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Abstract 
Recent technical advances have dramatically increased the power and 
scope of structural biology. New developments in high-resolution 
cryo-electron microscopy, serial X-ray crystallography, and electron 
diffraction have been especially transformative. Here we highlight 
some of the latest advances and current challenges at the frontiers of 
atomic resolution methods for elucidating the structures and 
dynamical properties of macromolecules and their complexes.
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Introduction
Atomic-level structural information brings deep insight into  
macromolecular mechanism and function, but successful  
applications of structural biology methods are often challeng-
ing. Driven by the powerful insights they deliver, all of the major 
approaches—X-ray crystallography, multidimensional nuclear 
magnetic resonance (NMR), and electron microscopy—have  
evolved tremendously from their origins to their present forms 
through diverse technical innovations: improvements in instru-
mentation, analysis software, robotic automation, molecular engi-
neering strategies, and so on. Major advances in structural biology 
have often come in waves, and structural biologists are now wit-
nessing a sea change in the range and power of available methods 
for structure determination. These methodological advances are  
making it possible to illuminate molecular systems of grow-
ing complexity, and with sizes larger and smaller than have been  
possible before, at finer levels of spatial resolution. Likewise, 
new opportunities abound for dissecting the kinetic behavior and 
energetic landscapes of dynamic and polymorphic structures.  
Here we highlight some of the most recent developments  
and future prospects for applications of X-ray and electron-based 
crystallography and imaging methods.

Developments in single-particle cryo-electron 
microscopy
For some decades following proof-of-concept experiments in 
cryo-electron microscopy (cryo-EM), the technique occupied 
a somewhat limited niche in structural biology. Single-particle  
imaging in cryo-EM was primarily useful for the study of large 
complexes, typically reaching resolutions in the nanometer range, 
and particularly well-suited for the study of highly symmetrical  
structures such as viruses, for example. The prospects for single-
particle cryo-EM changed with the introduction of new detectors, 
microscopes, and data analysis platforms1,2. These upgrades led 
to an explosion in the successful use of single-particle cryo-EM 
methods to illuminate the detailed structures of macromolecules3,4.  
Cryo-EM modalities now include single-particle methods, tomog-
raphy, 2D crystallography, and microcrystal electron-diffraction 
(MicroED). The first two modalities rely on real space  
imaging of either many identical copies of a molecule (single par-
ticle) or a single sample from different angles (tomography). As 
a diffraction method, two-dimensional crystallography has tra-
ditionally achieved the highest resolutions from highly ordered  
single or multi-layer protein assemblies5. Based on diffraction 
from highly ordered three-dimensional biomolecular assemblies, 
MicroED has extended the attainable resolution in cryo-EM  
to the sub-ångstrom (Å) range using approaches borrowed  
from macromolecular crystallography.

The hardware and software improvements that drove the cryo-EM 
“resolution revolution” have enabled the technique, in favora-
ble cases, to reach levels of detail that rival X-ray crystallogra-
phy. Correspondingly, interest in cryo-EM has grown and with it 
a pressing need to expand accessibility to the technique. This has  
proven to be a major challenge owing to the high cost of purchas-
ing and operating high-end electron microscopes. With current  

efforts to establish scientific centers and to develop tools that  
consolidate and streamline data collection, access is growing. 
Simultaneous efforts to improve the resolution obtainable using 
less-expensive microscopes are democratizing access6,7. As a 
result, two models are emerging for cryo-EM data collection.  
The first is driven by large national facilities that house high-end 
equipment and can be accessed by outside users through pro-
posal-based systems. The second is an assortment of screening  
and data collection instruments operated independently by  
individual laboratories or research institutions.

Achievements in throughput and resolution
While computational methods had been under development 
since the 1970s for analyzing cryo-EM images with low  
signal-to-noise and performing three-dimensional image  
reconstructions8, more recent hardware and software devel-
opments opened the door for high-resolution cryo-EM1,2.  
Specifically, the creation and application of cameras that could 
detect electrons directly allowed for the collection of microscopic 
data as movies rather than as individual frames9. This techno-
logical breakthrough led to the key data processing innovation 
known as “motion correction”, whereby the radiation-induced 
drift of particles during electron exposure could be partially  
corrected10. With images less affected by blurring, microscopists 
could thereafter produce three-dimensional reconstructions  
of macromolecules at near-atomic resolution.

The dramatic improvements in image quality fueled a flurry of 
software developments directed toward automating data collection 
and processing and producing more accurate three-dimensional 
image reconstructions11–13. The current explosion of cryo-
EM technology has also uniquely benefitted from coincident 
advances in computer science. Cryo-EM software developers  
have capitalized on high-performance GPU computing14–16, cloud 
computing17,18, and machine learning approaches for nearly user-
free data processing19–21. The resulting increase in throughput is 
evident (Figure 1). To date, there are approximately 3,000 den-
sity map depositions and 2,000 atomic coordinate set deposi-
tions by cryo-EM at better than 4 Å resolution. If the exponential  
growth were to continue—we estimate the doubling time over 
the last 5 years to be about 1.1 years—then structure deposi-
tions by cryo-EM would be similar in number to those by X-ray  
diffraction by about 2023. The improvements in resolution are 
also notable. An example near the current resolution limit is a  
1.65 Å structure of apoferritin13. Other recent reports in the lit-
erature, including structures of ribosomes bound to antibiotics22  
and a TRP channel bound to capsaicin and other vanilloid  
ligands23, highlight the ability of cryo-EM to achieve the resolu-
tion needed for structural biology applications in areas such as  
drug discovery24 (Figure 2).

Advances in imaging difficult macromolecules
Large macromolecular assemblies generally provide the easi-
est targets for cryo-EM, owing to the high signal-to-noise 
obtained in individual particle images. Recent successes elu-
cidating the structures of large macromolecular complexes are  
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Figure 1. Deposition of atomic or near-atomic-resolution structures in the Protein Data Bank according to different experimental 
methods. (A) The number of structures deposited annually is shown between 2010 and the end of 2019, based on X-ray diffraction, cryo-
electron microscopy (EM), and NMR methods. A sub-4 Å resolution criterion was imposed (for X-ray and EM). The inset shows the depositions 
since 2015 on a logarithmic scale. (B) The same set of structures are broken down by resolution. Those based on EM do not include those 
determined by electron diffraction methods (see Figure 4). This figure is an original image created by the authors for this publication.

too numerous to list here. Other categories of macromolecules 
are coming under increasing attention. Methods for analyzing  
filamentous assemblies, developed over the years in studies of 
filamentous viruses25–27 and microtubules28,29, are being applied  
to an increasing variety of systems30–34. Of particular interest  
in medicine, amyloid proteins and polypeptides, which assemble 
in ways that tend to be incommensurate with three-dimensional 
crystal formation, have been analyzed recently by cryo-EM,  
with numerous studies reaching near-atomic resolution35–42.

Membrane proteins, which have been categorically difficult 
to crystallize and analyze by crystallography, have been chal-
lenging to study by cryo-EM as well. Nanodiscs—lipid bilayer  
disks bound by encircling protein molecules43—are provid-
ing new and fruitful routes to analyzing membrane proteins by 
cryo-EM44–47. To date, roughly 70 membrane protein complexes 
have been determined by cryo-EM in nanodiscs.

Proteins (and nucleic acid molecules) with molecular weights 
below about 100 kDa are especially challenging targets48,49. In a 
few favorable cases, near-atomic resolution has been possible 
for protein or enzyme assemblies in the 40–70 kDa range50–53,  

but smaller proteins remain below practical (and perhaps theo-
retical) limits. Over the years, various ideas have been explored 
for using larger known structures—e.g. viral capsids, ribosomes, 
DNA arrays, and antibody fragments—as ‘scaffolds’ for attach-
ing smaller ‘cargo’ proteins to make them amenable to cryo-EM  
imaging54–58. Problems, especially attachment flexibility between 
the scaffold and cargo, hindered much prior work. Recent advances 
have been made by adapting an alpha helical fusion approach, 
developed earlier in the area of protein design59,60, to achieve 
more rigid connections between components61–63. The use of a 
modular adaptor system based on DARPins, as introduced by  
Liu et al.62, has allowed the display and cryo-EM visualization 
of cargo proteins bound non-covalently to scaffolds built from 
symmetric protein assemblies63,64. Specific loop sequence muta-
tions in the DARPin (or other adaptor protein) required to bind  
a given cargo protein can be identified experimentally based on 
separate laboratory evolution studies (see 65 for a recent review 
of DAPRin applications). Sub-4 Å resolution has been achieved 
by a scaffolding system of this type57. An important advance in  
visualizing RNA molecules in the 40 kDa range has also been  
demonstrated recently using a Volta phase plate to enhance  
image contrast, resulting in sub-4 Å resolution66.
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While recent advances in working with difficult types of pro-
teins have been notable, key challenges remain. Many studies 
are limited by protein denaturation at the air–water interface,  
combined with the tendency of proteins to adopt preferred  
orientations on EM grids67,68. Improved methods of sample 
preparation and freezing are being investigated to mitigate these  
challenges69.

Cryo-electron tomography (cryo-ET) offers new promise, along 
with unique challenges of its own. Samples, often of intact cells 
or tissues, are tilted under low-dose exposure, allowing the 
reconstruction of three-dimensional images of subcellular struc-
tures and their constituent macromolecular assemblies (reviewed  
in 70,71). This has led to impressive views of macromolecu-
lar machines and the cellular milieu. Key challenges in cryo-
ET concern resolution, which is limited by electron dose per  
volume. Important advances are facilitated by averaging;  

methods involving “sub-tomogram” averaging boost the  
signal-to-noise for particles present in large copy number or those 
exhibiting high internal symmetry, with concomitant improve-
ments in resolution (reviewed in 72). Sample thickness is a fur-
ther limitation, and focused ion beam (FIB) milling, which carves 
out a thin section of sample on the EM grid prior to electron beam  
exposure, is making a major impact73,74. Given resolutions typi-
cally insufficient to trace protein backbones and establish amino  
acid sequences, protein labeling and identification in a cellular  
context by cryo-ET is another area of vital investigation75.

Improvements in interpretation
The resolution revolution led to a series of challenges and oppor-
tunities related to the interpretation of single-particle cryo-EM 
data. First, the ability of microscopists to reconstruct density 
maps with near-atomic resolution required the development of 
methods and software76 that could be used to build and refine77–79  

Figure 2. High-resolution cryo-electron microscopy (EM) as a tool for drug discovery. Cryo-EM density at a resolution of approximately 
2.6 Å reveals a streptogramin antibiotic (green sticks) bound to the peptidyl transferase center (PTC) of a bacterial ribosome (wheat sticks), 
as described by Li, Pellegrino, et al. (https://doi.org/10.26434/chemrxiv.8346107.v2). The map is shown as a blue volume and is rendered 
only within 2 Å of the antibiotic for clarity (A). Views of the streptogramin molecule (ribosome deleted) normal to (B) and coplanar with (C) 
the macrocycle ring illustrate features such as the proline in the macrocycle backbone, isopropyl side chain, and carbonyl groups, allowing 
unambiguous placement of the drug in order to inform structure-based design. This figure is an original image created by the authors for this 
publication.
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molecular models from cryo-EM data, in some cases utiliz-
ing complex automated modeling80,81 or molecular dynamics 
calculations82–85. The new breakthroughs in cryo-EM resolution  
resulted in a new type of experimentally derived atomic model, 
which in turn necessitated the development of validation meth-
ods to assess data and model quality86,87. This was achieved  
through repurposing of existing tools for analysis of molecular 
geometries88, which had already been used for years by X-ray 
crystallographers, as well as through the creation of new tools  
that analyze data quality89–91 and the fit of atomic models to  
three-dimensional density map reconstructions92,93.

An emerging frontier in cryo-EM data interpretation is the anal-
ysis of energetic landscapes and the dissection of structural 
heterogeneity94. In a cryo-EM data set with a large number of par-
ticles, the equilibrium ensemble of conformational states should 
be statistically represented, offering the ability to model different  
conformations of a molecule or complex from a single sample 
if one can correctly classify the particles into groups sharing the 
same conformational state. A number of different computational  
strategies for performing this task are under active  
development58,58,95–98. With sufficiently large data sets, it should 
be possible to structurally and energetically characterize the 
conformational landscape and functional motions for complex 
molecules99–102. Finally, for systems where computational sort-
ing of alternative conformational states is challenging, the field  
of antibody engineering has increasingly come to the rescue. For 
example, engineered antibody fragments of various types devel-
oped through library selection methods have been used to trap  
specific conformational states of interest103,104 (reviewed  
in 105,106) and/or to act as fiducial markers for molecules and 
complexes that have ambiguous orientations, sometimes due to 
pseudosymmetry107,108.

Developments in X-ray crystallography
While rapid developments in cryo-EM have placed it in the spot-
light over the past several years, X-ray crystallography remains 
the workhorse of structural biology, yielding the majority of 
structures deposited annually into the Protein Data Bank (PDB)  
by a wide margin (Figure 1a). Additionally, for structural stud-
ies of small soluble proteins that require Å-level precision,  
as is often the case in the fields of enzyme catalysis, drug dis-
covery, and protein engineering, X-ray crystallography still 
reigns supreme109 (Figure 1b). X-ray crystallography has ben-
efited from decades of research on automation. Modern synchro-
tron beamlines currently measure hundreds of samples per day,  
with very little human intervention80,109–111. This rapid data col-
lection has enabled experiments such as crystallographic  
fragment screening, which combines high-throughput compound 
screening with high-resolution structural measurements112–115.

Two major synergistic advances in X-ray crystallographic data 
collection and interpretation have driven exciting technologi-
cal developments that complement more traditional experimental 
measurements. These developments have broadened the scope 
of questions that can be addressed using the method. First, the  

view of X-ray crystallography as a method for determining a sin-
gle, static structure of a molecule is evolving, as several recent 
developments are opening exciting opportunities for extracting 
information about the conformational landscape by visualizing  
multiple structural states for a crystallized macromolecule. Sec-
ond, the dramatic increase in photon flux at synchrotron beam-
lines and the unprecedented X-ray pulse energies available at  
XFEL sources have opened the door to measuring diffraction 
from very small or highly radiation-sensitive macromolecular 
crystals, enabling a variety of interesting new experiments. While 
the majority of crystallographic experiments are still performed  
using traditional measurement strategies, recent examples from 
the literature, some of which are highlighted below, demon-
strate the deep mechanistic insight that can be obtained using  
exciting new experimental methods.

Crystallography at near-physiological temperatures and 
modeling the conformational ensemble
A bane of traditional crystallography has been its mainly static 
nature, notwithstanding the important information contained in 
atomic displacement parameters and sparsely modeled alternative 
conformations. In the late 1970s, cryocrystallography—wherein 
a crystal is frozen in liquid nitrogen and maintained at cryo-
genic temperature (~100 K) throughout the course of data collec-
tion—took over the field of macromolecular crystallography116,117.  
Importantly, cryocooling increased the tolerance of crystals to 
radiation damage, a common limiting factor for successful data 
collection, by approximately two orders of magnitude118–121. While 
it was appreciated several decades ago that cryocooling would 
alter the intrinsic dynamics of a crystallized macromolecule122–124, 
the effect of cryocooling on the interpretation of mechanism was 
not well documented until 2009, when a study of proline isomer-
ase demonstrated that a crystal structure determined at 100 K 
showed only a single side chain conformation for most residues,  
whereas a structure determined at 277 K revealed a series of 
alternative side chain conformations that were shown by muta-
genesis to be critical for catalysis125. In the decade since this key  
observation was made, a number of additional cases have dem-
onstrated that structural information derived from data collected 
closer to physiological temperature (or across a range of tem-
peratures) can provide a wealth of information about the confor-
mational ensemble beyond a single static structure115,126–128. As  
noted above, similar ideas are emerging in electron microscopy94.

Performing crystallography at non-cryogenic temperatures is 
now easier than ever because modern X-ray detectors and data 
processing software enable the measurement of X-ray diffrac-
tion using permissibly low X-ray doses129–131. Additionally,  
computational modelling software that can use experimental 
X-ray diffraction data to create models of alternative conforma-
tions or entire conformational ensembles is now available132–136, 
allowing crystallographers to maximize the amount of struc-
tural and biophysical information that can be accessed from data  
collected at non-cryogenic temperatures. Frontiers in this area of 
research include the measurement of diffuse (non-Bragg) scatter-
ing for the analysis of protein dynamics137–141 and the incorporation  
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of full molecular dynamics simulations (of crystallized molecules) 
into the modelling and refinement procedure142–145.

Serial crystallography
Within the first decade of this millennium, first light was achieved 
at an X-ray free electron laser (XFEL). With it, macromolecular 
crystallographers gained access to a powerful tool that offered 
exciting new opportunities but which also required a reformula-
tion of the traditional crystallographic experiment. XFELs produce  
ultrafast (tens of femtoseconds) X-ray pulses with gigawatts of 
peak power146. The benefit of this extreme X-ray fluence is the 
ability to measure useful X-ray diffraction signals from extremely 
small macromolecular crystals, as small as several hundred 
nanometers147–149. A concomitant challenge, however, is that the  
X-ray pulses are so intense that they strip atoms of their elec-
trons and cause Coulombic explosion of the sample150. Diffrac-
tion is a nearly instantaneous process, and scattered X-rays can be 
recorded before destruction of the sample151. However, owing to 
the severe damage, a single crystal cannot be used for the repeated  
measurements required to fully sample three-dimensional recip-
rocal space. This required the development of a new experimen-
tal strategy, coined “serial crystallography”152. The technique  
was initially developed and refined prior to the operation of the 
first XFEL, at synchrotron facilities153, and has now been suc-
cessfully implemented at synchrotrons worldwide154,155. Instead of  
growing large, single crystals for data collection using the rota-
tion method, serial crystallography relies on slurries of tiny micro-
crystals (tens of microns or less), which are serially replenished 
in the X-ray beam as they are destroyed by the intense X-ray  
pulses. Typically, a single X-ray pulse is used per individual 

microcrystal, destroying it in the process. Serial crystallography 
relies on rapid delivery of crystals to the X-ray beam, ideally in 
random orientations so that all reciprocal space can be sampled  
uniformly from thousands of microcrystals. These two needs 
can be met using either a microfluidic or a fixed-target approach 
(Figure 3). In the microfluidic setup, a freestanding stream or jet 
of microcrystals is generated perpendicular to the X-ray beam, 
and crystals are measured as they flow through the interaction  
region156–160. Alternatively, in a fixed-target experiment, many 
microcrystals are simultaneously mounted on some type of 
solid support chip, which is then rapidly translated through 
the X-ray beam using robotics to expose the crystals for 
measurement161–166. Additional experimental systems that deliver 
microcrystals via a drop-on-demand system have also been 
developed, but these are not yet as widely used167,168.

The development of serial crystallography and other types of 
multi-crystal experiments has opened the door to interesting 
new opportunities for structural biology. While serial crystallog-
raphy was invented to enable measurements at XFEL sources,  
similar experiments are now also routinely performed at very bright 
synchrotron beamlines169–172, making them more easily accessible 
to the scientific community. Because these approaches use many 
crystals to construct a complete data set, traditional concerns 
about radiation damage become unimportant, either because of the 
“diffraction-before-destruction” phenomenon observed at XFELs 
or because the required X-ray dose per crystal is much lower 
than for traditional experiments when performed at a synchrotron  
source173,174. Consequently, serial crystallography is generally per-
formed at room temperature175, the benefits of which have already 

Figure 3. Sample delivery strategies for serial crystallography. In the microfluidic variety of the experiment (A), crystals are delivered to 
the X-ray beam using a microfluidic nozzle ranging from tens to hundreds of microns in diameter. A stream of randomly oriented microcrystals 
continuously flows perpendicular to the pulsing X-ray beam (black arrow). In the fixed-target version (B), microcrystals are mounted (by 
pipetting) in random orientations on a solid support chip that contains appropriately sized windows, and the chip is rapidly moved through the 
pulsing X-ray beam (black arrow) by automated translation in the x and y directions. In both diagrams, each crystal yields a single diffraction 
pattern capturing a random slice of reciprocal space. Crystals that have not been probed by the X-ray beam are colored green, and those 
that have been measured, and destroyed, are depicted in purple. In time-resolved serial crystallography, a perturbation (shown by the red 
arrow) is applied to the crystals with user-defined timing prior to the X-ray pulse (Δt). This figure is an original image created by the authors 
for this publication.
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Figure 4. A survey of biomolecular structures determined by electron diffraction from three-dimensional crystals. An aggregate 
analysis of Protein Data Bank (PDB) depositions shows the breakdown of novel versus known structures and the distribution of structures 
according to their reported resolution (in Å). Cartoon diagrams of several representative structures are shown; below each structure are 
properties (molecular weight and resolution) as well as identifiers (date associated with deposition release and PDB code). This figure is an 
original image created by the authors for this publication.

been described, and the approach has proven useful for stud-
ies of radiation-sensitive samples, such as metalloproteins176–179.  
Furthermore, because serial crystallography enables efficient 
measurements from small crystals, the technique has produced 
crystal structures of challenging targets for which large crystals 
could not be obtained, including proteins such as GPCR–arrestin 
complexes180 and RNA polymerase181. Some proteins naturally 
form small crystals within cells, as exemplified by early struc-
tures of virus polyhedra182,183; serial X-ray methods have proven  
useful in structure determination for multiple types of such in vivo 
protein crystals184–186. Measurement of very small crystals with 
highly coherent X-rays can also produce signal between Bragg 
peaks. Solving the phase problem from an oversampled molecu-
lar Fourier transform represents an additional frontier in the  
field187–191. Finally, because serial crystallography allows the 
rapid measurement of many crystalline specimens, it is possible  
to exploit clustering methods that allow grouping of similar 
measurements, potentially leading to additional structural insight  
through the comparison of crystal polymorphs192,193.

The advent of serial crystallography using femtosecond XFEL 
pulses has led to a renaissance in time-resolved structural stud-
ies of macromolecules194. Traditional high-resolution structural 

techniques are ensemble measurements, which yield information 
only about conformational states of molecules that are signifi-
cantly populated at equilibrium. This limitation makes it challeng-
ing to study macromolecular dynamics, because protein motions  
can involve the formation of transient, high-energy configura-
tions, on timescales shorter than traditional X-ray measurement. 
Although challenging to study, dynamics are vital for function.  
Dynamics play fundamental roles in enzyme catalysis125,195–198, 
protein–protein interactions199, allosteric signaling115, and protein  
evolution127,200. Dynamics also have important practical impli-
cations, as they can result in the formation of cryptic binding  
sites that are actionable for drug discovery201–203.

In the late 1980s and early 1990s, several groups demonstrated 
the first successful time-resolved macromolecular X-ray crys-
tallography (and solution scattering) experiments, essentially 
bringing together elements of ultrafast pump-probe spectroscopy 
and X-ray structural analysis to observe molecular motions204.  
In these experiments, a rapid perturbation was applied to the 
crystallized proteins to synchronize conformational changes205,  
and then one of two methods was used to observe the resulting 
dynamics in a time-dependent manner. In one form of the experi-
ment, the initial perturbation was followed by freeze-trapping  
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of the excited states by rapid cryocooling at defined time delays, 
followed by X-ray structure determination using traditional  
methods206–209,209. Because protein dynamics are dependent on 
external perturbations, but also highly temperature-dependent, 
the freeze-trapping method was determined to be of limited 
utility owing to challenges in data interpretation. It was soon 
replaced by methods that could utilize the pulsed nature of the  
synchrotron beam (approximately 100 ps pulse duration) to act 
as a high-speed camera, capable of capturing structural snapshots 
of the motions in real time210. By varying the time delay between 
the perturbation and X-ray pulses, researchers could capture  
molecules in various stages of conformational transitions211–214. 
Time-resolved crystallography (and X-ray solution scattering) 
proved to be an extremely powerful tool for studying macro-
molecular dynamics215–217, but the need to synchronize confor-
mational changes in a significant fraction of the crystallized 
molecules still posed a substantial technical challenge, and time-
resolved measurements were relegated to a handful of systems  
with well-characterized photoactivity, such as myoglobin and  
photoactive yellow protein, where it was straightforward to  
initiate conformational changes using a pulsed laser.

The use of serial crystallography for time-resolved studies has 
facilitated a series of recent technological developments and 
experimental achievements194. Studies have revealed the sub- 
picosecond chromophore gymnastics that result in photoactivation  
of photoreceptors and fluorescent proteins218–222. The long-sought 
mechanism of photosynthetic water splitting by photosystem II 
has been revealed using ultrafast time-resolved crystallography 
paired with simultaneous X-ray spectroscopy223–225. Covalently 
bound enzyme–substrate reaction intermediates, which had been 
theorized but never observed, have been identified226,227. Addition-
ally, a substantial effort has been made to expand time-resolved 
measurements to systems that do not have any photoactivity,  
making these experiments amenable to essentially any protein 
of interest. New perturbation methods that have been success-
fully utilized include temperature-jump228, rapid mixing226,227,  
ligand or substrate photocaging229, and rapid application of  
electric fields230. Finally, it is worth noting that the success of 
time-resolved crystallography has inspired the more recent  
development of time-resolved cryo-EM231. In such an experi-
ment, molecules are mixed as they are sprayed onto a cryo-EM 
sample grid, and a time delay is introduced between the mixing 
and vitrification processes232–234. The time-resolution of these  
experiments is limited to tens of milliseconds by the time 
required to vitrify the sample, but they have been successfully 
applied to study relatively slow motions of large complexes, 
such as ribosomes during protein translation235. Although limited 
in their temporal resolution, these experiments offer the oppor-
tunity to study large-amplitude motions that are incompatible  
with a crystal lattice.

The resurgence of electron diffraction
For the past half century, the use of electron diffraction remained 
limited, often applied to unique samples or used as a comple-
ment to X-ray studies for macromolecular analysis. Common  

approaches to electron diffraction relied on the electron  
microscope, often configured to sample from the back focal plane 
of its objective lens. Use of the electron microscope as a tool for 
three-dimensional characterization of macromolecules dates to  
the mid-twentieth century when Klug and colleagues pioneered 
molecular electron microscopy at the MRC Laboratory of 
Molecular Biology in Cambridge236,237. In contrast to single mol-
ecules or small molecular assemblies, extended two-dimensional  
molecular crystals are ideally suited for diffraction. Transla-
tional invariance in the transforms of two-dimensional crystals 
facilitates the measurement of high-resolution diffraction. This 
was exploited by Henderson and Unwin to characterize crystals 
of bacteriorhodopsin (bR)238. In fact, their use of electron  
diffraction necessitated thin crystals of bR to avoid extensive 
multiple scattering and absorption artifacts239. The potent inter-
action of the electron beam with the single layer of molecules in  
two-dimensional bR crystals was sufficient to yield an initial 
molecular resolution structure of the protein and later several  
atomic models240,241. Two-dimensional electron crystallography has 
since produced a number of important high-resolution structures, 
including the plant light-harvesting complex242 and aquaporin243–245. 
At 1.9 Å, the structure of the water pore protein, aquaporin-0, was 
the highest resolution structure determined by two-dimensional 
electron crystallography246. The small quantity of high-resolution  
structures determined by electron crystallography may be because 
of its unique sample demands. For two-dimensional crystals,  
missing wedge effects impact resolution in the direction  
normal to the molecular layer, while crystal bending and in-plane  
defects may limit resolution along the layer247. Despite these  
limitations, electron microscopes offer an immediate benefit 
for structure determination, since phases can be obtained by  
direct imaging of two-dimensional crystals248.

In the early 1970s, electron microscopy of protein nanocrystals 
in liquid-filled cells demonstrated the power of using electron 
beams for three-dimensional crystallography249. By mitigating  
radiation damage, cryogenic cooling of samples further facili-
tated the extraction of high-resolution information from three-
dimensional crystals by electron diffraction250. Beam attenuation  
measurements in these early studies demonstrated that crystals 
of the protein catalase—a few hundred nanometers thick—could  
be investigated under the electron microscope251. Despite these  
early efforts, electron diffraction of three-dimensional macromo-
lecular crystals was impacted by many of the same challenges  
that affected two-dimensional electron crystallography. Multiple 
scattering and absorption effects presented added concerns252,253. 
These limitations would ultimately delay the widespread applica-
tion of electron diffraction to three-dimensional macromolecular 
crystals. In contrast, three-dimensional electron crystallography 
of small molecules and materials continued to progress, ultimately 
yielding structures of various inorganic and organic structures 
before those of macromolecules could be determined254–256.

Electron diffraction is now widely used for the study of three-
dimensional inorganic and organic crystals257. Its application 
to three-dimensional protein crystals re-emerged recently in 
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work by Gonen258, Abrahams259, Yonekura260, and many others.  
These efforts benefitted from several compelling aspects of  
electron diffraction, including the large electron scattering 
cross section, the shorter electron wavelength (and flatter Ewald 
sphere) in conventional electron microscopes, and the ability of  
the method to adopt many of the computational developments 
and software tools honed for X-ray crystallography over the last 
several decades261,262. This lowered the barriers for application 
of the method. However, the early studies in three-dimensional  
electron diffraction of protein crystals brought to light key  
distinctions between the use of X-rays and electrons for crystal-
lography. Because of the strong interaction of electrons with  
matter, electron crystallography of three-dimensional protein crys-
tals resuscitated concerns over multiple scattering, the resulting 
fidelity of diffraction measurements, and ultimately the accuracy  
of structures determined by these methods253. While some of 
these concerns have been dispelled by the determination of 
novel and ab initio macromolecular structures263–266 (Figure 4),  
there is considerable room for improvements in our understanding 
and practice of electron diffraction from protein nanocrystals.

The ability to measure diffraction from sub-micron-sized areas 
of three-dimensional protein nanocrystals, on the scale of the  
conventional domain block, has further facilitated the interrogation 
of individual crystallites derived from bundles or larger clusters267.  
Crystals as thick as half a micrometer might be tolerated, but 
thinner specimens avoid heavy absorption and minimize mul-
tiple scattering268. The term ‘MicroED’ was coined to empha-
size the requirement for small crystals and is complemented  
by terms like three-dimensional electron diffraction (3DED) and 
continuous rotation electron diffraction (CRED)257. Some self-
associating proteins—amyloidogenic peptides, for example—
tend to grow small or needle-like crystals, making them natural  
targets for study. For general applications, methods are  
being investigated for reliably producing microcrystals, or for  
nano-machining thin sections from larger protein crystals by 
FIB milling268–270. To date, less than a hundred structures deter-
mined by electron diffraction from three-dimensional crystals 
can be found in the PDB. Among the largest is a 110 kDa  
calcium ATPase; most are small proteins and peptides (Figure 4).

One notable challenge still faced by electron diffraction is  
de novo phasing. The majority of MicroED structures deposited 
to date have not been novel (Figure 4); many were determined by 
molecular replacement based on highly similar known structures. 
Some structures have been determined by direct methods, thus  
far only when macromolecules were small (e.g. oligopeptides) 
and diffracted to very high resolution. The weaker scatter-
ing for heavier atoms by electrons compared to X-rays, and the 
absence of anomalous scattering effects, may call for remedies to  
the phasing problem that could be unique to electron diffraction. 
For example, owing to the strength of electron scattering, infor-
mation useful for structure determination might be extractable  
from secondary or ‘dynamic’ scattering phenomena252,271. Scat-
tering factors for electrons are distinct from those used in X-ray  
experiments and may need to be further refined. Theoretical 

and computational efforts to more accurately analyze electron  
diffraction data will no doubt benefit from ongoing improvements 
to detectors and from the collection of energy-filtered patterns272.

As electron diffraction develops beyond initial demonstra-
tions, new opportunities and challenges arise. Recent studies 
have demonstrated increasingly facile structure determination 
of organic molecules, and the scope of substrates continues to 
grow. Electron nanobeams (5–100 nm in diameter) have enabled 
some early studies on the fine structure of macromolecular crys-
tals and offer growth in new areas of serial or multi-structure  
crystallography273–275. However, the advantageous features of auto-
mation, speed, and process integration offered by most modern  
X-ray beamlines are not yet available for electron diffraction.  
Wider adoption of the method will necessarily be linked to its 
accessibility and its capacity to rapidly determine informative  
and novel structures.

Summary
Methods for elucidating the three-dimensional structures of mac-
romolecules continue to expand and diversify. The technical 
advances surveyed here push the envelope in terms of the biologi-
cal systems that can be elucidated in atomic detail and the kinds 
of mechanistic insights that might be extracted. On one hand,  
improvements in robustness and automation are lowering the bar-
riers to entry and making applications accessible to a growing 
body of scientists working across expansive areas of molecular  
biology. On the other hand, forward progress is bringing new 
challenges into view. Interestingly, some of the emerging chal-
lenges have historical roots, having arisen in somewhat different  
contexts in other areas of structural biology. The phase prob-
lem, re-emerging now in MicroED, was surmounted in the field  
of X-ray diffraction by heavy atom and anomalous phasing meth-
ods. The challenges of interpreting polymorphic and dynamic  
systems, a key goal of many of the methods discussed here, 
invoke connections to NMR and molecular dynamics simulation  
methods, which championed the study of dynamics for several 
decades. And efforts to expand the reach of various X-ray and 
electron microscopy and diffraction methods to new kinds of  
macromolecular systems are drawing increasingly on advances 
in the area of protein design. Thus, exciting developments in  
structural biology methods, aided by advanced computing and 
other approaches (including many not discussed here), are  
steadily expanding our ability to dissect the structure and dynam-
ics of biological molecules in atomic detail. Combinations of  
different methods, new and old, should bring us closer to this  
ultimate goal.
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