brirird applied
1 sciences

Article

Distributed Software Build Assurance for Software Supply

Chain Integrity

Ken Lew *0, Arijet Sarker 2, Simeon Wuthier 11, Jinoh Kim 3, Jonghyun Kim 4 and Sang-Yoon Chang »*

check for
updates

Citation: Lew, K.; Sarker, A.; Wuthier,
S.; Kim, J.; Kim, J.; Chang, S.-Y.
Distributed Software Build Assurance
for Software Supply Chain Integrity.
Appl. Sci. 2024, 14, 9262. https:/ /
doi.org/10.3390/app14209262

Academic Editors: Alexander
Barkalov, Larysa Titarenko

and Kazimierz Krzywicki

Received: 12 August 2024
Revised: 5 October 2024
Accepted: 6 October 2024
Published: 11 October 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Computer Science, University of Colorado Colorado Springs,

Colorado Springs, CO 80918, USA; swuthier@uccs.edu

Department of Computer Science, Florida Polytechnic University, Lakeland, FL 33805, USA;
asarker@floridapoly.edu

Department of Computer Science and Information Systems, Texas A&M University-Commerce,

Commerce, TX 75428, USA; jinoh. kim@tamuc.edu

Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea; ikkim21@etri.re.kr
* Correspondence: klew2@uccs.edu (K.L.); schang2@uccs.edu (S.-Y.C.)

Abstract: Computing and networking are increasingly implemented in software. We design and
build a software build assurance scheme detecting if there have been injections or modifications in
the various steps in the software supply chain, including the source code, compiling, and distribution.
Building on the reproducible build and software bill of materials (SBOM), our work is distinguished
from previous research in assuring multiple software artifacts across the software supply chain.
Reproducible build, in particular, enables our scheme, as our scheme requires the software ma-
terials/artifacts to be consistent across machines with the same operating system/specifications.
Furthermore, we use blockchain to deliver the proof reference, which enables our scheme to be
distributed so that the assurance beneficiary and verifier are the same, i.e., the node downloading the
software verifies its own materials, artifacts, and outputs. Blockchain also significantly improves the
assurance efficiency. We first describe and explain our scheme using abstraction and then implement
our scheme to assure Ethereum as the target software to provide concrete proof-of-concept imple-
mentation, validation, and experimental analyses. Our scheme enables more significant performance
gains than relying on a centralized server thanks to the use of blockchain (e.g., two to three orders of
magnitude quicker in verification) and adds small overheads (e.g., generating and verifying proof
have an overhead of approximately one second, which is two orders of magnitude smaller than the
software download or build processes).

Keywords: software supply chain; assurance; software integrity; applied cryptography; blockchain

1. Introduction

We use computer software products in our everyday lives from digital information
transfer to sensor implementations to machine control. Due to our heavy reliance on
software products, securing software development and its supply chain has become of
paramount importance. Malicious modifications or injections, such as malware and back-
doors, can compromise software, yielding vulnerabilities for applications and operations
building on the software. Software development trends, such as open-source software
projects, an increasing number of software repositories, and collective software develop-
ments, have resulted in even greater security risks, as they contribute to having more
diverse, dynamic, and complex software supply chain involving many actors and contribu-
tors to software development.

Previous and ongoing research and development contribute toward securing software
development and its supply chain. Such research and development includes the Software
Bill of Materials (SBOM) and reproducible build. SBOM generates a record of software sup-
ply chain components to enable transparency, accountability, and tracking of the software
development process. SBOM has been mandated for software products in commerce in
the US by an executive order [1]. Reproducible build, on the other hand, is also known

Appl. Sci. 2024, 14, 9262. https:/ /doi.org/10.3390/app14209262

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14209262
https://doi.org/10.3390/app14209262
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0008-7468-2194
https://orcid.org/0000-0003-4088-7518
https://orcid.org/0000-0002-5736-5823
https://doi.org/10.3390/app14209262
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14209262?type=check_update&version=1

Appl. Sci. 2024, 14, 9262

20of 16

as deterministic verifiable build because, given the source code and the build condition,
it generates an identical build. Reproducible build can detect a compromise (malicious
change, such as a backdoor or malware insertion at the compiler) in the build condition.
Instead of advancing SBOM and reproducible build technologies themselves, we build on
previous research and development for these technologies to secure their outputs.

We secure the software supply chain against malicious compromise or injections in
various steps in the supply chain. More specifically, we build a software build assurance
scheme to detect the following compromises [2,3]: there has been a compromise and a
change/insertion in the build or distribution process, the source code has been modified,
or the download repository provides a different/modified code. The user downloading
the software can detect such changes and verify the software integrity confirming that
the software has not been modified from that by the legitimate source. To achieve such
goals, the user generates a proof based on the software artifacts (code, compiler outputs,
SBOM outputs) and compares it with a reference proof. We rely on the security-robust
cryptographic hash function to generate the proof so that a malicious adversary cannot
manipulate the proof or avoid detection, e.g., the adversary’s injection or change in the
software, which can occur in different parts of the software download and build processes,
changes the pseudo-random proof.

We use blockchain to serve as the trusted authority to provide the reference proof for
verification on the user machine. Blockchain is appropriate for such purpose because it has
high security in payload integrity (cannot change or modify the payload content on the
blockchain ledger), resistance to a single point of failure (as long as the majority of the dis-
tributed participants follow the protocol), and high visibility and accountability (thanks to
the distributed storage and easy read-access). We also utilize blockchain’s strength in auto-
matic broadcasting and distributed storage to distribute the proof offline, i.e., the reference
proof can be shared any time before the software build assurance proof verification.

Our work applies generally to all software projects in principle. We thus describe
our scheme in the abstract using variables in Section 4 to highlight the general applica-
bility. For synergy and to provide a concrete implementation instance of our scheme for
validations and system-based analyses, we implement our scheme in Section 5 targeting
the Ethereum cryptocurrency software (developed by a collective group of developers,
while implementing the operations to process transactions of approximately tens of billions
of dollars market capitalization magnitude). We implement the blockchain, serving as a
decentralized trusted authority for our scheme using Ethereum Smart Contract, which can
be used to build various digital decentralized applications.

In this paper, we build on reproducible build and blockchain and apply them to
achieve the following research contributions beyond the state of the art.

* We assure the software artifacts, including but beyond the source code.

* We make the software assurance distributed so that the assurance beneficiary and
verifier align, i.e., the node downloading and using the software verifies its materials
and artifacts.

* We achieve significant performance gains compared to the approach based on a
centralized server.

2. Software Supply Chain Background

Generic Software Supply Chain Paths: The software supply chain starts with the
developer who stores and shares the source code (s) in a repository. The source code,
along with the dependencies, will then be used in the build process involving compiling
the source code into machine-readable code. The build /compilation process outputs the
software build (b) and the documentation (d).

There are two popular paths to download and build software. First, the user can
download the source code and the dependencies from the source code repository and the
dependencies repositories, respectively, and then build/compile the software themself.
Second, a distribution platform can facilitate the download by providing the pre-build
packages to the user. The user then compiles and builds the software from those packages.

Appl. Sci. 2024, 14, 9262

30f16

Our work focuses on these two paths as they are the most typical paths for software
download /build.

SBOM and Reproducible Build: More recent software download and build processes
involve reproducible build for b and the software bill of materials (SBOM) for d. SBOM
is mandated for the software for commerce and generates a record and documentation of
the software supply chain components to enable transparency, accountability, and tracking
of the software development process. Reproducible build, also known as deterministic
verifiable build, provides an identical build output given the source code and the build con-
dition to detect a compromise in the compiler or in the build condition. Major open-source
software projects, such as Debian for Linux distribution, Tor for anonymous routing, and
cryptocurrency blockchain (including Bitcoin Core and Ethereum), support reproducible
build; we discuss the relevant recent research in Section 7.2. We also describe the concrete
implementation of SBOM using Syft and reproducible build for Ethereum Archanes in
greater detail in Section 5.

3. Problem Statement and Our Contribution
3.1. Problem Statement: Threats against Software Supply Chain

In this section, we describe the threats against the software supply chain that motivate
our work. More specifically, we describe the threats residing within the main components
and entities, described in Section 2 and illustrated in Figure 1.

Dependencies
Repository

(L

Build
D denci
Source Code ependencies

Repository

.

%)

Build
Process

T
©
Q
Q
&
Q
®
Q

. . assEsEEEEsEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEE s
esssmssssmmnnansn .

Distribution Platform User

Figure 1. Software supply chain involving SBOM and reproducible build. This diagram illustrates the
distribution-platform path, while the other user-direct path without the distribution is not illustrated
due to space constraint.

Source Code Repository: Malicious actors can create an entirely new repository that
is malicious from the creation. By doing so, victims will be downloading from a malicious
repository. If it is an existing repository, malicious actors can also submit malicious merge
requests that will turn into a backdoor or be exploitable by hiding the malicious intent via
control characters, intentional concealing, and masking code differences [4]. This would
effectively conceal malicious intent within the source code in the repository and hence
compromise it. Another threat could also be to utilize configuration errors like leaked API
keys in repositories and social engineering techniques that can empower a malicious actor
to gain control of the source code or repository [5]. Once gaining control, malicious actors
can modify the repository to carry out malicious intent.

Dependencies Repository and Build Process: Similar to source code repositories,
the build process involves retrieving dependencies from designated repositories. This
is facilitated by the utilization of package managers like npm and pip. This, however,
could also lead to vulnerabilities like injections of malicious code from repositories into the
dependency tree [6] that would affect the build process. Another type of threat that is not
related to compromise of the dependencies repository but is related to the build process
would be typosquatting or package confusion [7]. This technique is where malicious
actors rely on and exploit common typing errors of users based on misspelling, character
substitution, and pluralization of package names to carry out the attack. As examples,
‘ethereum-go’ vs. ‘etheruem-go’, ‘backdoor-pkg’ vs. ‘backdoor-pkgs’, and many more.

Appl. Sci. 2024, 14, 9262

4of 16

Distribution Platform: While malicious actors can attempt to inject malicious code
into the source code repository, which would compromise the software supply chain,
the distribution platform may also often rely on third-party dependencies and if these
dependencies have vulnerabilities, it is another attack vector that malicious actors may
choose to exploit.

SBOM: CISA suggests various types of SBOM, but in our case, we are focusing on
the build type [8]. This means the SBOM creates a list of all the components needed for
our project from the build process (b). If both the dependencies repository and the build
process are compromised, it puts the accuracy of the SBOM at risk.

3.2. Our Contributions: Assurance Targets Across Software Supply Chain and Blockchain for
Distributed Authority

We build a software build assurance scheme to check and assure the integrity of the
various steps in the supply chain to defend against the active modification and malicious
threats described in Section 3.1, More specifically, we use the software artifacts generated
from the supply chain, namely, the source code (s), the build output including compilation
(b), and the SBOM documentation (d), as the inputs and targets of our software assurance.
We describe and explain these software artifacts as well as the software build assurance
scheme in greater detail in Section 4.

In addition to assuring the software in multiple stages in the supply chain, our work
advances beyond the approaches requiring a centralized authority and real-time protocol
interactions with the centralized server, c.f., remote code attestation. Our scheme does not
involve such centralized authority and instead uses blockchain to replace the centralized
server authority. We also build on recent software development technologies of repro-
ducible build and SBOM to enable our scheme; the reproducible build, in particular, enables
our use of blockchain because it generates a deterministic software artifact in b to enable
multiple recipients.

Our software build assurance is agnostic to the software applications, and our work
can apply to any software in principle. However, our work requires reproducible build
so that the software artifacts/compiler outputs are consistent across different machines
If the software artifacts (the inputs of our assurance scheme) are not consistent and vary
across machines, the verification does not work due to our scheme’s use of the hash
function (which produces a different output if using different inputs). While we provide a
concrete validation using one software application for the Ethereum blockchain, we leave
further validation and demonstration of other software applications to show the general
applicability for future work. Previous research, however, has applied similar techniques
as ours on other software applications, e.g., Bitcoin [9] and in cellular networking [10],
although these assure only the software codes (which tends to be more consistent, e.g., a
legitimate software source provides the same set of source code files).

4. Our Scheme

We build on SBOM and reproducible build, described in Section 2. We provide
assurance of the software artifacts so that any changes and modifications of the software
artifacts are detected. We thus take the outputs and the artifacts of the software supply
chain, including those from SBOM d and reproducible build b, and input them into our
scheme. The user of the software development, and the entity downloading the software
conduct the software build assurance.

We present our scheme using abstraction and variables in this section while providing
a more concrete implementation instance in Section 5.

4.1. Our Protocol Qverview

The software supply chain makes use of the source code s and builds/compiles the
software to generate b and the documentation d, as described in Section 2. Our scheme uses
the SBOM to generate d and reproducible build to generate b so that b, given the user’s
compiler and the build conditions, provides the same b. Thanks to the use of reproducible
build, other entities, given the same build condition and environment, also produce the
same b. Our scheme, described in Figures 2 & 3 executed by the user, takes these software

Appl. Sci. 2024, 14, 9262

50f 16

artifacts, i.e., s, b, d, to construct a proof p. Table 1 lists these variables used in our paper,
and the rest of the section describes our scheme in greater detail.

G, %\I

WA
Authority

([
([

Repositories

ID, p’ ID, s, b, d

User

Figure 2. Our scheme overview, including information sources and inputs from the authority (pro-
rmation
‘elies on

§ —>

Build

Process

S\
» bHh—> » P

o

Merkle

Tree

Figure 3. Online process from source code s to build/compilation b to the generation of proof p.

Table 1. Variable descriptions (Section 4) and assignments for implementation (Section 5).

Variable Description Our Implementation

s Source code files of the specific version of =~ Source code files of the latest Ethereum
the target software downloaded by user ~ software, Archanes (v1.13.4)

b Reproducible build compiler output from Geth of Archanes (v1.13.4) stored in the
user Ethereum repository [11]

d Sj]igl\(;[f(iﬁgizegastgﬁv\?af;he.:E:rcilg dvgr— SBOM documentation of the Ethereum
user & 8 y software, Archanes (v1.13.4)
Proof for the target software generated by ~ Proof for Archanes (v1.13.4) generated by

P the user the user

S Source code files of the specific version of =~ Source code files of the latest Ethereum
the target software from authority software, Archanes (v1.13.4)

b Reproducible build compiler output from Geth of Archanes (v1.13.4) stored in the
infrastructure from authority Ethereum repository [11]

FY SBOM documentation of the specific ver- SBOM documentation of the Ethereum
sion of the target software from authority = software, Archanes (v1.13.4)

p Proof reference from blockchain Proof store<.:1 in the Ethereum blockchain

and centralized server
-
D Index of Proof Index of. Proof, p’ in the Ethereum
blockchain
H Hash function SHA-256

Appl. Sci. 2024, 14, 9262

6 of 16

The authority is a logical entity that provides the information to the user about what
the software artifacts and the proof should be, which we call the references and use the
prime variables in Table 1. The authority can be implemented in many ways as long as it
is an entity that has ownership over the source code in terms of storing or distributing it
to users, for example, the software vendor who developed it. The authority provides the
reference build ('), the reference documentation (d’), the software ID and the reference
proof (p') to the user. p’ is generated in the same way as p but only from the authority. p’ is
computed by the authority and is a deterministic function of s’, V', d’, similarly to how p is
computed by the authority and is a deterministic function of s, b, d. Thus, ifs =s', b =1/,
and d = d’ and there has been no unauthorized modifications and changes in s’, ¥/, d’, then
p = p'. The user assures that the software artifacts have been unmodified and the software
supply chain integrity by comparing p and p’; if p # p’, then the breach is detected.

4.2. Authority Implementation and Offline vs. Online

For the authority implementation, we compare our scheme against the centralized
server approach. In the centralized server approach, the authority providing the reference
inputs for software build assurance is a centralized remote server and requires real-time
networking between the server and the user, c.f., remote code attestation discussed in
Section 7.

Our distributed scheme, in contrast, implements the authority using blockchain. We
use blockchain to replace the centralized server and to provide the proof reference p’. The
use of blockchain enables the user to forgo networking beyond its own node for software
assurance verification. We describe the blockchain design and application for our assurance
scheme to implement the distributed authority in greater detail in Section 4.5.

We define online vs. offline to better explain the overhead differences. The online
operations occur at the time of the software download, while the offline operations can
occur before the software download and build. The offline overheads and costs are lower
than the online overheads because the offline activity can occur any time before the time
of the software download and build. Our work specifically enables the delivery of the
authority-reference inputs offline by using blockchain. Blockchain automatically synchro-
nizes and delivers the reference information offline at the time when the software updates
are available in the repositories, which is in advance of the online software update to
the user.

4.3. Building Blocks: Hash Function, Merkle Tree, and Blockchain

The cryptographic hash function is a mathematical algorithm that turns input into
a fixed-size string of characters, known as a hash value. It ensures data integrity by
generating unique hash values for different inputs and exhibiting properties like collision
and pre-image resistance, making it challenging for adversaries to tamper with or to
reverse-engineer the data.

Merkle trees, building on the cryptographic hash functions themselves, utilize these
properties to create a hierarchical structure. Building the tree starts with a set of leaf node
values x1, %3, . .., Xy, where each node x; would contain hash value H(x;). In the next level
of the tree moving up would be the parent node that would contain the hash value of the
concatenation of two of the children nodes, for example, Hi, = H(H(x1)||H(x2)). The
process will continue to build on the next level until a root hash is formed. This root hash
represents the entire dataset concisely. A Merkle tree [12] based on a hash function is known
to be efficient for verification and is popularly used in many computing applications, as
described in Section 7.3.

Blockchain provides a cryptographic system with robust security properties using
the likes of the hash function, the Merkle tree, and the public-key digital signature. It
provides a digital ledger with high integrity where one can securely track who wrote the
transaction on the ledger. Specifically, blockchain utilizes the public-key digital signature
to provide authenticity, non-repudiation, and data integrity [13]. Such robust security
properties enable the blockchain to be applied to high-risk security applications. One
notable example is the cryptocurrency blockchains processing digital financial transactions.
However, while we use similar cryptographic construction for the ledger security as the

Appl. Sci. 2024, 14, 9262

7 of 16

cryptocurrency, our blockchain application environment having the software authorities
(e.g., known software sources which are more reputable than the others) enables the use of
a permissioned consensus protocol (e.g., as opposed to a permissionless protocol, such as
that based on proof of work), providing significantly more efficient processing.

4.4. Proof Generations for p and p’ Using Merkle Tree for Setting Up Assurance

In Figure 4, we use ID, s, b, and d as the leaf nodes (which are the nodes on the bottom
of the tree) highlighted in gold color. As the source file inputs (s) contain multiple files,
we denote each individual file as F;, where i indicates the source code file index. With the
use of a one-way hash function, the Merkle tree computation propagates from bottom to
top. The final Root computation yields the Root, which serves as the proof p. The same
computation occurs from the authority side providing the reference but using ID, s, b/,
and d’ to generate p/, as described in Section 4.5. The Merkle tree is used in both offline
blockchain and online user-side computing, which are described in greater detail in the

following sections.

D b 4 F, F, F, F, F, F, F, F, F, F, F, F, F,

Figure 4. Merkle tree application for our scheme, where F; are the source code s files and the Root is
the proof p.

4.5. Blockchain for Authority: Reference Distribution in Offline and Access in Online

We use blockchain to serve as the authority to provide the reference information to
enable the online user-side verification, in contrast to the centralized server approach
implementing the logical authority on a physical remote server machine, as described in
Section 4.2. In addition to having high payload integrity (cannot change or modify the
payload content on the blockchain ledger) and high visibility and accountability (thanks
to the distributed storage and easy read-access), we apply blockchain to implement the
authority because blockchain supports automatic broadcasting and distributed storage to
distribute the proof offline.

In our scheme, blockchain enables the reference proof to be distributed to the prospec-
tive downloading users offline (i.e., any time before the software download, build, and
the build assurance verification). The networking and sharing of the proof reference infor-
mation of p’ (s, V', d’ are used to compute p’ but do not get networked) are offline so that
they are stored within the user machine before the software download and build. In online,
i.e.,, when downloading and building the software, the user simply accesses the blockchain
database stored within its machine (computing only). In contrast, the centralized server
approach involves the p’ delivery and networking online (networking and computing).
Because the networking and distribution of the reference information of p’ are offloaded to
before the software download /build, our scheme is significantly more efficient than the

Appl. Sci. 2024, 14, 9262

8 of 16

centralized server approach. without the explicit networking with another node, as this
information is already stored in the local database provided by the blockchain.

We build the authority using a permissioned blockchain, which controls the entities
who can write on the blockchain and require registration. These entities generate the
references ¢/, b’,d’, p’ and distribute them to write on the blockchain database, the database
being locally stored and distributed to many other nodes. The entities can vary, including
the software developers who write/commit/upload on the repositories or a third-party
entity dedicated for software build assurance, in our scheme implementation. blockchain
monitors and tracks the s/, b/, d’, p’ for accountability, so such entity control can be dynamic,
i.e., an entity can be revoked. In our work, we focus on the scheme framework itself as
opposed to making strong recommendations about the ecosystem when implementing our
scheme framework, including who can generate the blockchain payloads and who has the
write-access on the blockchain and the trade-off analyses (e.g., third-party entity outside of
the developers themselves or the source-code repository can provide the separation, which
can be useful in some software applications). While our scheme supports different ecosys-
tem models and can support various entities who can contribute to writing/uploading
s',b',d’,p’, in our concrete implementation instance in Section 5, we introduce a third-
party entity to write and upload the s/,b’,d’, p’ on the blockchain data. Because of the
permissioned blockchain, we use proof-of-authority for our consensus protocol, which is
significantly more efficient and transaction-scalable (generating more transactions) than the
permissionless blockchains, such as those for cryptocurrency (e.g., Bitcoin and Ethereum).

4.6. User-Side Verification (Online)

In online, i.e., during the software development, including the download of s and the
build of b and d, the user computes and generates the proof p described in Section 4.4. In
user-side computing, a user first downloads the ID and s of the target software from the
repository and compiles s in their machine to obtain b and d. Then, it is involved in the
proof generation process by constructing the Merkle tree using s, b, and d to calculate its
proof, p, for the target software version. The proof verification process involves retrieving
the respective ID and p’ from the blockchain and comparing p with p’. If both p and p’
match then it assures the user about the s, b, and d, i.e., all the software artifacts correspond
to the authority-referencesand s =s’, b = b/, and d = d'.

5. Our Scheme Implementation to Assure the Ethereum Software Chain

While Section 4 describes our scheme using abstraction and the variables which
are generally applicable across software projects and cryptographic function choices, we
provide an implementation instance of our scheme in this section to provide a proof-of-
concept and provide concrete analyses. Our implementation consists of the generation
of proof on both the blockchain side and the user side. In this section, we focus on the
user-side, computing p using s, b, d, but the same applies to the authority (blockchain in our
scheme), with p’ depending on s’,b’,d’ and thus omits the prime variables on the authority.

5.1. Authority Implementation For Our Scheme (Blockchain) vs. Centralized Server Approach
(Remote Server)

Our scheme uses blockchain to distribute the authority-reference information offline,
and the user can use this reference information to check the software artifacts of s, b, d online
at the time of software download and build, as described in Section 4. The use of blockchain
enables the user to access and retrieve the relevant reference information within its device,
as blockchain provides distributed storage on the user. In contrast, the centralized server
approach requires the user to communicate with the remote server authority to retrieve the
reference information.

To demonstrate the efficiency of our scheme’s proof verification enabled by the
blockchain use, we implement the centralized server approach described in Section 4.2
and implement a remote server as the centralized authority to provide the references for
software build assurance. We implement the remote servers in various locations and, more
specifically, in four distinct locations in the world (two in the United States and two over-
seas) through the Google Cloud Platform. More specifically, the remote servers are located

Appl. Sci. 2024, 14, 9262

9of 16

in “Iowa”, “California”, “Singapore”, and “London”. We use these geographical locations
to label and identify the distinct remote authority servers for the centralized authority.

5.2. Target Software for s

Our target software is the Ethereum cryptocurrency software. More specifically, the
source code s is the latest Ethereum software version, Archanes (v1.13.4). Our work is
generally applicable to any software project in principle. However, we chose the Ethereum
cryptocurrency software because it is highly relevant to our work. Ethereum cryptocurrency
is highly relevant because of its high-security risk. Ethereum cryptocurrency is developed
by a collective group of developers, making it highly vulnerable to software compromise.
Cryptocurrency is also very popular with its operations to process transactions (the market
capitalization is in tens of billions of dollars), and thus compromising the integrity of the
software has a high breach impact.

5.3. Building Blocks for Our Scheme for b and d
5.3.1. b Using Reproducible Build

The current Ethereum builds and supports reproducible build in popular OSs, such as
Linux, Windows, and MacOS [11]. In our implementation, we focus on the reproducible
build for the Linux 64-bit processor. The reproducible build output b (which becomes one
of the inputs to our proof generation in our scheme) is the compilation output, which is the
geth (Archanes (v1.13.4)) running the Ethereum node and wallet. This b is stored in the
official Ethereum repository.

5.3.2. d Using SBOM

We use an open-source SBOM generator tool called Syft [14] for our implementation.
Using Syft, the SBOM includes information on geth for Archanes (v1.13.4), 91 packages as
dependencies, and its relationships (total 181) between packages. The generated SBOM will
then be used as d in our implementation. We chose Syft as it can convert between SBOM
formats easily and works well with another tool called ‘Grype’, which is a vulnerability
scanner that can scan for any common vulnerability and exposure (CVE). This would be
particularly helpful to incorporate in a future proof of concept.

5.4. Proof Generation Using Merkle Tree and Hash

Based on the overview of the Merkle tree in Section 4.3 and Figure 4, we build Proof
generation with the Merkle tree construction using the open-source implementation of
Merkle tree [15] and Proof verification functionalities using C++, OpenSSL SHA-256 hash
implementation and recursive directory iterator, and a regular expression to retrieve all
relevant files of the Ethereum latest version, Archanes (v1.13.4) (excluding dynamic user-
specific and configuration files) associated with C, C++, and shell. The ID, s, b, and d of
Archanes (v1.13.4) are the inputs of the Merkle tree for proof generation. We have a total of
1350 inputs of the Merkle tree with s containing 1347 inputs and 1 input each from ID, b,
and d. However, we use cyclic extension of these files till 2048 inputs as discussed in [9] to
make it a balanced Merkle tree with the number of leaf nodes equal to the power of two.

5.5. Blockchain for Reference Proof Delivery

We build a smart contract using Solidity v0.8.21 to upload the ID and its respective p (as
a form of key-value pair) on the local private Ethereum blockchain. As a proof-of-concept
(PoC) implementation, we do not upload ID and p in the Ethereum Mainnet to avoid
transaction fees. Our smart contract design enables the maintainers of the smart contract
to add new nodes with write permission. We use two mappings in our smart contract:
authorization mapping (maps the address to a Boolean value specifying the authorization
of the address to modify the ledger) and key-value pair mapping (maps the Proof with
the respective ID). It can also verify whether a node has the write privilege using the
authorization map before granting permission to upload an ID with the p on the blockchain.
A user can retrieve p for the respective ID from the blockchain for proof verification.

Appl. Sci. 2024, 14, 9262

10 of 16

5.6. Hardware and Experimental Setup

Our experiment consisted of two main pieces of hardware that we used for user and
remote servers. The remote servers are only used in the centralized server approach. For
user hardware, we use Intel Xeon CPU E5-1650 v2 with 32GB RAM. We use the Google
Cloud Platform (GCP) for our remote server that has 2 vCPU with 8GB RAM. While
the power of a processor (CPU) is important, the memory specification on the random
access memory (RAM) provides information on the capability of a computer to access and
process data. We also implemented an in-memory data store using the Redis open-source
database [16] for higher efficiency in data storage access.

6. Experimental Analyses

We implement our scheme and empirically verify the correctness of our scheme in
implementation, i.e., correctly detect the modifications of the software artifact inputs to
our scheme in Section 6.1. After verifying that our scheme correctly detects the changes
and modifications of the software artifacts, we analyze the performances. Our performance
measurements and analyses include the online user-side computing for proof generation
and verification (compared with the software download/build latencies) in Section 6.2. For
our performance analyses, we measure latency, storage/memory, and processing. Further-
more, to highlight the efficiency of the authority delivering the references of s, V', d’, p/,
we implement and compare the performances of our blockchain-based scheme vs. the
approach based on a centralized server.

6.1. Verification Correctness

We observe that a change in s, b or d changes the proof p so that it becomes p # p’ due
to the pseudo-random hash functions used in our implementation. More specifically, in
our implementation, omission of a file, addition of a new file, and even a single bit flip in
s, b or d changes p so that p # p/, failing the integrity check and verification, and detecting
the changes in the software supply chainin s, b or d.

6.2. Computing Performances

Computational Latency: A user needs to perform leaf node construction (hashing all
the files of the Ethereum software, compiler output, and SBOM document) and then finally
generate the non-leaf nodes up to the Merkle root to generate a proof using the Merkle
tree in Figure 4. The leaf-node construction corresponds to the bottom lines for the hash
computations of the leaf nodes (ID, b,d, and the source files F) in Figure 4, while the non-
leaf node construction takes the preceding hash outputs as the inputs to progress upward.
The leaf-node construction is the dominant factor of the computing overhead because of
the longer sizes and the processing for ID, b, d, and the source files F. In our measurements,
the leaf nodes construction and the non-leaf nodes construction take 1082 ms or 1.082 s and
14.48 ms, respectively, resulting in a proof generation latency of 1096 ms or 1.096 s. On the
other hand, the proof verification takes only 0.4254 ms. Therefore, the computing overhead
including the proof generation and verification is 1097 ms or 1.097 s for the software build
assurance of the Ethereum software artifacts. To compare, the Ethereum software download
takes 157 s and 371 s for compilation, which are two orders of magnitude greater than our
online scheme overhead of 1.097 s. Both the software download /build and the user-side
proof generation and verification occur online.

Storage, Memory, and Processing: Though each Ethereum software version can have
different b values (thus different p) based on the operating systems and processors, a user
needs to store the Merkle tree of only the Ethereum software version it is using. For the latest
Ethereum software version (Archanes (v1.13.4)), the Merkle tree size is 197.42 kilobytes
with a total of 1972 files, including the SBOM document and compiler output. Moreover,
in our experiment, it takes only 3-5% RAM and 1-2% CPU usage for Proof generation
and verification.

Appl. Sci. 2024, 14, 9262

11 of 16

6.3. Authority Delivering References: Our Scheme vs. Centralized Server Approach

As described in Section 4.5, our scheme utilizing blockchain enables the networking
and distribution of the reference information of p’ offline, in contrast to the centralized
server approach which relies on a server and the online networking and sharing of p’. The
proof verification process online (more specifically, after the software download/build and
the proof generation for p) operates very differently between our scheme vs. the centralized
server approach. In this section, we focus on the online software build assurance verification
process. We also analyze how the efficiency of the verification affects the bandwidth of
the assurance operations (the number /rate of assurances supported by our scheme vs. the
centralized server approach).

Online Proof Verification For Our Scheme vs. Centralized Server Approach: Because
our scheme only involves computing while the centralized server approach involves both
networking and computing (computing and verification based on the communication
receiving results of p’), our scheme is significantly more efficient in the online proof
verification operation. Figure 5 shows the empirical measurement distribution in CDF and
identifies the average values in dotted vertical lines. The proof verification takes 0.4254 ms,
while the centralized server approach takes at least 91.42 times more, depending on the
locations. Among the distinct remote servers serving as the authority to our scheme, the
Iowa server is the quickest at 38.89 ms (91.42 times slower than our use of blockchain for
the authority) and the London server is 370.9 (871.9 times slower). In general, the remote
servers in the US nation (the user is also in the US) perform much better than the ones
outside, because they go through a smaller number of distinct internet service providers
(ISPs). In our experiments, our scheme based on the blockchain-authority performs two to
three orders of magnitude quicker than having a centralized, remote authority.

1 : w w
3 o < oo
gl Ol N ©lo
.l (e 0] ~— AN~
y =] N ——Our Scheme
L : —lowa
005 1 California
O I ——Singapore
: ——London
1
I
O 1 L L L
107" 10° 10’ 102 103

Duration (milliseconds)

Figure 5. The proof verification time between our scheme using distributed blockchain vs. centralized
remote servers.

Assurance Bandwidth For Our Scheme vs. Centralized Server Approach: Using
blockchain as the authority for our scheme as opposed to the centralized server approach
also provides significant improvement in the rate support. We define the bandwidth here
to be the number of assurance resolutions that can be supported using our scheme. We
experimented using 1000 requests per second and observed how many of those requests
were resolved, including the final verification. As shown in Figure 6, if using the blockchain
as the authority, our scheme can support 905.9 assurance resolutions per second. If using
a remote centralized server as the authority for our scheme, the bandwidth is limited
to between 17.90 (London with the worst performance) and 63.78 (Iowa with the best
performance). Comparing between the distinct remote-server simulations, similarly to the
above latency measurements, the remote servers in the US perform much better than the
authority servers outside.

Appl. Sci. 2024, 14, 9262

12 of 16

Our Scheme 1 905.0

lowa 63.78 1

California 23.11 i

Singapore | 20.66 -

London 17.90 1

10" 102 10°
Assurances per Second

Figure 6. Bandwidth performance in assurance resolutions per second in comparison between our
scheme and remote server locations.

6.4. Supports Software Assurance Requirements

Our scheme is applied for the software build assurance. New software versions, which
are the new inputs of our software assurances, only occur when the software is updated.
For Ethereum cryptocurrency, which is our target software for assurance, there have been
22 version updates since 2014 [17], so 2.2 version updates per year. The current Ethereum
stable build [11] supports three different operating systems of Linux, Mac OS, and Windows,
50 6.6 updates per year. Our scheme bandwidth performance of 905.9 assurance resolutions
per second in Section 6.3 is enough to support our software build assurance application for
Ethereum, as a 6.6 assurance resolutions per year requirement is significantly smaller than
the 905.9 assurance resolutions per second our scheme supports.

The blockchain ledger also grows according to the software build assurance require-
ment to support new software version updates. The 6.6 version updates per year require-
ment results in the blockchain ledger growing 1.3030 kB = 6.6 x 197.42 kB per year if
storing the entire Merkle tree nodes, where 197.42 kB is for each software build version as
empirically analyzed in Section 6.2. This blockchain storage requirement is significantly
less than most applications, such as the global financial transaction processing in cryptocur-
rency, whose ledger sizes are typically of the order of tens of GB, and, for more popular
cryptocurrencies, such as Bitcoin and Ethereum, of the order of hundreds of GB. As the
ledger’s storage requirements remain minimal, even with multiple updates, the overall
storage overhead is negligible, given the relatively small size of each update.

7. Related Work
7.1. Remote Code Attestation

Our work is related to remote code attestation that verifies the integrity of the running
code on the users’ system, adopting several hardware-based, software-based, and hybrid
techniques. Hardware-based attestation techniques [18-20] involve hardware components,
e.g., trusted platform module (TPM), software guard extensions (SGX), and software-
based attestation techniques [21-24], that involve a challenge and response protocol in
real-time, time synchronization, empty memory space filling, etc. An advancement of
these techniques, hybrid attestation techniques [25-27], integrates both hardware-based
and software-based techniques, minimizing the hardware cost with embedded processing
components, e.g., field-programmable gate array (FPGA), memory protection unit (MPU)
and micro-controller unit (MCU), etc. Our scheme goes beyond the research in remote code
attestation in two ways: first, our scheme verifies the integrity of a software in different
stages of the supply chain; second, our scheme does not rely on the centralized authority
by using a distributed blockchain.

Appl. Sci. 2024, 14, 9262

13 of 16

7.2. Reproducible Build

Reproducible build yields a deterministic build which achieves reproducibility when,
with identical source code, build environment, and build instructions, any entity can
recreate precise, bit-for-bit copies of all specified artifacts. [28] Projects and development
efforts, such as Debian packages [29], Gitian [30], and other Linux distribution [31,32],
focus on the reproducibility and verifiable build where there will be involvement using
a virtual environment that would fix non-deterministic variables. Some other methods
also include removing embedded timestamps from binary and making changes to the
CFLAGS variable to produce a deterministic output [33]. It is also worth mentioning
that [34] suggested that having a deterministic build for close-source software proves to
be difficult due to lack of documentation and many other compilation processes that are
susceptible to non-deterministic output [35]. Our work assumes, builds on, and uses the
reproducible build technology.

7.3. Hash and Merkle Tree Applications for Securing Integrity

Our work builds on the Merkle tree and hash function to construct our scheme for
software integrity. Previous research has utilized the Merkle tree and hash function for
integrity in other applications and purposes than ours, including in over-the-air vehicular
software updates [36,37], vehicular firmware updates [38,39], transactions, blocks, and
the consensus mechanism in blockchain [40,41], cryptocurrency and cellular networking
software assurance [9,10]. Version control systems (VCSs) used for project collaborations
include Git [42], Subversion [43], and Mercurial [44]. Our work uses the Merkle tree to
achieve different goals than these previous works, i.e., we use it to assure software integrity.

7.4. Blockchain for Security

Blockchain provides security for many types of systems, e.g., identity management [45],
electronic voting [46], decentralized cryptocurrencies [47], supply chain management [48],
healthcare [49], public key infrastructure (PKI) [50,51], cellular networking [52], the Internet
of Things (IoT) [53], and vehicular networking [54], etc. The use of blockchain in these
systems mitigates several types of security risks and attacks, e.g., single point of failure,
data tampering, unauthorized access control, users’ identity and data breach, distributed
denial-of-service (DDoS) attacks, Sybil attacks, replay attacks, injection attacks, and man-
in-the-middle (MITM) attacks, etc. with its properties such as decentralization, anonymity,
immutability, transparency, and automatic synchronization, etc. In our scheme, we use
these properties of blockchain to preserve the software supply chain integrity, which has a
different goal from that of the previous research.

8. Conclusions

In this paper, we design and build a software build assurance scheme assuming repro-
ducible build (for deterministic build output) and SBOM (for documentation, recording,
and tracking of the software development). Our software build assurance scheme checks
the integrity against (unauthorized or unintentional) changes and modifications in multiple
software artifacts generated in the software supply chain. More specifically, it checks the
integrity of the software artifacts of the source code (s or F, the latter of which corresponds
to the source code in multiple files), build or compilation output (b), and the documentation
or record (d). Computing on these inputs and using cryptographic hash and Merkle tree
yields the proof p in our scheme. We further use blockchain to serve as the authority pro-
viding the reference information for our scheme; this information provides the comparison
reference and corresponds to what the software artifacts should be. In addition to the
blockchain providing high integrity and control on the write-access, the distributed storage
and automatic broadcasting strengths of the blockchain provide significant performance
advancements in the online software build assurance verification processes by offloading
the reference delivery to offline before the time of the software download /build.

In addition to describing our scheme using abstraction and variables, we empirically
implement our scheme targeting the Ethereum software as the object of assurance to show
the correctness of our scheme (i.e., changes are detected). Our empirical performance

Appl. Sci. 2024, 14, 9262 14 of 16

analyses based on our implementation also show that our scheme is appropriate and
provides small and manageable costs in the software download /build process, e.g., our
scheme’s online overhead is two orders of magnitude smaller than both the download and
build /compilation duration. Furthermore, the blockchain-based authority is also two to
three orders of magnitude quicker than the authority based on a centralized remote server.

Author Contributions: Conceptualization, K.L. and S.-Y.C.; Methodology, K.L. and S.-Y.C.; Software,
K.L.; Validation, K.L. and S.-Y.C.; Formal analysis, K.L, A.S. (Arijet Sarker), S.W. (Simeon Wuthier);
Investigation, K.L. and S.-Y.C.; Resources, J.K. (Jinoh Kim),].K. Jonghyun Kim) and S.-Y.C.; Data
curation, S.W.; Writing—original draft, K.L. and S.-Y.C.; Writing—review & editing, K.L., A.S. (Arijet
Sarker), S.W. (Simeon Wuthier), J.K. (Jinoh Kim), J.K. Jonghyun Kim) and S.-Y.C.; Visualization, K.L.
and S.W. (Simeon Wuthier); Supervision,] K. (Jinoh Kim) and S.-Y.C.; Project administration, J.K.
(Jinoh Kim), J.K. (Jonghyun Kim) and S.-Y.C.; Funding acquisition, J.K. (Jinoh Kim),].K. Jonghyun
Kim) and S.-Y.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Science Foundation under Grant
No. 1922410 (50%) and by an Institute of Information and Communications Technology Planning
and Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2021-0-02107, with
collaborative research on element Technologies for 6G Security-by-Design and standardization-based
International cooperation, 50%).

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. The United States Government. The White House. 2023. Available online: https://www.whitehouse.gov /briefing-room/
presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/ (accessed on 29 October 2023).

2. SolarWinds Supply Chain Attack | Fortinet. Available online: https://www.fortinet.com/resources/cyberglossary/solarwinds-
cyber-attack (accessed on 29 September 2024).

3. Advanced Persistent Threat Compromise of Government Agencies, Critical Infrastructure, and Private Sector Organizations | CISA.
Available online: https://www.cisa.gov/news-events/cybersecurity-advisories /aa20-352a. (accessed on 29 September 2024).

4. Wuy, Q,; Lu, K. On the Feasibility of Stealthily Introducing Vulnerabilities in Open-Source Software via Hypocrite Commits 2021
Available online: https://api.semanticscholar.org/CorpusID:233479632 (accessed on 11 August 2024).

5. Meli, M.; McNiece, M.R.; Reaves, B. How Bad Can It Git? Characterizing Secret Leakage in Public GitHub Repositories. In
Proceedings of the Network and Distributed System Security Symposium 2019, San Diego, CA, USA, 24-27 February 2019.
[CrossRef]

6. Liu, C; Chen, S,; Fan, L.; Chen, B.; Liu, Y.; Peng, X. Demystifying the vulnerability propagation and its evolution via dependency
trees in the NPM ecosystem. In Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA,
25-27 May 2022. [CrossRef]

7. Neupane, S.; Holmes, G.; Wyss, E.; Davidson, D.; Carli, L.D. Beyond Typosquatting: An In-depth Look at Package Confusion.
In Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23), Anaheim, CA, USA, 9-11 August 2023;
pp. 3439-3456.

8. Cybersecurity and Infrastructure Security Agency (CISA). Types of Software Bill of Material (SBOM) Documents. Available
online: https://www.cisa.gov /sites/default/files /2023-04 /sbom-types-document-508c.pdf (accessed on 11 August 2024).

9. Sarker, A.; Wuthier, S.; Kim, J.; Kim, J.; Chang, S.Y. Version++: Cryptocurrency Blockchain Handshaking with Software Assurance.
In Proceedings of the 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC), IEEE, Las Vegas, NV, USA,
8-11 January 2023; pp. 804-809.

10. Purification, S.; Kim, J.; Kim, J.; Kim, I.; Chang, S.Y. Distributed and Lightweight Software Assurance in Cellular Broadcasting
Handshake and Connection Establishment. Electronics 2023, 12, 3782. [CrossRef]

11. The Go-Ethereum Authors. Stable Releases. 2023. Available online: https://geth.ethereum.org/downloads (accessed on 29
October 2023).

12. Merkle, R.C. A digital signature based on a conventional encryption function. In Advances in Cryptology—CRYPTO '87; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1988; pp. 369-378. [CrossRef]

13. Bitcoin.org. Available online: https:/ /bitcoin.org/bitcoin.pdf (accessed on 1 October 2024).

14. GitHub—Anchore/Syft: CLI Tool and Library for Generating a Software Bill of Materials from Container Images and Filesystems.
Available online: https://github.com/anchore/syft. (accessed on 10 November 2023).

15. Microsoft. Microsoft/Merklecpp: A C++ Library for Creation and Manipulation of Merkle Trees. 2023. Available online:

https:/ /github.com/microsoft/merklecpp (accessed on 20 October 2023).

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.fortinet.com/resources/cyberglossary/solarwinds-cyber-attack
https://www.fortinet.com/resources/cyberglossary/solarwinds-cyber-attack
https://www.cisa.gov/news-events/cybersecurity-advisories/aa20-352a
https://api.semanticscholar.org/CorpusID:233479632
http://doi.org/10.14722/ndss.2019.23418
http://dx.doi.org/10.1145/3510003.3510142
https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf
http://dx.doi.org/10.3390/electronics12183782
https://geth.ethereum.org/downloads
http://dx.doi.org/10.1007/3-540-48184-2_32
https://bitcoin.org/bitcoin.pdf
https://github.com/anchore/syft
https://github.com/microsoft/merklecpp

Appl. Sci. 2024, 14, 9262 15 of 16

16.
17.
18.
19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.
42.
43.
44.
45.

Redis. Available online: https://redis.io/ (accessed on 29 January 2024).

Ethereum.org. The History of Ethereum. 2024. Available online: https://ethereum.org/en/history/ (accessed on 6 August 2024).
Trusted Computing Group. Trusted Platform Module (TPM). 2023. Available online: https:/ /trustedcomputinggroup.org/work-
groups/trusted-platform-module/ (accessed on 26 May 2023).

Intel. Intel Software Guard Extensions. 2023. Available online: https:/ /www.intel.com/content/www /us/en/developer/tools/
software-guard-extensions/overview.html (accessed on 26 May 2023).

ARM. Layered Security for Your Next SoC. 2023. Available online: https://www.arm.com/products/silicon-ip-security (accessed
on 26 May 2023).

Armknecht, F; Sadeghi, A.R.; Schulz, S.; Wachsmann, C. A security framework for the analysis and design of software attestation.
In Proceedings of the 2013 ACM SIGSAC Conference on COMPUTER & Communications Security, Berlin, Germany, 4-8
November 2013; pp. 1-12.

Kovah, X.; Kallenberg, C.; Weathers, C.; Herzog, A.; Albin, M.; Butterworth,]. New results for timing-based attestation. In
Proceedings of the 2012 IEEE Symposium on Security and Privacy, IEEE, San Francisco, CA USA, 20-23 May 2012; pp. 239-253.
Gardner, R.W,; Garera, S.; Rubin, A.D. Detecting code alteration by creating a temporary memory bottleneck. IEEE Trans. Inf.
Forensics Secur. 2009, 4, 638-650. [CrossRef]

Castelluccia, C.; Francillon, A.; Perito, D.; Soriente, C. On the difficulty of software-based attestation of embedded devices. In
Proceedings of the 16th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 9-13 November 2009;
pp. 400—-409.

Nunes, I.D.O.; Eldefrawy, K.; Rattanavipanon, N.; Tsudik, G. APEX: A Verified Architecture for Proofs of Execution on Remote
Devices under Full Software Compromise. In Proceedings of the USENIX Security Symposium, Boston, MA, USA, 12-14 August
2020; pp. 771-788.

Ammar, M,; Crispo, B.; De Oliveira Nunes, I.; Tsudik, G. Delegated attestation: Scalable remote attestation of commodity CPS by
blending proofs of execution with software attestation. In Proceedings of the 14th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, Abu Dhabi, United Arab Emirates, 28 June-2 July 2021; pp. 37-47.

Eldefrawy, K.; Rattanavipanon, N.; Tsudik, G. HYDRA: Hybrid design for remote attestation (using a formally verified microker-
nel). In Proceedings of the 10th ACM Conference on Security and Privacy in wireless and Mobile Networks, Boston, MA, USA,
18-20 July 2017; pp. 99-110.

Reproducible Builds. A Set of Software Development Practices That Create an Independently-Verifiable Path from Source to
Binary Code. Available online: https:/ /reproducible-builds.org/ (accessed on 10 November 2023).
ReproducibleBuilds—Debian Wiki. Available online: https://wiki.debian.org/ReproducibleBuilds (accessed on 10
November 2023).

GitHub—Devrandom/Gitian-Builder: Build Packages in a Secure Deterministic Fashion Inside a VM. Available online: https:
/ / github.com/devrandom /gitian-builder (accessed on 10 November 2023).

Build Result Compare Script. Available online: https:/ /build.opensuse.org/package/show /openSUSE:Factory /build-compare
(accessed on 10 November 2023).

GitHub—Kholia/ReproducibleBuilds: Reproducible Builds in Fedora (“Remock”). Updated for Fedora 23, and Rawhide.
Available online: https://github.com/kholia/ReproducibleBuilds (accessed on 10 November 2023).

FOSDEM 2014—Reproducible Builds for Debian. Available online: https://archive.fosdem.org/2014/schedule/event/
reproducibledebian/ (accessed on 10 November 2023).

de Carné de Carnavalet, X.; Mannan, M. Challenges and implications of verifiable builds for security-critical open-source
software. In Proceedings of the 30th Annual Computer Security Applications Conference, ACM, New Orleans, LA, USA, 8-12
December 2014. [CrossRef]

Fourné, M.; Wermke, D.; Enck, W.; Fahl, S.; Acar, Y. It’s like flossing your teeth: On the Importance and Challenges of Reproducible
Builds for Software Supply Chain Security. In Proceedings of the 2023 IEEE Symposium on Security and Privacy (SP), IEEE, San
Francisco, CA, USA, 22-25 May 2023. [CrossRef]

Bazzi, A.; Shaout, A.; Ma, D. MT-SOTA: A Merkle-Tree-Based Approach for Secure Software Updates over the Air in Automotive
Systems. Appl. Sci. 2023, 13, 9397. [CrossRef]

Ghosal, A.; Halder, S.; Conti, M. STRIDE: Scalable and secure over-the-air software update scheme for autonomous vehicles. In
Proceedings of the ICC 2020-2020 IEEE International Conference on Communications (ICC), IEEE, Dublin, Ireland, 7-11 June
2020; pp. 1-6.

Nilsson, D.K.; Sun, L.; Nakajima, T. A framework for self-verification of firmware updates over the air in vehicle ECUs. In
Proceedings of the 2008 IEEE Globecom Workshops, IEEE, New Orleans, LA, USA, 30 November—4 December 2008; pp. 1-5.
Ghosal, A.; Halder, S.; Conti, M. Secure over-the-air software update for connected vehicles. Comput. Netw. 2022, 218, 109394.
[CrossRef]

Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008. [CrossRef]

Buterin, V. A next-generation smart contract and decentralized application platform. White Paper 2014, 3, 2-1.

Git. Git—Distributed-Even-If-Your-Workflow-Isnt. 2023. Available online: https://git-scm.com/ (accessed on 10 January 2023).
Apache Subversion. Apache Subversion. 2023. Available online: https://subversion.apache.org/ (accessed on 10 January 2023).
Mercurial. Work Easier Work Faster. 2023. Available online: https://www.mercurial-scm.org/ (accessed on 10 January 2023).
Liu, Y;; He, D.; Obaidat, M.S.; Kumar, N.; Khan, M.K.; Choo, K.K.R. Blockchain-based identity management systems: A review.
J. Netw. Comput. Appl. 2020, 166, 102731. [CrossRef]

https://redis.io/
https://ethereum.org/en/history/
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.arm.com/products/silicon-ip-security
http://dx.doi.org/10.1109/TIFS.2009.2033231
https://reproducible-builds.org/
https://wiki.debian.org/ReproducibleBuilds
https://github.com/devrandom/gitian-builder
https://github.com/devrandom/gitian-builder
https://build.opensuse.org/package/show/openSUSE:Factory/build-compare
https://github.com/kholia/ReproducibleBuilds
https://archive.fosdem.org/2014/schedule/event/reproducibledebian/
https://archive.fosdem.org/2014/schedule/event/reproducibledebian/
http://dx.doi.org/10.1145/2664243.2664288
http://dx.doi.org/10.1109/sp46215.2023.10179320
http://dx.doi.org/10.3390/app13169397
http://dx.doi.org/10.1016/j.comnet.2022.109394
http://dx.doi.org/10.2139/ssrn.3440802
https://git-scm.com/
https://subversion.apache.org/
https://www.mercurial-scm.org/
http://dx.doi.org/10.1016/j.jnca.2020.102731

Appl. Sci. 2024, 14, 9262 16 of 16

46.

47.

48.

49.

50.

51.

52.

53.

54.

Benabdallah, A.; Audras, A.; Coudert, L.; El Madhoun, N.; Badra, M. Analysis of blockchain solutions for E-voting: A systematic
literature review. IEEE Access 2022, 10, 70746-70759. [CrossRef]

Ghosh, A.; Gupta, S.; Dua, A.; Kumar, N. Security of Cryptocurrencies in blockchain technology: State-of-art, challenges and
future prospects. J. Netw. Comput. Appl. 2020, 163, 102635. [CrossRef]

Lim, M.K; Li, Y.; Wang, C.; Tseng, M.L. A literature review of blockchain technology applications in supply chains: A compre-
hensive analysis of themes, methodologies and industries. Comput. Ind. Eng. 2021, 154, 107133. [CrossRef]

Villarreal, E.R.D.; Garcia-Alonso, J.; Moguel, E.; Alegria,].A.H. Blockchain for healthcare management systems: A survey on
interoperability and security. IEEE Access 2023, 11, 5629-5652. [CrossRef]

Matsumoto, S.; Reischuk, R M. IKP: Turning a PKI around with decentralized automated incentives. In Proceedings of the 2017
IEEE Symposium on Security and Privacy (SP), IEEE, San Jose, CA, USA, 22-26 May 2017; pp. 410-426.

Sarker, A.; Byun, S.; Fan, W.; Chang, S.Y. Blockchain-based root of trust management in security credential management system
for vehicular communications. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, Virtual, 22-26
March 2021; pp. 223-231.

Nguyen, D.C.; Pathirana, PN.; Ding, M.; Seneviratne, A. Blockchain for 5G and beyond networks: A state of the art survey.
J. Netw. Comput. Appl. 2020, 166, 102693. [CrossRef]

Huo, R.; Zeng, S.; Wang, Z.; Shang, J.; Chen, W.; Huang, T.; Wang, S.; Yu, ER.; Liu, Y. A comprehensive survey on blockchain in
industrial internet of things: Motivations, research progresses, and future challenges. IEEE Commun. Surv. Tutor. 2022, 24, 88-122.
[CrossRef]

Alladi, T.; Chamola, V.; Sahu, N.; Venkatesh, V.; Goyal, A.; Guizani, M. A comprehensive survey on the applications of blockchain
for securing vehicular networks. IEEE Commun. Surv. Tutor. 2022, 24, 1212-1239. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2022.3187688
http://dx.doi.org/10.1016/j.jnca.2020.102635
http://dx.doi.org/10.1016/j.cie.2021.107133
http://dx.doi.org/10.1109/ACCESS.2023.3236505
http://dx.doi.org/10.1016/j.jnca.2020.102693
http://dx.doi.org/10.1109/COMST.2022.3141490
http://dx.doi.org/10.1109/COMST.2022.3160925

	Introduction
	Software Supply Chain Background
	Problem Statement and Our Contribution
	Problem Statement: Threats against Software Supply Chain
	Our Contributions: Assurance Targets Across Software Supply Chain and Blockchain for Distributed Authority

	Our Scheme
	Our Protocol Overview
	Authority Implementation and Offline vs. Online
	Building Blocks: Hash Function, Merkle Tree, and Blockchain
	Proof Generations for p and p' Using Merkle Tree for Setting Up Assurance
	Blockchain for Authority: Reference Distribution in Offline and Access in Online
	User-Side Verification (Online)

	Our Scheme Implementation to Assure the Ethereum Software Chain
	Authority Implementation For Our Scheme (Blockchain) vs. Centralized Server Approach (Remote Server)
	Target Software for s
	Building Blocks for Our Scheme for b and d
	b Using Reproducible Build
	d Using SBOM

	Proof Generation Using Merkle Tree and Hash
	Blockchain for Reference Proof Delivery
	Hardware and Experimental Setup

	Experimental Analyses
	Verification Correctness
	Computing Performances
	Authority Delivering References: Our Scheme vs. Centralized Server Approach
	Supports Software Assurance Requirements

	Related Work
	Remote Code Attestation
	Reproducible Build
	Hash and Merkle Tree Applications for Securing Integrity
	Blockchain for Security

	Conclusions
	References

