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Abstract—Dynamic task graph scheduling (DTGS) has become
a powerful tool for parallel and heterogeneous applications,
such as static timing analysis and large-scale machine learning.
DTGS allows applications to define the task graph structure on-
the-fly, enabling concurrent task creations and task executions.
However, to schedule tasks, DTGS relies on applications to define
a topological order for the task graph. Existing algorithms for
generating this order primarily rely on heuristics like level-
by-level sorting, which lack adaptability to dynamic computing
environments. This paper proposes a novel method that leverages
reinforcement learning to generate topological orders for DTGS
systems. We will delve into the details of our design and present
a real-world use case. For instance, when scheduling a large task
graph with 3.9 million tasks and 7.4 million dependencies in a
large-scale static timing analysis workload, our method achieves
a speedup of up to 1.52× compared to the baseline.

Index Terms—Dynamic Task Graph, Topological Orders, Re-
inforcement Learning.

I. INTRODUCTION

Dynamic task graph scheduling (DTGS) has emerged as a
powerful technique for processing parallel and heterogeneous
applications, such as static timing analysis [1]–[25] and large-
scale machine learning problems [26]–[29]. Unlike traditional
loop-based models that explores parallelism across loops,
DTGS represents function calls as tasks and dependencies
between them as edges in a task graph. DTGS empowers
applications to perform top-down optimization within complex
parallel decomposition strategies involving numerous tasks
and dependencies. A DTGS runtime then efficiently sched-
ules these dependent tasks across a large pool of execution
units with dynamic load balancing [30]. As a result, the
parallel computing community has seen the rise of numerous
successful DTGS libraries catering to various applications,
such as OpenMP [31], Kokkos-DAG [32], PaRSEC [33], [34],
HPX [35], Taskflow [36], [37], and AsyncTask [23].

To leverage the power of DTGS, applications define the task
graph structure dynamically according to runtime variables and
control-flow results. As tasks and dependencies are created on-
the-fly, DTGS allows the task creation time to overlap with

the task execution time, as shown in Figure 1. Thus, DTGS
is flexible when dealing with many algorithms that frequently
incorporate dynamic control flow in implementing irregular
parallel decomposition strategies, such as electronic design
automation (EDA) algorithms [1].

Fig. 1: Scheduling a dynamic task graph with four tasks and
four edges. White rectangles denote the task creations and gray
the task executions. Tasks are created in the topological order
A-B-C-D. Task creations overlap with task executions.

To schedule tasks under the task dependency constraints,
DTGS runtime requires applications to create tasks in a
topological order of the task graph. For example, in Figure
1, four tasks should be created either in the topological order
A-B-C-D or A-C-B-D. To obtain the order, topological sorting
algorithms, such as Kahn’s algorithm [38], are widely used.
These heuristic-based algorithms generate orders primarily
based on the graph structures, such as level-by-level sorting.
However, such heuristic-based approaches have limitations.
First, solely relying on graph structure lacks adaptability to
dynamic changes in the computing environment. This can lead
to suboptimal scheduling and can consume large scheduling
resources due to the randomness involved in DTGS runtime’s
dynamic load balancing [30]. Second, heuristic algorithms
generate deterministic orders. But, topological orders of a
task graph are not unique and different topological orders
for the same task graph can lead to substantial performance
differences, as shown in Figure 2.

To overcome the limitations of heuristic approaches,
we leverage recent advancements in reinforcement learning
(RL) [20], [39], [40] and propose a method to interact with the
computing environment while generating topological orders.
We summarize our technical contributions as follows:
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Fig. 2: Runtime of DTGS system finishing one EDA applica-
tion with three different topological orders.

• We have proposed a reinforcement learning-based method
to generate topological orders for the dynamic task graph
scheduling applications. With the method, we are able
to adapt to the computing environment throughout the
whole decision-making process, allowing us to generate
the topological order that achieves better runtime perfor-
mance than the baseline.

• We have designed a new task graph encoding method to
support our RL model. This technique allows us to encode
the task graph dynamically according to the runtime
status instead of encoding the whole graph.

• We have designed a new decision space categorization
method to support our RL model. This method catego-
rizes the timing-varying decision space into fixed number
of categories, allowing us to reuse the trained RL model
for various applications without the need for retraining.

• We have evaluated our method for generating the topo-
logical orders for a large-scale industrial static timing
analysis (STA) application. With our proposed method,
we are able to generate topological orders that achieve
up to 1.52× speedup over the baseline.

II. BACKGROUND

We target scheduling a large-scale static timing analysis
(STA) application, one of the most important steps in the
entire EDA flow, and describe a STA workload as a task
graph. The task graph consists of multiple nodes and edges,
which represent the tasks and the dependencies among the
tasks, respectively. Every task has a known workload and the
task dependencies constrain the execution order of the tasks.
Take the task graph shown in Figure 3 as an example. We
describe an example circuit as a task graph of four tasks and
four edges (or dependencies). The task dependencies require
that task A must execute before task B and task C, and task
D must execute after task B and task C.

To efficiently schedule the task graph, we build a DTGS
system using a recently released dynamic task graph library,
AsyncTask [23]. AsyncTask provides a clear and concise
graph description language for applications to easily explore
dynamic task graph parallelism. The expressiveness of Async-
Task’s programming model improves our productivity when
coding large and complex task graphs for the STA workloads.
Listing 1 shows AsyncTask implementation of the task graph

in Figure 3. We create four tasks in the topological order A-
B-C-D and use AsyncTask’s dependent async API to create
each task. Every task defines its own lambda as the first
argument which is followed by a list of dependent tasks. Upon
returning from dependent async, we obtain a pair consisting
of an instantiated task object and a future object holding the
execution result of that task. After constructing all tasks, we
call future D.get to wait for task D to finish. Since we
construct tasks in the order A-B-C-D, the completion of task
D in turn signifies the completion of all preceding tasks.

i n t main ( ){
E x e c u t o r e x e c u t o r ;
/ / c r e a t e f o u r a s y n c h r o n o u s t a s k s
a u t o [A, f u t u r e A ]= e x e c u t o r . d e p e n d e n t a s y n c (

[ ] ( ) { p r i n t f ( ” Running t a s k A\n ” ) ; } ) ;
a u t o [B , f u t u r e B ]= e x e c u t o r . d e p e n d e n t a s y n c (

[ ] ( ) { p r i n t f ( ” Running t a s k B\n ” ) ; } , A ) ;
a u t o [C , f u t u r e C ]= e x e c u t o r . d e p e n d e n t a s y n c (

[ ] ( ) { p r i n t f ( ” Running t a s k C\n ” ) ; } , A ) ;
a u t o [D, f u t u r e D ]= e x e c u t o r . d e p e n d e n t a s y n c (

[ ] ( ) { p r i n t f ( ” Running t a s k D\n ” ) ; } , B , C ) ;
/ / w a i t f o r t h e t a s k graph t o f i n i s h v i a f u t u r e D
f u t u r e D . g e t ( ) ;

}

Listing 1: AsyncTask implementation of the task graph in
Figure 3.

In Listing 1, we must create tasks in a topological order
because we can not create a task until certain tasks it depends
on have existed. For example, we need to create task A before
task B. That explains why AsyncTask requires applications to
create tasks in a topological order. To obtain a topological
order of a task graph, we propose a method that incorporates
a reinforcement learning (RL) model in DTGS. Figure 3
illustrates the system overview. After we describe a circuit as
a task graph, the trained RL model reads in the task graph and
outputs a topological order of the task graph. Then the DTGS
creates all of the tasks based on the order and overlaps the
task executions. We give the details of the trained RL model
in Section III.

III. PROPOSED METHOD

Runtime status governs the macro-scale performance in
a task scheduling system [20]. To take the runtime status
into account, we propose a reinforcement leaning model to
interact with the computing environment while generating a
topological order for the DTGS application. In this section,
we first formulate the dynamic task graph scheduling problem
as a reinforcement learning (RL) problem and then apply the
Deep Q-Learning algorithm [41] to train a good RL policy.
Figure 4 shows the training process in the DTGS application.

A. Reinforcement Learning Formulation

To formulate the dynamic task graph scheduling problem
as a reinforcement learning problem, we need to define four
major components as follows:

• State. A state encodes the information that the RL agent
needs to suggest an action. We encode the normalized
workloads of ready tasks (tasks whose dependencies
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Fig. 3: System overview. An example circuit is described as a task graph of four tasks and four edges. The trained RL model
reads in the task graph and generates a topological order A,B,C,D. The DTGS runtime creates the four tasks in the order and
executes them under the dependency constraint.

Fig. 4: Overview of the training process. The input is a task graph of four tasks and four edges. The output is a topological
order of the four tasks. The training process consists of seven steps, which iterates four times as there are four tasks in the
input task graph. The whole training would iterate the task graph for several episodes.

are resolved) and the graph structure in a vector of M
coordinates as the state called State. M denotes the
number of maximum fanout (or the successor tasks) of a
task in the task graph. Each coordinate encodes the total
workloads (WL) of ready tasks of the same number of
fanout. For example, in Figure 4, task A is the ready task
and has two fanouts – task B and task C. The current state
would include task A’s workload in the third coordinate,
State[2], and the other coordinates are zero.

• Action. An action describes the operation that the RL
agent suggests. In this paper, the RL agent needs to
select the next task from all the ready tasks. We note
that the number of the ready tasks may vary over time.
However, the RL agent can only select a task from a fixed
number of ready tasks. To accommodate the constraint,
we categorize the ready tasks to N groups based on the
workloads. For example, in Figure 4, when the RL agent
needs to select the next task between task B (suppose
being categorized to group 0) and task C (suppose being
categorized to group 1), the RL agent selects the next
task from a certain group (say group 0) rather than
selecting the next task directly. This allows us to maintain
a consistent action space size regardless of the number
of ready tasks at any given time.

• State Transition. After an action is performed (i.e., the
next task is created by the DTGS runtime), the current
state will transfer to a new state. For example, in Figure
4, after task A is created by the DTGS runtime, the new
state will have the sum of task B’s and C’s workloads

at the second coordinate (State[1]) because both task B
and C are now ready tasks and have one fanout.

• Reward. After the RL agent takes an action, we receive
a reward feedback from the computing environment. This
reward signal guides the agent’s learning process towards
actions that optimize a specific resource utilization metric.
Here, we focus on minimize free memory space (FMS) to
keep all computing units as busy as possible. Therefore,
we design the following reward to reflect this objective:

reward = −(FMSafter − FMSbefore), (1)

where FMSbefore denotes the normalized FMS before
performing the action and FMSafter denotes the normal-
ized FMS after the action. Note that minimizing FMS is
equivalent to maximizing the reward.

Next, we discuss how to train a good RL policy using
the Deep Q-Learning algorithm to maximize the accumulated
reward over time.

B. Deep Q-Learning

Deep Q-Learning is a popular algorithm that aims to learn
the optimal policy that maximizes the expected accumulated
reward over time [41]. We apply this algorithm to solve
our dynamic task graph scheduling problem which is now
formulated as a RL problem. Figure 4 illustrates the Deep Q-
Learning algorithm for our scheduling system in seven steps.

1 Generate an action. Based on the current state, the
policy network generates an action. The policy network is
a feed forward neural network, as shown in Figure 5. The
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State[0]

State[1]

State[M-1]

State[M-2]

Input layer 
(M, 128)

Hidden layer 
(128, 128)

Hidden layer 
(128, 128)

Output layer 
(128, N)

Q(state=State, action=A0)

Q(state=State, action=A1)

Q(state=State, action=AN-2)

Q(state=State, action=AN-1)

Fig. 5: Illustration of the policy network architecture. There
is one input layer of dimension M ∗ 128, two hidden layers
of dimension 128 ∗ 128, and one output layer of dimension
128 ∗N . The activation function is ReLU [42].

network reads in the current state vector with dimension M
as the input. It then processes the information through two
hidden layers, each with a dimension of 128 × 128. Finally,
the network outputs a set of Q-values corresponding to each
of the N possible actions. A Q-value represents the expected
reward associated with taking a specific action in a given
state. In essence, it estimates the long-term benefit of choosing
an action. To balance exploration and exploitation during
learning, we employ the ϵ-greedy strategy. During exploration
(with probability ϵ), we randomly select an action from the
available options. This helps the RL agent discover potentially
better actions outside of its current knowledge. In contrast,
during exploitation (with probability 1−ϵ), we select the action
with the highest Q-value, favoring actions predicted to yield
the best rewards in the current state.

The parameter ϵ gradually decays over time, following the
equation below,

ϵ = ϵend + (ϵstart − ϵend) ∗ e−1∗steps/ϵdecay

, (2)

where steps records the number of processed steps so far,
ϵstart denotes the initial value, ϵend denotes the final value,
and ϵdecay denotes the decay rate. This decay encourages
exploration in the initial stages to learn the environment and
transitions to exploitation later for optimal performance.

As discussed in Section III-A, an action represents a group
of ready tasks with the same range of workloads. If the
selected group is empty (meaning no ready tasks fall within
that workload category), we implement the following strate-
gies. We randomly select another action at the exploration
phase, or select the group with the next highest Q-value at the
exploitation phase.

2 Decode the action to the next task. Upon selecting a
non-empty group (i.e., containing ready tasks), we randomly
select a task from that group and forward the selected task to
the DTGS runtime for task creation and execution.

3 Store the transition information in the replay buffer.
To improve the agent’s learning efficiency, we utilize a replay

buffer. This buffer stores transitions as tuples, allowing the
agent to revisit and learn from past experiences multiple times.
Each tuple in the replay buffer contains four key elements:

• Current State (s): The state representation captures in-
formation relevant to the decision-making process at a
specific point in time.

• Selected Action (a): The action is selected by the agent
based on the current state.

• Reward (r): The reward signal is received from the en-
vironment after taking the selected action. This feedback
guides the agent towards actions that optimize resource
utilization (here, we minimize the free memory space).

• Next State (s
′
): The state representation after the selected

action is executed, reflecting the updated environment.
By revisiting these transitions during training, the agent can
learn from a broader set of experiences and improve its
decision-making capabilities.

4 Sample the replay buffer. During training, we leverage
batch sampling to learn from its past experiences stored in the
replay buffer. This involves randomly selecting a mini-batch of
data points (size denoted by B) from the buffer. By randomly
selecting data points, we help to de-correlate the training
samples. This is important because consecutive transitions
in the replay buffer might be highly correlated, potentially
hindering the learning process. De-correlated samples provide
a more diverse set of experiences for the agent to learn from,
improving the efficiency and effectiveness of training.

5 Calculate the expected Q-value. We incorporate a
target network, which mirrors the architecture of the policy
network (as illustrated in Figure 5). However, we do not
update the target network’s weights as frequently as the policy
network’s. This separation is crucial for reducing overesti-
mation bias [43]. The target network addresses this issue by
providing an unbiased estimate of the Q-value for the next
state. We achieve this by using the target network to evaluate
the expected Q-value of the action selected by the policy
network, as shown in the following equation:

Qexpected = r + γmax
a

Q(s′, a) (3)

where γ represents the discount factor, which balances the
importance of immediate rewards against the potential value
of future rewards.

6 Optimize the model. During training, we calculate
the difference (loss) between the estimated Q-value for the
current state and action (denoted as Q(s, a)) and the target
network’s unbiased estimate of the expected Q-value for the
next state (denoted as Qexpected). This loss represents how
well the policy network’s predictions align with reality, and
we aim to minimize it for effective learning. The equation for
calculating loss δ is the following,

δ = Q(s, a)−Qexpected. (4)

To address the issue of outliers in noisy Q-value estimates,
we employ the Huber loss function [44]. Unlike the standard
quadratic loss, the Huber loss is less sensitive to extreme
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values, making it a robust choice for this scenario. The
mathematical definition of the Huber loss is shown below,

L =
1

|B|
∑

(s,a,r,s′)∈B

L(δ), (5)

where

L(δ) =

{
1
2δ

2 if |δ| ≤ 1,
|δ| − 1

2 otherwise.

Once we calculate the loss L, we leverage back-propagation
to propagate the error signal through the policy network. This
process guides the network in adjusting its internal parameters
to minimize the loss in future predictions. We utilize the Adam
optimizer [45] with a learning rate of LR.

7 Update the target network. To further enhance the
stability and performance of the learning process, we employ
soft update for the target network [46]. This approach balances
the target network’s weights between those of the policy
network and its own past values. The equation to update the
parameters of the target network is the following,

θ′ = τθ + (1− τ)θ′, (6)

where θ′ denotes the weights of the target network, θ denotes
the weights of the policy network, and τ denotes the update
rate of the target network.

In Figure 4, the task graph consists of four tasks. We iterate
through the seven steps four times, constituting one episode
for the agent. By running multiple episodes episodes (iterating
through the entire process several times), the agent has the
opportunity to learn more effectively from the environment
and refine its policy for optimal task scheduling.

IV. EVALUATION

We used the recently released dynamic task graph pro-
gramming library AsyncTask [23] to implement the dynamic
task graph scheduling system. We trained the RL model
using Pytorch and compiled programs using g++11.4 with -
std=c++20 and -O3 enabled to schedule the task graphs.
We evaluated the runtime performance of scheduling tasks in
the topological orders generated by the reinforcement learning
model. We ran all the experiments on a Ubuntu 22.04.3
machine with 16 Intel i7-11700 CPU at 2.50 GHz and 125
GB RAM. All data is an average of 10 runs.

A. Baseline

We selected a heuristic approach as the baseline. This
approach involves traversing a task graph and identifying a
task whose dependencies have all been resolved. If multiple
such tasks exist, we employ one of two pre-defined heuristics
throughout the entire process. In heuristic 1, a task is selected
randomly from the set of ready tasks. In heuristic 2, the task
with the highest number of outgoing dependencies (fanout) is
selected. In addition, we used Kahn’s algorithm [38] as the
third heuristic. It’s important to note that we don’t dynami-
cally switch between these heuristics. Algorithm 1 details the
implementation of the chosen approach.

Algorithm 1: baseline(task graph)
Input: task graph: a task graph
Output: order: a topological order

1 order ← ∅;
2 array ← ∅;
3 /* push ready task to array */

4 for task ∈ task graph do
5 /* in degree denotes the number of the fanin */

6 if task.in degree == 0 then
7 array.push(task);
8 end
9 end

10 while order.size < task graph.tasks.size do
11 /* Used either Heuristic 1 or 2 throughout the code */

12 /* Heuristic 1 */

13 task ← pop one task randomly in array;
14 /* Heuristic 2 */

15 task ← pop one task with most fanout in array;
16 order.push(task);
17 /* Resolve dependencies for fanout tasks */

18 for ftask ∈ task.fanout do
19 ftask.in degree← ftask.in degree− 1;
20 if ftask.in degree == 0 then
21 array.push(ftask);
22 end
23 end
24 end
25 return order

B. Static Timing Analysis Workload

We used the industrial static timing analysis (STA) as
the workload [1], [2], which exploits task graph parallelism
to parallelize graph-based analysis. STA is representative of
many analysis-driven EDA applications, and is a critical step
in the overall EDA flow because it verifies the expected timing
behavior of a circuit design and reports the critical paths
that violate the given timing constraints (e.g., set-up time,
hold time). As our system schedules task graphs, we used
the state-of-the-art open-source STA engine, OpenTimer [47],
to generate task graphs for us. OpenTimer formulates the
graph-based analysis (GBA) algorithm into a task graph. The
task graph represents the corresponding circuit graph and
can contain millions of tasks and dependencies for large
designs. Each task computes the required timing information
at its corresponding node in the circuit graph (e.g., slew,
delay, arrival time), while each edge represents a dependency
between two tasks. Table I lists the statistics of the 12 task
graphs we used. ∥V ∥ denotes the number of the tasks in a
task graph and ∥E∥ denotes the number of the edges.

C. Training and Hyper-parameters

We trained the RL policy with six task graphs, tv80,
ac97 ctrl, des perf, usb phy, c1355, and s1196. It’s im-
portant to note that the des perf graph used in training was
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Fig. 6: Performance comparison between the baseline and our RL approach on running 12 task graphs. (a) Runtime comparison.
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TABLE I: Task (∥V ∥) and edge (∥E∥) counts of 12 task
graphs.

Graphs ∥V ∥ ∥E∥ ∥V ∥+ ∥E∥
des perf 371,587 464,810 836,397
vga lcd 397,809 498,863 896,672

mgc edit dist 450,354 566,527 1,016,881
vga lcd 679,258 823, 034 1,502,292

b19 782,914 1,048,609 1,831,523
b19 2 782,914 1,048,609 1,831,523

leon3mp 3,376,832 6,277,562 9,654,394
b19 3 3,914,570 5,243,045 9,157,615
netcard 3,999,174 7,404,006 11,403,180
leon2 4,328,255 7,984,262 12,312,517

leon3mp 2 6,753,664 8,297,576 15,051,240
netcard 2 7,998,348 9,806,794 17,805,142

a different instance from the one used in testing. The hyper-
parameters we used for training are the followings:

• The update rate of the target network, τ , is 0.005.
• The value of discount factor, γ, is 0.99.
• The number of training iterations, episodes, is 50.
• The initial value of ϵ, ϵstart, is 0.9.
• The final value of ϵ, ϵend, is 0.05.
• The decay rate of ϵ, ϵdecay , is 1000.
• The number of input neurons, M , is 20.
• The number of output neurons, N , is 6.
• The number of batch size, B, is 128.
• The learning rate of Adam optimizer, LR, is 1e− 4.

D. Scheduling Task Graphs

After obtaining the topological order for a task graph using
the trained RL policy and the baseline, we used AsyncTask’s
dependent async API to create the tasks in the generated
topological order. This API takes two arguments. The first
argument is the callable function representing each task. This
function could perform various operations like parasitic calcu-
lations, slew adjustments, delays, or arrival time calculations
in STA. The second argument is a list of dependent tasks.

E. Runtime Performance Comparison

Figure 6 compares the runtime performance of our approach
against the baseline. We only report the best runtime perfor-
mance between two heuristic methods for the baseline. We can
see that the baseline exhibits faster execution only for small-
sized task graphs. For example, the baseline is 1.06× and
1.02× faster in des perf and mgc edit dist, respectively,
although these differences are minor. Conversely, our RL
model outperforms the baseline in all other 10 task graphs.
For example, ours is 1.24×, 1.52×, and 1.48× faster than the
baseline in b19, netcard, and leon2, respectively. We believe
this advantage stems from our RL model’s ability to optimize
for free system memory. Our approach adapts to changing
computing environments and reduces scheduling resource con-
sumption associated with AsyncTask’s dynamic load balanc-
ing. In contrast, the baseline relies solely on the task graph
structure, neglecting runtime information. The heuristic-based
baseline can achieve good performance on small-sized graphs
(i.e., des perf and mgc edit dist). However, as graphs
grow larger and more complex, with more concurrent tasks and
scheduling resource consumption, the baseline’s static strategy
hinders adaptation, leading to performance degradation. Figure
7 visualizes the speedup achieved by our RL approach over
the baseline. The speedup increases with graph size and
complexity, further highlighting the superiority of our method
particularly in modern industrial EDA flow that frequently
requires analyzing the same task graphs multiple times.

V. CONCLUSION

In this paper, we have proposed a reinforcement learning
model to generate topological orders for a dynamic task
graph scheduling application. In the future, we will apply our
approach to other parallel graph algorithms [48]–[51].
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