MI ]T , there exist a constant C(v) and
nonnegative random variables {ηrj,1}nj=1 such that for each 1 ≤ j ≤ n:

sup
0≤u≤rv

|Y r
j (u)−Br

j (u)| ≤ C(v) log r + ηrj,1
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and
P[ηrj,1 > x] ≤ Kr−2e−λx, for every x > 0. (6.7)

Define the constants CT,1 := C([Mβ +MI ]T ) and KT,1 := K. Then,

I1(t) =
1

r

n∑
j=1

|ℓj |
∣∣∣∣Y r

j

(
r

∫ t

0

λr(X
r
(s), ℓj)ds

)
−Br

j

(
r

∫ t

0

λr(X
r
(s), ℓj)ds

)∣∣∣∣
≤ 1

r

n∑
j=1

|ℓj | sup
0≤u≤r(Mβ+MI)T

|Y r
j (u)−Br

j (u)|

≤ 1

r

n∑
j=1

|ℓj |(CT,1 log r + ηrj,1).

(6.8)

For I2, we use modulus of continuity estimates for Brownian motion. Define for
1 ≤ j ≤ n:

Λr
j(z) := sup

0≤u≤rv
sup

0≤s≤z log r
|Br

j (u+ s)−Br
j (u)|, 0 ≤ z ≤ rv, (6.9)

Λ
r

j := sup
0≤z≤rv

(z + 1)−1/2Λr
j(z). (6.10)

By the proof of Theorem 11.3.1, in Ethier & Kurtz [9], there exist nonnegative random
variables {ηrj,2}nj=1 and constants CT,2,KT,2 > 0, depending only on Mβ ,MI and T
such that for every 1 ≤ j ≤ n :

Λ
r

j ≤ CT,2 log r + ηrj,2 P- a.s. (6.11)

and

P[ηrj,2 > x] ≤ KT,2r
−2 exp

[
− x2

18 log r

]
for every x > 0. (6.12)

To derive these estimates from [9], scrutiny of (3.11)-(3.17) in [9] reveals that these
equations can apply to any Brownian motion and furthermore βlT in [9] can be replaced
by our v, and the constants Kl and Cl in [9] can be taken to not depend on l. In this
proof, we have dropped a term from the estimate (3.17) in [9] when writing (6.12)
since this term would not improve our bounds. Now, for each 1 ≤ j ≤ n, for every
0 ≤ t ≤ T : ∣∣∣∣Br

j

(
r

∫ t

0

λr(X
r
(s), ℓj)ds

)
−Br

j

(
r

∫ t

0

β(Zr(s), ℓj)ds

)∣∣∣∣
≤ Λr

j

(
r

log r

∫ t

0

|λr(Xr
(s), ℓj)− β(Zr(s), ℓj)|ds

)
,

where we used (6.6) and the fact that r
∫ t

0
β(Zr(s), ℓj)ds ≤ rv for t ∈ [0, T ]. By (6.10),

for every 0 ≤ z ≤ rv, we have that Λr
j(z) ≤ Λ

r

j(1 + z)1/2. Now, since r ≥ 8, log r ≥ 2
and

r

log r

∫ t

0

|λr(Xr
(s), ℓj)− β(Zr(s), ℓj)|ds ≤

r

log r
2[Mβ +MI ]T ≤ r[Mβ +MI ]T = rv.



36 F.A. CAMPOS AND R.J. WILLIAMS

Therefore,

Λr
j

(
r

log r

∫ t

0

|λr(Xr
(s), ℓj)− β(Zr(s), ℓj)|ds

)
≤ Λ

r

j

(
1 +

r

log r

∫ t

0

|λr(Xr
(s), ℓj)− β(Zr(s), ℓj)|ds

)1/2

≤ Λ
r

j

(
1 +

r

log r

∫ t

0

(
|β(Xr

(s), ℓj)− β(Zr(s), ℓj)|+ |ϵr(Xr
(s), ℓj)|

)
ds

)1/2

≤ Λ
r

j

(
1 +

r

log r

∫ t

0

A|Xr
(s)− Zr(s)|+ MI

r
ds

)1/2

≤
(
CT,2 log r + ηrj,2

)(
1 +

TMI

log r
+

Ar

log r

∫ t

0

|Xr
(s)− Zr(s)|ds

)1/2

,

where in the third inequality we used (3.2), the fact that all β(·, ℓj) are Lipschitz
continuous with Lipschitz constant A > 0, and in the last inequality we used (6.11).
Hence,

I2(t) ≤
1

r

n∑
j=1

|ℓj |
(
CT,2 log r + ηrj,2

)(
1 +

TMI

log r
+

Ar

log r

∫ t

0

|Xr
(s)− Zr(s)|ds

)1/2

.

(6.13)
We estimate I3 using the Lipschitz property of µ. The Lipschitz constant for µ will

be called Aµ and it can be taken as A
∑n

j=1 |ℓj |. Then, for 0 ≤ t ≤ T ,

I3(t) ≤
∫ t

0

|µ(Xr
(s))− µ(Zr(s))|ds ≤ Aµ

∫ t

0

|Xr
(s)− Zr(s)|ds. (6.14)

Finally, for I4 we have

I4(t) =

∣∣∣∣∫ t

0

νr(X
r
(s))ds

∣∣∣∣ ≤ ∫ t

0

|νr(Xr
(s))|ds ≤

∫ t

0

MI

r

n∑
j=1

|ℓj |ds ≤
1

r

(
TMI

n∑
j=1

|ℓj |
)
.

(6.15)

For s, t ∈ [0, T ], let ζr(s) := r|Xr
(s)−Zr(s)|
log r and ζ

r
(t) = sup0≤s≤t ζ

r(s) = r
log r∥X

r −
Zr∥t. Since T is fixed, lets denote ζ

r
:= ζ

r
(T ). Combining (6.4) with (6.8),(6.13),(6.14)

and (6.15), we obtain for each 0 ≤ t ≤ T ,

r|Xr
(t)− χr(t)|
log r

≤ 1

log r

n∑
j=1

|ℓj |(CT,1 log r + ηrj,1)

+
1

log r

n∑
j=1

|ℓj |
(
CT,2 log r + ηrj,2

)(
1 +

TMI

log r
+A

∫ t

0

ζr(s)ds

)1/2

+Aµ

∫ t

0

ζr(s)ds+
1

log r

TMI

n∑
j=1

|ℓj |

 .
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Hence, P-a.s. for each 0 ≤ t ≤ T ,

r|Xr
(t)− χr(t)|
log r

≤ Gr +Aµ

∫ t

0

ζ
r
(s)ds, (6.16)

where

Gr :=
n∑

j=1

|ℓj |
(
CT,1 +

TMI

log r
+

ηrj,1
log r

)
+

n∑
j=1

|ℓj |
(
CT,2+

ηrj,2
log r

)(
1+

TMI

log r
+ATζ

r

)1/2

.

Notice that Gr does not depend on t. Since the right side of (6.16) is monotone in t it
follows that P-a.s. for all t ∈ [0, T ],

sup
0≤u≤t

r|Xr
(u)− χr(u)|
log r

=
r

log r
∥Xr − χr∥t ≤ Gr +Aµ

∫ t

0

ζ
r
(s)ds. (6.17)

Now, consider the Skorokhod Map Γ0,a on [0, a] defined in Section B. From the
discussion there, we observe that P-a.s. Γ0,a(χ

r) = Zr. Also, we note that since

X
r
(t) ∈ I for every t ≥ 0, then Γ0,a(X

r
) = X

r
. By the Lipschitz continuity of the

Skorokhod Map (B.4), P-a.s. for all 0 ≤ t ≤ T :

∥Xr − Zr∥t = ∥Γ0,a(X
r
)− Γ0,a(χ

r)∥t ≤ 4∥Xr − χr∥t.

Consequently, P-a.s. for every 0 ≤ t ≤ T ,

ζ
r
(t) =

r

log r
∥Xr − Zr∥t ≤

4r

log r
∥Xr − χr∥t ≤ 4Gr + 4Aµ

∫ t

0

ζ
r
(s)ds.

Then, by Gronwall’s inequality, ζ
r
(t) ≤ e4Aµt4Gr for all t ∈ [0, T ]. In particular, P-a.s.:

ζ
r ≤ e4AµT 4Er = 4e4AµT

n∑
j=1

|ℓj |
(
CT,1 +

TMI

log r
+

ηrj,1
log r

)

+ 4e4AµT (AT )1/2
(

1

AT
+

MI

A log r
+ ζ

r
)1/2 n∑

j=1

|ℓj |
(
CT,2 +

ηrj,2
log r

)
.

This is an inequality of the type: γ ≤ a + (c + γ)1/2b which implies γ ≤ c + 2a + b2.
Thus, P-a.s.,

ζ
r ≤ 1

AT
+

MI

A log r
+ 8e4AµT

n∑
j=1

|ℓj |
(
CT,1 +

TMI

log r
+

ηrj,1
log r

)

+ 16e8AµTAT

 n∑
j=1

|ℓj |
(
CT,2 +

ηrj,2
log r

)2

.
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Define ∥ℓ∥∞ = sup1≤j≤n |ℓj |. Since log r ≥ 2, we have P-a.s.,

ζ
r ≤ 2 +MIT

2AT
+ 8e4AµT

n∑
j=1

|ℓj |
(
CT,1 +

TMI

2

)
+ 8e4AµT

n∑
j=1

|ℓj |
ηrj,1
log r

+ 16e8AµTAT

 n∑
j=1

|ℓj |CT,2 +
n∑

j=1

|ℓj |
ηrj,2
log r

2

≤ 2 +MIT

2AT
+ 8e4AµTn∥ℓ∥∞

(
CT,1 +

TMI

2

)
+

8e4AµT

log r

n∑
j=1

|ℓj |ηrj,1

+ 32e8AµTAT


 n∑

j=1

|ℓj |CT,2

2

+

 n∑
j=1

|ℓj |
ηrj,2
log r

2


≤ 2 +MIT

2AT
+ 8e4AµTn∥ℓ∥∞

(
CT,1 +

TMI

2

)
+ 32e8AµTATC2

T,2n
2∥ℓ∥2∞︸ ︷︷ ︸

CT

+
8e4AµT ∥ℓ∥∞

log r

n∑
j=1

ηrj,1 +
32e8AµTAT∥ℓ∥2∞

(log r)2

 n∑
j=1

ηrj,2

2

︸ ︷︷ ︸
ηr
T

= CT + ηrT =: Θr
T .

Thus, we have proved that for every T ≥ 1, (3.3) holds.

Now, we establish the tail bound (3.4). First, notice that CT has already been
defined and depends only on T, I,L,MI , and β. We will prove the following and then
(3.4) will follow.

For every T ≥ 1 there exist constants λT ,KT > 0, depending only on T, I,L,MI ,
and β, such that

P[ηrT > x] ≤ KT r
−2 exp (−λTx log r) for every x > 0. (6.18)

In order to prove this, first define aT,1 := 8e4AµT ∥ℓ∥∞ and aT,2 := 32e8AµTAT∥ℓ∥2∞
which are constants depending only on T, I,L,MI , and β. Then, for an arbitrary
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x > 0:

P[ηrT > x] = P

 aT,1

log r

n∑
j=1

ηrj,1 +
aT,2

(log r)2

 n∑
j=1

ηrj,2

2

> x


≤ P

 aT,1

log r

n∑
j=1

ηrj,1 >
x

2

+ P

 aT,2

(log r)2

 n∑
j=1

ηrj,2

2

>
x

2


= P

 n∑
j=1

ηrj,1 >
x log r

2aT,1


︸ ︷︷ ︸

J1

+P

 n∑
j=1

ηrj,2 >

√
x log r√
2aT,2


︸ ︷︷ ︸

J2

.

For J1, equation (6.7) yields:

J1 ≤
n∑

j=1

P

(
ηrj,1 >

x log r

2aT,1n

)
≤

n∑
j=1

KT,1r
−2 exp

(
−λ
(
x log r

2aT,1n

))
= nKT,1r

−2 exp (−λT,1x log r) ,

where λT,1 = λ
2aT,1n

> 0. Similarly for J2, equation (6.12) yields:

J2 ≤
n∑

j=1

P

(
ηrj,2 >

√
x log r√
2aT,2n

)
≤

n∑
j=1

KT,2r
−2 exp

− 1

18 log r

( √
x log r√
2aT,2n

)2


= nKT,2r
−2 exp (−λT,2x log r) ,

where λT,2 = (36n2aT,2)
−1 > 0. Putting these two bounds together, we obtain

P[ηrT > x] ≤ KT r
−2 exp (−λTx log r) ,

where KT = 2n(KT,1 ∨KT,2) > 0 and λT = λT,1 ∧ λT,2 > 0. This proves the claim.

□

6.3. Proof of Corollary 3.1

For r ≥ 8 in R, let X
r
and Zr be the processes described in Theorem 3.2. For

each T ≥ 1, the law of the pair ({Xr
(t), 0 ≤ t ≤ T}, {Zr(t), 0 ≤ t ≤ T}), denoted

by πr
T , is a coupling of the laws P r

T and P̃ r
T , i.e., πr

T is a probability measure on
(D[0, T ]×D[0, T ],MT ⊗MT ) such that the marginals of πr

T are given by P r
T and P̃ r

T

respectively. In the notation of Section 1.3, πr
T ∈ Π(P r

T , P̃
r
T ).

Let d0 be the metric defined by (see (12.16) of [6]),

d0(x, y) := inf
λ∈Λ

{∥λ∥◦ ∨ ∥x− y ◦ λ∥T } x, y ∈ D[0, T ], (6.19)

where Λ is the set of continuous, onto and strictly increasing mappings λ : [0, T ] −→
[0, T ] and ∥λ∥◦ = sup0≤s<t≤T | log λ(t)−λ(s)

t−s | for λ ∈ Λ. Under this metric, (D[0, T ], d0)
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is a complete and separable metric space which induces the J1-topology on D[0, T ].
Observe furthermore that d0(x, y) ≤ ∥x− y∥T for any x, y ∈ D[0, T ]. For p ≥ 1:

Wp(P
r
T , P̃

r
T ) = inf

π∈Π(P r
T ,P̃ r

T )

(∫
D[0,T ]×D[0,T ]

dp0(x, y)dπ(x, y)

)1/p

≤

(∫
D[0,T ]×D[0,T ]

dp0(x, y)dπ
r
T (x, y)

)1/p

=
(
E
[
dp0

(
X

r
, Zr

)])1/p
≤
(
E
[
∥Xr − Zr∥pT

])1/p
≤ (E[(Θr

T )
p])

1/p

(
log r

r

)
,

where we used (3.3) in the last inequality. In the proof of Theorem 3.2, we have shown
that Θr

T = ηrT + CT and ηrT is a nonnegative random variable such that P[ηrT > x] ≤
KT r

−2 exp(−λTx log r) for every x > 0. Since (Θr
T )

p ≤ 2p−1((ηrT )
p + Cp

T ), to bound
E[(Θr

T )
p], we compute:

E[(ηrT )
p] =

∫ ∞

0

pxp−1P[ηrT > x]dx ≤ pKT

r2

∫ ∞

0

xp−1e−λT x log rdx

=
pKT

r2(λT log r)p

∫ ∞

0

up−1e−udu ≤ pΓ(p)KT

λpT
,

where we used the fact that r2(log r)p ≥ 1. Combining the above, we obtain that (3.5)

holds with C := 21−1/p
(

pΓ(p)KT

λp
T

+ Cp
T

)1/p
.

□

6.4. Proof of Theorem 3.4

The proof follows by similar arguments as for Theorem 3.2. In particular, the
construction of the processes is essentially the same and takes into account that the
processes do not explode (see Theorem 5.2 for the case I = [0,∞)). To prove the
bounds, we follow the proof of Theorem 3.2 but with t ∧ τ rK in place of t, and where
the Skorokhod map Γ0 is used in place of Γ0,a.

□

Remark 6.1. One can show that 1√
r

∫ t∧τr
K

0
γ(Zr(s))dLr(s) ≤ Θr

T,K
log r
r , i.e., the “re-

flection term” is of the same order as the error term. However, despite the small size
of this “reflection term”, it can have a substantial effect on the nonlinear dynamics.

Appendix A. Komlós-Major-Tusnády type approximation

Theorem A.1. Let (Ω,F ,P) be a probability space on which are defined:

(i) a standard n-dimensional Brownian motion B = (B1, . . . , Bn),

(ii) a family of n double sequences U1 = (U1
i,j)i,j≥1, . . . , U

n = (Un
i,j)i,j≥1 of i.i.d.

random variables with common uniform distribution on (0, 1), where all of the
random variables are mutually independent and independent of B.
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Then, there exist n unit rate Poisson processes N1, . . . , Nn defined on (Ω,F ,P), mu-
tually independent and such that:

P

[
sup

0≤t≤T
|Nℓ(t)− t−Bℓ(t)| > (C + θ) log T + x

]
≤ KT−θλe−λx (A.1)

for every 1 ≤ ℓ ≤ n, T > 1, x > 0 and θ > 0. Here, C,K, λ > 0 are universal
constants.

The proof of Theorem A.1 follows ideas of Komlós, Major & Tusnády [11, 12] and
Ethier & Kurtz [9]. More precisely, Theorem A.1 is a variation of Corollary 7.5.3
in Ethier & Kurtz [9]. There, the authors showed that for a (one-dimensional) Lévy
process X, with finite exponential moments for X(1), one can construct on the same
probability space a realization of X and a process {at + bB(t), 0 ≤ t < ∞}, where
a, b ∈ R and B is a Brownian motion, such that

P

[
sup

0≤t≤T
|X(t)− at− bB(t)| > (C ′ + θ) log T + x

]
≤ K ′T−θλ′

e−λ′x

for all T > 1, x > 0 and θ > 0, with constants C ′,K ′, λ′ > 0. The results in Theorem
A.1 are for the case where X is a unit rate centered Poisson process. Our result is
different from the one of Ethier & Kurtz in the sense that, instead of simply showing
that a coupling exists, we explicitly construct it on a space where a prescribed Brownian
motion already lives. For this construction, only extra independent uniform random
variables are needed besides the given Brownian motion. The ability to construct the
processes N1, . . . , Nn on any such probability space will be important for our proofs of
Theorems 3.2 and 3.4. More precisely, it will let us address step (iv) in Section 6.1.

In order to prove Theorem A.1, we start by recalling the results of Komlós, Major
& Tusnády [11, 12]. Roughly speaking, these authors showed that if F is a distribution
function on the real line with finite exponential moments, i.e.,

∫
eαudF (u) < ∞ for

|α| < α0 for some α0 > 0, it is possible to couple an i.i.d. sequence of random variables
(Xi)i≥1 with distribution F to an i.i.d. sequence (Yi)i≥1 of standard normals in such
a way that |S(m)− T (m)| = O(logm), where S(m) =

∑m
i=1 Xi and T (m) =

∑m
i=1 Yi.

With this idea we prove the following.

Lemma A.1. Let B = {B(t), 0 ≤ t < ∞} be a standard one-dimensional Brownian
motion defined on a space (Ω,F ,P). Then, there exist universal constants C,K, λ > 0
and an i.i.d. sequence (ξi)i≥1 of Poisson random variables of mean 1, defined on
(Ω,F ,P), such that:

P

[
sup

1≤k≤m
|S(k)− k −B(k)| > C logm+ x

]
≤ Ke−λx (A.2)

for every m ≥ 1 and x > 0, where S(k) =
∑k

i=1 ξi.

Proof. Define, Yi := B(i) − B(i − 1) for i ≥ 1. Then, (Yi)i≥1 is a sequence of
i.i.d. standard normal random variables. Consider the distribution function F of a
random variable Z − 1, where Z is Poisson distributed with mean 1. Then, F defines
a distribution with mean 0, variance 1 and finite exponential moments. Moreover,
F is a lattice distribution (as defined in [11]). By Theorem 1 in [11] (the KMT
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approximation), there exist constants C,K, λ > 0 depending only on F , and functions
{fi(y1, . . . , y2i)}i≥1 such that

Xi := fi(Y1,Y2, . . . ,Y2i), i ≥ 1

defines an i.i.d. sequence of random variables with distribution function F , for which

P

[
sup

1≤k≤m
|S̃(k)− T̃ (k)| > C logm+ x

]
≤ Ke−λx (A.3)

holds for every m ≥ 1 and x > 0, where S̃(k) =
∑k

i=1 Xi and T̃ (k) =
∑k

i=1 Yi,

1 ≤ k ≤ m. Note that T̃ (k) =
∑k

i=1(B(i) − B(i− 1)) = B(k)− B(0) = B(k), P−a.s.
Additionally, if we define the variables ξi := Xi + 1 for i ≥ 1, then (ξi)i≥1 will be an

i.i.d. sequence of Poisson random variables with mean 1. Define S(k) :=
∑k

i=1 ξi for

1 ≤ k ≤ m. Then, P-a.s., S(k)−k−B(k) = S̃(k)− T̃ (k), and (A.2) follows from (A.3).
□

Remark A.1. The sequence ξ = (ξi)i≥1 is such that ξ(ω) = Ψ(B(ω, ·)) for every
ω ∈ Ω, where Ψ is a deterministic mapping. To be precise, Ψ = Ψ2 ◦ Ψ1 where
Ψ1 : C −→ RN+ is given by Ψ1(w) = {w(i) − w(i − 1)}i≥1 and Ψ2 : RN+ −→ RN+

is given by Ψ2({yi}i≥1) = {fi(y1, . . . , y2i) + 1}i≥1 where (fi)i≥1 are the functions
described in Theorem 1 in [11].

Proof of Theorem A.1. Lemma A.1 allow us to construct, on (Ω,F ,P), n i.i.d.
sequences (ξℓi )i≥1, for 1 ≤ ℓ ≤ n, with common Poisson distribution of mean 1 in
such a way that, for each 1 ≤ ℓ ≤ n, equation (A.2) holds with Bℓ, (ξℓi )i≥1 and

Sℓ(k) =
∑k

i=1 ξ
ℓ
i in place of B, (ξi)i≥1 and S(k), respectively, with universal constants

C ′,K ′, λ′ > 0. From Remark A.1, (ξℓi )i≥1 is a function of Bℓ for each ℓ. For 1 ≤ ℓ ≤ n
define the process Nℓ = {Nℓ(t), 0 ≤ t <∞} by Nℓ(0) := 0 and

Nℓ(i− 1 + t) := Sℓ(i− 1) +

ξℓi∑
j=1

1{Uℓ
i,j≤t} (A.4)

where i ≥ 1 and 0 < t ≤ 1. Thus, ξℓi gives the number of jumps of Nℓ in (i− 1, i] and
the jump points are given by ξℓi i.i.d. uniform random variables on (i− 1, i]. For each
1 ≤ ℓ ≤ n, Nℓ is a unit rate Poisson process such that Nℓ(k) = Sℓ(k) for each k ≥ 1
P-a.s.

The estimate (A.1) now follows as in the proof of Corollary 7.5.3 of Ethier & Kurtz
[9] by considering {Nℓ(t) − t, 0 ≤ t < ∞} as the process X = {X(t), 0 ≤ t < ∞}
there, for each 1 ≤ ℓ ≤ n. The constants C,K, λ > 0 in (A.1) are given by C = 3C ′,

λ = min{λ′

3 ,
1

3C′ } and K = K ′ + 2 exp(ψ(1/C ′) + ψ(−1/C ′)) + 4 exp(1/2(C ′)2) where
ψ(x) = exp(ex − 1− x), x ≥ 0. Therefore, the constants C,K, λ > 0 are universal.

Notice that each Nℓ is constructed from (Bℓ, U
ℓ). More concretely, there exists a

measurable function Φ : C×RN+ ×RN+ −→ D such that Nℓ(ω, ·) = Φ(Bℓ(ω, ·), U ℓ(ω))
for P-almost every ω ∈ Ω. Since (B1, U

1), . . . , (Bn, U
n) are independent, we get that

the processes N1, . . . , Nn are independent. □

Remark A.2. By examining the proof of Theorem A.1, we observe that the Poisson
processes N1, . . . , Nn are not necessarily adapted to {FB

t ∨σ(U1, . . . , Un)} where {FB
t }

is the filtration generated by the Brownian motion B.
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Appendix B. The Skorokhod problem

In this section we introduce the so called Skorokhod Problem and its associated
Skorokhod Map in one-dimension. We are particularly interested in the Lipschitz
continuity of the Skorokhod Map (see (B.3) and (B.4)) which is key for the proofs
of Theorems 3.2 and 3.4. This property is a special feature of our one-dimensional
scenario, since Lipschitz continuity is not known in higher dimensions for the smoothly
varying reflection field on ∂Rd

+ associated with the CLA [17].
Let I = [0,∞) or [0, a] and γ be as in (2.7). Recall D is the set of functions

x : [0,∞) −→ R which are right-continuous on [0,∞), with finite left-hand limits on
(0,∞). Define DI as the family of x ∈ D with x(0) ∈ I and CI as the set of continuous
functions in DI .

Let x ∈ DI , a pair (z, y) ∈ DI × D will be called a solution of the Skorokhod
problem on I for x if the following holds:

(i) z(t) = x(t) +
∫ t

0
γ(z(s))dy(s), for every t ≥ 0,

(ii) z(t) ∈ I, for every t ≥ 0,

(iii) y is a non-decreasing function such that y(0) = 0 and∫
[0,∞)

1{z(s)/∈∂I}dy(s) = 0.

In 1961, Skorokhod [21] introduced this problem for I = [0,∞) and showed that for
each x ∈ DI , there exists a unique solution (z, y) ∈ DI ×D to the Skorokhod problem
for x given by:

y(t) = sup
0≤s≤t

x−(s) and z(t) = x(t) + y(t), t ≥ 0. (B.1)

Here x−(t) = max{−x(t), 0} is the negative part of x(t). Define the Skorokhod map
on [0,∞) as the function Γ0 : DI −→ DI given by x 7→ Γ0(x) = z where (z, y) is the
solution of the Skorokhod problem for x. From (B.1) one can deduce that Γ0 maps CI
into CI and for every x, x̃ ∈ DI and T > 0,

∥Γ0(x)− x− (Γ0(x̃)− x̃)∥T ≤ ∥x− x̃∥T , (B.2)

and
∥Γ0(x)− Γ0(x̃)∥T ≤ 2∥x− x̃∥T . (B.3)

For I = [0, a] and x ∈ D[0,a], there exists a unique solution (z, y) ∈ DI × D to the
Skorokhod Problem on [0, a] for x. This follows from Anulova & Liptser [5]. Define
the Skorokhod map on [0, a] as the function Γ0,a : D[0,a] −→ D[0,a] given by x 7→
Γ0,a(x) = z where (z, y) is the solution of the Skorokhod problem on [0, a] for x.

Kruk, Lehoczky, Ramanan & Shreve [13], gave the following explicit formula for
Γ0,a: Γ0,a = Λa ◦ Γ0 where Λa(x)(t) = x(t) − sups∈[0,t]

[
(x(s)− a)+ ∧ infu∈[s,t] x(u)

]
for x ∈ DI , t ≥ 0. Using this formula, these authors showed that the Skorokhod map
on [0, a] maps CI into CI and for x, x̃ ∈ D[0,a] and T > 0,

∥Γ0,a(x)− Γ0,a(x̃)∥T ≤ 4∥x− x̃∥T . (B.4)
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We can relate the Skorokhod map to SDERs. Let (Ω,F , {Ft},P, Z,W,L) be a
solution of equation (5.1) for I = [0,∞) or I = [0, a]. Define

χ(t) := Z(0) +

∫ t

0

b(Z(s))ds+

∫ t

0

ρ(Z(s))dW (s), t ≥ 0. (B.5)

Then P-a.s., (Z(·), αL(·)) is the solution of the Skorokhod problem for χ(·) on I, and
Γ0(χ(·)) = Z(·) if I = [0,∞), or Γ0,a(χ(·)) = Z(·) if I = [0, a].

Appendix C. A technical lemma

Lemma C.1. Let Y be a centered unit rate Poisson process and W be a standard
one-dimensional Brownian motion such that

P

[
sup

0≤s≤t
|Y (s)−W (s)| > (C + θ) log t+ x

]
≤ Kt−θλe−λx (C.1)

for every t > 1, x > 0, θ > 0, where C,K, λ > 0 are constants. Then, for each r ≥ 3
and v > 0, there is a nonnegative random variable ηrv and a constant C(v) > 0, not
depending on r, such that:

sup
0≤s≤rv

|Y (s)−W (s)| ≤ C(v) log r + ηrv

and
P[ηrv > x] ≤ Kr−2e−λx for every x > 0. (C.2)

Lemma C.1 is a slightly improved version of a result pointed out by Ethier & Kurtz
[9] in their proof of Theorem 11.3.1 (see (3.9) and (3.10)). Here, we explicitly link the
parameters λ and K in (C.2) with the same parameters in (C.1). In particular, λ does
not depend on v.

Proof. Let x > 0 and θ > 0 be arbitrary. Using (C.1) for t = r(v ∨ 1) ≥ 3:

P

[
sup

0≤s≤rv
|Y (s)−W (s)| > (C + θ) log(r(v ∨ 1)) + x

]
≤ P

[
sup

0≤s≤r(v∨1)

|Y (s)−W (s)| > (C + θ) log(r(v ∨ 1)) + x

]
≤ K(r(v ∨ 1))−θλe−λx.

Let θ = 2
λ . Then, the RHS becomes K(r(v ∨ 1))−2e−λx ≤ Kr−2e−λx. Then, for

ηrv := max

{
sup

0≤s≤rv
|Y (s)−W (s)| −

(
C +

2

λ

)
log(r(v ∨ 1)), 0

}
,

we have P[ηrv > x] ≤ Kr−2e−λx for every x > 0. Finally, since log r ≥ 1 and log(v∨1) ≥
0, we have

sup
0≤s≤rv

|Y (s)−W (s)| ≤ ηrv +

(
C +

2

λ

)
log(r(v ∨ 1))

= ηrv +

(
C +

2

λ

)
[log r + log(v ∨ 1)] ≤ ηrv + C(v) log r

where C(v) :=
(
C + 2

λ

)
[1 + log(v ∨ 1)]. □
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reflecting barrier conditions. Séminaire de probabilités de Strasbourg. 10, pp. 240-244.

[24] Yamada, T., and Watanabe, S. (1971). On the uniqueness of solutions of stochastic differential
equations. J. Math. Kyoto Univ., 11, no. 1, 155-167.


	Introduction
	Background
	Overview of this paper
	Preliminaries and notation

	Key stochastic processes
	Nearly density dependent families
	Constrained Langevin Approximation

	Main results
	Bounded interval case
	Halfline case

	Examples
	Existence and uniqueness for the CLA
	SDER
	Uniqueness
	Merging stochastic integrals
	Existence and uniqueness
	Time change

	Proofs of main results
	Outline for the proofs of Theorems 3.2 and 3.4
	Proof of Theorem 3.2
	Proof of Corollary 3.1
	Proof of Theorem 3.4

	Komlós-Major-Tusnády type approximation
	The Skorokhod problem
	A technical lemma

