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Abstract

Recent technical advances have dramatically increased the power and
scope of structural biology. New developments in high-resolution
cryo-electron microscopy, serial X-ray crystallography, and electron
diffraction have been especially transformative. Here we highlight
some of the latest advances and current challenges at the frontiers of
atomic resolution methods for elucidating the structures and
dynamical properties of macromolecules and their complexes.
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Introduction

Atomic-level structural information brings deep insight into
macromolecular mechanism and function, but successful
applications of structural biology methods are often challeng-
ing. Driven by the powerful insights they deliver, all of the major
approaches—X-ray crystallography, multidimensional nuclear
magnetic resonance (NMR), and electron microscopy—have
evolved tremendously from their origins to their present forms
through diverse technical innovations: improvements in instru-
mentation, analysis software, robotic automation, molecular engi-
neering strategies, and so on. Major advances in structural biology
have often come in waves, and structural biologists are now wit-
nessing a sea change in the range and power of available methods
for structure determination. These methodological advances are
making it possible to illuminate molecular systems of grow-
ing complexity, and with sizes larger and smaller than have been
possible before, at finer levels of spatial resolution. Likewise,
new opportunities abound for dissecting the kinetic behavior and
energetic landscapes of dynamic and polymorphic structures.
Here we highlight some of the most recent developments
and future prospects for applications of X-ray and electron-based
crystallography and imaging methods.

Developments in single-particle cryo-electron
microscopy

For some decades following proof-of-concept experiments in
cryo-electron microscopy (cryo-EM), the technique occupied
a somewhat limited niche in structural biology. Single-particle
imaging in cryo-EM was primarily useful for the study of large
complexes, typically reaching resolutions in the nanometer range,
and particularly well-suited for the study of highly symmetrical
structures such as viruses, for example. The prospects for single-
particle cryo-EM changed with the introduction of new detectors,
microscopes, and data analysis platforms'?. These upgrades led
to an explosion in the successful use of single-particle cryo-EM
methods to illuminate the detailed structures of macromolecules™”.
Cryo-EM modalities now include single-particle methods, tomog-
raphy, 2D crystallography, and microcrystal electron-diffraction
(MicroED). The first two modalities rely on real space
imaging of either many identical copies of a molecule (single par-
ticle) or a single sample from different angles (tomography). As
a diffraction method, two-dimensional crystallography has tra-
ditionally achieved the highest resolutions from highly ordered
single or multi-layer protein assemblies’. Based on diffraction
from highly ordered three-dimensional biomolecular assemblies,
MicroED has extended the attainable resolution in cryo-EM
to the sub-angstrom A) range using approaches borrowed
from macromolecular crystallography.

The hardware and software improvements that drove the cryo-EM
“resolution revolution” have enabled the technique, in favora-
ble cases, to reach levels of detail that rival X-ray crystallogra-
phy. Correspondingly, interest in cryo-EM has grown and with it
a pressing need to expand accessibility to the technique. This has
proven to be a major challenge owing to the high cost of purchas-
ing and operating high-end electron microscopes. With current
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efforts to establish scientific centers and to develop tools that
consolidate and streamline data collection, access is growing.
Simultaneous efforts to improve the resolution obtainable using
less-expensive microscopes are democratizing access®’. As a
result, two models are emerging for cryo-EM data collection.
The first is driven by large national facilities that house high-end
equipment and can be accessed by outside users through pro-
posal-based systems. The second is an assortment of screening
and data collection instruments operated independently by
individual laboratories or research institutions.

Achievements in throughput and resolution

While computational methods had been under development
since the 1970s for analyzing cryo-EM images with low
signal-to-noise and  performing three-dimensional image
reconstructions®, more recent hardware and software devel-
opments opened the door for high-resolution cryo-EM'~.
Specifically, the creation and application of cameras that could
detect electrons directly allowed for the collection of microscopic
data as movies rather than as individual frames’. This techno-
logical breakthrough led to the key data processing innovation
known as “motion correction”, whereby the radiation-induced
drift of particles during electron exposure could be partially
corrected'’. With images less affected by blurring, microscopists
could thereafter produce three-dimensional reconstructions
of macromolecules at near-atomic resolution.

The dramatic improvements in image quality fueled a flurry of
software developments directed toward automating data collection
and processing and producing more accurate three-dimensional
image reconstructions''™". The current explosion of cryo-
EM technology has also uniquely benefitted from coincident
advances in computer science. Cryo-EM software developers
have capitalized on high-performance GPU computing'*'*, cloud
computing'”'®, and machine learning approaches for nearly user-
free data processing'*~!. The resulting increase in throughput is
evident (Figure 1). To date, there are approximately 3,000 den-
sity map depositions and 2,000 atomic coordinate set deposi-
tions by cryo-EM at better than 4 A resolution. If the exponential
growth were to continue—we estimate the doubling time over
the last 5 years to be about 1.1 years—then structure deposi-
tions by cryo-EM would be similar in number to those by X-ray
diffraction by about 2023. The improvements in resolution are
also notable. An example near the current resolution limit is a
1.65 A structure of apoferritin'®. Other recent reports in the lit-
erature, including structures of ribosomes bound to antibiotics™
and a TRP channel bound to capsaicin and other vanilloid
ligands™, highlight the ability of cryo-EM to achieve the resolu-
tion needed for structural biology applications in areas such as
drug discovery”* (Figure 2).

Advances in imaging difficult macromolecules

Large macromolecular assemblies generally provide the easi-
est targets for cryo-EM, owing to the high signal-to-noise
obtained in individual particle images. Recent successes elu-
cidating the structures of large macromolecular complexes are
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Figure 1. Deposition of atomic or near-atomic-resolution structures in the Protein Data Bank according to different experimental
methods. (A) The number of structures deposited annually is shown between 2010 and the end of 2019, based on X-ray diffraction, cryo-
electron microscopy (EM), and NMR methods. A sub-4 A resolution criterion was imposed (for X-ray and EM). The inset shows the depositions
since 2015 on a logarithmic scale. (B) The same set of structures are broken down by resolution. Those based on EM do not include those
determined by electron diffraction methods (see Figure 4). This figure is an original image created by the authors for this publication.

too numerous to list here. Other categories of macromolecules
are coming under increasing attention. Methods for analyzing
filamentous assemblies, developed over the years in studies of
filamentous viruses”’ and microtubules””’, are being applied
to an increasing variety of systems ‘. Of particular interest
in medicine, amyloid proteins and polypeptides, which assemble
in ways that tend to be incommensurate with three-dimensional
crystal formation, have been analyzed recently by cryo-EM,
with numerous studies reaching near-atomic resolution®*.

Membrane proteins, which have been categorically difficult
to crystallize and analyze by crystallography, have been chal-
lenging to study by cryo-EM as well. Nanodiscs—Ilipid bilayer
disks bound by encircling protein molecules*—are provid-
ing new and fruitful routes to analyzing membrane proteins by
cryo-EM*~'. To date, roughly 70 membrane protein complexes
have been determined by cryo-EM in nanodiscs.

Proteins (and nucleic acid molecules) with molecular weights
below about 100 kDa are especially challenging targets***’. In a
few favorable cases, near-atomic resolution has been possible
for protein or enzyme assemblies in the 40-70 kDa range™,

but smaller proteins remain below practical (and perhaps theo-
retical) limits. Over the years, various ideas have been explored
for using larger known structures—e.g. viral capsids, ribosomes,
DNA arrays, and antibody fragments—as ‘scaffolds’ for attach-
ing smaller ‘cargo’ proteins to make them amenable to cryo-EM
imaging”*. Problems, especially attachment flexibility between
the scaffold and cargo, hindered much prior work. Recent advances
have been made by adapting an alpha helical fusion approach,
developed earlier in the area of protein design™’, to achieve
more rigid connections between components®~*’. The use of a
modular adaptor system based on DARPins, as introduced by
Liu et al.?, has allowed the display and cryo-EM visualization
of cargo proteins bound non-covalently to scaffolds built from
symmetric protein assemblies®*. Specific loop sequence muta-
tions in the DARPin (or other adaptor protein) required to bind
a given cargo protein can be identified experimentally based on
separate laboratory evolution studies (see 65 for a recent review
of DAPRin applications). Sub-4 A resolution has been achieved
by a scaffolding system of this type”’. An important advance in
visualizing RNA molecules in the 40 kDa range has also been
demonstrated recently using a Volta phase plate to enhance
image contrast, resulting in sub-4 A resolution®.
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Figure 2. High-resolution cryo-electron microscopy (EM) as a tool for drug discovery. Cryo-EM density at a resolution of approximately
2.6 A reveals a streptogramin antibiotic (green sticks) bound to the peptidyl transferase center (PTC) of a bacterial ribosome (wheat sticks),
as described by Li, Pellegrino, et al. (hitps://doi.org/10.26434/chemrxiv.8346107.v2). The map is shown as a blue volume and is rendered
only within 2 A of the antibiotic for clarity (A). Views of the streptogramin molecule (ribosome deleted) normal to (B) and coplanar with (C)
the macrocycle ring illustrate features such as the proline in the macrocycle backbone, isopropyl side chain, and carbonyl groups, allowing
unambiguous placement of the drug in order to inform structure-based design. This figure is an original image created by the authors for this

publication.

While recent advances in working with difficult types of pro-
teins have been notable, key challenges remain. Many studies
are limited by protein denaturation at the air-water interface,
combined with the tendency of proteins to adopt preferred
orientations on EM grids®®*. Improved methods of sample
preparation and freezing are being investigated to mitigate these
challenges®.

Cryo-electron tomography (cryo-ET) offers new promise, along
with unique challenges of its own. Samples, often of intact cells
or tissues, are tilted under low-dose exposure, allowing the
reconstruction of three-dimensional images of subcellular struc-
tures and their constituent macromolecular assemblies (reviewed
in 70,71). This has led to impressive views of macromolecu-
lar machines and the cellular milieu. Key challenges in cryo-
ET concern resolution, which is limited by electron dose per
volume. Important advances are facilitated by averaging;

methods involving ‘“sub-tomogram” averaging boost the
signal-to-noise for particles present in large copy number or those
exhibiting high internal symmetry, with concomitant improve-
ments in resolution (reviewed in 72). Sample thickness is a fur-
ther limitation, and focused ion beam (FIB) milling, which carves
out a thin section of sample on the EM grid prior to electron beam
exposure, is making a major impact”™. Given resolutions typi-
cally insufficient to trace protein backbones and establish amino
acid sequences, protein labeling and identification in a cellular
context by cryo-ET is another area of vital investigation’.

Improvements in interpretation

The resolution revolution led to a series of challenges and oppor-
tunities related to the interpretation of single-particle cryo-EM
data. First, the ability of microscopists to reconstruct density
maps with near-atomic resolution required the development of
methods and software’® that could be used to build and refine’’-"”
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molecular models from cryo-EM data, in some cases utiliz-
ing complex automated modeling®**" or molecular dynamics
calculations®*. The new breakthroughs in cryo-EM resolution
resulted in a new type of experimentally derived atomic model,
which in turn necessitated the development of validation meth-
ods to assess data and model quality®®®’. This was achieved
through repurposing of existing tools for analysis of molecular
geometries®, which had already been used for years by X-ray
crystallographers, as well as through the creation of new tools
that analyze data quality®™' and the fit of atomic models to
three-dimensional density map reconstructions’*".

An emerging frontier in cryo-EM data interpretation is the anal-
ysis of energetic landscapes and the dissection of structural
heterogeneity”. In a cryo-EM data set with a large number of par-
ticles, the equilibrium ensemble of conformational states should
be statistically represented, offering the ability to model different
conformations of a molecule or complex from a single sample
if one can correctly classify the particles into groups sharing the
same conformational state. A number of different computational
strategies for performing this task are under active
development>®**>=% With sufficiently large data sets, it should
be possible to structurally and energetically characterize the
conformational landscape and functional motions for complex
molecules”™'?”. Finally, for systems where computational sort-
ing of alternative conformational states is challenging, the field
of antibody engineering has increasingly come to the rescue. For
example, engineered antibody fragments of various types devel-
oped through library selection methods have been used to trap
specific  conformational states of interest'”'™ (reviewed
in 105,106) and/or to act as fiducial markers for molecules and
complexes that have ambiguous orientations, sometimes due to
pseudosymmetry 71,

Developments in X-ray crystallography

While rapid developments in cryo-EM have placed it in the spot-
light over the past several years, X-ray crystallography remains
the workhorse of structural biology, yielding the majority of
structures deposited annually into the Protein Data Bank (PDB)
by a wide margin (Figure la). Additionally, for structural stud-
ies of small soluble proteins that require A-level precision,
as is often the case in the fields of enzyme catalysis, drug dis-
covery, and protein engineering, X-ray crystallography still
reigns supreme'” (Figure 1b). X-ray crystallography has ben-
efited from decades of research on automation. Modern synchro-
tron beamlines currently measure hundreds of samples per day,
with very little human intervention®*'-""". This rapid data col-
lection has enabled experiments such as crystallographic
fragment screening, which combines high-throughput compound
screening with high-resolution structural measurements''*~'">.

Two major synergistic advances in X-ray crystallographic data
collection and interpretation have driven exciting technologi-
cal developments that complement more traditional experimental
measurements. These developments have broadened the scope
of questions that can be addressed using the method. First, the
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view of X-ray crystallography as a method for determining a sin-
gle, static structure of a molecule is evolving, as several recent
developments are opening exciting opportunities for extracting
information about the conformational landscape by visualizing
multiple structural states for a crystallized macromolecule. Sec-
ond, the dramatic increase in photon flux at synchrotron beam-
lines and the unprecedented X-ray pulse energies available at
XFEL sources have opened the door to measuring diffraction
from very small or highly radiation-sensitive macromolecular
crystals, enabling a variety of interesting new experiments. While
the majority of crystallographic experiments are still performed
using traditional measurement strategies, recent examples from
the literature, some of which are highlighted below, demon-
strate the deep mechanistic insight that can be obtained using
exciting new experimental methods.

Crystallography at near-physiological temperatures and
modeling the conformational ensemble

A bane of traditional crystallography has been its mainly static
nature, notwithstanding the important information contained in
atomic displacement parameters and sparsely modeled alternative
conformations. In the late 1970s, cryocrystallography—wherein
a crystal is frozen in liquid nitrogen and maintained at cryo-
genic temperature (~100 K) throughout the course of data collec-
tion—took over the field of macromolecular crystallography''®!7.
Importantly, cryocooling increased the tolerance of crystals to
radiation damage, a common limiting factor for successful data
collection, by approximately two orders of magnitude'*"*'. While
it was appreciated several decades ago that cryocooling would
alter the intrinsic dynamics of a crystallized macromolecule'**~'*,
the effect of cryocooling on the interpretation of mechanism was
not well documented until 2009, when a study of proline isomer-
ase demonstrated that a crystal structure determined at 100 K
showed only a single side chain conformation for most residues,
whereas a structure determined at 277 K revealed a series of
alternative side chain conformations that were shown by muta-
genesis to be critical for catalysis'”. In the decade since this key
observation was made, a number of additional cases have dem-
onstrated that structural information derived from data collected
closer to physiological temperature (or across a range of tem-
peratures) can provide a wealth of information about the confor-
mational ensemble beyond a single static structure'>*"1%. Ag
noted above, similar ideas are emerging in electron microscopy’.

Performing crystallography at non-cryogenic temperatures is
now easier than ever because modern X-ray detectors and data
processing software enable the measurement of X-ray diffrac-
tion using permissibly low X-ray doses'**'. Additionally,
computational modelling software that can use experimental
X-ray diffraction data to create models of alternative conforma-
tions or entire conformational ensembles is now available'*>~'%,
allowing crystallographers to maximize the amount of struc-
tural and biophysical information that can be accessed from data
collected at non-cryogenic temperatures. Frontiers in this area of
research include the measurement of diffuse (non-Bragg) scatter-
ing for the analysis of protein dynamics'*’~'*' and the incorporation
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of full molecular dynamics simulations (of crystallized molecules)
into the modelling and refinement procedure'*~'*.

Serial crystallography

Within the first decade of this millennium, first light was achieved
at an X-ray free electron laser (XFEL). With it, macromolecular
crystallographers gained access to a powerful tool that offered
exciting new opportunities but which also required a reformula-
tion of the traditional crystallographic experiment. XFELSs produce
ultrafast (tens of femtoseconds) X-ray pulses with gigawatts of
peak power'*. The benefit of this extreme X-ray fluence is the
ability to measure useful X-ray diffraction signals from extremely
small macromolecular crystals, as small as several hundred
nanometers'*~'**. A concomitant challenge, however, is that the
X-ray pulses are so intense that they strip atoms of their elec-
trons and cause Coulombic explosion of the sample'’. Diffrac-
tion is a nearly instantaneous process, and scattered X-rays can be
recorded before destruction of the sample''. However, owing to
the severe damage, a single crystal cannot be used for the repeated
measurements required to fully sample three-dimensional recip-
rocal space. This required the development of a new experimen-
tal strategy, coined “serial crystallography”'*>. The technique
was initially developed and refined prior to the operation of the
first XFEL, at synchrotron facilities'”, and has now been suc-
cessfully implemented at synchrotrons worldwide'**'>. Instead of
growing large, single crystals for data collection using the rota-
tion method, serial crystallography relies on slurries of tiny micro-
crystals (tens of microns or less), which are serially replenished
in the X-ray beam as they are destroyed by the intense X-ray
pulses. Typically, a single X-ray pulse is used per individual
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microcrystal, destroying it in the process. Serial crystallography
relies on rapid delivery of crystals to the X-ray beam, ideally in
random orientations so that all reciprocal space can be sampled
uniformly from thousands of microcrystals. These two needs
can be met using either a microfluidic or a fixed-target approach
(Figure 3). In the microfluidic setup, a freestanding stream or jet
of microcrystals is generated perpendicular to the X-ray beam,
and crystals are measured as they flow through the interaction
region ' Alternatively, in a fixed-target experiment, many
microcrystals are simultaneously mounted on some type of
solid support chip, which is then rapidly translated through
the X-ray beam using robotics to expose the crystals for
measurement'®'~'°. Additional experimental systems that deliver
microcrystals via a drop-on-demand system have also been
developed, but these are not yet as widely used'*’-'%,

The development of serial crystallography and other types of
multi-crystal experiments has opened the door to interesting
new opportunities for structural biology. While serial crystallog-
raphy was invented to enable measurements at XFEL sources,
similar experiments are now also routinely performed at very bright
synchrotron beamlines'®~'”?, making them more easily accessible
to the scientific community. Because these approaches use many
crystals to construct a complete data set, traditional concerns
about radiation damage become unimportant, either because of the
“diffraction-before-destruction” phenomenon observed at XFELs
or because the required X-ray dose per crystal is much lower
than for traditional experiments when performed at a synchrotron
source'*'™*. Consequently, serial crystallography is generally per-
formed at room temperature'”, the benefits of which have already
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T
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Figure 3. Sample delivery strategies for serial crystallography. In the microfluidic variety of the experiment (A), crystals are delivered to
the X-ray beam using a microfluidic nozzle ranging from tens to hundreds of microns in diameter. A stream of randomly oriented microcrystals
continuously flows perpendicular to the pulsing X-ray beam (black arrow). In the fixed-target version (B), microcrystals are mounted (by
pipetting) in random orientations on a solid support chip that contains appropriately sized windows, and the chip is rapidly moved through the
pulsing X-ray beam (black arrow) by automated translation in the x and y directions. In both diagrams, each crystal yields a single diffraction
pattern capturing a random slice of reciprocal space. Crystals that have not been probed by the X-ray beam are colored green, and those
that have been measured, and destroyed, are depicted in purple. In time-resolved serial crystallography, a perturbation (shown by the red
arrow) is applied to the crystals with user-defined timing prior to the X-ray pulse (Af). This figure is an original image created by the authors

for this publication.
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Figure 4. A survey of biomolecular structures determined by electron diffraction from three-dimensional crystals. An aggregate
analysis of Protein Data Bank (PDB) depositions shows the breakdown of novel versus known structures and the distribution of structures
according to their reported resolution (in A). Cartoon diagrams of several representative structures are shown; below each structure are
properties (molecular weight and resolution) as well as identifiers (date associated with deposition release and PDB code). This figure is an

original image created by the authors for this publication.

been described, and the approach has proven useful for stud-
ies of radiation-sensitive samples, such as metalloproteins'’*'".
Furthermore, because serial crystallography enables efficient
measurements from small crystals, the technique has produced
crystal structures of challenging targets for which large crystals
could not be obtained, including proteins such as GPCR-arrestin
complexes'® and RNA polymerase'®'. Some proteins naturally
form small crystals within cells, as exemplified by early struc-
tures of virus polyhedra'®'**; serial X-ray methods have proven
useful in structure determination for multiple types of such in vivo
protein crystals'®*'*. Measurement of very small crystals with
highly coherent X-rays can also produce signal between Bragg
peaks. Solving the phase problem from an oversampled molecu-
lar Fourier transform represents an additional frontier in the
field"*~""". Finally, because serial crystallography allows the
rapid measurement of many crystalline specimens, it is possible
to exploit clustering methods that allow grouping of similar
measurements, potentially leading to additional structural insight
through the comparison of crystal polymorphs'*>!*.

The advent of serial crystallography using femtosecond XFEL
pulses has led to a renaissance in time-resolved structural stud-
ies of macromolecules'”. Traditional high-resolution structural

techniques are ensemble measurements, which yield information
only about conformational states of molecules that are signifi-
cantly populated at equilibrium. This limitation makes it challeng-
ing to study macromolecular dynamics, because protein motions
can involve the formation of transient, high-energy configura-
tions, on timescales shorter than traditional X-ray measurement.
Although challenging to study, dynamics are vital for function.
Dynamics play fundamental roles in enzyme catalysis'>!%-1%,
protein—protein interactions'””, allosteric signaling'"®, and protein
evolution'”’?". Dynamics also have important practical impli-
cations, as they can result in the formation of cryptic binding
sites that are actionable for drug discovery™'—%.

In the late 1980s and early 1990s, several groups demonstrated
the first successful time-resolved macromolecular X-ray crys-
tallography (and solution scattering) experiments, essentially
bringing together elements of ultrafast pump-probe spectroscopy
and X-ray structural analysis to observe molecular motions™".
In these experiments, a rapid perturbation was applied to the
crystallized proteins to synchronize conformational changes™”,
and then one of two methods was used to observe the resulting
dynamics in a time-dependent manner. In one form of the experi-
ment, the initial perturbation was followed by freeze-trapping
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of the excited states by rapid cryocooling at defined time delays,
followed by X-ray structure determination using traditional
methods”"*", Because protein dynamics are dependent on
external perturbations, but also highly temperature-dependent,
the freeze-trapping method was determined to be of limited
utility owing to challenges in data interpretation. It was soon
replaced by methods that could utilize the pulsed nature of the
synchrotron beam (approximately 100 ps pulse duration) to act
as a high-speed camera, capable of capturing structural snapshots
of the motions in real time”'"’. By varying the time delay between
the perturbation and X-ray pulses, researchers could capture
molecules in various stages of conformational transitions®''~'.
Time-resolved crystallography (and X-ray solution scattering)
proved to be an extremely powerful tool for studying macro-
molecular dynamics®~", but the need to synchronize confor-
mational changes in a significant fraction of the crystallized
molecules still posed a substantial technical challenge, and time-
resolved measurements were relegated to a handful of systems
with well-characterized photoactivity, such as myoglobin and
photoactive yellow protein, where it was straightforward to
initiate conformational changes using a pulsed laser.

The use of serial crystallography for time-resolved studies has
facilitated a series of recent technological developments and
experimental achievements'”. Studies have revealed the sub-
picosecond chromophore gymnastics that result in photoactivation
of photoreceptors and fluorescent proteins’'***>. The long-sought
mechanism of photosynthetic water splitting by photosystem II
has been revealed using ultrafast time-resolved crystallography
paired with simultaneous X-ray spectroscopy””~. Covalently
bound enzyme—substrate reaction intermediates, which had been
theorized but never observed, have been identified”>***’. Addition-
ally, a substantial effort has been made to expand time-resolved
measurements to systems that do not have any photoactivity,
making these experiments amenable to essentially any protein
of interest. New perturbation methods that have been success-
fully utilized include temperature-jump””, rapid mixing”***’,
ligand or substrate photocaging’’, and rapid application of
electric fields”’. Finally, it is worth noting that the success of
time-resolved crystallography has inspired the more recent
development of time-resolved cryo-EM*!'. In such an experi-
ment, molecules are mixed as they are sprayed onto a cryo-EM
sample grid, and a time delay is introduced between the mixing
and vitrification processes> . The time-resolution of these
experiments is limited to tens of milliseconds by the time
required to vitrify the sample, but they have been successfully
applied to study relatively slow motions of large complexes,
such as ribosomes during protein translation’”. Although limited
in their temporal resolution, these experiments offer the oppor-
tunity to study large-amplitude motions that are incompatible
with a crystal lattice.

The resurgence of electron diffraction

For the past half century, the use of electron diffraction remained
limited, often applied to unique samples or used as a comple-
ment to X-ray studies for macromolecular analysis. Common
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approaches to electron diffraction relied on the electron
microscope, often configured to sample from the back focal plane
of its objective lens. Use of the electron microscope as a tool for
three-dimensional characterization of macromolecules dates to
the mid-twentieth century when Klug and colleagues pioneered
molecular electron microscopy at the MRC Laboratory of
Molecular Biology in Cambridge***". In contrast to single mol-
ecules or small molecular assemblies, extended two-dimensional
molecular crystals are ideally suited for diffraction. Transla-
tional invariance in the transforms of two-dimensional crystals
facilitates the measurement of high-resolution diffraction. This
was exploited by Henderson and Unwin to characterize crystals
of bacteriorhodopsin (bR)**®. In fact, their use of electron
diffraction necessitated thin crystals of bR to avoid extensive
multiple scattering and absorption artifacts”’. The potent inter-
action of the electron beam with the single layer of molecules in
two-dimensional bR crystals was sufficient to yield an initial
molecular resolution structure of the protein and later several
atomic models”**'. Two-dimensional electron crystallography has
since produced a number of important high-resolution structures,
including the plant light-harvesting complex”** and aquaporin®*=*.
At 1.9 A, the structure of the water pore protein, aquaporin-0, was
the highest resolution structure determined by two-dimensional
electron crystallography*. The small quantity of high-resolution
structures determined by electron crystallography may be because
of its unique sample demands. For two-dimensional crystals,
missing wedge effects impact resolution in the direction
normal to the molecular layer, while crystal bending and in-plane
defects may limit resolution along the layer’’. Despite these
limitations, electron microscopes offer an immediate benefit
for structure determination, since phases can be obtained by
direct imaging of two-dimensional crystals®*.

In the early 1970s, electron microscopy of protein nanocrystals
in liquid-filled cells demonstrated the power of using electron
beams for three-dimensional crystallography’*. By mitigating
radiation damage, cryogenic cooling of samples further facili-
tated the extraction of high-resolution information from three-
dimensional crystals by electron diffraction®". Beam attenuation
measurements in these early studies demonstrated that crystals
of the protein catalase—a few hundred nanometers thick—could
be investigated under the electron microscope”'. Despite these
early efforts, electron diffraction of three-dimensional macromo-
lecular crystals was impacted by many of the same challenges
that affected two-dimensional electron crystallography. Multiple
scattering and absorption effects presented added concerns™>*.
These limitations would ultimately delay the widespread applica-
tion of electron diffraction to three-dimensional macromolecular
crystals. In contrast, three-dimensional electron crystallography
of small molecules and materials continued to progress, ultimately
yielding structures of various inorganic and organic structures
before those of macromolecules could be determined”*—°.

Electron diffraction is now widely used for the study of three-

dimensional inorganic and organic crystals*’. Its application
to three-dimensional protein crystals re-emerged recently in
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work by Gonen”, Abrahams””, Yonekura®’, and many others.
These efforts benefitted from several compelling aspects of
electron diffraction, including the large electron scattering
cross section, the shorter electron wavelength (and flatter Ewald
sphere) in conventional electron microscopes, and the ability of
the method to adopt many of the computational developments
and software tools honed for X-ray crystallography over the last
several decades'*”. This lowered the barriers for application
of the method. However, the early studies in three-dimensional
electron diffraction of protein crystals brought to light key
distinctions between the use of X-rays and electrons for crystal-
lography. Because of the strong interaction of electrons with
matter, electron crystallography of three-dimensional protein crys-
tals resuscitated concerns over multiple scattering, the resulting
fidelity of diffraction measurements, and ultimately the accuracy
of structures determined by these methods*’. While some of
these concerns have been dispelled by the determination of
novel and ab initio macromolecular structures’ > (Figure 4),
there is considerable room for improvements in our understanding
and practice of electron diffraction from protein nanocrystals.

The ability to measure diffraction from sub-micron-sized areas
of three-dimensional protein nanocrystals, on the scale of the
conventional domain block, has further facilitated the interrogation
of individual crystallites derived from bundles or larger clusters®’.
Crystals as thick as half a micrometer might be tolerated, but
thinner specimens avoid heavy absorption and minimize mul-
tiple scattering”®. The term ‘MicroED’ was coined to empha-
size the requirement for small crystals and is complemented
by terms like three-dimensional electron diffraction (3DED) and
continuous rotation electron diffraction (CRED)*’. Some self-
associating proteins—amyloidogenic peptides, for example—
tend to grow small or needle-like crystals, making them natural
targets for study. For general applications, methods are
being investigated for reliably producing microcrystals, or for
nano-machining thin sections from larger protein crystals by
FIB milling***". To date, less than a hundred structures deter-
mined by electron diffraction from three-dimensional crystals
can be found in the PDB. Among the largest is a 110 kDa
calcium ATPase; most are small proteins and peptides (Figure 4).

One notable challenge still faced by electron diffraction is
de novo phasing. The majority of MicroED structures deposited
to date have not been novel (Figure 4); many were determined by
molecular replacement based on highly similar known structures.
Some structures have been determined by direct methods, thus
far only when macromolecules were small (e.g. oligopeptides)
and diffracted to very high resolution. The weaker scatter-
ing for heavier atoms by electrons compared to X-rays, and the
absence of anomalous scattering effects, may call for remedies to
the phasing problem that could be unique to electron diffraction.
For example, owing to the strength of electron scattering, infor-
mation useful for structure determination might be extractable
from secondary or ‘dynamic’ scattering phenomena”**"'. Scat-
tering factors for electrons are distinct from those used in X-ray
experiments and may need to be further refined. Theoretical
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and computational efforts to more accurately analyze electron
diffraction data will no doubt benefit from ongoing improvements
to detectors and from the collection of energy-filtered patterns’’”.

As electron diffraction develops beyond initial demonstra-
tions, new opportunities and challenges arise. Recent studies
have demonstrated increasingly facile structure determination
of organic molecules, and the scope of substrates continues to
grow. Electron nanobeams (5-100 nm in diameter) have enabled
some early studies on the fine structure of macromolecular crys-
tals and offer growth in new areas of serial or multi-structure
crystallography”*~7>. However, the advantageous features of auto-
mation, speed, and process integration offered by most modern
X-ray beamlines are not yet available for electron diffraction.
Wider adoption of the method will necessarily be linked to its
accessibility and its capacity to rapidly determine informative
and novel structures.

Summary

Methods for elucidating the three-dimensional structures of mac-
romolecules continue to expand and diversify. The technical
advances surveyed here push the envelope in terms of the biologi-
cal systems that can be elucidated in atomic detail and the kinds
of mechanistic insights that might be extracted. On one hand,
improvements in robustness and automation are lowering the bar-
riers to entry and making applications accessible to a growing
body of scientists working across expansive areas of molecular
biology. On the other hand, forward progress is bringing new
challenges into view. Interestingly, some of the emerging chal-
lenges have historical roots, having arisen in somewhat different
contexts in other areas of structural biology. The phase prob-
lem, re-emerging now in MicroED, was surmounted in the field
of X-ray diffraction by heavy atom and anomalous phasing meth-
ods. The challenges of interpreting polymorphic and dynamic
systems, a key goal of many of the methods discussed here,
invoke connections to NMR and molecular dynamics simulation
methods, which championed the study of dynamics for several
decades. And efforts to expand the reach of various X-ray and
electron microscopy and diffraction methods to new kinds of
macromolecular systems are drawing increasingly on advances
in the area of protein design. Thus, exciting developments in
structural biology methods, aided by advanced computing and
other approaches (including many not discussed here), are
steadily expanding our ability to dissect the structure and dynam-
ics of biological molecules in atomic detail. Combinations of
different methods, new and old, should bring us closer to this
ultimate goal.
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