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Abstract—As distributed learning applications such as Feder-
ated Learning, the Internet of Things (IoT), and Edge Computing
grow, it is critical to address the shortcomings of such technolo-
gies from a theoretical perspective. As an abstraction, we consider
decentralized learning over a network of communicating clients
or nodes and tackle two major challenges: data heterogeneity
and adversarial robustness. We propose a decentralized minimax
optimization method that employs two important modules: local
updates and gradient tracking. Minimax optimization is the
key tool to enable adversarial training for ensuring robustness.
Having local updates is essential in Federated Learning (FL)
applications to mitigate the communication bottleneck, and
utilizing gradient tracking is essential to proving convergence
in the case of data heterogeneity. We analyze the perfor-
mance of the proposed algorithm, Dec-FedTrack, in the case
of nonconvex-strongly-concave minimax optimization, and prove
that it converges a stationary point. We also conduct numerical
experiments to support our theoretical findings.

Index Terms—Decentralized learning, robust federated learn-
ing, universal adversarial perturbation, gradient tracking, local
updates.

I. INTRODUCTION

LEARNING from distributed data is at the core of modern

and successful technologies such as Internet of Things

(IoT), Edge Computing, fleet learning, etc., where massive

amounts of data are generated across dispersed users. Depend-

ing on the application, there are two main architectures for

the learning paradigm: (i) A distributed setting with a central

parameter server that is responsible for aggregating the model

and is able to communicate to all the computing nodes or

workers; (ii) A decentralized setting for which there is no

central coordinating node, and all the nodes communicate to

their neighbors through a connected communicating graph. In

this work, we focus on the latter.

Received 6 May 2024; revised 21 January 2025; accepted 11 March
2025; approved by IEEE TRANSACTIONS ON NETWORKING Editor S.
Ioannidis. This work was supported by the National Science Foundation
under Grant 2419982, Grant 2342253, Grant 2236483, and Grant 2330154.
A preliminary version of this work appeared in [DOI: 10.1109/Aller-
ton63246.2024.10735328]. (Corresponding author: Sajjad Ghiasvand.)

Sajjad Ghiasvand, Mahnoosh Alizadeh, and Ramtin Pedarsani are with the
Department of Electrical and Computer Engineering, University of California
at Santa Barbara, Santa Barbara, CA 93106 USA (e-mail: sajjad@ucsb.edu;
alizadeh@ece.ucsb.edu; ramtin@ece.ucsb.edu).

Amirhossein Reisizadeh is with the Laboratory for Information and
Decision Systems, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA (e-mail: amirr@mit.edu).

Digital Object Identifier 10.1109/TON.2025.3552423

Federated learning (FL) is a novel and promising distributed

learning paradigm mostly employed using the main-secondary

architecture that aims to find accurate models across dis-

tributed nodes [2], [3]. The main premise of FL framework

is user data privacy, that is, locally stored data on each

entity remains local during the training procedure, which is

in contrast to traditional distributed learning paradigms. In the

peer-to-peer or decentralized implementation of FL methods

which is the focus of this work, distributed nodes update model

parameters locally using local optimization modules such as

Stochastic Gradient Descent (SGD) and exchange information

with their neighboring nodes to reach consensus. In Federated

Learning, due to privacy and communication constraints, each

communication round consists of multiple local updates before

each node aggregates the neighboring updates.

While FL enables us to efficiently train a model, an impor-

tant challenge is to ensure the robustness of the learned model

to possible noisy/adversarial perturbations [4]. The problem

becomes more critical in FL since due to its distributed nature,

it is more vulnerable to the presence of adversarial nodes and

adversarial attacks [5]. Adversarial training based on minimax

optimization is the key tool to robustify the learned model

in machine learning applications [6]. Thus, it is critical to

develop decentralized minimax optimization algorithms that

are also communication-efficient, i.e. optimization methods

that employ local updates suitable for a federated setting. Other

applications of federated minimax optimization include using

optimal transport to develop personalized FL [7] and robust-

ness against distributed shifts [8]. Another major challenge

in decentralized learning methods is data heterogeneity. Data

heterogeneity refers to the fact that the data distributions across

distributed nodes are statistically heterogeneous (or non-iid).

In this work, we employ the gradient tracking (GT) technique

that guarantees convergence of the algorithm in the presence

of data heterogeneity.

Contributions. We propose the Dec-FedTrack algorithm

which is a decentralized minimax optimization method over a

network of n communicating nodes with two modules of local

updates and gradient tracking, and analyze its communication

complexity and convergence rate for the case of nonconvex-

strongly-concave (NC-SC) minimax optimization. We show

that Dec-FedTrack achieves the O
(
κ5n−1ε−4

)
stochastic

first-order oracle (SFO) complexity and the O
(
κ3ε−2

)
com-

munication complexity, where the condition number is defined

by κ , `/µ. This is the first federated minimax optimization
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algorithm that incorporates GT in a decentralized setting.

Moreover, we conduct several numerical experiments that

demonstrate the communication efficiency and adversarial

robustness of Dec-FedTrack over baselines.

II. RELATED WORK

A. Federated Learning With Heterogeneous Data

One of the most challenging aspects of federated learning

is data heterogeneity, where training data is not identically

and independently distributed across clients (non-i.i.d.). Under

such conditions, local models of clients may drift away from

the global model optimum, slowing down convergence [9],

[10]. Several studies have attempted to tackle this issue in

federated learning [11], [12], [13], [14]. However, these studies

are typically not decentralized, their results are often limited to

(strongly) convex objective functions, or they make restrictive

assumptions about the gradients of objective functions. In this

context, gradient tracking (GT) algorithms have been proposed

to address these challenges [15], [16], [17], [18]. Particularly,

in this paper, we also leverage the GT technique to mitigate

the data heterogeneity problem.

B. Decentralized Minimization

Many works have examined minimization problems within

a decentralized setting [19], [20], [21], [22], [23], [24], [25],

[26], [27], [28], [29]. Works such as K-GT [30], LU-GT [15],

[16], [31], [32], and [33] have introduced decentralized algo-

rithms incorporating local updates and GT, although they are

tailored for minimization rather than minimax optimization.

C. Centralized Minimax Optimization

Centralized minimax optimization has become increasingly

significant, particularly with the rise of machine learning

applications like GANs [34] and adversarial training of neural

networks. This optimization paradigm tackles the challenges

posed by nonconvex-concave and nonconvex-nonconcave

problems, drawing attention due to its relevance in various

domains. For NC-SC problems, several works have utilized

momentum or variance reduction techniques to achieve the

SFO complexity of O
(
κ3ε−3

)
[35], [36], [37], [38].

D. Decentralized Minimax Optimization

Numerous studies have explored decentralized minimax

optimization for (strongly) convex-concave [39], [40], [41],

[42], [43], nonconvex-strongly-concave [44], [45], [46], [47],

[48], [49], [50], [51], [52], and nonconvex-nonconcave [53],

objective functions. DPOSG [53] has the assumption of

identical distributions, and most of the mentioned works

on nonconvex-strongly-concave minimax optimization have a

very high gradient complexity. The closest ones to our setting

and results are DM-HSGD [50], DREAM [49], and black [51].

These studies explore decentralized minimax optimization

using gradient tracking and variance reduction techniques.

DM-HSGD employs the variance reduction technique of

STORM [54], whereas DREAM and black utilize the variance

reduction technique of SPIDER [55]. However, clients in these

algorithms do not perform multiple local updates between

communication rounds, making them unsuitable for federated

learning scenarios.

E. Distributed/Federated Minimax Learning

Several works have studied minimax optimization in

the federated learning setting across various function

types: (strongly) convex-concave [8], [56], [57], [58] and

nonconvex-strongly-concave/nonconvex-PL/nonconvex-one-

point-concave [59], [60], [61], [62], [63]. FedGDA-GT

[58] has delved into federated minimax learning with

both local updates and GT, but it is not decentralized

and assumes strongly-convex-strongly-concave objective

functions. Momentum Local SGDA [62], SAGDA [64], and

De-Norm-SGDA [63] explore federated minimax optimization

with local updates but lacks decentralization and does not

incorporate GT.

We summarize the comparison of related algorithms with

Dec-FedTrack in Table I.

III. PROBLEM SETUP

We consider a connected network of n clients with V =
[n] := {1, . . . n} and E ⊆ V×V as the set of nodes and edges,

respectively. This network collaboratively seeks to solve the

following minimax optimization problem:

min
x∈Rd

max
y∈Rq

f(x,y) =
1

n

n∑

i=1

fi(x,y), (1)

where fi(x,y) = E[Fi(x,y; ξi)] denotes the local function

associated with node i ∈ V . Here, the expectation is with

respect to ξi ∼ Di and Di denotes the local distribution for

node i. In our decentralized setting, clients communicate with

each other along the edges e ∈ E , that is, each node is allowed

to communicate with its neighboring nodes.

A. Motivating Example: Federated Adversarial Training

Consider a network of clients that wish to train a common

model x that is robust to adversarial perturbation y. In this

model, the adversary can attack the network by adding a

common perturbation to all the samples of every node, i.e.

universal perturbation [65], [66]. This model corresponds to

an adversarial cost function fi(x,y) for each node i and results

in a minimax problem shown in (1) that should be solved over

the connected network. One should add that in adversarial

machine learning, the adversary is restricted to a bounded

noise power; therefore, in this case, the minimax problem (1)

will have a constraint ‖y‖ ≤ δ.

B. Convergence Measure

In this paper, we focus on a particular setting where each

local function fi(x,y) is nonconvex in x and strongly concave

in y which is well-studied in the minimax optimization liter-

ature [67]. This assumption allows us to define the primal

function of (1) for every x as Φ(x) := maxy∈Rq f(x,y).
Solving the minimax problem (1) is equivalent to minimizing

the primal function, i.e., minx∈Rd Φ(x) which is nonconvex. A
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TABLE I

COMPARISON OF DEC-FEDTRACK WITH RELATED ALGORITHMS FOR MINIMAX AND MINIMIZATION OPTIMIZATION. CRITERIA IN THIS COMPARISON

ARE: SFO COMPLEXITY; NUMBER OF COMMUNICATIONS; TYPE OF CENTRALIZATION; TYPE OF FUNCTION CLASS; IF THE ALGORITHM IS

STOCHASTIC; AND IF THE ALGORITHM HAS LOCAL UPDATE (LU), HETEROGENEITY

ROBUSTNESS (HR), AND ADVERSARIAL ROBUSTNESS (AR)

well-established convergence measure for such minimization

problems is to find a stationary point x̂ of Φ, that is a point

for which ‖∇Φ(x̂)‖ ≤ ε.

C. Notation

We represent vectors using bold small letters and matrices

using bold capital letters. The vector x
(t)+k
i denotes a variable

on node i at local step k and communication round t, as

will be explained in Section IV. The average of vectors xi is

defined as x̄ = 1
n

∑

i xi. We denote a matrix whose columns

are the collection of n vectors, each belonging to a client, as

X ∈ R
d×n, i.e., X = [x1, · · · ,xn]. Additionally, we use X̄ to

represent a matrix whose columns are equal to x̄, and it can

be written in a more useful way as

X̄ = [x̄, . . . , x̄] =
1

n
X1n1

T
n = XJ ∈ R

d×n,

where J = 1
n
1n1

T
n . We also use the below notation for

convenience throughout the paper:

∇F (X,Y; ξ) = [∇F1 (x1,y1; ξ1) , . . . ,∇Fn (xn,yn; ξn)] ,

∇f(X,Y) = E(ξ1,...,ξn)∇F (X,Y; ξ)

= [∇f1 (x1,y1) , . . . ,∇fn (xn,yn)] ∈ R
d×n.

We denote the batch sizes for variables x and y as bx and by ,

respectively.

IV. DEC-FEDTRACK ALGORITHM

In this section, we describe our proposed method to solve

the minimax problem (1) over a connected network of n

nodes. Our method, namely Dec-FedTrack, comprises of two

main modules: local updates and gradient tracking which we

elaborate on in the following.

Dec-FedTrack (shown in Algorithm 1) consists of a number

of communication rounds, T, where in each round, every node

performs K local updates on its variables. In particular, in the

kth iteration of round t, each node computes unbiased stochas-

tic gradients and updates its local min and max variables xi

Algorithm 1 Dec-FedTrack

Initialize: ∀i, j ∈ [n],x
(0)
i = x

(0)
j ,y

(0)
i = y

(0)
j ; c

(0)
i and d

(0)
i

according to Lemma 3.

1: for communication: t← 0 to T − 1 do

2: for node i ∈ [n] parallel do

3: for local step: k ← 0 to K − 1 do

4: Update min variables

X(t)+k+1 =

X(t)+k − ηc(∇xF (X(t)+k,Y(t)+k; ξ(t)+k) +C(t))

5: Update max variables

Y(t)+k+1 =

Y(t)+k + ηd(∇yF (X(t)+k,Y(t)+k; ξ(t)+k) +D(t))

6: end for

7: Z(t) = 1
Kηc

(
X(t) −X(t)+K

)

8: R(t) = 1
Kηd

(
Y(t)+K −Y(t)

)

9: C(t+1) = C(t) − Z(t) + Z(t)W

10: D(t+1) = D(t) −R(t) +R(t)W

11: X(t+1) =
(
X(t) −KηxZ

(t)
)
W

12: Y(t+1) =
(
Y(t) +KηyR

(t)
)
W

13: end for

14: end for

and yi using the so-called correction terms (Lines 4 and 5).

Next, each node obtains tracking variables

z
(t)
i =

1

Kηc
(x

(t)
i − x

(t)+K
i ),

r
(t)
i =

1

Kηd
(y

(t)+K
i − y

(t)
i ),

and sends variable {z
(t)
i , r

(t)
i ,x

(t)
i ,y

(t)
i } to its neighboring

nodes. After aggregating these variables from the neighbors,

node i updates its correction terms and model variables using
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gradient tracking [30] as follows:

c
(t+1)
i = c

(t)
i − z

(t)
i +

∑

j

wijz
(t)
j ,

d
(t+1)
i = d

(t)
i − r

(t)
i +

∑

j

wijr
(t)
j ,

x
(t+1)
i =

∑

j

wij

(

x
(t)
j −Kηxz

(t)
j

)

,

y
(t+1)
i =

∑

j

wij

(

y
(t)
j +Kηyr

(t)
j

)

,

where ηx := ηsηc and ηy := ηrηd denote the global step

sizes. The proposed Dec-FedTrack algorithm is described in

Algorithm 1 using matrix notations.

Next, we comment on the necessity of using GT in our

proposed algorithm. Given that clients’ distributions are non-

iid, to prove convergence one needs to establish an upper

bound on the local gradients. While bounding assumptions

can be directly imposed on local gradients, such as Assump-

tion 3b in [68], in many distributed learning settings that are

unconstrained, assuming the existence of such bounds can be

restrictive. The gradient tracking algorithm [16] addresses this

challenge by incorporating a correction term into gradients

at each node. In fact, the correction term aims to bring the

tracking variable for each client close to the tracking variable

of its neighbors, preventing client-drift. The matrix format of

the correction term in GT is as follows:

X(t+1) =
(

X(t) − ηZ(t)
)

W

Z(t+1) = ∇F
(

X(t+1); ξ(t+1)
)

+Z(t)W −∇F
(

X(t); ξ(t)
)

︸ ︷︷ ︸

correction term

.

V. CONVERGENCE ANALYSIS

In this section, we provide rigorous convergence analysis

for the proposed Dec-FedTrack algorithm solving (1). We first

present the following preliminary definitions for functions with

one variable:

Definition 1: A function f is called L-Lipschitz if for any

x and x′, we have ‖f(x)− f (x′)‖ ≤ L ‖x− x′‖.
Definition 2: A function f is called `-smooth if it is differ-

entiable and for any x and x′, we have ‖∇f(x)−∇f (x′)‖ ≤
` ‖x− x′‖.

Let us proceed with a few assumptions.

As explained before, in our decentralized setting, agents

communicate with each other along the edges of a fixed

communication graph connecting n nodes. Moreover, each

edge of the graph is associated with a positive mixing weight

and we denote the mixing matrix by W ∈ R
n×n.

Assumption 1: The mixing matrix W has the following prop-

erties: (i) Every element of W is non-negative, and Wi,j = 0 if

and only if i and j are not connected, (ii) W1 = W>1 = 1,

(iii) there exists a constant 0 ≤ p ≤ 1 such that

‖XW − X̄‖2F ≤ (1− p)‖X− X̄‖2F , ∀X ∈ R
d×n.

The mixing rate illustrates the degree of connectivity within

the network. A higher p signifies a more interconnected

communication graph. When p = 1, W = 1
n
11T , suggesting

full connectivity in the graph, while p = 0 yields W = In,

indicating a disconnected graph [30].

Assumption 2: We assume that each local objective function

fi is `-smooth, that is, for all x,x′,y,y′

‖∇fi(x,y)−∇fi(x
′,y′)‖2 ≤ `2(‖x− x′‖2 + ‖y − y′‖2).

We also assume that each fi(x, ·) is µ-strongly concave with

respect to its second argument. We denote the condition

number by κ := `/µ.

The above assumption implies that the objective function

f in (1) is `-smooth and strongly concave with respect to its

second argument.

Assumption 3: We assume that the stochastic gradients are

unbiased and variance-bounded, that is,

E [∇Fi(x,y; ξi)] = ∇fi(x,y),

E‖∇Fi(x,y; ξi) −∇fi(x,y)‖
2 ≤ σ2.

Assumption 4: The function Φ(·) is lower bounded, that is

infx Φ(x) = Φ∗ > −∞.

Next, we provide the main result of the paper.

Theorem 1: Suppose Assumptions 1– 4 hold and consider

the iterates of Dec-FedTrack in Algorithm 1 with step-sizes

ηd = Θ
(

p
κK`

)
, ηc = Θ

(
ηd

κ2

)
, and ηs = ηr = Θ(p). Then,

after T communication rounds each with K local updates, there

exists an iterate 0 ≤ t ≤ T such that E‖∇Φ(x̄(t))‖2 ≤ ε2 for

T = O

(
κ3

p2ε2

)

H0`, K = O

(
p2σ2

κ2nε2
+

σ2

ε2
+

κ2σ2

npε2

)

,

where H0 = O
(

1 + δ0
Kκp

)

and δ0 = O
(

q
µ2

)

.

Remark 1: Focusing on the dependency of the convergence

rate on accuracy ε, the above theorem shows that in the

regime of interest where ε gets small, the algorithm reaches

an ε-stationary point within T = O(1/ε2) communication

rounds, each consisting of K = O(1/ε2) local updates.

Therefore, the resulting SFO complexity is T ·K = O(1/ε4).
As we elaborated in Section II and Table I, the proposed

Dec-FedTrack algorithm simultaneously assembles all three

components of local updates, heterogeneity and adversarial

robustness.

Remark 2: It is also possible to derive the communication

complexity for any given K. If we choose step-sizes ηc =

Θ
(

p

κ3K`
√
T

)

, ηd = Θ
(

p
κK`T

)
, and ηs = ηr = Θ(p), after T

communication rounds each with K local updates, there exists

an iterate 0 ≤ t ≤ T such that E‖∇Φ(x̄(t))‖2 ≤ ε2 for

T = O

(
κ6

ε4p4
+

p4σ4

n2κ4K2ε4
+

κ4σ4

n2K2p2ε4

)

,

which holds for any given K.

A. Proof Steps

We first state the following standard results from optimiza-

tion theory.

Proposition 1: Under Assumption 2, Φ(·) is (`+κ`)-smooth

and y∗(·) = argmaxy∈Rq f(·,y) is κ-Lipschitz [35].
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Proposition 2: Under Assumption 2, for every x ∈ R
d and

y,y′ ∈ R
q , we have

∇yf(x,y)
> (y − y′) +

1

2`
‖∇yf(x,y)‖

2
+

µ

2
‖y − y′‖

2

≤ f
(
x,y+

)
− f (x,y′) ,

where y+ = y − 1
`
∇yf(x,y) [69].

Next, we introduce some terminology that will be useful

throughout the entire proof:

1) The client (node) variance for variable x that measures

the deviation of variable x at global steps from its averaged

model:

Ξx
t :=

1

n

n∑

i

E‖x
(t)
i − x̄(t)‖2.

2) Client-drift for variable x that measures the deviation of

the variable x at local steps from its averaged model:

exk,t :=
1

n

n∑

i

E‖x
(t)+k
i − x̄(t)‖2.

The accumulation of local steps for variable x is shown by

Ext :=
K−1∑

k=0

exk,t =

K−1∑

k=0

1

n

n∑

i

E

∥
∥
∥x

(t)+k
i − x̄(t)

∥
∥
∥

2

.

3) The quality of the correction for the variable x that

measures the accuracy of the gradient correction in the local

updates, which aims to bring local updates closer to global

updates:

γx
t =

1

n`2
E

∥
∥
∥C

(t) +∇xf
(

X̄(t), Ȳ(t)
)

−∇xf
(

X̄(t), Ȳ(t)
)

J

∥
∥
∥

2

F
.

Similarly, we can define Ξy
t , e

y
k,t, E

y
t , and γy

t for variable y. 4)

Consensus distance for variable y that measures the deviation

of the optimum y when x = x̄ and the averaged y, that is,

δt = ‖ŷ(t) − ȳ(t)‖2 where ŷ(t) = argmaxy∈Rq f
(
x̄(t),y

)
.

Now, we introduce several useful lemmas before the proof of

Theorem 1.

Lemma 1: For a set of arbitrary vectors a1, . . . , an such that

ai ∈ R
d, we have

∥
∥
∥
∥
∥

1

n

n∑

i=1

ai

∥
∥
∥
∥
∥

2

≤
1

n

n∑

i=1

‖ai‖
2.

Lemma 2: (Young’s Inequality) For any vectors a, b ∈ R
d

and α > 0 we have

2〈a, b〉 ≤ α‖a‖2 +
1

α
‖b‖2,

‖a+ b‖2 ≤ (1 + α)‖a‖2 +

(

1 +
1

α

)

‖b‖2.

Lemma 3: If we initialize C(0) and D(0) as below

c
(0)
i =−∇xFi

(

x(0),y(0); ξi

)

+
1

n

∑

j

∇xFj

(

x(0),y(0); ξj

)

,

d
(0)
i =−∇yFi

(

x(0),y(0); ξi

)

+
1

n

∑

j

∇yFj

(

x(0),y(0); ξj

)

,

(2)

then the averaged correction for variables x and y in any

communication round equals to zero.

Proof. Appendix.

Lemma 4: Using Assumption 2 and Young’s Inequality we

have

E

∥
∥
∥∇xf

(

x̄(t), ȳ(t)
)∥
∥
∥

2

≤ 2`2δt + 2E
∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

,

E

∥
∥
∥∇yf

(

x̄(t), ȳ(t)
)∥
∥
∥

2

≤ `2δt.

Proof. Appendix.

Next, we provide recursion bounds for client variance, client

drift, and quality of correction—for both variables x and y—as

well as consensus distance for variable y.

Lemma 5: Under the assumption that ηc, ηd ≤
1

8KL
, we can

bound the local drift for variables x and y as follows

Ext ≤ 3KΞx
t + 12K2η2c `

2Eyt + 12K3η2c `
2γx

t + 12K3η2c `
2δt

+ 12K3η2cE
∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

+ 3K2η2cσ
2,

Eyt ≤ 3KΞy
t + 12K2η2d`

2Ext + 12K3η2d`
2γy

t + 6K3η2d`
2δt

+ 3K2η2dσ
2.

Proof. Lemma A.5 in the appendix of [70].

Lemma 6: We have the following bounds on client variance

for variable x and y

Ξx
t+1 ≤

(

1−
p

2

)

Ξx
t +

6Kη2x`
2

p
(Ext + Eyt ) +

6K2η2x`
2

p
γx
t

+Kη2xσ
2,

Ξy
t+1 ≤

(

1−
p

2

)

Ξy
t +

6Kη2y`
2

p
(Ext + Eyt ) +

6K2η2y`
2

p
γy
t

+Kη2yσ
2.

Proof. Lemma A.6 in the appendix of [70].

Lemma 7: The sum of averaged progress between commu-

nications for variables x and y can be bounded by

E

∥
∥
∥x̄

(t+1) − x̄(t)
∥
∥
∥

2

+ E

∥
∥
∥ȳ

(t+1) − ȳ(t)
∥
∥
∥

2

≤ 2K`2
(
η2x + η2y

)
(Ext + Eyt ) + 2K2`2

(
2η2x + η2y

)
δt

+ 4K2η2xE
∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

+
Kσ2

n

(
η2x + η2y

)
.

Proof. Appendix.

Lemma 8: Assuming that ηx, ηy ≤
√
p√

24K`
, we have the

following bounds on the quality of correction for variables x

and y

γx
t+1 ≤

(

1−
p

2

)

γx
t +

25

pK
(Ext + Eyt ) +

12K2`2

p

(
2η2x+η2y

)
δt

+
24K2η2x

p
E

∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

+
2σ2

K`2
, (3)

γy
t+1 ≤

(

1−
p

2

)

γy
t +

25

pK
(Ext + Eyt ) +

12K2`2

p

(
2η2x+η2y

)
δt

+
24K2η2x

p
E

∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

+
2σ2

K`2
. (4)
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Lemma 9: Using Proposition 2 and assuming that ηy ≤
1
K`

,

we have the following bound on E
∥
∥ŷ(t) − ȳ(t+1)

∥
∥
2

for any

α > 0:

E

∥
∥
∥ŷ

(t) − ȳ(t+1)
∥
∥
∥

2

≤ (1 + α) (1−Kηyµ) δt

+

(

1 +
1

α

)

η2y`
2K (Ex + Ey)

+
Kη2yσ

2

n
.

Proof. Appendix.

Lemma 10: Assuming that ηx ≤
ηy

4
√
6κ2

and ηy ≤
1
K`

, we

have the following bound on δt

δt+1 ≤

(

1−
Kηy`

6κ

)

δt + 12ηy`κ (E
x
t + Eyt )

+
16κ3Kη2x

ηy`
E

∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

+
8ηyσ

2κ

n`
.

Proof. Appendix.

Now, we state the following descent lemma for Φ(x):
Lemma 11: Assuming that ηx ≤

1
16K`κ

, we have the

following bound on EΦ
(
x̄(t+1)

)
as follows

EΦ
(

x̄(t+1)
)

≤ EΦ
(

x̄(t)
)

+ 2ηx`
2 (Ext + Eyt ) + 2`2ηxKδt

−
ηxK

4
E

∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

+
Kη2x`σ

2κ

n
.

Proof. Appendix.

Using Lemmas 5–9, we have the following recursive bound

on the Lyapunov function Ht.

Lemma 12: Under the assumption that ηd = Θ
(

p
κK`

)
, ηc =

Θ
(
ηd

κ2

)
, and ηs = ηr = Θ(p), we can find constants Ax, Ay ,

Bx, By , and C, such that D > 0 and D9 ≥ 0, and we have

Ht+1 −Ht ≤ −DKηxE
∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

+D9K`η3dσ
2

+
Kη2x`κ

n
σ2 +

8ηy
np

σ2,

where

Ht = EΦ
(

x̄(t)
)

− EΦ (x∗) +AxηdK`2Ξx
t +AyηdK`2Ξy

t

+BxK
3`4η3dγ

x
t +ByK

3`4η3dγ
y
t + C

`

κp
δt. (5)

Proof. Appendix.

Proof of Theorem 1: Using the telescopic sum for Ht, we

have

1

T + 1

T∑

t=0

(Ht+1 −Ht) =
1

T + 1
(HT+1 −H0)

≤ −DKηx
1

T + 1

T∑

t=0

E

∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

+D9K
2`2η3dσ

2

+
Kη2x`κ

n
σ2 +

8ηy
np

σ2,

which results in

1

T + 1

T∑

t=0

E

∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

≤
H0 −HT+1

(T + 1)D

1

Kηx

+
D9K`2η3d

Dηx
σ2 +

ηx`κ

nD
σ2 +

8ηy
nDKpηx

σ2. (6)

Now, we want to ensure 1
T+1

∑T
t=0 E

∥
∥∇Φ

(
x̄(t)

)∥
∥
2
≤ ε2 for

any arbitrary ε > 0, which is equivalent to bounding each term

on the RHS of (6) to the order of ε2. Given that D = Θ(1),

D9 = O
(

1
p

)

, ηx = Θ
(

p2

κ3K`

)

, and ηy = Θ
(

p2

κK`

)

, we have

T = O

(
κ3

p2ε2

)

H0`,

K = O

(
p2σ2

κ2nε2
+

σ2

ε2
+

κ2σ2

npε2

)

,

where H0 = O
(

1 + δ0
Kκp

)

and δ0 = O
(

q
µ2

)

. �

VI. NUMERICAL RESULTS

A. Robust Logistic Regression

We consider the problem of training a robust logistic regres-

sion classifier with a non-convex regularizer similar to [37],

[49], [50]. In this problem, we aim to train a binary classifier

x ∈ R
d on the dataset {(aij , bij)}, where aij ∈ R

d denotes

the feature vector and bij ∈ {−1,+1} represents the label

for the jth sample in the dataset associated with client i. Each

client is allocated m samples, resulting in a total of N = mn
samples. The loss function at client i is given by

fi(x,y) ,
1

m

m∑

j=1

(yij lij(x)− V (y) + g(x)) ,

where lij(x) = log
(
1 + exp

(
bija

>
ijx
))

, V (y) = 1
2N2 ‖Ny −

1‖2, g(x) = θ
∑d

k=1
νx2

k

1+νx2
k

, θ = 10−5, and ν =

10. The parameter y is restricted to the simplex ∆N ={

y ∈ R
N : yk ∈ [0, 1],

∑N
k=1 yk = 1

}

. Here, we set the mix-

ing matrix W as the π-lazy random walk matrix [50] on a ring

graph with n = 10.

As previously highlighted, the main distinction of Dec-

FedTrack compared to other decentralized minimax methods

lies in its use of multiple local updates, which aligns well with

FL applications. Notably, multiple local steps are essential in

FL to ensure privacy.

However, in this section, we set the number of local

updates for the Dec-FedTrack algorithm to 1 (K = 1) and

compare our proposed algorithm against DREAM [49], DM-

HSGD [50], GT-DA [52], GT-GDA, and GT-SRVR [71]. These

comparisons are conducted on the datasets “a9a”, “ijcnn1”,

“phishing”, and “w8a” [72], evaluating performance in terms

of the number of SFO calls and communication rounds against

Φ(x̄) = maxy∈∆N
f(x̄,y), as well as test accuracy.

We fix the batch size to 64 across all algorithms and tune

the learning rates with ηx ∈ {0.1, 0.01, 0.001, 0.0001} and

ηy ∈ {1, 0.1, 0.01, 0.001}. Fig. 1 presents the comparison

of the number of SFO calls and number of communication

rounds against Φ(x̄) on datasets “a9a”, “ijcnn1”, “phishing”,

and “w8a”. As shown, Dec-FedTrack demonstrates a faster

decay rate on Φ(x̄) against the number of SFO calls and faster

or very close decay rate on Φ(x̄) against the number of com-

munications. Furthermore, Fig. 2 compares the comparison
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Fig. 1. Convergence of Φ(x̄) against the number of SFO calls (above) and the number of communication rounds (bottom).

Fig. 2. Test accuracy against the number of SFO calls (above) and the number of communication rounds (bottom).

of the number of SFO calls and number of communication

rounds against the test accuracy on datasets “a9a”, “ijcnn1”,

and “w8a”. Note that the “phishing” dataset does not include

a test dataset.

B. Robust Neural Network Training

In this section, we consider the problem of robust neural

network (NN) training, in the presence of adversarial pertur-

bations. We consider a similar problem as considered in [59],

min
x

max
‖y‖∞≤δ

1

n

n∑

i=1

fi(x,y)

where fi(x,y) := 1/m
∑m

j=1 ` (hx (aij + y) , bij). Here, x

denotes the parameters of the NN,y denotes the perturbation,

and (aij , bij) denotes the j-th data sample of client i.

We consider the accuracy of our formulation against three

popular attacks: The Fast Gradient Sign Method (FGSM)

[73], Projected Gradient descent (PGD) [74], and Universal

Adversarial Perturbation (UAP) [76]. We have provided a

description of each attack in Section VI-C.

We evaluate the robustness of Dec-FedTrack against adver-

sarial attacks by comparing it with K-GT, a benchmark

minimization algorithm. The evaluation was conducted on

the MNIST and CIFAR-10 datasets, utilizing 2-layer and
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TABLE II

TEST ACCURACY FOR K-GT AND DEC-FEDTRACK ALGORITHMS UNDER DIFFERENT ATTACK METHODS AND ADVERSARY BUDGETS

3-layer convolutional neural networks for training MNIST and

CIFAR-10, respectively. For CIFAR-10 experiments, we only

use two classes to demonstrate the efficacy of our method.

During training, we set n = 5, K = 5, and exper-

iment with various constant learning rates chosen from

{1, 0.5, 0.1, 0.05, 0.01}, using a batch size of 128. The results

for K-GT and our proposed algorithm under different attack

methods and varying values of δ are summarized in Table II.

As shown in the table, the proposed algorithm demonstrates

superior performance compared to its non-robust counterpart.

C. Adversarial Attacks

In this section, we provide descriptions of the attacks we

used in the robust neural network training section.

FGSM [73] is a single-step adversarial attack designed to

create adversarial examples by slightly perturbing the input

to maximize the loss of a neural network. The FGSM attack

perturbs the input a in the direction of the gradient of the

loss with respect to the input. This is achieved by computing

the gradient of the loss function f(x, a, b), where x represents

the model parameters and b is the true label. The adversarial

example is then generated as:

a′ = a+ ε · sign(∇af(x, a, b)),

where ε controls the magnitude of the perturbation.

PGD [74] is an iterative extension of FGSM, providing a

stronger adversarial attack by applying FGSM multiple times

with smaller step sizes. The PGD attack iteratively refines

the adversarial example by applying small perturbations to

the input. Starting from an initial adversarial example a0, the

method updates the adversarial input at at each iteration using

the formula:

at+1 = ProjBε(a)
(at + η · sign(∇af(x, at, b))) ,

where η is the step size, and ProjBε(x)
ensures the perturbed

input remains within the L∞-norm ball of radius ε around the

original input.

UAP [76] is a technique designed to craft a single pertur-

bation vector y that, when added to any input, significantly

degrades the performance of a model. Unlike input-specific

adversarial perturbations (e.g., FGSM or PGD), UAPs are

input-agnostic and aim to generalize across a wide range

of inputs. We use the universal perturbation introduced in

[76], where the authors employ Stochastic Projected Gradient

Descent (SPGD) to generate UAP. Their algorithm computes

the gradient of the loss function f(x, a + y, b) with respect

to y as g = ∇yf(x, a + y, b). Using SPGD, y is updated as

y← y+η ·g, where η is the learning rate. After each update,

y is projected back onto the constraint set ‖y‖p ≤ δ using

y ← Proj‖y‖p≤δ(y). This process is iterated until y achieves

the desired attack success rate across the dataset.

VII. CONCLUSION

This paper presents Dec-FedTrack, a decentralized minimax

optimization algorithm specifically tailored for addressing the

challenges prevalent in distributed learning systems, partic-

ularly within federated learning setups. Dec-FedTrack, by

integrating local updates and gradient tracking mechanisms,

aims to enhance robustness against universal adversarial per-

turbations while efficiently mitigating data heterogeneity. The

theoretical analysis establishes convergence guarantees under

certain assumptions, affirming Dec-FedTrack’s reliability and

efficacy. Our empirical evaluations demonstrate that for an

equal adversary budget, Dec-FedTrack is more robust to

adversarial perturbations compared to non-robust baselines.

APPENDIX

Proof of Lemma 3: According to Algorithm 1 we have

C(t+1)J = C(t)J+
1

Kηc

(

X(t) −X(t)+K
)

(W − I)J

=
1

Kηc

(

X(t) −X(t)+K
)

(I− I) = C(t)J.

Using the initialization assumption in (2), we have C(t)J =
C(0)J = 0. Similarly, we have D(t)J = D(0)J = 0. �

Proof of Lemma 4: We can write

E

∥
∥
∥∇xf

(

x̄(t), ȳ(t)
)∥
∥
∥

2

= E

∥
∥
∥∇xf

(

x̄(t), ȳ(t)
)

−∇xf
(

x̄(t), ŷ(t)
)

+∇xf
(

x̄(t), ŷ(t)
)∥
∥
∥

2

≤ 2`2E
∥
∥
∥ȳ

(t) − ŷ(t)
∥
∥
∥

2

+ 2E
∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

= 2`2δt + 2E
∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

.

Moreover,

E

∥
∥
∥∇yf

(

x̄(t), ȳ(t)
)∥
∥
∥

2

= E

∥
∥
∥∇yf

(

x̄(t), ȳ(t)
)

−∇yf
(

x̄(t), ŷ(t)
)∥
∥
∥

2

≤ `2δt. (7)
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The equality in (7) holds due to the fact that

∇yf
(
x̄(t), ŷ(t)

)
= 0. �

Proof of Lemma 7: First, we derive an upper bound on the

averaged progress for variable x as follows

E

∥
∥
∥x̄

(t+1) − x̄(t)
∥
∥
∥

2

=η2xE

∥
∥
∥
∥
∥
∥

1

n

∑

i,k

∇xFi

(

x
(t)+k
i ,y

(t)+k
i ; ξ

(t)+k
i

)

+
K

n

∑

i

c
(t)
i

∥
∥
∥
∥
∥
∥

2

(a)

≤
2Kη2x
n

∑

i,k

E

∥
∥
∥∇xfi

(

x
(t)+k
i ,y

(t)+k
i

)

−∇xfi

(

x̄
(t)
i , ȳ

(t)
i

)∥
∥
∥

2

+ 2K2η2xE
∥
∥
∥∇xf

(

x̄
(t)
i , ȳ

(t)
i

)∥
∥
∥

2

+
Kη2xσ

2

n

≤
2Kη2x`

2

n

∑

i,k

(

E

∥
∥
∥x

(t)+k
i − x̄(t)

∥
∥
∥

2

+ E

∥
∥
∥yi

(t)+k−ȳ(t)
∥
∥
∥

2
)

+ 2K2η2xE
∥
∥
∥∇xf

(

x̄i
(t), ȳ

(t)
i

)∥
∥
∥

2

+
Kη2xσ

2

n
(b)

≤ 2Kη2x`
2 (Ext + Eyt )

+ 2K2η2x

(

2`2δt + 2E
∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2
)

+
Kη2xσ

2

n
. (8)

Similar to the above derivations, we have

E

∥
∥
∥ȳ

(t+1) − ȳ(t)
∥
∥
∥

2

≤ 2K2η2y`
2 (Ext + Eyt )

+ 2K2η2yE
∥
∥
∥∇yf

(

x̄
(t)
i , ȳ

(t)
i

)∥
∥
∥

2

+
Kη2yσ

2

n
(c)

≤ 2Kη2y`
2 (Ext + Eyt ) + 2K2η2y`

2δt +
Kη2yσ

2

n
. (9)

We used Lemma 3, 4, and 4 in (a), (b), and (c), respectively.

Combining (8) and (9) completes the proof. �

Proof of Lemma 8: We can write that

n`2γx
t+1 := E

∥
∥
∥C

(t+1) +∇xf
(

X̄(t+1), Ȳ(t+1)
)

(I− J)
∥
∥
∥

2

F

= E

∥
∥
∥C

(t)W

+
1

K

K−1∑

k=0

∇xF
(

X(t)+k,Y(t)+k; ξ(t)+k
)

(W − I)

+∇xf
(

X̄(t+1), Ȳ(t+1)
)

(I− J)
∥
∥
∥

2

F

≤ E

∥
∥
∥

(

C(t) +∇xf
(

X̄(t), Ȳ(t)
)

(I− J)
)

W

+

(

1

K

K−1∑

k=0

∇xf
(

X(t)+k,Y(t)+k
)

−∇xf
(

X̄(t), Ȳ(t)
))

(W − I)

+
(

∇xf
(

X̄(t+1), Ȳ(t+1)
)

−∇xf
(

X̄(t), Ȳ(t)
))

(I−J)
∥
∥
∥

2

F

+
nσ2

K

(a)

≤ (1 + α)(1− p)n`2γx
t

+ 2

(

1 +
1

α

)(

‖W − I‖2
`2

K

K−1∑

k=0

(

E

∥
∥
∥X

(t)+k − X̄(t)
∥
∥
∥

2

+E

∥
∥
∥Y

(t)+k − Ȳ(t)
∥
∥
∥

2
)

+‖I− J‖2n`2
(

E

∥
∥
∥x̄

(t+1) − x̄(t)
∥
∥
∥

2

+E

∥
∥
∥ȳ

(t+1) − ȳ(t)
∥
∥
∥

2
))

+
nσ2

K

α= p

2 ,
1
p
≥1

≤
(

1−
p

2

)

n`2γx
t +

6

p

(
4`2n

K
(Ext + Eyt )

+n`2
(
∆x

t+1 +∆y
t+1

))
+

nσ2

K
.

In (a) we applied Assumption 1 and the fact that
(

C(t) +∇xf
(

X̄(t), Ȳ(t)
)

(I− J)
)

J = C(t)J

+∇xf
(

X̄(t), Ȳ(t)
)

(J− J)
Lemma 3
= 0.

Using Lemma 7 to bound ∆x
t+1 +∆y

t+1 we have

γx
t+1

≤
(

1−
p

2

)

γx
t +

1

p

(
24

K
+12Kη2x`

2 + 12Kη2y`
2

)

(Ext + Eyt )

+
12K2`2

p

(
2η2x + η2y

)
δt +

24K2η2x
p

E

∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

+
6Kσ2

(
η2x + η2y

)

np
+

σ2

K`2
.

Applying the conditions on the step sizes will result in (3). In

a similar fashion, we can show (4). �

Proof of Lemma 9: If we replace x = x̄(t), y = ȳ(t), and

y′ = ŷ(t) in Proposition 2, we have

∇yf(x̄
(t), ȳ(t))>(ȳ(t) − ŷ(t)) +

1

2`

∥
∥
∥∇yf(x̄

(t), ȳ(t))
∥
∥
∥

2

+
µ

2
‖ȳ(t) − ŷ(t)‖2 ≤ 0. (10)

We can also write that

E

∥
∥
∥ŷ

(t) − ȳ(t) −Kηy∇yf
(

x̄(t), ȳ(t)
)∥
∥
∥

2

= E

∥
∥
∥ŷ

(t) − ȳ(t)
∥
∥
∥

2

− 2KηyE
〈

ŷ(t) − ȳ(t),∇yf
(

x̄(t), ȳ(t)
)〉

+K2η2yE
∥
∥
∥∇yf

(

x̄(t), ȳ(t)
)∥
∥
∥

2

= E

∥
∥
∥ŷ

(t) − ȳ(t)
∥
∥
∥

+ 2Kηy

(

E

〈

ȳ(t) − ŷ(t),∇yf
(

x̄(t), ȳ(t)
)〉

+
Kηy
2

E

∥
∥
∥∇yf

(

x̄(t), ȳ(t)
)∥
∥
∥

2
)

(a)

≤ E

∥
∥
∥ŷ

(t) − ȳ(t)
∥
∥
∥

2

+ 2Kηy

(

−
µ

2
E

∥
∥
∥ŷ

(t) − ȳ(t)
∥
∥
∥

2
)

= (1−Kηyµ) δt.

In (a), we used the assumption that ηy ≤
1
K`

and (10). Now,

we can write

E

∥
∥
∥ŷ

(t) − ȳ(t+1)
∥
∥
∥

2 (b)
= E

∥
∥
∥ŷ

(t) − ȳ(t)

−
ηy
n

∑

i,k

∇yFi

(

x
(t)+k
i ,y

(t)+k
i ; ξ

(t)+k
i

)

∥
∥
∥
∥
∥
∥

2

≤ E

∥
∥
∥ŷ

(t) − ȳ(t) −Kηy∇yf
(

x̄(t), ȳ(t)
)
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−
ηy
n

∑

i,k

∇yfi

(

x
(t)+k
i ,y

(t)+k
i

)

+
ηy
n

∑

i,k

∇yfi

(

x̄(t), ȳ(t)
)

‖2

+
Kη2yσ

2

n
≤ (1 + α)E

∥
∥
∥ŷ

(t) − ȳ(t)

−Kηy∇yf
(

x̄(t), ȳ(t)
)∥
∥
∥

2

+
Kη2yσ

2

n
+

(

1 +
1

α

)
η2yK

n

∑

i,k

E

∥
∥
∥∇yfi

(

x
(t)+k
i , y

(t)+k
i

)

−∇yfi

(

x̄(t), ȳ(t)
)∥
∥
∥

2

≤ (1 + α) (1−Kηyµ) δt

+

(

1 +
1

α

)

η2y`
2K (Ex + Ey) +

Kη2yσ
2

n
,

where in (b), we used Lemma 3; i.e., 1
n

∑

i d
(t)
i = 0. �

Proof of Lemma 10: We begin the proof by writing that

δt+1

(a)

≤ (1 + β)E
∥
∥
∥ŷ

(t) − ȳ(t+1)
∥
∥
∥

2

+

(

1 +
1

β

)

E

∥
∥
∥ŷ

(t+1) − ŷ(t)
∥
∥
∥

2

≤ (1 + β)(1 + α) (1−Kηyµ) δt

+ (1 + β)

(

1 +
1

α

)

η2y`
2K (Ext + Eyt )

+

(

1 +
1

β

)

κ2
E

∥
∥
∥x̄

(t+1) − x̄(t)
∥
∥
∥

2

+ (1 + β)
Kη2yσ

2

n
(b)

≤

(

1−
Kηyµ

3

)

δt +
6ηy`

2

µ
(Ext + Eyt ) +

4ηyσ
2

nµ

+
4κ2

Kηyµ

(
2Kη2x`

2 (Ext + Eyt )

+4K2`2η2xδt + 4K2η2xE‖∇Φ(x̄(t))‖
2 +

Kη2xσ
2

n

)

=

(

1−
Kηy`

3κ
+

16`κ3Kη2x
ηy

)

δt

+

(
8`κ3η2x
ηy

+ 6ηy`κ

)

(Ext + Eyt )

+
16κ3Kη2x

ηy`
E

∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

+
4κ3η2xσ

2

nηy`
+

4ηyσ
2κ

n`
.

Using the assumption ηx ≤
ηy

4
√
6κ2

compeletes the proof. In

(a), we used the bound in Lemma 9 for the first term and

Proposition 1 for the second term. In (b), we replaced α =
β =

Kηyµ

3 and used (8) in Lemma 7. �

Proof of Lemma 11: According to the Proposition 1, Φ(·)
is 2κ`-smooth, which results in the following, as shown in the

equation at the top of the next page. Now, we derive an upper

bound for U as follows

U :=

E

〈

∇Φ
(

x̄(t)
)

,−
ηx
n

∑

i,k

(

∇xFi

(

x
(t)+k
i ,y

(t)+k
i ; ξ

(t)+k
i

)

+c
(t)
i

)〉

= E

〈

∇Φ
(

x̄(t)
)

,

−
ηx
n

∑

i,k

E
ξ
(t)+k

i

∇xFi

(

x
(t)+k
i ,y

(t)+k
i ; ξ

(t)+k
i

)
〉

= −ηxE

〈

∇Φ
(

x̄(t)
)

,
1

n

∑

i,k

(

∇xfi

(

x
(t)+k
i ,y

(t)+k
i

)

−∇xfi

(

x̄(t), ȳ(t)
)

+∇xfi

(

x̄(t), ȳ(t)
)

−∇xfi

(

x̄(t), ŷ(t)
)

+∇xfi

(

x̄(t), ŷ(t)
))〉

= −KηxE
∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

−
ηx
n

∑

i,k

〈

∇Φ
(

x̄(t)
)

,∇xfi

(

x
(t)+k
i ,y

(t)+k
i

)

−∇xfi

(

x̄(t), ȳ(t)
)

+∇xfi

(

x̄(t), ȳ(t)
)

−∇xfi

(

x̄(t), ŷ(t)
)〉

≤ −
Kηx
2

E

∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

+
ηx
n

∑

i,k

(

E

∥
∥
∥∇xfi

(

x
(t)+k
i ,y

(t)+k
i

)

−∇xfi

(

x̄(t), ȳ(t)
)∥
∥
∥

2

+E

∥
∥
∥∇xfi

(

x̄(t), ȳ(t)
)

−∇xfi

(

x̄(t), ŷ(t)
)∥
∥
∥

2
)

≤ −
Kηx
2

E

∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

+ ηx`
2 (Ext + Eyt ) +Kηx`

2δt.

Now, we apply the above upper bound for U and (8) in

Lemma 7 as follows

EΦ
(

x̄(t+1)
)

≤ EΦ
(

x̄(t)
)

+ ηx`
2 (Ext + Eyt ) + `2ηxKδt

−
ηxK

2
E

∥
∥
∥∇φ

(

x̄(t)
)∥
∥
∥

2

+ κ`E
∥
∥
∥x̄

(t+1) − x̄(t)
∥
∥
∥

2

≤ EΦ
(

x̄(t)
)

+
(
ηx`

2 + 2Kη2x`
3κ
)
(Ext + Eyt ) +

Kη2x`κσ
2

n
+
(
`2ηxK + 4K2`3η2xκ

)
δt

+

(

4K2η2x`κ−
ηxK

2

)

E

∥
∥
∥∇φ

(

x̄(t)
)∥
∥
∥

2

.

Applying the assumption ηx ≤
1

16K`κ
completes the proof.�

Proof of Lemma 12: According to the Lemma 5, we have

0 ≤ −Dx`
2ηdE

x
t + 3DxK`2ηdΞ

x
t + 12DxK

2η2cηd`
4Eyt

+ 12DxK
3η2cηd`

4γx
t + 12DxK

3η2cηd`
4δt

+ 12DxK
3η2cηd`

2
E

∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

+ 3DxK
2η2cηd`

2σ2,

0 ≤ −Dy`
2ηdE

y
t + 3DyK`2ηdΞ

y
t + 12DyK

2η3d`
4Ext

+ 12DyK
3η3d`

4γy
t + 6DyK

3η3d`
4δt + 3DyK

2η3d`
2σ2.

(11)

By applying the definition of Ht from (5) and using (11), we

have

Ht+1 −Ht ≤

(

−Bx

p

2
+Ax

6η2s
p

+Dx12

)

︸ ︷︷ ︸

≤D1

η3dK
3`4γx

t

+

(

−By

p

2
+Ay

6η2r
p

+Dy12

)

︸ ︷︷ ︸

≤D2

η3dK
3`4γy

t
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EΦ
(

x̄(t+1)
)

= EΦ



x̄(t) −
ηx
n

∑

i,k

(

∇xFi

(

x
(t)+k
i ,y

(t)+k
i ; ξ

(t)+k
i

)

+ c
(t)
i

)



 ≤ EΦ
(

x̄(t)
)

+ E

〈

∇Φ
(

x̄(t)
)

,
−ηx
n

∑

i,k

(

∇xFi

(

x
(t)+k
i ,y

(t)+k
i ; ξ

(t)+k
i

)

+ c
(t)
i

)
〉

︸ ︷︷ ︸

:=U

+κ`E
∥
∥
∥x̄

(t+1) − x̄(t)
∥
∥
∥

2

.

+
(

−Ax

p

2
+ 3Dx

)

︸ ︷︷ ︸

≤D3

Ξx
t ηdK`2

+
(

−Ay

p

2
+ 3Dy

)

︸ ︷︷ ︸

≤D4

Ξy
t ηdK`2

+

(

−Dx +Ax

6K2`2η2x
p

+Ay

6K2`2η2y
p

+Bx

25η2d`
2K2

p
q

+By

25η2d`
2K2

p
+Dy12K

2`2η2d +
2ηx
ηy

+C
12ηr
p

)

`2ηdE
x
t

+

(

−Dy +Ax

6K2`2η2x
p

+Ay

6K2`2η2y
p

+Bx

25η2d`
2K2

p

+By

25η2d`
2K2

p
+Dx12K

2`2η2c+
2ηx
ηy

+ C
12ηr
p

)

`2ηdE
y
t

+

(

−C
ηr
6p

+Bx

12K4`4

p
η2d
(
3η2y
)
κ2

+By

12K4`4

p
η2d
(
3η2y
)
κ2

+Dx12K
2`2η2cκ

2 +Dy6K
2`2η2dκ

2 + 2κ2 ηx
ηd

)
K`2ηd
κ2

δt

+

(

−
1

4
+Bx

24K4`4

p
η3dηx +By

24K4`4

p
η3dηx+C

16κ2ηx
ηyp

+Dx12K
2`2ηd

ηc
ηs

)

KηxE
∥
∥
∥∇Φ

(

x̄(t)
)∥
∥
∥

2

+
(
Axη

2
s +Ayη

2
r +Bx2 +By2 +Dx3 +Dy3

)

︸ ︷︷ ︸

≤D9

K2`2η3dσ
2

+
Kη2x`κ

n
σ2 + C

8ηy
np

σ2.

Let us denote the fifth, sixth, seventh, and eighth parentheses

above as D5, D6, D7, and D8, respectively. Assuming that

Dx = Dy = v, as long as ηd ≤
p

200vκK`
, ηc ≤

ηd

κ2 , ηs =
ηr = pv, Ax = Ay = 6v

p
, Bx = By = 1

p
(72v3 + 24v), and

C = 1
24 , there exists v > 1 that makes D1, D2, D3, D4, D5,

D6, D7 ≤ 0, D8 ≤ −D < 0, and D9 ≥ 0 . �
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