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A STOCHASTIC FLUID-STRUCTURE INTERACTION PROBLEM
WITH THE NAVIER-SLIP BOUNDARY CONDITION*

KRUTIKA TAWRIT

Abstract. We prove the existence of martingale solutions to a stochastic fluid-structure in-
teraction problem involving a viscous, incompressible fluid flow, modeled by the 2D Navier—Stokes
equations, through a deformable elastic tube modeled by the 1D shell/membrane equations. The
fluid and the structure are nonlinearly coupled via the kinematic and dynamic coupling conditions at
the fluid-structure interface. This article considers the case where the structure can have unrestricted
displacement and explores the Navier-slip boundary condition imposed at the fluid-structure inter-
face, displacement of which is not known a priori and is a part of the solution itself. The proof takes a
time-discretization approach based on a Lie splitting scheme. The geometric nonlinearity stemming
from the nonlinear coupling, the possibility of random fluid domain degeneracy, the potential jumps
in the tangential components of the fluid and structure velocities at the moving interface, and the
low regularity of the structure velocity require the development of new techniques that lead to the
local-in-time existence of analytically weak martingale solutions.
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1. Introduction. This paper introduces an approach for investigating solutions
to a complex problem describing the interaction between a deformable (purely) elas-
tic membrane and a 2D viscous, incompressible fluid flow, under the influence of
multiplicative stochastic forces. The fluid flow is described by the 2D Navier—Stokes
equations, while the membrane is characterized by shell equations. The fluid and the
structure are fully coupled across the moving interface through a two-way coupling
that ensures continuity of the normal components of their velocities and contact forces
at the interface. There has been a lot of work done in the field of deterministic fluid-
structure interaction (FSI) in the past two decades (see, e.g., [6, 17, 8, 23, 24, 18, 21]
and the references therein); however, even though there is a lot of evidence pointing
to the need for studying the stochastic perturbations of the benchmark FSI models,
the mathematical theory of stochastic FSI or, more generally, of stochastic PDEs on
randomly moving domains is completely undeveloped.

The main result of this paper is the establishment of the existence of local-in-
time weak martingale solutions to this nonlinear stochastic fluid-structure interaction
problem. To be precise, the solutions are weak both in the analytical and probabilistic
sense and exist until an almost surely positive stopping time. The stopping time kicks
in as the fluid domain approaches a degenerate configuration. In this existence proof,
we employ a Lie operator splitting scheme which was first utilized in the context of
deterministic FSI in [24] and later, for example, in [25, 4]. The recent articles [32, 31],
which represent the only work addressing stochastic moving boundary problems, have
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demonstrated the existence of weak martingale solutions to FSI problems with scalar
and unrestricted structural deformations, respectively. They also consider the no-slip
boundary conditions imposed at the fluid-structure interface. While this is a common
assumption in the blood flow literature (see, e.g., [28, 5]), the slip condition is consid-
ered to be a more realistic boundary condition in modeling near-contact dynamics,
such as the closure of heart valves, as it allows for the possibility of collisions (see,
e.g., [27, 26]). In terms of (deterministic) FSI literature involving slip boundary condi-
tions, the authors of [14] analyze the motion of a rigid body in viscous incompressible
fluid. See also [7] in the context of a rigid body immersed in a compressible fluid.
However, the difficulty increases significantly when an elastic body instead of a rigid
body is considered. In this work, we give the first existence result for a stochastic
moving boundary problem involving the Navier-slip boundary condition imposed at the
interface of a fluid and an elastic body. 1t also provides, for the first time, a compact-
ness argument, in the context of FSI involving elastic structures, by constructing test
functions that are allowed to have possible jumps in the tangential direction at the
fluid-structure interface, which is a key feature of the slip condition. Our compactness
result thus generalizes the existing results while also revealing hidden regularities of
the structure.

The first mathematical issues that we come across are related to the facts that the
fluid domain boundary is a random variable, not known a priori, which can possibly
degenerate in a random fashion and that the incompressibility condition and the
Navier-slip boundary condition lead to the dependence of the test functions on the
randomly moving domains and thus require us to consider random test processes,
which is highly unusual for typical stochastic PDEs on fixed domains. Due to the
possibility of nonzero longitudinal structural displacement, extra care has to be taken
in dealing with degenerate fluid domains, i.e., when the structure touches a part of
the fluid domain boundary during deformation.

First, using the arbitrary Lagrangian—Eulerian (ALE) transformations, we map
the fluid equations onto a fixed domain. ALE mappings have been extensively used in
FST and numerical simulations of moving boundary problems; see, e.g., [30, 11, 20, 28].
The use of these ALE maps and the analysis that follows is valid for as long as there
is no loss of injectivity of the ALE transformation. To deal with this injectivity con-
dition in the stochastic case we use a cut-off function and a stopping time argument.
Furthermore, via the ALE maps, additional nonlinearities appear in the weak formula-
tion of the problem that track several geometric quantities such as the fluid-structure
interface tangent and normal.

The dependence of the test functions on the domain configurations (via the ALE
maps) creates issues as we move to a new probability space in search of martingale
solutions. Hence, we introduce a system that approximates the original system by
augmenting it by a singular term that penalizes the divergence and the boundary
behavior of the fluid velocity. However, addition of this penalty term and the low
temporal regularity of the solutions create further difficulties in establishing com-
pactness which we overcome by employing nonstandard compactness arguments. In
establishing tightness of the laws of the approximate solutions, we also do not have
the extra regularity for the structure velocity obtained from the fluid dissipation in
the no-slip case. We finally show that the solutions to the approximate systems indeed
converge to a desired martingale solution of the limiting equations.

Since the stochastic forcing appears not only in the structure equations but also in
the fluid equations themselves, we come across additional difficulties, which are asso-
ciated with the construction of the appropriate “test processes” on the approximate
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and limiting (time-dependent and random) fluid domains. Namely, along with the
required divergence-free property on these domains, the test functions have to satisfy
appropriate boundary and measurability conditions. We construct these approximate
test functions by first constructing a Carathéodory function that gives the definition
of a test function for the limiting equations and then by transforming this limiting test
function in a way that preserves its desired properties on the approximate domains.

The paper is organized as follows: We describe the fluid and the structure prob-
lems along with the coupling conditions and the noise structure in section 2. This
section also contains the definition of solutions and the main result of this paper. In
section 3, we introduce the approximation scheme. Finally, in sections 4 and 5, we
pass the time step and the structure velocity regularization parameter, which is added
to deal with the corners of the fixed domain, to 0, respectively.

2. Problem setup. We begin describing the problem by first considering the
deterministic model.

2.1. The deterministic model and a weak formulation. We consider the
flow of an incompressible, viscous fluid in a 2D compliant cylinder O = (0,L) x
(0,1) with a deformable lateral boundary I'. The left and the right boundary of the
cylinder are the inlet and outlet for the time-dependent fluid flow. We assume “axial
symmetry” of the data and of the flow, which allows us to consider the flow only in
the upper half of the domain, with the bottom boundary fixed and equipped with
the symmetry boundary conditions. Assume that the time-dependent fluid domain,
whose displacement is not known a priori, is denoted by Oy (t) = ¢(t,O), whereas its
deformable interface is given by I'y(t) = ¢(t,I'). Assume that ¢ : O — O, is a C*
diffeomorphism such that

@

Tin,Lout,I'y — id, detv‘P(ty X) >0,

where the inlet, outlet, and bottom boundaries of O are given by T, = {0} x
(0,1),Tout = {L} x (0,1),T = (0,L) x {0}, respectively. The displacement of the
elastic structure at the top lateral boundary I', which can be identified by (0,L),
will be given by n(t, z) = p(t,z) — (2,1) for z € (0,L) (see Figure 1). The mapping
1 :[0,L] x [0,T] — R? such that 9 = (n.(2,t),n,(2,t)) is one of the unknowns in the
problem.

The fluid subproblem. The fluid flow is modeled by the incompressible Navier—
Stokes equations in the 2D time-dependent domain Oy (t):

ou+ (u-Viu=V .o+ F&,

(2.1)
V-u=0,
. @) F©
n(w,t) T
e —
Fin" 07“’)(5) — I*out
L, T :
— —_—
—_— —

Fic. 1. A snapshot of a realization of the fluid domain for some w € Q and t € [0,T].
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where u = (u,,u,) is the fluid velocity. The Cauchy stress tensor is 0 = —pI+2vD(u),
where p is the fluid pressure, v is the kinematic viscosity coefficient, and D(u) =
1(Vu+(Vu)?) is the symmetrized gradient. Here F¢*! represents any external forcing
impacting the fluid. In this work we will be assuming that this force is random, as
we shall see below. The fluid flow is driven by dynamic pressure data given at the
inlet and outlet boundaries, and we prescribe the symmetry boundary condition on
the bottom boundary as follows:

1
(22) P+ §|u|2:Pin/out(t)7 u,=0 on Fin/outa
(2.3) U, = Opu, =0 on I'y.

The structure subproblem. The elastodynamics problem for the displacement
1n = (n,,n,) of the structure with respect to I' is as follows:

(2.4) (‘3?17 + Z.(n)=F, in(0,L),

where Fy, is the total force experienced by the structure and .Z; is a continuous, self-
adjoint, coercive, linear operator on H%(O,L). This equation is supplemented with
the following boundary conditions:

(2.5) n(0) =n(L) = 8:n(0) = 0.n(L) = 0.

The nonlinear fluid-structure coupling. The coupling between the fluid and the
structure takes place across the moving fluid-structure interface.
e The kinematic coupling conditions in the Navier-slip case are
(26) 8t77(t7z) ‘n" = u(‘P(tvz)) ! nnv (ta Z) € [OaT] X [07 L]a
(2.7)  (Om—u(e(t,2))) 7" =aoc(p(t,z))n" -7, (t,2)€[0,T] x [0,L].

e The dynamic coupling condition is
(2.8) Fy==8n(t,2)(0n")| ¢z, + F™s

where n"(¢, z) is the unit outward normal to the top boundary at the point,
7" is the tangent vector given by 77(¢,z) = 0,p(t,2), and Sy(t,z) is the
Jacobian of the transformation from Eulerian to Lagrangian coordinates. As
earlier, Ff,‘”t denotes any external force impacting the structure.

This system is supplemented with the following initial conditions:

(2.9) u(t=0)=ugy, nt=0)=mn, In(t=0)=vy.

Weak formulation on moving domain. Using the convention that boldface
letters denote spaces containing vector-valued functions, we define the following rele-
vant function spaces for the fluid velocity and the structure displacement:

Vp(t) ={u=(us,u,) € H'(O,(t)):V-u=0, and u, =0 on 90, \ ['y(t)},

Pe(0,T) = L0, T; L (O () N L*(0.T3 7 (1)),

#s(0,T) =Wh>(0,T;L?(0,L)) N L>(0,T;HZ(0,L)) " H*(0,T;H'(0, L)),

#(0.T) ={(u,m) € #¢(0,T) x #5(0,T) : u(p(t, 2)) - 0 = Fm(t, z) - n",
(t,z) € (0,T) x T'}.
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Next, we derive a deterministic weak formulation of the problem on the moving do-
mains. We consider q € C1([0,7]; ##(+)) such that q(e(t,2)) - n” = 4 (t,2) - n” on

(0,T) x T for some v € C'([0,T]; H3(T")). We multiply (2.1) by q, integrate in time
and space, and use Reynold’s transport theorem to obtain

(u(t), a(t) o, ) = ((0),a(0))o. (o) + / /O ) ()

+ [ t / () ) ) - / t /. (8 usga
[ Pl -Dlaloas+ | |/ CORTE

+ [ t /. ot

1

b(t,u,v,w):= 2/0"(0 (u-V)v-w—(u-V)w-v),

Set

and observe that

—((u-V)u,q)o, :—%((u~V)u,q)@n + %((U-V)q,u)on - %/60 u-qu-n"

1 1 1
—suma) - [ weaun g [ e [ e
'y T Pout

in

Using the divergence-free property of fluid velocity u and the boundary conditions
ur =0 on Uy, /0y, we have that 0,u, = —0,u, =0 on [y, /4, Hence,

1 1
/ Gn"-q=/ ipqz=/ <Pi —2IUI2> qz—/ <Pout_2|u|2> 4z,
T r Tin Tout

in/out
whereas be on".q=0. We also write an on" - q as

in/out

o (- m7) + (O — ) -7 7).

[ ot s a e =

Ty

Next we multiply the structure equation (2.4) by 1 and integrate in time and space
to obtain

t L t
(@m(t), (1)) = (o, (0)) + /0 /0 O - Duapdzds — /0 (L (), )ds

t oL t oL
— / / Spon" - pdzds +/ / Ff;” -apdzds.
0o Jo o Jo

Observe that we can write
t oL t oL
/ / Spon” - pdzds z/ / Spon” - (¢ -n")n" + (¢ - 77)7")dzds
0o Jo 0 Jo 1
[ sa(on e nn ) Lom ) ) daas.
0o Jo

Hence, in conclusion, we look for (u,n) € #°(0,T), which satisfies the following equa-
tion for almost every t € [0,7] and for any test function Q = (q,) described above:
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L t t oL
/ u(t)q(t)der/ 3m(t)¢(t)dzf/ / u~8squdsf/ / 0sm0spdzds
Ony On(s)
+/ b(s,u,u qu—f/ / u-q)(u-n") des—|—21// / D(u (q)dxds
0

On(s)

/ / SO — ) - T7((a — ) - T)dzds + / (Z.(m),)ds

:/ qu( )dX+/ VO";D dZ+/ m/ qz d’/‘dS—/ out/ qz
0
/ / q- F& dxds+/ / (N Fe'” dzds.
71(5

Here F¢** is the volumetric external force applied to the fluid and Ff,””t is the external
force applied to the deformable boundary.

drds

2.2. Stochastic framework on fixed domain. We will take F*, F<*t to be
random forces. We consider a filtered probability space (2, F, (Fi)i>0,P) that satisfies
the usual assumptions, i.e., Fy is complete and the filtration is right continuous; that
is, Fy = Ng>¢ Fs for all £ > 0.

2.2.1. ALE mappings. To deal the geometric nonlinearity arising due to the
motion of the fluid domain, we work with the arbitrary Lagrangian—Fulerian (ALE)
mappings which are a family of diffeomorphisms from the fixed domain O = (0, L) x
(0,1) onto the moving domain Oy(t). Notice that the presence of the stochastic
forcing implies that the domains O,, are themselves random and that we must define
the ALE mappings pathwise. That is, for every w € Q we will consider the maps
A5 (t) : O — Oy (t,w) such that A5 (t) =id +n(t,w) on I' and A (¢) =id on 0O\ T.

The pathwise transformed gradient, symmetrized gradient, and divergence under
this transformation will be denoted by

Vf=Vf(VA,) ', D"u)= %(V"u—i— (VN Tu), and div?f =tr(V"f).

The Jacobian of the ALE mappmg is given by Jy#(t) = det VAj(t). Using w" to
denote the ALE velocity w" = A777 we note that Bt = JpVT.-w". We also rewrite
the advection term as follows:

1

f/an«(u—w")-v">u-q—<<u—w">-v">q~u>.

b’ (u,w,q) = 5

We will transform (2.10) using these ALE maps and give the definition of martingale
solutions on the fixed domain O.

We begin by describing the noise. We will assume that the external forces F¢*!
and Fﬁ‘” are multiplicative stochastic forces and that we can then write the combined
stochastic forcing F'¢*! as follows:

(2.11) Fe = G(u,n)dW,

where W is a U-valued Wiener process with respect to the filtration (F;);>0, where
U is a separable Hilbert space. We denote by ) the covariance operator of W,
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which is a positive, trace class operator on U, and define Uy := Q%(U). Letting
L?=L2%(0) x L*(0, L), we now give assumptions on the noise coefficient G.

Assumption 2.1. The noise coefficient G is a function G : L2(0) x H3(0,L) —
L2(Up; L?), such that for any 3 3 < s <2 the following conditions hold true:

(2.12) G, )| Loy < llullLzo) + [Imllaz0,2)
1G(u1,m) — G(uz,m2) ||, vo;r2) < W — v2l|Lz(0) + |71 — M2llL2(0,1)-

Here Lo (X,Y) denotes the space of Hilbert—Schmidt operators from Hilbert spaces
XtoY.

2.2.2. Definition of martingale solutions. We will now introduce the func-
tional framework for the stochastic problem on the fixed reference domain O =
(0,L) x (0,1). The following are the functional spaces for the stochastic FSI problem
defined on the fixed domain O:

V={u=(u,,u,) e H(O):u, =0 on Linjout/b}s
W = L*(Q; L(0,T;L%(0))) N L2 (Q; L2(0,T;V)),
Ws = L*(Q;Wh>(0,T;L%(0, L)) N L>(0, T; H(0, L)) N H'(0,T;Hy (0, L)),
7 (0, T)={(u,n) €¥r x #s:u(t)|r- n"=9n(t) -n", V7' -u=0P-as.}.
We also define the following spaces for test functions and fluid-structure velocities:
(2.13) 2=V xH3(0,L) and % =V xL*(0,L).
In what follows, the notation v = 0;n will be used for denoting the structure velocity.
DEFINITION 2.1 (martingale solution). Given compatible deterministic initial

data, uy € L(0), vo € L?(0,L), and initial structure displacement n, € H3(0,L)
that satisfies for some 61,02 >0

. 1
(2.14) 01 < lngno and  ||nollmz(0,1) < 5

we say that (%, u,n,T") is a martingale solution to the system (2.1)—(2.9) under the
assumptions (2.12) if
1. = (Q,F,(F)i>0,P,W) is a stochastic basis, that is, (Q,F,(Ft)i>0,P) is a

filtered probability space satisfying the usual conditions and W is a U-valued
Wiener process.

. (u,m) e (0,T).

. T is a P-a.s. strictly positive, Fy-stopping time.

. u and n are (Fy)i>0-progressively measurable.

. For every (F;)t>o0-adapted, essentially bounded process Q := (q,) with C*
paths in 2 such that V1-q=0 and qr - n" =1 -n", the equation

(2.15)

/ T / Bun(t) / Jouoq(0) + /0 ")
//J " @tq_f// u- V- q— (u—2w) - Vq-u)
—21//0 /(DJnDn(u)~D"(q)—a/Ot/FSn(u—am)-T"((q—¢)~T”)

U W N
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// (@im-n")(u-q) + //amatw /
+/O (Pm/0 q- Zzod’l"—Pout/O qz Zzldr> /(Q G(u,n)dW)

holds P-a.s. for almost every t € [0,TM).

We are now in a position to state the main result of this paper.

THEOREM 2.2. Given compatible deterministic initial data ug € L?(0), vo €
L2(0,L), and n, € H3(0,L), there exists at least one martingale solution to the FSI
problem (2.1)—(2.9) in the sense of Definition 2.1.

In what follows, we will present a proof for Theorem 2.2 based on the operator
splitting scheme constructed in the following section.

3. Operator splitting scheme. In this section we introduce a Lie operator
splitting scheme that defines a sequence of approximate solutions to (2.15) by semidis-
cretizing the problem in time. Our aim is to show that up to a subsequence, approx-
imate solutions converge in a certain sense to a martingale solution of the stochastic
FSI problem.

3.1. Definition of the splitting scheme. We discretize the problem in time
and use an operator splitting to decouple the stochastic problem into two subproblems,
viz., the structure and the fluid subproblems. We denote the time step by At = %
and use the notation ¢" = nAt for n =0,1,...,N. Let (u’, 1% v%) = (ug,ny, vo) be
the initial data. Then at the ith time level, we update the vector (u"*z, n"+z vnt3)
fori=1,2and n=0,1,2,...,N — 1, as follows.

)

The structure subproblem. In this subproblem we update the structure dis-
placement and the structure velocity while keeping the fluid velocity unchanged. That
is, given (n™,v") € H2(0, L) xL2(0, L), we look for a pathwise solution (n"*z,v"*t2) e
H%(O, L) ng(O, L) to the following equations: For any ¢ € L?(0,L) and 1 € Hg((), L),

n+

(NI

:un’

L L
(3.1) /O(n“?fn")(ﬁdz:(m)/o V"2 gz,

u

L 1 1 L 1
/0 (V2 v )z + (AL (7 2), 6) + (A1) /O P2t L 2oz = 0

For each w € Q and n, we define the ALE map associated with the structure
variable n™ as the solution to

AA%. =0 inO,

(3.2) w . n w s
Apn=id+n"(w)on T, and Ap.=id on JO\T.

Note that we have added the last term in (3.1)3 to regularize the structure velocity.
This term provides the required regularity for the time derivative of the Jacobian of
the ALE map in the construction of the fluid subproblem below (see (3.10)). Moreover,
it is required to circumvent the issues associated with the “very weak” solutions to
the Poisson equation on polygonal domains with corners. Our next result, Lemma 3.1
below, is an immediate consequence of this regularization term.
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We will first pass NV — oo and then € — 0.
LEMMA 3.1. Consider v € HZ(T') and w € H*(O) that solve

(3.3) —Aw=0imn 0O, w=vonl, w=0ondO\T.
Then,

Proof. We introduce the following system:
—Ag=win O, ¢g=0o0n 00.

Since w, g € H%(0O), thanks to Theorem 1.5.3.3. in [19] (compare with Remark 1.5.3.5
in [19]), the following holds:

(w,w)=—(Ag,w) =—(g,Aw) + / v0Opg = / v Ong.
r r
Hence, thanks to Theorem 1.5.2.1 in [19] we then obtain
01320y < 1ol g 19013 ey < 0l o Nlirzien < 0l o N0

The fluid subproblem. In this subproblem we update the fluid and structure
velocities while keeping the structure displacement the same. As noted in the intro-
duction, there are two major difficulties associated with constructing this half of the
scheme. The first difficulty arises because the fluid domains can degenerate randomly.
Hence, we introduce an “artificial structure displacement” random variable by the
means of a cut-off function as follows: For § = (d1,02), let ©5 be the step function that
satisfies Os(z,y) =1if 6 <z,y < é, and ©;(x,y) = 0 otherwise. For brevity we define

3
ny . . . k k ) e
(3.5) Os(n") := min O <1ng JIm HH&(F)) for a fixed s € <2,2),

where J*(w) = detV Ay, is the Jacobian of the map defined in (3.2). Note that 05
is a real-valued function which tracks all the structure displacements and is equal to
1 until the step for which the structure quantities leave the desired bounds given in
terms of §. Now we define the artificial structure displacement random variable as
the following stopped process:

(3.6) Ny (z,w) = phaxosksn 95(”k)k(z,w) for every w e ), z €10, L].

Observe that, for any p>2 and s > g — %, we have the following regularity result
for the harmonic extension of the boundary data associated with 5 on a square (see
section 5 in [19]):

(3.7) 145, — idllwesio) < Ol ot <Ol lessco)

)

Then Morrey’s inequality for some p < 4 gives us a constant C, > 0 (see Theorem
7.26 in [15]) such that

. n C,
(3-8) IV A5y —id)ll oz ) < Cllmi ) < 5 <s<2.

1
Cr(0)

N | Ot
hSEN V]
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Theorem 5.5-1 (B) of [9] then ensures that the map Ay, € Cl’%(@) is injective for
any n if d satisfies

(39) C. < 52.

Hence, such 65, the domain configurations corresponding to the artificial variables 7,
are nondegenerate and their Jacobians have a deterministic lower bound of §;. These
artificial domain configurations will be used to define the fluid subproblem.

The second difficulty in constructing the second subproblem is due to the depen-
dence of the fluid test functions, through the transformed divergence-free condition
and the kinematic coupling condition, on the structure displacement found in the pre-
vious subproblem. Hence to avoid dealing with random test functions we supplement
the weak formulation in this subproblem by penalty terms, via the parameter € > 0,
that enforce the incompressibility condition and the continuity of velocities in the
normal direction, only in the limit ¢ — 0.

A penalized system on artificial domains. Let A, W := W (t"*1) — W (¢"). Then
we look for (u"! v"*1) € % that solves

(3.10)
"=t

1 1
/ J7 (u"+1 — u”+5) qdx + 5/ (J,Z”rl — Jf) u"tl . qdx
16) 16)

1 n n
+ §(At)/ JH (T —w?) . VT u g — (u T —w?) - VT - u™ T dx
o
—|—21/(At)/ JD" (u"th) D" (q)dx
o

At n n At
+ (57) / div?-u" T div qdx + (57) / (u"t — vt . n"(q — 1) -n”
o r

L
+(éf)/rsn(un.t,.1_vn+1)(q_,¢)dz+\/o (vn+1_vn+%)¢dz

t 1 1
-/ (P;:L [l _dr=rie [
0 0 z=0 0

) (G A, W Q)

n+1
for any (q,v) € . Here we set Pﬁl/out = Ait fttn Piynjour dt. Moreover, the random
variable n} is the unit normal to I';» and
1

Remark 3.1. Note that, to obtain a stable scheme, we update n™ in the first sub-
problem using the data from the second subproblem and not 1?'. However, this means
that after a certain random time, we will produce solutions that are meaningless.
These discrepansies will be handled in the end in Lemma 5.7 by introducing an almost
surely strictly positive stopping time until which the limiting solutions, corresponding
to the approximations constructed in section 3.2 using n"’s and n}’s, are equal.

Now we introduce the following discrete energy and dissipation for ¢ =0, 1:

Entd — 5 </ Jr e 2dx + |[v e ||iz(07L) + It ”%—I%(O,L)) )
(3.11) ©

L
n — o(At) / 10, v 5|2,
0
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At
Dg:At/ (2VJf’|D(u"+1)\2)dx+;/ [utt — vt 2
o r

*

At n At
+ ( ) / |diVT’* un+1|2dx+ 7/ ‘(un+1 o vn+1) .nn‘Q'
€ Jo € Jr

LEMMA 3.2 (existence for the structure subproblem). Assume that ™ and v™ are
H3(0,L)- and L?(0, L)-valued F;n-measurable random variables, respectively. Then
there exist HZ(0, L)-valued Fyn-measurable random variables n"*iv”*é that solve
(3.1), and the following semidiscrete energy inequality holds:

(3.12) E": + D' +C} = E",

where
1

1 ]. 1
Cy = §||Vn+2 - Vn”%ﬂ(O,L) + §||77n+2 - 77”“%{3(0@)

corresponds to numerical dissipation.

Proof. The proof of existence and uniqueness of measurable solutions is straight-
forward and the reader is referred to [22] for details. This allows us to write

We now take ¢ = vtz in (3.1)3 and using a(a — b) = 2(la]® = [b]* + |a — b]?), we
obtain
nt+3 _

1 1 1
V5 a0y V2 = ey + 107 2 Bz o 1 + 107 = 0" o

(3.13)

n 1 n n
+e(At)]|9.. v 2 ||i2(0,L) =|lv H%ﬂ(o,L) +1n H%—I%(O,L)'
Recalling that u™ = u"z and adding the relevant terms on both sides of (3.13), we
obtain (3.12). d

LEMMA 3.3 (existence for the fluid subproblem). For a given 6 = (61,02) satisfy-
1
ing (3.9), and given Fin-measurable random variables (u"*2,v™) taking values in %
1

and vz taking values in H2(0, L), there exists an Fynt1-measurable random variable
Untl = (utt, vt taking values in % that solves (3.10), and the solution satisfies
the following estimate:
(3.14)

E™ 4 DY+ CY B3+ CAH(PL)” + (Pr)’)

+CIAW T, G ™ )12, wne)

1 L
G AW )y |+ 7 [ v
0

where
1

1 .
cy ;:7/ (Jf|u"+1—u”|2) dx—i-f/ |Vn+1_vn+§|2dz
4 Jo 4 Jo

is numerical dissipation, and 0% is as defined in (3.6).

Proof. The proof of existence and measurability of the solutions is given using
Brouwer’s fixed point theorem and the Kuratowski selection theorem in [32].
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To obtain (3.13), we take (q,) = ("™, v**1) in (3.10) and use the identity
a(a —b) = 5(laf* — [b]* + |a — b]?):
1

1
5 [ (P "*zl) 3 Ot e ax
(@]

+2(At>/ Jf\D"*( n+1 |2d + /Sn‘ n+l n+1‘2
(@]

At n (At)
+ 7( ) / |div?- u™ ! 2dx + 7/ |(u™tt — v ) 0?24z
¢ Jo € Jr

L
+ 1/ |vn+1‘2 B |vn+%|2 + ‘Vn-&-l _ Vn—i—% |2d2’
0

2
1 1
= (At) (P[;L / w | dr— P, / s dr)
0 z=0 0 z=1

+(G", ) AW, (UM —U")) + (G(u",n2)A, W, U").

Here we split the discrete stochastic integral into two terms. We estimate the first
term by using the Cauchy—Schwarz inequality. For some C(4) > 0 independent of n,
the following holds:

(G, ) AW, (0", v ) — (0", v™))r2| < CIAWIE, G (™, n2)II7, w, )

1 n|,.n+1 n|2 1 o n+1 n|2
+ - Ju"T —u"fdx+ < v T — v %dz
4 /o 8 Jo

n n 1 n n n
< AW GO ) iy + 7 [ T2 =

1 [E - 1 [k . )
+Z/ [vi il — vt dz—|—1/ [v'te —v"|2dz.
0 0

We treat the terms with P, /o, similarly to obtain (3.14). ]

Next, we will obtain uniform estimates on the expectation of the kinetic and
elastic energy and dissipation of the coupled problem.

THEOREM 3.4 (uniform estimates). There exists a constant C' > 0 that depends
on the initial data, §, T, and Py, jous, and is mdependent of N and ¢ such that
1. ]E(max1<n<N E™ ) < C E(max0<n<N 1 E’nJr ) <C.
2. Ezjf 01 D" < C.
3. ]EZn 0 o JI U = x4 vl v rE|2, < C

4 EY vt — v 13200y + 10" =0 f2(0,y < €,
where D™ = D" + DY (see definitions (3.11)).

Proof. We first add (3.12) and (3.14) to obtain
E" 4 D"+ O 4+ Cy < E™ + CAH(PL)* + (P1,)?)
+ 1AW, G )L, w0y + (G, 02 AW, U]

Then for any m > 1, summing 0 <n <m — 1 gives us

(3.15)

m—1 m—1 m—1 m—1
E"+ Y D"+ Cf+ Y Cp<E’+CAtY ((Ph)+(Pp.)?)
n= 0 n=0 n=0 n=0
+ Z (G, n)A, W, U™)| + Z [G(u »UZ)HQLQ(UO;Lz)||AnWH2U0~
n=0
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We take supremum over 1 <m < N and then take expectation on both sides of (3.16).
The discrete Burkholder-Davis-Gundy inequality, (3.6), and (3.8) give us for some
C(d) > 0 that

m—1
E max ;(G(u AW, U™
- 1
2 2
< CE Atz 16,00 (VT Lz(o)+||v"|i2<o,m)]
u™ m||2
=¢ |:O<m<N (H ‘LZ(O) +mz ”H3(07L)>

1
2

3 (VT 20y + V" 122019 |
n=0
1 1
< §E0+§E max H(\/J;”)u

1<m<N

2

2
L2(0) + |77m||Hg(o,L)]
N-1

+CALE (Z I/ T 120y + IV 1320 L))

n=0

We use the tower property and (2.12) for each n=0,...,m — 1 to obtain

(G )L, w2 12n W iE,) = EE[IG(a™ n2)I, 0, 12) | A Wl | Fn])
=BG, )13, 0 1oy B AW [, | 7]
= AT Q)E(G (0", n)||T, w, 12)

(3.17) < CAHTQE (| VT B o) + 112 Bz ) -

Thus, for some C' > 0 depending on § and on TrQ, the following holds:

E max (/IO a0y + V"R 0,0y) < CE + CllPasjout 220,
N—-1
+C S AE max (H (VT 220y + V71132, OL))

1<m<n
n=1 - -

The discrete Gronwall inequality finally gives us

B max (Il/ 700" o) + V'R ) < O™
where C' depends only on the given data and in particular §.
Hence for E™, D™ defined as in (3.11), we have

N-1
(3.18) E | ax E" "‘EZ (D" +CF +C5) <CONE® + | Pinjout | 220y + TeT). O
n=0

3.2. Approximate solutions. We use the solutions (u"t2 9"tz v"*3) i =
0,1, defined for every N € N\ {0} at discrete times to define approximate solutions on
the entire interval (0,7"). First we introduce approximate solutions that are piecewise
constant on each subinterval [nAt, (n + 1)At):

(3.19)
n n * n n n4 1
uN(t7'):u ’ T’N(ta):n 5 T,N(t7):77*7 VN(ta'):V 3 vﬁ(t,-):v +2'
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These processes are adapted to the given filtration (F;);>0. The following are their
time-shifted versions which are commonly used in deterministic settings:

uli(t, ) =u"t, Lt )=n""T vt ) =v"Th te (nAt (n+1)Ad.

We also define the corresponding piecewise linear interpolations for ¢ € [t", " 1]

t—t" ¢ t—t" el — ¢
unv(t. )= —— n+1 e ) Tt )= — " n+1 n
(3.20) uv(t )=z w A v (t) A Y TTA Y
. _ t— 1 tn-‘,—l —t s t—t" 41 tn+1 —t
Nn(t,) = N nn(t,) = SN w1

Observe that

My _ #  Ony _

(3.21) e .

-1
Z 96(77”+1)Vﬁx(tn7tn+1) :=vy ae.on (0,7),
n=0

where vﬁ is introduced in (3.19). We also define piecewise constant interpolations

of the ALE maps and Jacobians Ayx ,Jy+ and their piecewise linear interpolation
Ay s Jys, - In the following lemma we summarize the results that are immediate
consequences of the estimates obtained in Theorem 3.4.

LEMMA 3.5. Given ug € L?(0), n, € H3(0,L), vo € L?(0,L), for a fived § =
(61,062) satisfying (3.9), we have that
L {nx}{nk} {ni} and thus {nx}, {0} are bounded independently of N, ¢
in L?(Q; L°°(0,T;H2(0,L))).
2. {VN},{VE},{Vﬁ},{V*N} are bounded independently of N and € in L*({;
L>(0,T;L%(0,L))).
3. {un} is bounded independently of N and € in L*(; L>°(0,T;L?(0)))NL?(Q;
12(0, T;L2(0))).
. {u}} is bounded independently of N and e in L*(Q; L*(0,T; H'(0))).
. {%div’ﬁV uf} is bounded independently of N and e in L*(Q; L*(0,T; L?(0))).
. {ﬁ(u}—v})n}k\,} is bounded independently of N, e in L*(Q; L?(0,T; L*(T))).
7. {ﬁvﬁ} is bounded independently of N and e in L?(Q; L*(0,T;HZ(0,L))).

Proof. Observe that for each w € Q, Vu™t! = v u"t(VAg.). Thus we have

S Ot

511E/ |vun+1|2dx§151/ (Jf)|Vu”+1|2dx:E/ (J)|VTurtt VAL, [Pdx
o o o ”

<C()E / (TP 2dx < KC(6)E / (J7) D7 2dx,
(@) (@)

where K > 0 is the universal Korn constant that depends only on the reference domain
O. This result follows from Lemma 1 in [35] and because of uniform bounds (3.8)
which imply that {A7. (t); w € Q, 1 € [0,T]} is compact in WLee(0). Thus, thanks
to Theorem 3.4, there exists C' > 0, independent of N, such that

T N—-1
(3.22) IE/ /|vu;|2dxds =E) At/ |Vu"t|2dx < C(6).
0 =0 o
The proofs of the rest of the statements follow immediately from Theorem 3.4. ]

4. Passing IN — oo. In this section we will pass N — oo by first establishing
tightness of the laws of the approximate random variables defined in section 3.2.
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4.1. Tightness results. Since we do not expect our candidate solutions to be
differentiable in time, the tightness results, i.e., Lemmas 4.2 and 4.3 below, will rely
on the following theorem (see [33, 29]).

LEMMA 4.1. Let the translation in time by h of a function f be denoted by
Thf(t,-)=f({t—h,-), heR.

Assume that Yo CY C Y1 are Banach spaces such that Yy and Yy are reflexive with
compact embedding of Vo in Y; then for any m >0, the embedding

1
{u S LQ(O’T7y0) :osup hmeThu — u||L2(h’T;y1) < OO} — LQ(O,T,y)
0<h<T

18 compact.

We will now obtain our first tightness result for the fluid and structure velocities
by bypassing the need for higher moment estimates (see also [16] in this context).

LEMMA 4.2. The laws of u}; are tight in L%(0,T; H*(0)), and those of v}; are
tight in L2(0,T;H=?(0,L)) for any 0<a <1, 8>0.

Proof. The aim of this proof is to apply Lemma 4.1 by obtaining bounds for
T
2 2
It = w0y + 1759 = vl
13

N
(4.1) = (At) Z [[lu™ — u"_]||i2(o) +|v" = V"_JH?{—ﬁ(o,L)

n=j

for any N and h. Here 1 <j < N such that h = jAt—1 for some | < At. For simplicity
we take [ =0.

To achieve this goal, we will construct appropriate test functions for (3.1) and
(3.10) that will result in the term on the right-hand side of (4.1). This is done by
transforming u* and v* in such a way that they can be used as test functions for the
equations for u™ and v™. This has to be done carefully since u* and u™ are defined
on different physical domains. Observe also that we cannot test (3.1)5 directly with
v¥_ as it does not have the required HZ-bounds independent of e. Thus, we will use
a space regularization of v¥ to arrive at the desired test function for (3.1) and (3.10).
First, for any g € Hl(O), we extend g by its boundary values at 0O constantly in the
normal direction outside of O and define it to be 0 elsewhere. Then, denoting the 1D
bump function by p, we define its horizontally mollified version as follows:

g, (2,7) = [1g(z +oy,r)p(y)dy.

Now let Py denote the orthonormal projector in L?(T') onto the space spani<;<a{®i},
where ¢; satisfies —Ag; = vi¢; and ;(z) =0 when z = 0, L. For any v € L*(I") we
notate vy = Pysv and denote by wj; the harmonic extension of v, in O, such that
war =0 on JO\T (cf. (3.3)). Similarly, let w* be the harmonic extension of v¥ in
O with 0 boundary values on 9O\ T'. For the rest of the proof we fix o = %h%‘z and
since yys ~ 1 M2, we choose M such that ~,, = ch™s.

Now we define the following function that will lead to a suitable test function for
the fluid subproblem (see (4.8)):
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wh = () VA (JE(TAg) M =) whs o+ (M =25 fox
- (Jf)*VAmLB(div((J* (VAye) " wh)y — TV Age) " wh,
— (M=) (T Ag) T 60) ).

where
e x(r) is a smooth function on O such that x(1) =1 and x(0) = 0;
e the R-valued random variables \¢ = fOL(az(id + %) x vF), and )\ﬁ/}” =

Jo (@-Gd +m2) x vkp);

e e CO (0,L) that satisfies fo . (id +n7) x &) =1 for any n;

e finally, B: L?(0) — H}(O) is Bogovskl s operator (see [12]). B along with the
constants in the previous point is used to correct the divergence of the extra
terms appearing in the definition of ugrfw due to the extension of structure
velocities in the fluid domains.

Observe that to preserve 0 boundary conditions on 9O \ T' we must also “squeeze”
the mollified function by ~ 1+ o as in [32, 31]. However, we choose to leave it out of
our discussion for a cleaner presentation as it does not change the following estimates
and argument. Next, let

k: n k,n
Vo, M '—VM ()‘k Ar )§0~

Observe that we used Piola transformations, which preserve divergence and nulhty of
normal components at the boundary, to deﬁne the fluid test functions u . Thanks
to (3.8) and Theorem 1.7-1 in [9] we thus observe that

Jo(div™ u ) = div (J; F(VA)~ 1uk)0:(div(Jf(VAni)*luk))U:(deiv”fuk)g.
Hence,

||dw"* b2 (0) < CO)divT w20,

(s, = Vi) 0l 2@y < CO) (0¥ —vF) 0k o).

Note that, to ensure that (4.2)9 holds we mollified only in the tangential direction,
Le., along I'yx in the deﬁmtlon of u” M
Observe that for any < , we have

(4.3) [var = vg-s 50,0) < ’YM HVHL2 0,L)> Vo *V”H*ﬁ(mL) < J’8||V||L2(0,L)-

Observe also that [|T,m% — 1 || Lo (0,585 (0,)) < ||7~I*N”CU’%(O,T;HS(O,L))h% for any s >

%. Thanks to these observations and (3.4), for any s > % and B < %, we calculate
(4.4)
L 1 z+oy
=< [ ([ oeenbid) e+ e
0 —1 z

gl

+ ||77f\|Hs(o,L)HV§ -V + [Inf — 77:||HS(O,L)||vk||L2(O,L)

H™%(0,L)
+ ||n:||H”(O,L) ||Vé€\4 - Vk ||H*% (O,L)

1 _B 1o
<€) (In2lg000% + 0 2 + 0415l g .0 ) 19 D
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Observe that due to the properties of mollification, 0,,w, = (9., W), and 0, W, =
(0 W)y. Hence w¥ is harmonic with 0 boundary values on 9O \ T' and such that
wh(2,1) = vi(2).
Moreover, thanks to Proposition 3.1 in [13] and the bounds (3.8) and (3.4), we
obtain for s>%7 ﬂ<%7 and n — j <k <n that
k.n
[ughr — 0¥z o) S IVAR: — VApk Lo o) [u" L2 (0) + 0" = uf|lL2 (o)
k,
+ [ w" = whlL2 o) + W = wihllLz o) + A5 — A3
St =k llae 0.0 [0 l2 o) + ollu®|lm o)
k,n
+ vh - V’;||H*1/2(0,L) + v - VIJCW”H*UZ(O,L) +[Ag = A

SHANN o4 o perts 0.0y (P T30 + VP lego,) + o0 e o)
(45) + 0+ + )V o,y
where the hidden constants depend only on §. Observe, due to (3.7), that
[ul e 0y < 1At lwes o) (10F e o) + IVE e ) + V5 ey + A8 = A3
< CO)(Iu* o) + 0 V¥ llLay) + V3 lIVH Iz + COIVFlez)-
Therefore, we obtain for some C' > 0 that depends only on T and § that

n

k,
E [ (At) sup Z Huo'771\1/1||%‘11(0)
0§7L§Nk=n—j+l

N
<C(5,TIE ((At) > It o) + (072 +70)_sup |vk||i2(0,m>
n=0 SN

(4.6) <SCOT)1+07%+7y)
Similarly (see also (4.4)),

(4.7) V5 ez 0.0) € MarllVF Iz o,y + CO)IVFIIL2(o,)-
Then, as in [17], for any n < N we “test” (3.1)3 and (3.10)2 with

n n

(4.8) Q,=(a,¥,)=[ (a0 > ult. Ay Y vy

k=n—j+1 k=n—j+1
This gives us, for any 0 <n < N and N €N, that

n

- [ ey [ae 30wl
o

k=n—j+1

n

L
—/O (vt —v™) | At Z Vij\b/l

k=n—j+1
1 n
=5 / (e =gt LA YT uny,
o k=n—j+1
n
(4.9) + (A [ un T wh [ At Z usxf
k=n—j+1
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(A1) 4

(07

) / grrt - vty [an S0 ubn Ve
I

k=n—j+1
At o Con i
+u div™u™tidiv | At Z uly&
o k=n—j+1

n

9
k=n—j+1

n

n ntioon i k,n
+21/(At)/(J*)D’* (u™)-D™ A > uly,

o k=n—j+1

n+ % k,n
+(AY) [ L), (At > Vi,

L
+1 k,n
+8/0 0., v'"2.0,, | At Z VoM

k=n—j+1
1 1

(a0 (P;; [l _ar—pn [«
0 z=0 0

ey / @ vy ((an S b, VR,

P

i) - (G A mQ,).

7525

Then we apply Eg:o to this equation and then denote its right-hand side by Z? I;.
To motivate the choice of this test function, we first apply a summation by parts
formula for the two terms on the left-hand side of this equation. For the second term

we obtain

n

n=0 k=n—j+1

0

(At) AN n n—j2 n |2 n—j2
+72 E : Ivir = v 1P+ (Vi = v 1)
n=0

— V(A= AT AT = Mo

=T+ 15+ 1,

where we set v =0 for n <0 and n > N. Observe that since

_ » 8 .
v = v =v" 7 = vy lm-s0,0) < (VL2 go,) + 1V MlL2(o,))s

for any 0 < 3 < 3, the term Ij will give us one of the desired terms in (4.1).

N L L
72/0 (vt —v) [ At Z V‘lj% :/0 v'(v
L

n—j,n
oM~ Vo M

:/'w{wQ—Qz—Wmeﬂ%ﬂ+(Wﬁ—kﬂ”ﬂ@>w

Similarly, using summation by parts and setting u™ =0 for n <0 and n > N, we

obtain the following for the first term on the left-hand side:

n

N
-3 /O (2 hu™ = () (At > ully,
n=0

k=n—j+1
N n n—1
_ nY\,., N kn k,n—1
S0) Y RELTE (D SRR SR
n=1"0 k=n—j+1 k=n—j
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\

n—jn —1
UMiuaM + § : ungu
k=n—j

(=) [ - - (- ) )

\MZ HMZ

—
\

n kn—1
Ju uaM*“aM

k=n—j

||M2|
\

N

1 .
5/ (JM) ™ —u"7 2dx + (At) Z( / JM)(Ja™? - |u"_]|2)dx>

o) 2 ([t - = g - w)ax)

n=0
N

+(At)Z/O(J:f)u" Z wrt et | =g+ S+ TS+
n=1

k=n—j

= (At)

ﬁMz

Observe again that J} is another one of the desired terms in (4.1). Now we will find
appropriate bounds for the rest of the terms. We start with I2:

N L
E(At)Z/O Vi — Vi 7|2 = E(At) Z /|vM\2<hIE max_|[v" 132 0.2)-
n=0

n=N—j+1

Next, thanks to (4.4), we see for any 0 < 5 < % that

E|I5| :=

At Z/ )\n n )\ZL—j,n =+ )\7](4*],71 _ )\%n)go

* 1 _B 1, ~x
< E( <||77N||Loo(o,T;H%(o,L))02 +0f 4y R ||nN|Co,}1(07T;HS(07L)))
B
X ||VN||L°°(O,T;L2(0,L))> <Chz.

Hence, using the Chebyshev inequality we obtain

Chiz

P(I3 + 13| > R) < =

To treat the term .JZ, we recall that for two matrices A and B, the derivative of the
determinant D(det)(A)B = det(A)tr(BA~!). Hence applying the mean value theorem
to det(VAy,) — det(VA, .+;), using (3.8) and that det(A4) < (max A;;)?, we obtain,
for some g € [0, 1], that (for more details see (73) in [26])

124 = T2l (0) = [det(VA™)V™P - (A, s — Ayl 0)

4.10
(410 < O(0)Aypes — Ans

Cl(0)s

n+j

where V™8 = V7 4 B(V7 — V) and VAP =V A, + ﬁ(VA nti — VApn).
Using (3.8) again, we find the following bounds for any s > s
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N
=@ Y ([ e - )
n=0 o
= (At) Z / (JH)a™ 2dx+Z/ — JrH) a2 dx
n=N—j+1 n=0
N—
< (AY) Z / JM[u”Pdx + (At) Z |4, 45 — Anz o1 @) 10" 1720
n=N-—j+1 n=0
< (0 s [P sw oI - 02l )
1<n<N 0<n<N-—1
L
40<:1<1% ”u I:(0) (1+H ”C”’im,T;HS(O,L)))'

In what follows, we will repeatedly make use of the fact that for any two random
variables X and Y, we have

P(|X| + Y] > R) < ]P’<X| > 5) +P(|Y| > f)
P(|XY|>R) <P(|X|>VR)+P(Y|>VR).

The embedding W1-°°(0,T; L2(I")) N L2(0,T; H3(T')) < C%%(0,T; H2 (T')) then gives
us for any s > % that

ool

P(|J3|>R) <P (h sup ||u"||iz(o) > \/E) +P (héHﬁ?\r > \/E)
1<n<N

lcot 0 im0 (ry)

hé ni||2 ~*
§ \/R]E 1gsup ||u ||L2(O) + ||nNHCO,%(O7T;Hs(F))
é N h¥
< \/» SUP [u ||L2(O)+|| ”W1=°°(O,T;LQ(F))OL2(07T;H§(F)) §C\/§-
Next, thanks to (4.5), we see that
N . .
~ @0 X ([ e - - g - w )
n=0
N .
<C(d)(At) Z [u™ |20y (a3 — " llLz(o) + [[u) 37 P — L2(0))
n=0
N 1
< 1<SUP [u™ |20y (At) Z (hZ Hﬁ?v”co.i(o T3H# (0 L))(HukHL?(o) + HVkHL?(O,L))
sns k=0 Y ’

_B 1
+ [0 len ) + (07 + 737 + BV o,z )-

B
Thus, we obtain that P(|J3| > R) < %(hi + 0P +79,,2) < %h%

find, using the properties of the Bogovski operator B, that

. For the term J we
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10| = AtZ/ (J)u" Z ubn, bt

k=n—j
N (J) IV A — (JPH)TIVA
gC((S)(At)Z (u lLe (ol AL |12 (0)
n=0
n—1 |/\k ,n )\k n— 1|
Z Ab)|[(u* = w*)s 130y | + (A )ZH“”HLZ(O) At) Z —
k=n— n=0 k=n—j
1 1
N 3 N 3
_1 n n
<ho~t() ((szu ||%1<o>> ((Aw;nv 12,4 F))
max (" oy + V" )
+h'yjijc(a)Og}laSXN(HunHLQ(O)||VZ||L2(F)||V]€||L2(F))'
Here we also used the calculations in (4.10) that gave us
Jn+1 —Jn 41 41
* * n n
a0l o SOOI g
Hence, we conclude, for some constant C' that depends on ¢, that
(4.12) (|J|>R)<C’()h12
' 0 VR
Now we use (4.11) again to bound I; on the right-hand side of (4.9):
N n
= Z/ (e —Jgmurtt (A YT uly | dx
n=0 o k=n—j+1
1
N n 2
n n k,
<O TIVT Ry o 0 ey { (A0 D0 e liso) | VR
n=0 k=n—j+1

N 3 N 3
<ovh ((At) SV, L)> ((At) > ||u"||%{1<o>>
n=0 n=0

n 2

k,
x [ (At) sup > ([ui 0
0SnSN pen—j1

This implies, thanks to (4.6), that

Chs  C(8hs hi
4.13 L|>R)< —— 1 <C .
(4.13) P (|1 ) < c 12 + RZ (1+07%+ym) (e )R§

Note that this estimate depends on . Next, we treat the nonlinear term in Navier—
1

Stokes equations. Using the embedding H?z (O) < L*(O) we obtain, for some C' > 0

which depends only on ¢, that
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n

N
=|(An) Y o (uthwl [ A Y

k=n—j+1

Nl

n

N
<VA(ALY D u"™ ! =Wl pa o0 Loy | AL D ”uUJMHHl(O)

n=0 k=n—j+1
N
<VR(A) Y (I a0y + 192l ., ) i)
n=0
n 2
<At > ui o
k=n—j+1

Again, thanks to (4.6), for any R >0, we have

h nt1 hx i ntd 2
<|12|>R><@E[At2nu L e T s

+E[At Z Z [ 12 o }

n=0k=n—j+1

C(8)hi  C(6)hz L
< <
<= + 7 (I1+0 " +9y) <

The term I3 is easier to handle and is treated similarly. For the penalty term, thanks
to (4.2)1, we have

(At) -
E[l]:=E TZ /O div? u ! | At Z div™* (ulh) | dx
n=0

k=n—j+1

Q

(6

NG

hi.

S

(NI

N n
(At) . non . n n
<E— Yo lldivEu a0y { (A Y (i (uy D ey | VR

n=0 k=n—j+1

SCV hT]E<(At ZHd Vn* n+1)|L2((’))> <Ch2

Notice that, due to Lemma 3.5( ), the constant C' in the estimate above does not
depend on . The other penalty term I5 is handled identically thanks to (4.2)s and
Lemma 3.5(6). Similarly, due to (4.6), we have

E[ls] =E / D7 u"t [ At Z D" (ufn ) | dx
n=0 k=n—j+1

n

N
<VRE | (A 0" mio) [ (A1) Y Iugi) e o)

n=0 k=n—j+1
N N
Z (At ||u"+1||2 +VhE ((At OSUPNZH o.M ||H1(O)>
n=0 sns

o

<COhi(1+0"%+vy) <Ch.
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Next, using (4.7), we obtain that

n

N
]E[ Z n+1 7 At Z v’;,M

k=n—j+1

n

N
<CEAEY " (10-m" 20y Y. 10-vE Rz o0

n=0 k=n—j—1

n

N
At)zz 10:2m"(|L2(0,1) Z TV llLz0.z)
n=0

k=n—j—1
< CThyuE max (IIn”HHz o)+ IV, L)) <Chs.

The term I7 is handled similarly. Finally, we treat the stochastic term (see also (3.17))
using Young’s inequality:

(ZI u”,n)AW,Q,,) ><1E<ZIIG )| Lo o) [ An W o,

n=0

1
n 2
1
X ((At> Z ||ug it O)+||V<7]\/I||L2(O L)> h2>
E

k=n—j+1

N
1
<h? ZHG( 777*)HL2(U0L2 (AW VV”U0
n=0

n
7 1
E((At) Z [l lizo +|v§,Mi2(O,L)> < Chz.

k=n—j+1

Now to show that the laws of the random variables mentioned in the statement of the
theorem are tight, we will consider the following sets for 0 <a<1land 0 < < % and
any R > 0:

Br:= {(u,v) € L*(0,T;H*(0)) x L*(0,T;L*(0,L)) : HuH%Zm?T;Hl(O))

T
+vIZa (0.1:L2(0,)) T S“Iilh 12/h (HThU—uH%?(O)‘FHThV—V||%rﬁ(o,L)) <R}'

Thanks to Lemma 4.1, Bg is compact in L2(0,T;H*(0)) x L*(0,T; H?(0, L)) for

each R>0,0<a<l,and 0< 8 < % Now we apply Chebyshev’s inequality to obtain
the desired result:

R
P((uy,vy) ¢ Br) <P (||uXr|iZ(o,T;H1(O)) + ||V]—~\}H%2(0,T;L2(O,L)) > 2)

T
_8 R c
+P ( sup h~ 12 /h (”Thuj\_r - u;”i%O) + 1 Thvy *VE”%I*/S(()’L)) > 2) < VR

0<h<1

where C' > 0 depends only on 4, Tr@, ¢, and the given data and is independent of the
parameter N. 0
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Next we give the tightness results for the structure displacements and velocities.

LEMMA 4.3. For fixed §, the following statements hold:
1. The laws of {fx}Nen and those of {Ny }nen are tight in C([0,T],H*(0, L))
for any s < 2.
2. The laws of {|[u};||r2(0,7;v)} nen are tight in R.
3. For a fized €, the laws of {[|Vi[lL2(0,r:m3(0,0)) tven are tight in R.

Proof. The Aubin—Lions theorem gives us the following: For 0 < s < 2,
L>(0,T;H(0, L)) N WH>(0,T;L%(0, L)) C C([0, T];H*(0, L))
Hence for any R > 0 we consider

ICR = {”7 S L™ (07T; H(2)(0= L)) N WLOO(O?T; LQ(O’ L)) :
17207 < 0,7522 0,) + 171131 0,751.2 0, ) < BY-

Using the Chebyshev inequality and Lemma 3.5 we obtain for some C' > 0 independent
of N and e that the following holds:

~ . R ~ R
Py €Kr| <P {”nNiO@(O,T;Hg(O,L)) > 2} +P [HnN”%/VlvOO(O,T;LQ(QL)) > 2]

4 2 _ C
< ﬁ]E {HUN”LOO(O,T;Hg(o,L)) + HnNH%/VlvOC(O,T;L?(O,L))} < R

The proof of statements (2) and (3) follow by an identical application of the Chebyshev
inequality and the bounds obtained in Lemma 3.5. For any R >0,

. 1 . Cle)
Pll[vvllzz0,7:m10,0)) > Bl < EE[HVNH%Z(O,T;Hé(o,m)] < 2
This completes the proof of Lemma 4.3. O

To obtain almost sure convergence of the rest of the random variables we will use
the following lemma which is a consequence of the bounds on numerical dissipation.

LEMMA 4.4. The following convergence results hold:
L limy oo B [y luy = ufflf2s o) dt =0, limy oo E [ [luy — 8|20y dt =0.
2. limN_,OOIEfoT lvn —VNHia(o,L)dt =0, limN_,OOIEfoT v —vﬁ”ig(o’mdt =0.
8. N oo B Sy [0 =T |12 0.2y 88 = 0, imn oo E [y 18 —Fx |32 .1, 0t = 0.

Proof. Statement (1); is true thanks to Theorem 3.4(3). We prove (1) below
exactly as in [32].

T
]E/ lun — l~1N||i2(O)dt
0
n+1

N—-1 .t
1 n n n n
:]Ez/t =" L (" =t — Atu"|[F2 ) dt
n=0

n

N-1 tntt 2
t—t" cT
E n n|2
:]E ||u +1,u ||L2(O)/tn < At > dtg(sliN%O as N*)OO

n=0

The rest follows identically from the uniform estimates stated in Theorem 3.4. ]
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To pass N — oo in the weak formulation, we consider the following random
variable:

(4.14) Un(t) = (T3 (1) un(t), v (t)) — Ex(t),

where Ey is an error term that appears due to discretizing the stochastic integral
(see (4.26)) given by

N-1 t
t—tm
Ex(t)=> ( Ar G(um,nT)AmW—/tm G(um,nT)dW> X[tm tmot1).-

m=0
Let % = % N (HQ(ON) x H3(0,L)). For any ¥, CC %, we denote by u%’ the
probability measure of Uy:
uy" =P (U €-) € Pr(C(0,T]: 7)),
where Pr(S) denotes the set of probability measures on a metric space S. Then we
have the following tightness result which is proved identically as Lemma 4.6 in [32].

_ Lemma 4.5. For a fived € > 0 and §, the laws {juy"}n of the random variables
{Un}nN are tight in C([0,T]; 7).

We note here that this result is available only in the case of fixed £ > 0 and that
we will not have this result in the next section. In the following lemma, we will show
that the stochastic error term vanishes as N — oco.

LEMMA 4.6. The numerical error Eyn of the stochastic term has the following
property:

T
E/O ||EN(t)||i2(O)><L2(O,L)dt_>0 as N — oco.

Proof. For any N, we begin by writing En(t) =: Ex + E%. Observe that F}
satisfies

N—1 ¢gntl P 2
/ 1By Ot =5 Y G Wiz [ |5 ar
n=0 "

—EZHG u, A W|\sz<EZ G, )1, (o) | An W 17, At

= (At) ]EZHG w1, ) < CAL

where, as a consequence of Theorem 3.4, C' > 0 is independent of N and ¢.
To estimate E% we use the Ito isometry as follows:

tn+1 t 2
/ IEX (t)|f=dt =E Z / / G, p™)dw | dt
n L2
g1
=E Z/ / ||G 777* ||L2 Up; L2)d5dt
77EZ [G(u",n ”L2 Uo; LQ)(At) < CAt. O
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4.2. Almost sure convergence. In this section we will obtain almost sure con-
vergence results for our approximate solutions. To that end, let uy be the joint law of
the random variable Uy = (WX, Vi, v, v, [ Ul z20.1:v): IV ”LZ(O,T;H})(O,L))vUv W)
taking values in the phase space

T :=[L?(0,T;L*(0))] x [L*(0,T; H~? (0, L))] x [C([0,T],H*(0, L))]* x R?
X C([O’T}; 7/1/) X C([O’T]3 U)

for some fixed %<s<2 and 0<6<%.

Since C([0,T];U) is separable and metrizable by a complete metric, the sequence
of Borel probability measures, p¥ (-) := P(W € -), that are constantly equal to one
element, is tight on C([0,T];U). Thus, recalling Lemmas 4.2, 4.3, and 4.6 and using
Tychonoff’s theorem, it follows that the sequence of the probability measures py of
the approximating sequence Uy is tight on the Polish space Y. Hence, by applying the
Prohorov theorem and a variant of the Skorohod representation theorem (Theorem
1.10.4 in [34]), we obtain the following convergence result.

THEOREM 4.7. There exist a probability space (Q,F, P), random variables Uy :=
(ﬁ},\_fﬁ,ﬁj\,,ﬁ]\,,mN,kN,UN,WN) and U := (ﬁ,y,ﬁ*,ﬁ,m,k,U,W) defined on this
new probability space, and measurable maps ¢y : Q2 — Q such that

(4.15) Un(@)=Un(on (@) formeQ, and Pogy' =P,
such that
(4.16) Uy —U, P-a.s. in the topology of Y.

Now we define rest of the approximate random variables:
Uiy =uyo¢y, Uy=Uyo¢y, VN=VNOON,
IN=TNOON, Y =Mk OON, Ny=nxOooN-

Then, from Lemma 4.4(1) and an application of the Borel-Cantelli lemma, we obtain
for%<s<2 and O<B<% that

(4.17) ay —a, uy—u, Pas in L?(0,T;L%(0)),
(4.18) Iy =0, Nx—0, Ay—n" P-as  inL*0,T;H%(0,L1)),
(4.19) VN =V, vy—v, P-as in L*0,T;H?(0,L)).

Thanks to these explicit maps we can identify the real-valued random variables ky =
[V llz20,msmi0,0))- Thus, as. convergence of ky implies that for a fixed e > 0,
[V llz2 075110,y 1s bounded a.s. and thus, up to a subsequence,

(4.20) Vv = V" weakly in L?(0,T;Hy(0,L)) P-as.

Similarly G} — @ weakly in L?(0,T;V) a.s.

Observe also that the bounds obtained in Lemma 3.5 hold for the new random
variables Uy as well. Particularly, thanks to (4.16) and (4.15), we have the same
deterministic bounds [|9*||c(o, ;85 0,1)) < é for % < s < 2. We also have the following
convergence results for the displacements. Namely, notice that Theorem 4.7 implies
that for given 2 < s <2 (see [24, Lemma 3]),

(4.21) Ny —nand py — 7 in L°°0,7;H*(0,L)) a.s.
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and thus,
(4.22) Ny — 1 and 9y —7* in L=°(0,T;C[0, L]) a.s

Next we define piecewise constant interpolations of the ALE maps and Jacobians
Agy,, Jay, and their piecewise linear interpolation A,, 7J . Then (4.22), (3.8), and
(3.7) yield
(4.23) Jny, = I =det(VAg+)  in L=(0,T;C(0)) as.,

S"_7N — Sﬁ and S"_ﬁv — Sﬁ* in LOO(O,T, C(f)) a.s
Furthermore, Az« € L(0,T; W>?(0)) for p < 4 and is the solution to (3. 2) corre-

sponding to the boundary data id+%* on I'. Next let Wi, = 0: An Zn 0 Az (A“’
A:;n—l)X(tn,th)o Note that for every w € €2, we have (see [19})

W3l o s+ 3 oy S CI¥N 20 mmko,0))  forany 0<k <1,
where C' depends only on k. Thus using (4.20), for a fixed £ > 0, we obtain that
(4.24) Wiy —W*  weakly in L?(0,T;H' (0)), P-as.,

where w* satisfies (3.3) with values v* on I'. Similarly, (4.11) gives us

Oy Jms, — OpJm-  weakly in L?(0,T;L*(0)), P-as.

Finally, we give the definition of the required filtrations. we denote by F| the
o-field generated by the random variables (@(s),v(s)),7(s), W(s) for all s <¢. Then
we define

(4.25) N:={AeF|P(A) =0}, F=o(FUN),  F:=[)F.

s>t

We note here that the stochastic processes (Jz-1,7) are (F;)¢>o-progressively mea-
surable. For each N we also define a filtration (]—"tN )50 o1 (2, F,P) the same way.

Moreover, using usual arguments we can see that ij is anﬁft]\’ -Wiener process (see,
e.g., [2]). Next, relative to the new stochastic basis (Q, F, (F{¥ )0, P, Wy), thanks to
(4.15) we can see that for each N, the following equation holds:

(T (8),0) + (T (£), ) = (oo, @) + (vo, %) — /O<fe<ﬁx>,¢>

8T 10J5: bl
// nN 211]\]—1_1]\[)' - = anl;%]—E// azz‘_’ﬁ'azzd’
30 /Oum)((axfv*vm-vﬁ?mpq—m;fv*v7v>~v*’7%q-a1+v>
0
t . . 1t
o [ [ G (@) D@ - [ [ sy (- v )
o Jo @ Jo Jr
1 t . . 1 t
—f/ / div"’NﬁEdiV"qux—f/ /(ﬁ;—v]t,)-ﬁ}*\,(q—¢)~ﬁ}"v
€Jo Jo €Jo Jr
t 1 t
£ [ (Pt [ 0| L, )+ [ Gl miaivy. @) + (Ev.Q)
0 0o ==

0
P-a.s. for every t € [0,7] and any Q € Z N %, .

(4.26)
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Using the convergence results stated in Theorem 4.7 we can then pass N — oo
in the deterministic terms in (4.26). For the stochastic integral see Lemma 5.6. We
mention here how we treat the convective term which is the only term that needs an
explanation. By integrating by parts we obtain

/J W VINag q=— /J VN i - /J W - VINg-af

(4.27) T / S (Vi - 1% (4h - @),

where Sy« is the Jacobian of the transformation from Eulerian to Lagrangian coor-
dinates. Thus, using the weak and strong convergence results in Theorem 4.7, (4.20),
(4.24), and (4.22) we can pass N — oo in (4.27). Notice that the addition of the
viscous regularization for a fixed € > 0 in the structure subproblem (3.1) allowed for
discretization of the time derivative of the Jacobian in the fluid subproblem (3.10)
and thus it also makes the limiting term fo Jo OrJn+1a - q well-defined at this stage.
However, to give sense to this term in the vanlshlng € regime, we use the fact that

t t
(4.28) //at.];,*a-qu / Jp-V7T Wt q
0o JoO 0o JO

to arrive at the following approximate weak formulation.

THEOREM 4.8. For the stochastic basis (Q, F, (F)i>0, P, W) constructed in Theo-
rem 4.7, given any fized € >0 and 0 = ((51,62) satisfying (3.9), the processes (a,7),7*)
obtained in Theorem 4.7 are such that 7* and (J,<1,0:7) are (F;)i>0-progressively
measurable with P-a.s. continuous paths in H*(0,L), s <2, and ¥{, respectively, and
the following weak formulation holds P-a.s. for every t € [O,T] and Q€ P:

(Jo-(D)u(t), ) + (9en(t), ¥) = ((Jo)uo, ) + (Vo, %) — /O (Ze(n), )

(t),qa
B %/ /(J- )@ VT a-q - (n-2w") - V7q-0)
%//s ﬁ-q)—l/t/sn(ﬁ—at"_?)(q—l/’)
_21// / JpD7 (@) - D" (q )dx—a/ / 0220 - 0. dz
- —/ /dlv’7 adiv” qu—f/o / u-0m) -n*(q—9)-n
+/0 (pm/o 6| _ dr—PDut/ ¢ dr) ds+/0t(G(ﬁn‘7*)dW,Q)-

Next, we argue that
(4.30) 7 (t)=n(t) foranyt<T", P-as.,

(4.29)

where for a given § = (61, d2),
1
Ui ::T/\inf{t>0:igf(Jn(t))<51 or [[n(t)llas(o,) = 5 }

Indeed, to prove (4.30), we introduce the following stopping times. For % <s<2we
define
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. . _ 1
T ::T/\lnf{t >0: Héf(,]»;,N(t)) <01 or [9n () s,y > 52} .

Then (4.?2) implies that 77 < liminfy_,o, Thr a.s. Observe further that for almost
any w € ) and ¢t <7, and for any € > 0, there exists an N such that

[m) — 0" (O)[lm:0,2) <[M@) = 0n )l 0,2) + 177 () — 2N OllE20,1)
+ [N () = (@)l 0,0) <€

This is true because the uniform convergence (4.22) implies that for any € > 0 there
exists an N7 € N such that the first two terms on the right-hand side of the above
inequality are each bounded by 5 for all N > N;. Moreover, since ¢ < T3 for infinitely
many N’s, the third term is equal to 0. This concludes the proof of (4.30).

5. Passing to the limit € — 0. In what follows, to emphasize the depen-
dence on the parameter e > 0, we will use the notation (., v.,v?, 7,0, W.) and
(QF, F=, (Ff)i>0,P°) for the martingale solution found in the previous section. The
aim of this section is to pass € — 0 in (4.29) by constructing appropriate test func-
tions. Most of the results in the first half of this section can be proved as in the
previous section, and so we will only summarize the important theorems without
proof. Observe that, thanks to the weak lower-semicontinuity of norm, the uniform
estimates obtained in the previous section still hold. As a consequence of Lemma 3.5
and Theorem 4.7, we thus have the following uniform bounds.

LEMMA 5.1 (uniform boundedness). For a fized § = (d1,92) that satisfies (3.9),

we have for some C >0 independent of € that the following hold:
L B0l (0 712(0))nr2 0,7y < C-

. IEEH‘_’:||2Lc>o(o,:r;L2(o,L)) <
: ]EaHﬁEH%OO(O,T;HS(O,L)ﬁlew(O,T;LQ(O,L))) <C.
: Es‘|ﬁ2||i°°(0,T;H3(O,L)ﬂleM(O,T;L2(O,L))) <C
. ]ETEHdiv"fﬁ8||2L2(07T;L2(O)) < Ce, E°||(0c|r — ve) -n;‘H%Q(O)T;LQ(O)L)) < Ce.
. ﬁ]EE\\622{/5\\%2(0’T;L2(07L)) <C.
7. 0zl cormso,0) < é for 3 <s<2, for almost every w € QF.

DD O s W N

Next we have the following tightness results.

LEMMA 5.2 (tightness of the laws).
1. The sequences P° o (i.)~! and P° o (v.)~! are tight in L*(0,T;HY(O)) and
L2(0,T;H=P(0, L)), respectively, for any 0<a <1, 0< < %
2. The sequences P° o (7j.)~1 and P* o (7))~ are tight in C([0,T];H*(0,L)) for
% <s<2.
3. The sequence P o (||Ucl|2(0,7v)) F is tight in R.
4. The sequence P° o (||VZ | r2(0,miL2(0,1))) " is tight in R.

Proof. We describe how to prove the first statement, which follows from the proof
of Lemma 4.2 almost identically. Construction of suitable test functions (q.,%,) is
the same as (4.8) and we apply the variant of It6’s formula stated in Lemma 5.1 in
[3], which justifies testing (4.29) with the continuous-in-time versions of the random
test functions (4.8) (i.e., where (At) 3 0 .., is replaced by ftt_h dt). Recall that all
the bounds obtained in the proof of Lemma 4.2, except in (4.12) and (4.13), do not
depend on . However, for (4.13), observe due to integrating by parts in (4.27) and

applying (4.28), that the weak formulation (4.29) now contains the boundary integral
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fo JrSn: (vE-nf)(u. - q.) instead of the aforementioned term involving the deriva-
tives of w Then for the process q. taking values in H'(0), described above and
constructed as in (4 8), we can bound this boundary integral independently of €, by
using the fact that |[nZ||ye0,7)x(0,2)) < C(0) together with the bounds for the trace

€|l €
E*||a |F||L2 oratd (ry) < C (see Theorem 1.5.2.1 in [19]) and E®||v ||L2(0,T;L2(07L)) <C
which are mdependent of e. We similarly treat the term in (4.12) by integrating by

parts (see (5.13)). d

Now for an infinite denumerable set of indices A, we denote by u. the joint law of
the random variable U, := (0., Ve, 0., 0%, [|0c || L2 0,73v): |VE | L2 0,702 (1)), We) taking
values in the phase space

S=L%0,T;H3(0)) x L2(0,T;H #(T")) x [C(]0,T], H*(T")]> x R% x C([0,T]; V)

forsomeO<ﬁ<§,§<s<2 -
Then the tightness of p. = P° o (.)~! on S and an application of the Prohorov

theorem and the almost sure representation in [34] give us the following result.

THEOREM 5.3. There exist a probability space (Q,]:', I@’) and random variables
U. = (0e, Ve, N, 7 me, ke, W2) and U = (0, ¥, 7, 7%, m, k, W) such that the following
hold:

1. Z;I ua for every e € A.
2. U. - U P-a.s. in the topology of § as e — 0.
3. N =V and Oyn* =V* in the sense of distributions, a.s.

We recall again that Theorem 1.10.4 in [34] tells us that the random variables U.
can be chosen such that for every € € A,

(5.1) as(w):ae(¢e(w))v well,

and Po ¢! =P°, where ¢ : Q) — QF is measurable.

Thanks to these explicit maps we identify the real-valued random variables m. as
me = |[8c|z2(0,7;v) and notice that m. converge almost surely due to Theorem 5.3.
Hence as in Theorem 4.7, we obtain, up to a subsequence, that

(5.2) . —a  weakly in L?(0,T;V), P-as.
Similarly,
(5.3) Vi—¥*  weakly in L?(0,T;L%(0,L)), P-as.

As in the previous section, we also have that
(5.4) f. =7 and A —7* in L>(0,T;C'[0,L]) a.s
and that
Apz — A;,*,(A;,Z)_l — (Az) "1 in L(0, T; W*P(0)) for any p <4 a.s.,
Jie = Jpe =det(VAg=)  in L®(0,75C(0)), P-as.,
(55)  Sp.—S; inL®(0,T;C(T)), Pas,
w. —~w"  weakly in LQ(O,T;H%(O))7 P-a.s.,
nf =0 in L2(0,T;CT)), P-as.
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Due to the lack of the equivalent of Lemma 4.5, we have one more obstacle to deal
with. Namely, that the candidate solution for fluid velocity, @, does not have the
desired temporal regularity to be a stochastic process in the classical sense. Hence,
we construct an appropriate filtration as follows: first define the o-fields

oy(t):= (o U {(0,q) <1JUN |, N={AcF |P(A) =0}

s>t QeCs°((0,5);2)

Let F be the o-field generated by the random variables 7j(s), W (s) for all 0 < s < ¢.

Then we define the history of the random distributions 0, 3, as follows:
(5.6) F=(o(FLUN),  Fr=o(o(d) UF).

s>t

This gives a complete, right-continuous filtration (]—"t)t>0, on the probability space
(Q, F,P), to which the noise and the candidate solution @ are adapted. Now we state
the following result from [2].

LEMMA 5.4. There exists a stochastic process taking values in L*(0,T;L*(0))
a.s. which is an (Fy)i>o-progressively measurable representative of .

THEOREM 5.5. For any fized § = (01,d2) that satisfies (3.9), the random variables
,1,1") constructed in Theorem 5.3 salisfy the following:
)

o
(Ji ,a(t) + (9 (t) = ((Jo)uo,a(0)) + (vo,(0))

//J uatq+// 0y Optp — /

—7/ / J;,*(fl-vﬁ*ﬁ-q—(ﬁ—2v§/*)-vﬁ*q-ﬁ)+/t/S;,*(ff*~ﬁ*)(ﬁ~q)
721///JWD" D ( 77// (a—87) -1 (q—1p) 7"

+/0 (Pm/o o _dr- ”“t/o g Z=1dr> ds+/ (G, 7")dW, Q),

0
P-a.s. for almost every t € [O T] and for any (ft)t>0 adapted process Q = (q ,¢) with
C'-paths in 9 such that V7 -q=0 and q|r-n" =4-n" a.s. Moreover, V? -1 =0.

Proof of Theorem 5.5. First we must construct Z-valued test processes (qe,).),
satisfying the kinematic coupling condition and such that q. satisfies the transformed
divergence-free condition. This is required so that the two penalty terms in the ap-
proximate weak formulation drop out.

We first construct an appropriate test functions for the limiting equation (5.7)
as follows: Recall that the maximal domain Os = (0,L) x (0, Rs) is a rectangular
domain comprising of all the moving domains Op-. Consider a smooth (]:"t)tzo—
adapted process g = (g.,¢9.) on Os such that V- g =0 and such that g satisfies the
required boundary conditions g, =0 on z =0,L,r =0, and 0,9, =0 on I',. Assume
also that, on the top lateral boundary of the moving domain associated with 7, T'z~,
the function g satisfies g(t)|r,.,, -0*(t) = ¥(t)-0*(t) for some smooth (Fi)i>o0-adapted
process ¥ = (Y., 1,). We define

q(t,z,mw) =g(t,w) o Aj-(t)(2,7).
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To observe that q is a suitable test function we consider, for any ¢ € [0,7] and given
process g, the map Cg : Q x C([0, L]) — C*(0),

Cg(w7 77) = F"](g(tvw))7

where F, (f) :=fo A5 is a well-defined map from C(Oy) to C(O) for any n € C([0, L]).
Due to the continuity of the composition operator F,, the assumption that g(t) is
Fi-measurable implies for any 7 that the C*(O)-valued map w +— Cg(w,n) is Fi-
measurable (where C!(O) is endowed with Borel o-algebra). Note also that for a fixed
w, the map 1 — Cg(w,n) is continuous. Hence, we infer that Cg is a Carathéodory
function. Recall also that #* is (F;);>o-adapted. Therefore, we deduce that the
C'(0)-valued process q(t,w) = Cg(w, " (t,w)) is (F;)i>o-adapted as well.

In summary, we have {]:}}tzo—adapted processes (q, %) with continuous paths in
2 such that

V7?7 .q=0 and q‘F~nﬁ*:¢~nﬁ*.

Moreover, for any w € Q we have that q € L°°(0,T; H2tF(0)) n H(0,T; H*(0)) for
any k < % Now we define the approximate test functions (qe,.), with the aid of
the Piola transformation as done in the proof of Lemma 4.2:

qe = J;VA;,: Jﬁ*VA;]*l (q—vx) +x — (A’”?Z - Aﬁ*) (€0X)

- Jf;;lVAnfB(diV((Jﬁ* (VA )™ = Ja: (VAs:) " Hpx
- (/\ﬁz - Aﬁ*) Ja: (VAﬁ;)_1§0X>>-
And for the structure test function we let
pe =1 — (W =2,

where we pick an appropriate & € Cg°((0,T) x I') such that — [.(id + . (t)) x
0.&0(t)dz =1 for every € >0 and t € [0,T]. We also define the real-valued corrector
functions,

N (1) = — /F (Gd+ 77 (1)) x Dotp(t)dz, AT (#) = — /F (id + 7" (1)) x Dotp(t)d=.

As earlier, x(r) is a smooth function on O such that x(1) =1 and x(0) =0. Observe
that the properties of the Piola transformation (see, e.g., Theorem 1.7 in [9]) imply
that

v -quJﬁ*nglvﬁ*~q:O and q:|r-nl =1, -nl.

Furthermore, we have

d e«
7An5

dt
Hence A7 — A" strongly in L°°(0,7) and weakly in H'(0,7T) a.s. Additionally,
thanks to (5.5) we obtain that

<Vl 0.yl [l o,y + (192 e 0,2)[10:054 o< (0.1 -

llae — qHLOO(O,T;Hl(O))
<[ Aqz — Ag-
(58) + H)\ﬁz — )\ﬁ* ||Loo(0’T) — 0, I@’—a.s.

L= (0,T;W2:3(0)) <||Q||L°°(0,T;H1(o)) + H"P||Loo(o,T;H(1J(o,L)))
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Similarly, for any k we have

Y. —p  in L%(0,T;CHT)), P-a.s.,

(5.9) . R
Opp. — O weakly in L?(0,T;C*(T)), P—a.s.

Now we test (4.29) with (q.,.) for which we invoke the variant of 1t&’s formula
derived in Lemma 5.1 in [3]. We can now pass € — 0 starting with the stochastic
integral.

t LEMMA 5.6. The processes (fg(G(ﬁE(s),ﬁ;(s))dWE(s),QE(S)))te[O’T] converge to
(FACa(s). 7 (5)dW (), Q(s))rcio.z) im LM (9 L(0,T:R)) as £ 0.

Proof. Under the assumptions (2.12) we observe that
T
|G 032).Q0) = (G0 ). Q)
T T
< [ G = G A" Q) + [ I(G047).Q: = Qe
T
< (1= 0y + 8 = 8l 0)) Qs

T
[ (1 0. + 18l 0)) 19: = QU

Then thanks to Theorem 4.7, (5.8), and (5.9)1, the right-hand side of the inequality
above converges to 0, P-a.s. as € = 0. That is,

(510) (G(ﬁ57ﬁ:)7Q8) — (G(ﬁv ﬁ*)7Q)’ IAP)_a"S' in L2(07Ta LQ(U07R))
Now using classical ideas from [1] (see Lemma 2.1 of [10]), we obtain from (5.10) that
¢ t
(5.11) / (Glag,7H)dW., Q.) %/ (G(a,7*)dW,Q) in probability in L2(0,T;R).
0 0

Furthermore, for some C > 0 independent of € we have the following bounds that
follow from It0’s isometry:

N T
)
0
T
(5.12) <78 [ (110 + 1830 1Q: Eads
<C.

¢ 2 T ¢
/0 (G, )W (5),Q.)| dt = / B / NG00 712), QI e st

Here we also used the a.s. bounds ||qc|/z~(0,rL2(0)) < COO)(ldllz=(0,rL2(0)) +
14| Lo 0,7;L2(0,.)))- Combining (5.11), (5.12) with the Vitali convergence theorem,
we conclude the proof of Lemma 5.6. ]

The rest of the convergence results follows as in [32]. One of the terms that
requires further explanation is the boundary integral [ [ Sq=(VE-0f)(u. - q.). Ob-
serve that, due to the embedding Hi(I') < L*(I'), Theorem 5.3, and (5.8), 1. - q.
converges to - q in L?(0,T; L*(T)). Combining this with (5.3) and (5.5)5, we obtain
the convergence of fg JpSq:(¥E-nf)(a. - qc) to f(f JpSq (¥ -0*)(a-q) as.
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Finally we comment on the term fo fo 72 Ue - 0q.. Observe that by integrating
by parts we can realize that it is indeed a well- defined term. For example, we observe
that the crucial term in the expansion of 0;q. can be written as

(5.13)

//J u5~ J J (0 VAn: )VALL q //u (04 V Ay )VA;IJq)
—/ /wg-div (@ (7 vA1a)) // 2V A7 q m),
o JO

where the right-hand side converges to

// d1v u®(J VA q // V(5 VA q-n), dt @ P-a.e.

Similarly writing 9y Jq+ = —(Jg=) " 2tr((cofAz+)TVw*), we can treat the rest of the
terms by integration by parts, identically. This completes the proof of Theorem 5.5. O

Notice that the weak formulation in Theorem 5.5 still contains 7" (¢) in several
terms. We will now show that in fact #*(¢) can be replaced by the stochastic process
7)(t) to obtain the desired weak formulation until some strictly positive stopping
time T™.

LEMMA 5.7 (almost surely positive stopping time). Let the deterministic initial
data m satisfy the assumptions (2.14). Then, for any 6 = (61,02) satisfying (3.9),
there exists an almost surely positive stopping time T, given by

(514)  T":=T Ainf {t >0:inf Jp(t) < 51} Ainf {t >0 70| (0.0) > 512}
such that
(5.15) N (t)=n(t) fort<TM.

Proof. We write the stopping time as
™ :T/\inf{t >0:inf Jy (1) < 51} /\inf{t >0: 7| 0.0) > 512} —TAT? +T7.
Observe that using the triangle inequality, for any dp > d2, we obtain for T, that

. 1 o 1
P{Tg =0, ||770||H2(0,L) < %} = 61_1>f(I)1+P [Tzn <§, ||770||H2(0,L) < 50]

. S . 1
<limsupP [ sup [|9(t) = 0,1) > 5 H770HH2(0 1 <3 ]
e—0t te[0,¢e) 0

. S . 1 1
<limsupP | sup [|%(t) —nolla=(0,0)> — —
0t | te[0,) d2 o

lim sup E

<
(é - %) e—0

sup |7(t) noHS(O,L)]
t€(0,¢)

1 A
<————~limsupE
(g - %) e—0

. 1-3 . 3
Sl[ép) 19(8) = molly2 6,1y 19(2) — 770”1212(0,L)]
te|0,e
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1 N
< 54— limsupE
(52 50 e—0

JPPINTE - S s
sup 6||V(t)||L2(2(>)7L) [n(t) — 770”12{2(0,@]
te(0,e)

2—s
4
sup ||0(t)|iz<o,L>D

te(0,¢)

€ ~
<limsup —— | E
= lﬁop(l—w(

d2 do

Hence, by continuity from below, we infer that for any do > 0,

s

1
sup [|7(t) — "70||%—I2(0,L)‘| ) =0.
t€(0,¢)

1
(5.16) B |77 =0 Imoleo < 3] =0

We estimate 77" similarly, by observing that for any ¢ € [0,T, we have info J;(t) >
info Jo — [|J5(t) — Jollc(o). Hence, for any ég > d; we write

PIT" =0,inf Jo > 0] < limsupP | inf inf J;(¢) < d1,inf Jo >0
(T} 1L 0> 0]_1612331) Léﬁ),a% a(t) < 1,10 0> 0}

<limsupP [ sup [|J3(t) — Jollc(o) > o — 51]
e—0+ te[0,€)

A

1 ~
———limsupE | su Ja(t) = Jo|? =0.
= o —01)2 E_>010 Le[oﬂ) [ n( ) 0||c(c9)]

Thus, for given §; > 0,

(5.17) P [Tf’:o,igfjo >61} —0.
In conclusion we have
N 1
(5.18) P[Tn—o,mwomlwnomzm b <} ~0. 0
O ’ 52

Finally, by combining Theorem 5.5, Lemma 5.7, and (5.15), we conclude the proof
of our main result Theorem 2.2.

Concluding remarks. We thus conclude that for any given 6 = (d1,d2) sat-
isfying (3.9), if the deterministic initial data m, satisfies (2.14), then the stochastic
processes (0,7, T™) along with the stochastic basis constructed in Theorem 5.3 deter-
mine a martingale solution in the sense of Definition 2.1 of the stochastic FSI problem
(2.1)—(2.9). Note that even though we have proved this result in the case of 2D-1D
fluid-structure interaction, our method is robust to include the 3D-2D case as well,
given that the structure displacement is Lipschitz continuous in space. This Lipschitz
condition in the 3D-2D case can be achieved, for example, by considering a sixth
order regularization term in the elastic equations (2.4). We finally remark that the
uniqueness of the solution, which is intimately related to the existence of a pathwise
solution on a preordained stochastic basis, remains largely unanswered even in the
deterministic case due to the nonlinearities in the problem.
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