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Abstract—As distributed learning applications such as Feder-
ated Learning, the Internet of Things (IoT), and Edge Computing
grow, it is critical to address the shortcomings of such technolo-
gies from a theoretical perspective. As an abstraction, we consider
decentralized learning over a network of communicating clients
or nodes and tackle two major challenges: data heterogeneity
and adversarial robustness. We propose a decentralized minimax
optimization method that employs two important modules: local
updates and gradient tracking. Minimax optimization is the
key tool to enable adversarial training for ensuring robustness.
Having local updates is essential in Federated Learning (FL)
applications to mitigate the communication bottleneck, and
utilizing gradient tracking is essential to proving convergence
in the case of data heterogeneity. We analyze the perfor-
mance of the proposed algorithm, Dec-FedTrack, in the case
of nonconvex-strongly-concave minimax optimization, and prove
that it converges a stationary point. We also conduct numerical
experiments to support our theoretical findings.

Index Terms—Decentralized learning, robust federated learn-
ing, universal adversarial perturbation, gradient tracking, local
updates.

I. INTRODUCTION

EARNING from distributed data is at the core of modern

and successful technologies such as Internet of Things
(IoT), Edge Computing, fleet learning, etc., where massive
amounts of data are generated across dispersed users. Depend-
ing on the application, there are two main architectures for
the learning paradigm: (i) A distributed setting with a central
parameter server that is responsible for aggregating the model
and is able to communicate to all the computing nodes or
workers; (ii) A decentralized setting for which there is no
central coordinating node, and all the nodes communicate to
their neighbors through a connected communicating graph. In
this work, we focus on the latter.
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Federated learning (FL) is a novel and promising distributed
learning paradigm mostly employed using the main-secondary
architecture that aims to find accurate models across dis-
tributed nodes [2], [3]. The main premise of FL framework
is user data privacy, that is, locally stored data on each
entity remains local during the training procedure, which is
in contrast to traditional distributed learning paradigms. In the
peer-to-peer or decentralized implementation of FL methods
which is the focus of this work, distributed nodes update model
parameters locally using local optimization modules such as
Stochastic Gradient Descent (SGD) and exchange information
with their neighboring nodes to reach consensus. In Federated
Learning, due to privacy and communication constraints, each
communication round consists of multiple local updates before
each node aggregates the neighboring updates.

While FL enables us to efficiently train a model, an impor-
tant challenge is to ensure the robustness of the learned model
to possible noisy/adversarial perturbations [4]. The problem
becomes more critical in FL since due to its distributed nature,
it is more vulnerable to the presence of adversarial nodes and
adversarial attacks [5]. Adversarial training based on minimax
optimization is the key tool to robustify the learned model
in machine learning applications [6]. Thus, it is critical to
develop decentralized minimax optimization algorithms that
are also communication-efficient, i.e. optimization methods
that employ local updates suitable for a federated setting. Other
applications of federated minimax optimization include using
optimal transport to develop personalized FL [7] and robust-
ness against distributed shifts [8]. Another major challenge
in decentralized learning methods is data heterogeneity. Data
heterogeneity refers to the fact that the data distributions across
distributed nodes are statistically heterogeneous (or non-iid).
In this work, we employ the gradient tracking (GT) technique
that guarantees convergence of the algorithm in the presence
of data heterogeneity.

Contributions. We propose the Dec-FedTrack algorithm
which is a decentralized minimax optimization method over a
network of n communicating nodes with two modules of local
updates and gradient tracking, and analyze its communication
complexity and convergence rate for the case of nonconvex-
strongly-concave (NC-SC) minimax optimization. We show
that Dec-FedTrack achieves the O (k®n~le™*) stochastic
first-order oracle (SFO) complexity and the O (k%¢~2) com-
munication complexity, where the condition number is defined
by x £ ¢/pu. This is the first federated minimax optimization
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algorithm that incorporates GT in a decentralized setting.
Moreover, we conduct several numerical experiments that
demonstrate the communication efficiency and adversarial
robustness of Dec-FedTrack over baselines.

II. RELATED WORK
A. Federated Learning With Heterogeneous Data

One of the most challenging aspects of federated learning
is data heterogeneity, where training data is not identically
and independently distributed across clients (non-i.i.d.). Under
such conditions, local models of clients may drift away from
the global model optimum, slowing down convergence [9],
[10]. Several studies have attempted to tackle this issue in
federated learning [11], [12], [13], [14]. However, these studies
are typically not decentralized, their results are often limited to
(strongly) convex objective functions, or they make restrictive
assumptions about the gradients of objective functions. In this
context, gradient tracking (GT) algorithms have been proposed
to address these challenges [15], [16], [17], [18]. Particularly,
in this paper, we also leverage the GT technique to mitigate
the data heterogeneity problem.

B. Decentralized Minimization

Many works have examined minimization problems within
a decentralized setting [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29]. Works such as K-GT [30], LU-GT [15],
[16], [31], [32], and [33] have introduced decentralized algo-
rithms incorporating local updates and GT, although they are
tailored for minimization rather than minimax optimization.

C. Centralized Minimax Optimization

Centralized minimax optimization has become increasingly
significant, particularly with the rise of machine learning
applications like GANs [34] and adversarial training of neural
networks. This optimization paradigm tackles the challenges
posed by nonconvex-concave and nonconvex-nonconcave
problems, drawing attention due to its relevance in various
domains. For NC-SC problems, several works have utilized
momentum or variance reduction techniques to achieve the
SFO complexity of O (/<;3e’3) [35], [36], [37], [38].

D. Decentralized Minimax Optimization

Numerous studies have explored decentralized minimax
optimization for (strongly) convex-concave [39], [40], [41],
[42], [43], nonconvex-strongly-concave [44], [45], [46], [47],
[48], [49], [50], [51], [52], and nonconvex-nonconcave [53],
objective functions. DPOSG [53] has the assumption of
identical distributions, and most of the mentioned works
on nonconvex-strongly-concave minimax optimization have a
very high gradient complexity. The closest ones to our setting
and results are DM-HSGD [50], DREAM [49], and black [51].
These studies explore decentralized minimax optimization
using gradient tracking and variance reduction techniques.
DM-HSGD employs the variance reduction technique of
STORM [54], whereas DREAM and black utilize the variance
reduction technique of SPIDER [55]. However, clients in these
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algorithms do not perform multiple local updates between
communication rounds, making them unsuitable for federated
learning scenarios.

E. Distributed/Federated Minimax Learning

Several works have studied minimax optimization in
the federated learning setting across various function
types: (strongly) convex-concave [8], [56], [57], [58] and
nonconvex-strongly-concave/nonconvex-PL/nonconvex-one-
point-concave [59], [60], [61], [62], [63]. FedGDA-GT
[58] has delved into federated minimax learning with
both local updates and GT, but it is not decentralized
and assumes strongly-convex-strongly-concave objective
functions. Momentum Local SGDA [62], SAGDA [64], and
De-Norm-SGDA [63] explore federated minimax optimization
with local updates but lacks decentralization and does not
incorporate GT.

We summarize the comparison of related algorithms with
Dec-FedTrack in Table I.

III. PROBLEM SETUP

We consider a connected network of n clients with V =
[n] :=={1,...n} and £ C VxV as the set of nodes and edges,
respectively. This network collaboratively seeks to solve the
following minimax optimization problem:

n

1
min max f(x,y) = ;fz(xhv), (1)
where f;(x,y) = E[F;(x,y;&;)] denotes the local function
associated with node ¢ € V. Here, the expectation is with
respect to & ~ D; and D; denotes the local distribution for
node i. In our decentralized setting, clients communicate with
each other along the edges e € £, that is, each node is allowed

to communicate with its neighboring nodes.

A. Motivating Example: Federated Adversarial Training

Consider a network of clients that wish to train a common
model x that is robust to adversarial perturbation y. In this
model, the adversary can attack the network by adding a
common perturbation to all the samples of every node, i.e.
universal perturbation [65], [66]. This model corresponds to
an adversarial cost function f;(x,y) for each node i and results
in a minimax problem shown in (1) that should be solved over
the connected network. One should add that in adversarial
machine learning, the adversary is restricted to a bounded
noise power; therefore, in this case, the minimax problem (1)
will have a constraint ||y| < 4.

B. Convergence Measure

In this paper, we focus on a particular setting where each
local function f;(x,y) is nonconvex in x and strongly concave
in y which is well-studied in the minimax optimization liter-
ature [67]. This assumption allows us to define the primal
function of (1) for every x as ®(x) = maxyers f(X,y).
Solving the minimax problem (1) is equivalent to minimizing
the primal function, i.e., min, cga ®(x) which is nonconvex. A
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TABLE I

COMPARISON OF DEC-FEDTRACK WITH RELATED ALGORITHMS FOR MINIMAX AND MINIMIZATION OPTIMIZATION. CRITERIA IN THIS COMPARISON
ARE: SFO COMPLEXITY; NUMBER OF COMMUNICATIONS; TYPE OF CENTRALIZATION; TYPE OF FUNCTION CLASS; IF THE ALGORITHM IS
STOCHASTIC; AND IF THE ALGORITHM HAS LOCAL UPDATE (LU), HETEROGENEITY
ROBUSTNESS (HR), AND ADVERSARIAL ROBUSTNESS (AR)

Name SFO Comm. Round Decentralized Objective LU HR AR
4 3
MLSGDA [62] o) ( 524) o) (:—;) x NC-SC v x v
SAGDA [64] o) (:;) o) (%2) x NC-SC v X v
4 2
Fed-Norm-SGDA [63] O (7;4) o (%) x NCSC v ox Y
DM-HSGD [50] o (;33 ) o (“—;) v NC-SC x vV
DREAM [49] 0 (:;) 0 (5—22) v NC-SC x v v
black [51] o) (;i) o) (Lﬁ) v NC-SC x VY
K-GT [30] o (n;) o (iz) v NC v x
Dec-FedTrack (Ours) O ( :;) O (':—;) v NC-SC v v v
well-established convergence measure for such minimization Algorithm 1 Dec-FedTrack
problems is to find a stationary point X of ®, that is a point [pitialize: Vi,j € [n],xgo) _ x§-0),y§0) _ y§0); CZ(O) and dZ(O)

for which ||[V®(%x)|| <e.

C. Notation

We represent vectors using bold small letters and matrices
using bold capital letters. The vector x§t>+k denotes a variable
on node i at local step k and communication round f, as
will be explained in Section IV. The average of vectors x; is
defined as x = %ZZ x;. We denote a matrix whose columns
are the collection of n vectors, each belonging to a client, as
X € R¥*" e, X = [x1,- -+ ,X,]. Additionally, we use X to
represent a matrix whose columns are equal to X, and it can
be written in a more useful way as

- 1
X =[x,...,% = —X1,1F = XJ € R¥>",
n

where J = %17115. We also use the below notation for
convenience throughout the paper:

VEX,Y;6) = [VFL (x1,51561) 5 -+, VFn (X0, Y3 €0)]
vf(X7Y) = E(§17€n)VF(X,Y,E)
= [Vfl (leyl) P an (Xnvyn)] S Rdxn~

We denote the batch sizes for variables x and y as b, and b,,
respectively.

IV. DEC-FEDTRACK ALGORITHM

In this section, we describe our proposed method to solve
the minimax problem (1) over a connected network of n
nodes. Our method, namely Dec-FedTrack, comprises of two
main modules: local updates and gradient tracking which we
elaborate on in the following.

Dec-FedTrack (shown in Algorithm 1) consists of a number
of communication rounds, 7, where in each round, every node
performs K local updates on its variables. In particular, in the
kth iteration of round ¢, each node computes unbiased stochas-
tic gradients and updates its local min and max variables x;

according to Lemma 3.
1: for communication: ¢t <— 0 to 7' — 1 do
2 for node i € [n] parallel do
3: for local step: k <+— 0 to K — 1 do
4 Update min variables

X () +k+1 _

X(t)+k? _ nc(vxF(X(t)+k7 Y(t)+k>; g(t)+k:) 4 C(t))
5: Update max variables

vO+k+L

Y(t)+/€ + nd(va(X(t)+k; Y(t)+k, é—(t)+k) + D(t))

6: end for

7: 7t — ﬁ (X(t) — X(t)+K)

8 R® = _L_ (Y(t)+K — Y(t))

N ct) Z GO _ 70 4 70w
10: DD = DO —R® + ROW
11: XD = (X® — Kn,Z®) W
12: YD = (Y® + K RO) W
13: end for
14: end for

and y; using the so-called correction terms (Lines 4 and 5).
Next, each node obtains tracking variables

¢ 1 ¢ H+K
! = e =0
(t) L (K ()
I = — N — A )
C T Em (vi yi')

and sends variable {z{",r!" x" y{"} to its neighboring
nodes. After aggregating these variables from the neighbors,

node i updates its correction terms and model variables using
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gradient tracking [30] as follows:

d(t+1) )+Zw” v,

= (4
y§t+1) _ Zwij <y]('t) + K’?yrj('t)> 7
J

where 7, := nsn. and 7y = n.nq denote the global step
sizes. The proposed Dec-FedTrack algorithm is described in
Algorithm 1 using matrix notations.

Next, we comment on the necessity of using GT in our
proposed algorithm. Given that clients’ distributions are non-
iidd, to prove convergence one needs to establish an upper
bound on the local gradients. While bounding assumptions
can be directly imposed on local gradients, such as Assump-
tion 3b in [68], in many distributed learning settings that are
unconstrained, assuming the existence of such bounds can be
restrictive. The gradient tracking algorithm [16] addresses this
challenge by incorporating a correction term into gradients
at each node. In fact, the correction term aims to bring the
tracking variable for each client close to the tracking variable
of its neighbors, preventing client-drift. The matrix format of
the correction term in GT is as follows:

Xt — (Xm _ nz@) W
7)) _ v (X<t+1>; 5(t+1>) LZOW _VF (x@); §<t>) .

Knal))

correction term

V. CONVERGENCE ANALYSIS

In this section, we provide rigorous convergence analysis
for the proposed Dec-FedTrack algorithm solving (1). We first
present the following preliminary definitions for functions with
one variable:

Definition 1: A function f is called L-Lipschitz if for any
x and x/, we have || f(x) — f (x)|| < L|jx — x|

Definition 2: A function f is called ¢-smooth if it is differ-
entiable and for any x and x’, we have |V f(x) — Vf (x')| <
lx =x'].

Let us proceed with a few assumptions.

As explained before, in our decentralized setting, agents
communicate with each other along the edges of a fixed
communication graph connecting n nodes. Moreover, each
edge of the graph is associated with a positive mixing weight
and we denote the mixing matrix by W € R"*",

Assumption I: The mixing matrix W has the following prop-
erties: (i) Every element of W is non-negative, and W; ; = 0 if
and only if ¢ and j are not connected, (ii)) W1 = wWil1=1,
(iii) there exists a constant 0 < p < 1 such that

IXW — X% < (1 - p)|X = X[}, VX € R™".

The mixing rate illustrates the degree of connectivity within
the network. A higher p signifies a more interconnected
communication graph. When p =1, W = %llT, suggesting
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full connectivity in the graph, while p = 0 yields W =1,
indicating a disconnected graph [30].

Assumption 2: We assume that each local objective function
fi is £-smooth, that is, for all x,x’,y,y’

IVfi(x,y) = VY < C(llx = x|+ lly = ¥'I1%).

We also assume that each f;(x,-) is p-strongly concave with
respect to its second argument. We denote the condition
number by k := ¢/ p.

The above assumption implies that the objective function
f in (1) is £-smooth and strongly concave with respect to its
second argument.

Assumption 3: We assume that the stochastic gradients are
unbiased and variance-bounded, that is,

E [VFZ(Xa Y 52)] = Vfi(xv Y)v
E|VFE(x,y;&) — Vii(xy)|* <o®

Assumption 4: The function ®(-) is lower bounded, that is
infx ®(x) = ®* > —o0.

Next, we provide the main result of the paper.

Theorem 1: Suppose Assumptions 1— 4 hold and consider
the iterates of Dec-FedTrack in Algorithm 1 with step-sizes
na = 0 (%) ,n. = © (%), and 1, = 1, = O(p). Then,
after T communication rounds each with K local updates, there
exists an iterate 0 < ¢t < T such that E||V®(x(")||? < €2 for

3 2 2 2 2 2
T = O(“ )Hoe K=O<p202+02+'”2>,
R°Ne € npe

where Hg = K‘S";p) and 69 = O (;122

Remark 1: Focusing on the dependency of the convergence
rate on accuracy €, the above theorem shows that in the
regime of interest where e gets small, the algorithm reaches
an e-stationary point within 7 = O(1/€?) communication
rounds, each consisting of K = O(1/€?) local updates.
Therefore, the resulting SFO complexity is T - K = O(1/¢).
As we elaborated in Section II and Table I, the proposed
Dec-FedTrack algorithm simultaneously assembles all three
components of local updates, heterogeneity and adversarial
robustness.

Remark 2: 1t is also possible to derive the communication
complexity for any given K. If we choose step-sizes 7. =
C) (W . Ma = O (7). and ns = n, = O(p), after T
communication rounds each with K local updates, there exists
an iterate 0 < ¢t < T such that E||V®(x™®)||? < €2 for

S 46 . plot ot
ept T n2ktK2eh T p2K2p2et

which holds for any given K.

A. Proof Steps

We first state the following standard results from optimiza-
tion theory.

Proposition 1: Under Assumption 2, ®(-) is (¢+x¢)-smooth
and y*(-) = argmaxycre f(-,y) is x-Lipschitz [35].
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Proposition 2: Under Assumption 2, for every x € R¢ and
v,y € RY, we have

Vyf(xy) (y—y)
< f(xyh)

where yT =y —

1 2
- f (Xa y/) 9
7V f(x,y) [69].

Next, we introduce some terminology that will be useful
throughout the entire proof:

1) The client (node) variance for variable x that measures
the deviation of variable x at global steps from its averaged

model: N
1
==Y B - =02,
ne

2) Client-drift for variable x that measures the deviation of
the variable x at local steps from its averaged model:

1 & D4k
==Y E[xT - x®)2,
n 7

The accumulation of local steps for variable x is shown by

K-1 K-1 1 n

; t)+k

zZE eftZE *E:EHXE'H
) n £
k=0 k=0 %

3) The quality of the correction for the variable x that
measures the accuracy of the gradient correction in the local
updates, which aims to bring local updates closer to global
updates:

By o2
+2||y Yl

2
—i(t)H .

T

M=
1 _ _ _
—E Hcm YV f (x@), Y(t)) —V.f (x@)

v)al,

F
Similarly, we can define =Y, ek 1€/, and ~/ for variable y. 4)
Consensus distance for variable y that measures the deviation
of the optimum y when x = X and the averaged y, that is,
6 = ly® — y®||? where 3() = argmaxyepa f (x,y).
Now, we introduce several useful lemmas before the proof of
Theorem 1.

Lemma 1: For a set of arbitrary vectors aq, . ..,
a; € R?, we have

a,, such that

n

s

2 .
SEZH%HZ-
=1

Lemma 2: (Young’s Inequality) For any vectors a,b € R?
and o > 0 we have

1
2(a,b) < allal® + —[Ib]*,

la+ B2 < (1+ a)flal® + (

1 2
IR

Lemma 3: If we initialize C(® and D© as below

1
o) =V, F; (x(o), y fi) += > VaF (X(O),y(o); fj) :
j

1
= F( (0) (0. )
—I—n j VyF; (x%7, y™5&;

2

a0 =95, (x5

then the averaged correction for variables x and y in any
communication round equals to zero.

Proof. Appendix.

Lemma 4: Using Assumption 2 and Young’s Inequality we
have

3foes (40,90 <205 25 ()
sl (2057 [ < 5

Proof. Appendix.

Next, we provide recursion bounds for client variance, client
drift, and quality of correction—for both variables x and y—as
well as consensus distance for variable y.

Lemma 5: Under the assumption that 7., ng < M%’
bound the local drift for variables x and y as follows

we can
EF <BKEY + 12K2n202EY + 12K° 0203 + 12K°n20%5,
4 12K%2E HV@ (i(t)) H 4 3K2202,
EY <BKEY + 12K%0202EF + 12K3020%) 4+ 6 K3n2025,
+ 3K277d0 .
Proof. Lemma A.5 in the appendix of [70].

Lemma 6: We have the following bounds on client variance
for variable x and y

622 6KM202
1 (&F + 5ty) + Tn%

= P\ =z
St = (1 - 5) =t

+ Knjo®

_ P\ —y  OKn2% 6K 2n2¢>
o< (1-5) S e+
+K77202.

Proof. Lemma A.6 in the appendix of [70].
Lemma 7: The sum of averaged progress between commu-
nications for variables x and y can be bounded by

2 2
el s 50|

<2K0 (2 +n2) (EF + &)+ 2K20% (202 + 7)) 6,
Ko?

2
+AK%PE HV(I) (5:(”) + = (242

Proof. Appendix.

Lemma 8: Assuming that 1,7, < \/2%5( ;> we have the

following bounds on the quality of correction for variables x
and y

25 12K2¢?
i< (1-4) o (6 D + (202+175) 8
24K 2> o?
2 ve (x9)| 4 2 ®)
p 12K2¢?
W < (1- 5) W (6 + € + (207 +n3) &
24K 2> o’
#22 ve (0) |+ 25 “@
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Lemma 9: Using Proposition 2 and assuming that ny < K %7
we have the following bound on E ||y — y(+1) || for any

a > 0:

2
_ }—,(t+1)H < (1+0a)(1— Knyu) o,
1 T
- (1 + a) N PK (E° + &Y)
2 2
L Kmyo”
n

Proof. Appendix.
Lemma 10: Assuming that n, <
have the following bound on &;

Kn,t
b < (1 - B ) B+ 120, 0k (EF + E7)
3
n 16x KUI]EHVQ( (t))H n 81y 0> 8myo~k
ny¢ nt
Proof. Appendix.
Now, we state the following descent lemma for ®(x):

Lemma 11: Assuming that n, < ﬁ, we have the
following bound on E® (x(*+1) as follows

1
4\/EQa\Lnd77y_m,wcz‘,

E® (x(0) <E® (x0) + 20,02 (67 + &) + 2%, K,
2 29 2
_ 77:04K]EHV¢ ()—((t))H +K77I7m.

n
Proof. Appendix.
Using Lemmas 5-9, we have the following recursive bound
on the Lyapunov function H;.
Lemma 12: Under the assumption that g = © (ﬁ), Ne =
© (24), and 75 = 1, = O(p), we can find constants A,, A,
B, By, and C, such that D > 0 and Dy > 0, and we have

2
Hyi1 — Hy < —DKn,E HW (5<<t>) H + DyK fno?
K 2
771;6"*02 + %027
n np

+
where
H, = Ed (5<<t>) —E® (x*) + AgnaK (252 + AyngK (=Y
+ B, K*0'n3yF + By K03y + Oé&. 5)
Proof. Appendix.

Proof of Theorem 1: Using the telescopic sum for H;, we
have

) 1
z:; Hir1 — =71 (Hr41 — Ho)
1 2
z® 2/2 3 2
DKmTHZEHVq )H + DyK2 2o
LKl S
n np

which results in

e LICOTIE

Ho — HT+1 1
(T+1)D Kn,
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81y o2
nDKpn,

+ D9K627’]§ 0_2

T 2
Dnm

D 6)

Now, we want to ensure %ﬂ ZtT:O E HV@ (x®) ||2 < €2 for

any arbitrary € > 0, which is equivalent to bounding each term
on the RHS of (6) to the order of 2. Given that D = (1),

Dy =0 (%), n. =0 (H7) and m, = ©

3
EA
pE
2 .2 2 2.2
K:o(p" + L+ 25 )

2
KZ)’ we have

K2ne2 €2 npe2

where Ho = O (

K‘S";p) and 6020(%). O

VI. NUMERICAL RESULTS
A. Robust Logistic Regression

We consider the problem of training a robust logistic regres-
sion classifier with a non-convex regularizer similar to [37],
[49], [50]. In this problem, we aim to train a binary classifier
x € R? on the dataset {(a;;,b;;)}, where a;; € R? denotes
the feature vector and b;; € {—1,+1} represents the label
for the jth sample in the dataset associated with client i. Each
client is allocated m samples, resulting in a total of N = mn
samples. The loss function at client i is given by

Z Yijlis( V(y)+9(),
where 1;;(x) = log (1 + exp (bija;;x)). V(y) = g3z || Ny —
i3 i,
WP gx) = O, 12, 0 = 107, and v =

10. The parameter y is restricted to the simplex Ay =
{y e RN 1y €10,1], Zk:l yr = 1 ;. Here, we set the mix-
ing matrix W as the m-lazy random walk matrix [50] on a ring
graph with n = 10.

As previously highlighted, the main distinction of Dec-
FedTrack compared to other decentralized minimax methods
lies in its use of multiple local updates, which aligns well with
FL applications. Notably, multiple local steps are essential in
FL to ensure privacy.

However, in this section, we set the number of local
updates for the Dec-FedTrack algorithm to 1 (K = 1) and
compare our proposed algorithm against DREAM [49], DM-
HSGD [50], GT-DA [52], GT-GDA, and GT-SRVR [71]. These
comparisons are conducted on the datasets “a9a”, “ijennl”,
“phishing”, and “w8a” [72], evaluating performance in terms
of the number of SFO calls and communication rounds against
®(X) = maxyea, f(X,y), as well as test accuracy.

We fix the batch size to 64 across all algorithms and tune
the learning rates with 7, € {0.1,0.01,0.001,0.0001} and
ny, € {1,0.1,0.01,0.001}. Fig. 1 presents the comparison
of the number of SFO calls and number of communication
rounds against ®(x) on datasets “a9a”, “ijcnnl”, “phishing”,
and “w8a”. As shown, Dec-FedTrack demonstrates a faster
decay rate on ®(X) against the number of SFO calls and faster
or very close decay rate on ®(X) against the number of com-
munications. Furthermore, Fig. 2 compares the comparison

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 05,2025 at 21:01:08 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHIASVAND et al.: ROBUST DECENTRALIZED LEARNING WITH LOCAL UPDATES AND GRADIENT TRACKING 7

le2 o GTSRVR le—1
' GT-0A =
.. . wo GTGDA e
1.00 S, 4 - = owisen .
1 . — oReAm .
L g | Decredmick 7.4 .
o GrSRVR e o GrSRVR
L _ 0759 aron =8 - = aron
= = o GrGDA - g . = o GRGDA
s 8 050 = . 872 =
— DecFedTrack 2 — DecFedTrack *
0.25 *
1 Y 7.0
0.00
0 1 2 3 4 5 0 2 4 6 8 0 1 2 3 4
#SFO le7 #SFO le7 #SFO 1le7
(a) a%a (b) w8a (c) ijennl (d) phishing
lel le2
1.5 GrDA
o GTGDA
1.00 o GrsRR 4
— DMisoD
— oream
10 _ 0.75 — DecredTrack =3
= = 5
=3 © 0.50 N
GToA 2 GTDA
0.5 e cropa e
o GrsRVR 0.25 “oe GTSRVR
—— DM-HSGD — DM-HSGD
— oream 1{— oream
oal= Dec FedTrack 0.00 — DecredTrack — Dec-FedTrack
T0.0 0.5 1.0 15 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 0.0 0.5 1.0 15
#Communication le5 #Communication le5 #Communication le5 #Communication le5
(e) a9%a (f) w8a (g) ijennl (h) phishing

Fig. 1. Convergence of ®(X) against the number of SFO calls (above) and the

number of communication rounds (bottom).
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Fig. 2. Test accuracy against the number of SFO calls (above) and the number of communication rounds (bottom).

of the number of SFO calls and number of communication
rounds against the test accuracy on datasets “a9a”, “ijcnnl”,
and “w8a”. Note that the “phishing” dataset does not include
a test dataset.

B. Robust Neural Network Training

In this section, we consider the problem of robust neural
network (NN) training, in the presence of adversarial pertur-
bations. We consider a similar problem as considered in [59],

1 n
min max —Zfl(x y)
X yllwss n 70

where fi(x,y) = 1/m 37" € (hx (ai; +y),bi;). Here, x
denotes the parameters of the NN,y denotes the perturbation,
and (a;j,b;;) denotes the j-th data sample of client .

We consider the accuracy of our formulation against three
popular attacks: The Fast Gradient Sign Method (FGSM)
[73], Projected Gradient descent (PGD) [74], and Universal
Adversarial Perturbation (UAP) [76]. We have provided a
description of each attack in Section VI-C.

We evaluate the robustness of Dec-FedTrack against adver-
sarial attacks by comparing it with K-GT, a benchmark
minimization algorithm. The evaluation was conducted on
the MNIST and CIFAR-10 datasets, utilizing 2-layer and
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TABLE I
TEST ACCURACY FOR K-GT AND DEC-FEDTRACK ALGORITHMS UNDER DIFFERENT ATTACK METHODS AND ADVERSARY BUDGETS

Dataset & Model ~ Method Clean Acc. FGSM L [73] PGD Lo [74] UAP [75]
6 =0.05 §=0.1 6=0.15 6=0.05 6=0.1 6=015 §=020 6§=025 6=0.30
MNIST K-GT 99.20 93.73 73.10 39.65 94.90 74.67 30.86 93.64 75.15 36.26
Dec-FedTrack 99.14 94.83 78.02 49.06 96.20 81.72 46.49 96.14 85.73 43.87
6=10.003 §=0.005 6=0.01 §=0.003 6=0.005 §=001 6=003 6=0.05 &=0.07
CIFAR-10 K-GT 77.3 67.7 44.8 23.6 67.6 44.6 26.4 58.9 53.3 51.5
Dec-FedTrack 771 69.7 51.5 32.5 69.5 51.7 35.9 74.9 66.1 56.3

3-layer convolutional neural networks for training MNIST and
CIFAR-10, respectively. For CIFAR-10 experiments, we only
use two classes to demonstrate the efficacy of our method.
During training, we set n = 5, K = 5, and exper-
iment with various constant learning rates chosen from
{1,0.5,0.1,0.05,0.01}, using a batch size of 128. The results
for K-GT and our proposed algorithm under different attack
methods and varying values of § are summarized in Table II.
As shown in the table, the proposed algorithm demonstrates
superior performance compared to its non-robust counterpart.

C. Adversarial Attacks

In this section, we provide descriptions of the attacks we
used in the robust neural network training section.

FGSM [73] is a single-step adversarial attack designed to
create adversarial examples by slightly perturbing the input
to maximize the loss of a neural network. The FGSM attack
perturbs the input a in the direction of the gradient of the
loss with respect to the input. This is achieved by computing
the gradient of the loss function f(x,a,b), where x represents
the model parameters and b is the true label. The adversarial
example is then generated as:

a' =a+e-sign(V,f(x,a,b)),

where € controls the magnitude of the perturbation.

PGD [74] is an iterative extension of FGSM, providing a
stronger adversarial attack by applying FGSM multiple times
with smaller step sizes. The PGD attack iteratively refines
the adversarial example by applying small perturbations to
the input. Starting from an initial adversarial example a, the
method updates the adversarial input a; at each iteration using
the formula:

ar+1 = Projg (o) (ac + 1 - sign(Va f(x, ar, b)) ,

where 7 is the step size, and Projz_(, ensures the perturbed
input remains within the L.,-norm ball of radius e around the
original input.

UAP [76] is a technique designed to craft a single pertur-
bation vector y that, when added to any input, significantly
degrades the performance of a model. Unlike input-specific
adversarial perturbations (e.g., FGSM or PGD), UAPs are
input-agnostic and aim to generalize across a wide range
of inputs. We use the universal perturbation introduced in
[76], where the authors employ Stochastic Projected Gradient
Descent (SPGD) to generate UAP. Their algorithm computes
the gradient of the loss function f(x,a + y,b) with respect

toy as g = Vyf(x,a+y,b). Using SPGD, y is updated as
Yy < y+n-g, where 7 is the learning rate. After each update,
y is projected back onto the constraint set ||y|/, < ¢ using
y < Projjy <s(y). This process is iterated until y achieves
the desired attack success rate across the dataset.

VII. CONCLUSION

This paper presents Dec-FedTrack, a decentralized minimax
optimization algorithm specifically tailored for addressing the
challenges prevalent in distributed learning systems, partic-
ularly within federated learning setups. Dec-FedTrack, by
integrating local updates and gradient tracking mechanisms,
aims to enhance robustness against universal adversarial per-
turbations while efficiently mitigating data heterogeneity. The
theoretical analysis establishes convergence guarantees under
certain assumptions, affirming Dec-FedTrack’s reliability and
efficacy. Our empirical evaluations demonstrate that for an
equal adversary budget, Dec-FedTrack is more robust to
adversarial perturbations compared to non-robust baselines.

APPENDIX
Proof of Lemma 3: According to Algorithm 1 we have

1
t+) g3 = c® ®) _ x(O+K _
C J=C"I+ " (X X ) (W-1)J

1 "
= (X X +>(I I)=C®J.

Using the initialization assumption in (2), we have C(VJ =
CJ = 0. Similarly, we have D*J = D©)J = 0. O

Proof of Lemma 4: We can write
z[[v.r (x0.5)
& vaﬁf (>—<<t>, yu)) —V.f (,—(u)’ y<t>)

s (x5
<208 [y -5+ 22 v (<)
— 2025, + 2K HV(I) ()‘((t)> H2 .
Moreover,
v (x0.5) |

= [ 9,7 (x0,50) - v, (x0.59)| < 26 @)
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The equality in (7) holds due to the fact that
V,f (i(t) y(t)) =0. O

Proof of Lemma 7: First, we derive an upper bound on the
averaged progress for variable x as follows

el

=n’E va Fy (x("

(a) QKnIZEHV fz( (1)+k (t)+k> Vi ( gt),yz(t))H

K
oy ) = 3 el

)

’(”)H 2, Kiizo?
n

+2K27)_,£EHV f( . Y

2L 5 2 2
< 2K ( 0| +EHyi<t>+k_5,<t>H>
2 K 2 2
g o () <

(b)
< QK22 (EF + &)

2 K 2 2
+ 2K (2@2& 2R HV(I) (x“)) H > B P
n
Similar to the above derivations, we have
2
E Hy(t-‘rl) — y(t)H < 2K2n2€2 (gtz + giy)
2 K 2 2
conrge o (0504 2
(c) Kn202
< OKR2 (EF + &) + 2K 2%, + —2 T (9)

We used Lemma 3, 4, and 4 in (a), (b), and (c¢), respectively.
Combining (8) and (9) completes the proof. [l

Proof of Lemma 8: We can write that
_ _ 2
n24% =K Hc(t“) +V,f (X<t+1>, Y<t+1)) (I- J)H
* F
K HC(”W

tE Z V.F (X
YV, f (X(t“),Y(t“)) (1— J)Hi
<E H (c“) + V. f (X@), Y(”) (I J)) w
K-1
4 <[1< ];) v,/ (X(t)+k’Y(t)+k>
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F
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In (a) we applied Assumption 1 and the fact that
(€ +v.s (X0,¥0) (1-3)) 3 =3
+ V. f ( X® Y(t)) (J — ) Lemma3 g

Using Lemma 7 to bound A7, + AY ;| we have

%GCH
1 /24
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2
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np K2
Applying the conditions on the step sizes will result in (3). In
a similar fashion, we can show (4). O

Proof of Lemma 9: If we replace x = ), y = ), and
y’ = y® in Proposition 2, we have

_ _ . 1 ) - 2
0 50510~ 500 L 5,050

—yW*<0. (10)
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0]
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We can also write that
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Proposition 1 for the second term. In (b), we replaced o =
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Proof of Lemma 11: According to the Proposition 1, ®(-)
is 2k/-smooth, which results in the following, as shown in the
equation at the top of the next page. Now, we derive an upper
bound for U as follows
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Now, we apply the above upper bound for U and (8) in
Lemma 7 as follows
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