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Safety-aware Causal Representation for Trustworthy Offline
Reinforcement Learning in Autonomous Driving

Haohong Lin1, Wenhao Ding1, Zuxin Liu1, Yaru Niu1, Jiacheng Zhu1,
Yuming Niu2 and Ding Zhao1

Abstract—In the domain of autonomous driving, the offline
Reinforcement Learning (RL) approaches exhibit notable efficacy
in addressing sequential decision-making problems from offline
datasets. However, maintaining safety in diverse safety-critical
scenarios remains a significant challenge due to long-tailed and
unforeseen scenarios absent from offline datasets. In this paper, we
introduce the saFety-aware strUctured Scenario representatION
(FUSION), a pioneering representation learning method in offline
RL to facilitate the learning of a generalizable end-to-end
driving policy by leveraging structured scenario information.
FUSION capitalizes on the causal relationships between the
decomposed reward, cost, state, and action space, constructing
a framework for structured sequential reasoning in dynamic
traffic environments. We conduct extensive evaluations in two
typical real-world settings of the distribution shift in autonomous
vehicles, demonstrating the good balance between safety cost
and utility reward compared to the current state-of-the-art safe
RL and IL baselines. Empirical evidence in various driving
scenarios attests that FUSION significantly enhances the safety
and generalizability of autonomous driving agents, even in the
face of challenging and unseen environments. Furthermore, our
ablation studies reveal noticeable improvements in the integration
of causal representation into the offline safe RL algorithm. Our
code implementation is available on the project website.

Index Terms—Intelligent Transportation Systems, Representa-
tion Learning, Reinforcement Learning

I. INTRODUCTION

LEARNING from Demonstration (LfD) techniques have
achieved huge success in autonomous driving [1]–[3]

by improving the representation quality in an end-to-end
framework. Among all the solutions categorized as LfD, Offline
Reinforcement Learning has shown its superiority in many
other robotic tasks, including locomotion and manipulation [4].
However, in the context of autonomous driving, the safety and
generalizability of learning-based policies in various safety-
critical scenarios remain elusive [5]–[7]. The distribution
shift between offline training samples and online testing
environments makes it harder to deploy the learning algorithms
to the online environments safely. Prior studies [8], [9] illustrate
that even minor domain shifts in road structures or surrounding
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Fig. 1. Diagram depicting offline-to-online generalization via a modular
reasoning framework. The agent learns a causal abstraction from offline
demonstration trajectories and then applies it to different environmental
components during online implementation. The distribution shift between
offline datasets and online environment can lead to unsatisfying safety or
efficiency in driving performance. This abstracted representation enables
learning agile agents for unseen scenarios in a zero-shot manner while
enhancing safety and efficiency.

vehicles can result in catastrophic outcomes due to the high-
stakes nature of autonomous driving.

Although existing research has successfully applied end-
to-end learning-based algorithms to racing cars [10]–[12],
urban driving scenarios remain complex for existing learning-
based agents. Complexity arises from the fact that urban
settings require structural reasoning in context-rich and safety-
critical situations [13]. For instance, humans can effortlessly
adapt their driving behaviors based on static contexts such as
roadblocks or dynamic contexts such as surrounding traffic,
often making intuitive judgments, as illustrated in Figure. 1.
Although such causal abstraction is straightforward to humans
with high reasoning capabilities, end-to-end approaches, such
as vanilla deep RL methods, usually fail due to the distribution
shift in various driving scenarios neglecting the underlying
structures of the scenarios and usually resulting in being over-
conservative or over-aggressive. As a consequence, two pivotal
challenges emerge under such distribution shifts: (i) ensuring
safety performance unseen driving contexts and (ii) striking a
balance between safety and driving efficiency.

Recent LfD advances in autonomous driving improve the
trustworthiness of learned policies through representation
learning in offline RL or IL, including the object-centric repre-
sentation [6], safety-enhanced scene representation [7], [14],
multi-modal sensory representation [15], domain-invariant state
representation [16], agile action abstraciton [2], and hierarchical
action representation [17]. However, a recurring limitation of
these representation learning works is the assumption of access
to perfect expert demonstrations, which may not be accessible
in diverse urban scenarios.

To mitigate the reliance on perfect expert demonstrations,
multiple offline RL [18], [19] and safe RL [20], [21] approaches
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have been proposed. These methodologies harbor the potential
to equilibrate the RL agents’ priorities between safety and
efficiency, especially when learning from non-expert demonstra-
tions. Encouragingly, some studies [12], [22] manage to surpass
expert policies during online deployment by using these batch
RL methods, which are based on improved real-world data.
Although these works overcome the limitation of perfect expert
demonstration, they mostly assume that online environments
will mirror the dynamics of those from which offline trajectories
were collected. In reality, the scarcity and lack of diversity of
high-quality expert data always exist and lead to significant
distribution mismatch between training and deployment. This
is particularly apparent in autonomous driving, where static
(e.g., road layouts) and dynamic (e.g., traffic flow) contexts
differ markedly across locales. How to achieve generalizability
in unseen scenarios remains an open research question.

In this study, we introduce saFety-aware strUctural Scenario
representatION (FUSION), which aims to improve the gen-
eralizability of the safety performance of self-driving cars
under distribution shift. More concretely, our contributions are
summarized as follows:

• We introduce a safety-aware offline reinforcement learning
framework that aims to improve generalizability under
distribution shifts during the online deployment stage.

• We develop a self-supervised causal representation learn-
ing paradigm to regularize the scenario representation,
encouraging a better balance between the safety and
efficiency of the learned policies.

• We provide comprehensive evaluations on the offline
dataset collected from the human beings and Intelligent
Driver’s Model (IDM), showing the advantage of FUSION
over the existing state-of-the-art approaches in offline safe
RL [23] and IL-based methods [15]–[17].

II. RELATED WORKS

Safety-aware Decision Making from Offline Data. To
bring up safety awareness of autonomous vehicles, the most
recent works formulate the safe decision-making problem
as constrained optimization [7], [24], [25]. However, there
have been several different roadmaps for solving this problem.
For the IL-based approach, [15], [26] propose implicit safe
constraints in IL via uncertainty quantification and Bayesian
abstraction from expert data. These approaches depend on their
safety on the small discrepancy between the learned trajectory
and the expert trajectory. More explicitly, InterFuser [7]
proposes a safe controller that utilizes interpretable intermediate
features to directly constrain the controller output within a
safety set. On the other hand, offline Reinforcement Learning
(RL) agents manage to balance safety and efficiency with
additional information on the reward, cost, and cost threshold
along the trajectories [23], [27]. To fully extract temporal
information from offline trajectories, recent works turn offline
RL into a sequential modeling problem using the power of
transformers [21], [28]–[30]. Most of these works ignore the
inherent structures of MDP in either the spatial or temporal
domain, which limits the generalizability of the policy.

State Abstraction for Decision Making. To improve
the performance of decision-making agents with some extra

structural information, some recent work has focused on
deriving state abstraction for generalizable decision-making
using representation learning tricks. In the IL realm, [16]
proposes Invariant Causal Imitation Learning (ICIL) to deal
with the distribution shift with domain-invariant causal features.
Based on uncertainty quantification, [15], [26], [31] propose
an ensemble representation that leverages multi-modal sensor
inputs to improve generalizability for self-driving agents.
PlanT [6] proposes a learnable planner module based on object-
centric representations. The RL field has seen developments
in state abstraction through self-supervised learning methods,
including time-contrastive learning [32], hierarchical skill
decomposition [17] and deep bisimulation metric learning [33],
[34]. In autonomous driving applications, state and action space
are usually factorizable, [35], [36] propose to train RL agents
under the guidance of causal graphs to improve generalizability
by discovering the latent structure in the world or policy model.
Prior to this work, however, the intersection of state abstraction
with offline Safe RL is unexplored, which is crucial to advance
the learning-based methods in the autonomous driving domain.

III. PROBLEM FORMULATION

As stated in Section I, this work essentially aims to tackle
a generalizable safe RL problem under distribution shifts in
an offline setting. To better model such distribution shifts, we
follow the definition of contextual MDP in [37] to define the
Constrained Contextual Markov Decision Process, or C2-MDP,
to model this generalizable safe RL problem as follows:

Definition 1. Constrained Contextual Markov Decision Pro-

cess (C
2
-MDP) is a Contextual MDP with a tuple

(
!,M(ω)

)
,

where M is a function that maps any contexts ! → ! to a

constrained MDP M(ω) =
(
S,A, Pω, r, c, s0, ε

)
.

Here Pω : S ↑A↑! ↓ S is the context-specific transition
function, r : S ↑A ↓ R is the reward function, c : S ↑A ↓
R is the cost function, s0 is the initial state, and ε is the
discount factor. C2-MDP defines the safety cost as an additional
intuitive performance preference for driving agents. In addition,
it includes different MDPs according to different contexts ω.
This additional context aims to model the phenomena that the
traffic environment varies across different contexts (e.g. road
types or traffic densities) in the autonomous driving scenarios.

Following the above definition, we introduce our problem
formulation and then give a sketch of our proposed learning
pipeline for generalizable safe RL problems in autonomous
driving. Based on the Definition 1, the Constrained Contextual
MDP aims to maximize cumulative reward while satisfying
the safety constraints on cumulative expected cost under a
certain target context ω. In formal terms, our problem can
be defined as the following constrained optimization problem
maxε Jr(ϑ,ω) s.t. Jc(ϑ,ω) ↔ ϖc, where we define the
reward objective Jr(ϑ,ω) ↭ Eω,ε

∑
T

t=1 r(st, at) and similarly
the cost objective, Jc(ϑ,ω) = Eω,ε

∑
T

t=1 c(st, at).
To achieve generalizable safety, we aim to optimize a policy

that satisfies safety constraints: Jc(ϑ,ω) ↔ c, ↗ϑ → ”,ω → !,
i.e. imposing constraint satisfaction under varying behavior
policies ϑϑ and environment contexts ω. Meanwhile, we assume
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Fig. 2. Overview of Safety-aware structural Scenario Representation Framework. The diagram on the left shows a safety-aware decision transformer that
conducts sequential decision-making based on the temporal contexts. The right diagram shows the general form of the graphical model in the CEWM and
Policy Learning modules in FUSION, where the connection between different timesteps will be determined by the attention weights in the causal transformer.
The nodes in a later timestep depend on their parental nodes in the previous timesteps.

that the preference for the reward function r and the cost
function c remain unchanged in different contexts.

In our autonomous driving problem, the reward is composed
of a forwarding reward in the longitude direction, a continuous
reward for the vehicle speed, and an additional sparse reward
once the vehicles reach the goal or other terminal states:

rt = w
r

1rforward + w
r

2rspeed + w
r

3rterm

= w
r

1(dt ↘ dt→1) + w
r

2vt + w
r

3I(st = g)
(1)

In our urban driving task, the safety cost comes from three
events: (i) collision with others, (ii) out-of-road, and (iii) over-
speeding. Collision and out-of-road costs are binary indicators
that are non-zero only when the corresponding event happens,
and overspeeding costs are a continuous cost that occurs once
the vehicle exceeds a certain speed limit vlimit.

ct = w
c

1ccollision + w
c

2cout road + w
c

3coverspeed

=w
c

1I(s → scollision) + w
c

2I(s /→ sroad) + w
c

3 max(0, vt ↘ vlimit)
(2)

The core problem formulation in this paper is to learn a
safe policy with good generalizability at the deployment stage,
under distribution shifts that occur: (i) between offline data
collected from mixed-quality policies and online environments,
i.e. ϑϑ ≃= ϑ

↑, and (ii) between varying contexts of C
2-

MDP, i.e. training environments ωtrain for data collection
are different from online testing environments ωtest. This
difference also indicates the difference in MDP M(ω1) ≃=
M(ω2). More specifically, we define the distribution shift in
transition dynamics Tω (e.g., the density of traffic) as follows:
p(·|s, a;ωtrain) ≃= p(·|s, a;ωtest).

IV. METHODOLOGY

In this section, we zoom in on more details about our
proposed FUSION with two important modules: (i) Causal
Ensemble World Model (CEWM), and (ii) safety-aware Causal
Bisimulation Learning (CBL).

A. Causal Ensemble World Model Learning

In autonomous driving problems, the entire state space can
be decomposed into several disjoint subspaces [15], including
the estimated ego navigation state, lidar observation, and visual
observation, e.g. the birds-eye-view observation that serve as
input to FUSION in Figure 2.

Definition 2 (Factorizable State Space). The factorizable state

space in MDP indicates a disjoint state space decomposition,

where S = S1 ⇐ S2 ⇐ · · · ⇐ SN , and N indicates how many

disjoint state components we have in a certain problem.

To help the FUSION framework gain better awareness of
the structure of the state and action space, we propose the
CEWM based on multi-modal observations, as defined The
factorized state space Definition 2, along with the reward, cost,
and action variables, form the nodes in this world model. To
better describe the structural dependency between them, we
further design the CEWM according to the following definition
of Structured Causal Model (SCM).

Definition 3. An SCM (S, E) consists of a set of variables S ,

along with d functions [38],

sj := fj(PA
G(sj), ϱj), j → [d],

where PAG
j
⇒ {s1, . . . , sd}\{sj} are called parents of sj in

the Directed Acyclic Graph (DAG) G, and E = {ϱ1, . . . , ϱd}
follows a joint distribution over the noise variables, which are

required to be jointly independent.

For general offline RL problems, SCM aims to jointly
parameterize the world model and the policy model between
different nodes in the state, action, reward, and safety cost.
To parameterize the functions f in this SCM, we use a
Safety-aware Causal Transformer, as shown in Figure 2.
For example, the child node sj is determined by its parent
tokens PAG

t
(sj) in the previous tokens ςt→H:t, and the

exogenous noise variable ϱj , which are aggregated by a variable-
specific function fj empowered by the attention mechanism
of Transformer. The edges between different nodes represent
their causal dependency in the spatio-temporal domain, which
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Fig. 3. Safety-aware bisimulation metrics with the distribution distance in
transition dynamics, rewards, and safety cost.

is essentially captured by the attention weights, as we will
discuss later in Figure 6 of the experiment parts. In addition to
capturing the cause-and-effect relationship between the reward,
cost, and factorizable state space, the SCM also enjoys a
great property in that the child nodes (e.g., the state and
reward/cost in subsequent timesteps) are only dependent on
their parent nodes (in the state or action space in the previous
timesteps) while removing unnecessary dependencies between
the descendent nodes to indirect ancestors or non-parent nodes.
This property improves both generalizability and efficiency for
an autoregressive inference during the online deployment.

Based on this property, we derive the CEWM under the
SCM, which can then be decomposed into the following
disjoint components, including the reward-to-go model, cost-
to-go model, the factorized state-action transition dynamics,
and the policy optimization, as is shown below:

p(ςt|ςt→H:t) = p(at, st, Rt, Ct|at→1, st→1 · · ·Rt→H , Ct→H)

= p

(
rt|PAG

t
(rt)

)

︸ ︷︷ ︸
Reward-to-go

p

(
ct|PAG

t
(ct)

)

︸ ︷︷ ︸
Cost-to-go

p

(
at+1|PAG

t
(at+1)

)

︸ ︷︷ ︸
Policy Optimization

∏

i↓dim(S)

p

(
s
i

t+1|PAG

t
(si

t+1)
)

︸ ︷︷ ︸
Factorized Dynamics

(3)
Therefore, we exert an auxiliary task of trajectory opti-

mization in the optimization process of safety-aware decision
transformer to estimate the three components in (3), i.e.

Ltraj = ↘ log p(ςt+1|ςt→H:t) = ↘ log p(Rt|PAG

t
(Rt))

↘ log p(Ct|PAG

t
(Ct))↘ log p(at+1|PAG

t
(at+1))

↘
∑

i↓dim(S)

log p(si
t+1|PAG

t
(si

t+1))

= Lrtg︸︷︷︸
Reward Critic

+ Lctg︸︷︷︸
Cost Critic

+ Lact︸︷︷︸
Policy Optimization

+ Ldyn︸︷︷︸
Transition Dynamics

(4)
This trajectory optimization objective benefits our safety-

aware DT with better structural awareness of the trajectory level
between state, action, reward-to-go, and cost-to-go. The design
of this safety-aware DT model manages to parameterize the
CEWM that we propose in (3), as the latter token is generated
conditioned on the previous tokens in an auto-regressive way.

B. Safety-aware Bisimulation Learning

Though CEWM provides an explicit structure to model
the causality, learning such a model from offline datasets is

non-trivial. The reason is that demonstrations in the mixed-
quality dataset have diverse levels of safety due to spurious
correlations between actions and states. To avoid getting misled
by such spurious correlation, we introduce an additional self-
supervised regularization term in an implicit way, namely
Causal Bisimulation Learning, or CBL. Inspired by the DBC
algorithm for off-policy RL in [33], we further regularize the
FUSION model with safety-aware Bisimulation Learning in our
offline RL setting. We first extend the traditional bisimulation
relationships for MDP in [33], [39] with an extra safety term:

Definition 4 (Safety-aware Bisimulation Relation). A safety-

aware bisimulation relation U ⇒ S ↑ S is a binary relation

which satisfies, ↗(s1, s2) → U:

• ↗a → A, r(s1, a) = r(s2, a)
• ↗a → A, c(s1, a) = c(s2, a)
• ↗a → A, s

↔ → S, p(s↔|s1, a) = p(s↔|s2, a).

Intuitively, in the Constrained MDP setting, the bisimilarity
between two states is determined not only by the stepwise
reward and transition dynamics but also by their similarity in
the step-wise cost. In practice, the reward, cost, and transition
dynamics could hardly match exactly for two different states,
therefore, we propose a smooth alternative [40] of safety-aware
bisimulation relationship, denoted as Safety-aware Bisimulation
Metrics as is shown in Figure 3.

Definition 5 (Safety-aware Bisimulation Metrics). The bisimu-

lation metric d
ε : S ↑ S ↓ R+

is a mapping from the state

space to a non-negative scalar, defined as:

d
ε(s1, s2) = E a1→ω(·|s1),

a2→ω(·|s2)

[
|r(s1, a1)↘ r(s2, a2)|

+ φ|c(s1, a1)↘ c(s2, a2)|+ εW2(p̂(·|s1, a1), p̂(·|s2, a2))
]
,

(5)

The Lagrangian multiplier φ aims to balance the safety
term, and W2(·, ·) is the 2-Wasserstein distance measuring
the similarity between two transition dynamics distributions.
We use the following learning objectives to align the state
representation with the bisimulation metrics in the latent space:

Lbisim = Es1,s2↗pωε

(
⇑↼(s1)↘ ↼sg(s2)⇑1 ↘ d

ε(s1, s2)
)2

,

(6)
where ↼sg means stop gradient of state encoder ↼.

Finally, at inference time, we take advantage of the prediction
of values in online inference time, as shown in Algorithm 2. By
taking the minimum cost-to-go preference and cost prediction,
and the maximum reward-to-go preference and reward predic-
tion at each step, we aim to improve the safety and efficiency
of FUSION conditioned on the input human preference during
the online deployment stage.

V. EXPERIMENTS

In this section, we first go through the environments and
evaluation protocols that we use based on the MetaDrive simu-
lator [41]. Next, we conduct experiments and ablation studies
to answer four research questions, aiming to demonstrate how
well our proposed methods could learn a safe and generalizable
policy based on the offline driver’s data. The evaluation results
illustrate the effectiveness of the FUSION model.
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Algorithm 1: Safety-aware CBL
Data: Offline (mixed) trajectories, cost limit C
Result: State encoder ↼ of policy ϑ

for k = 0, · · · , N ↘ 1 do
Sample minibatch: B ⇓ Sample(Dεε );
Construct transition pairs: (s1, a1, s↔1) ⇓ B ;
Permute samples: (s2, a2, s↔2) ⇓ permute(B) ;
Compute bisimulation distance: With (5) ;
Update encoder: ↼k+1 ⇓ ↼k ↘⇔ϖLbisim with (6);

Algorithm 2: Training and Inference of FUSION
Data: Context length H , Reward target R0, Cost

limit C0

Result: Policy ϑϱ,ϖ

/* Offline Training */

for k = 0, · · · , N ↘ 1 do
Update Transformer ↽ with CEWM by (4);
Update Encoder ↼ with CBL by Alg. 1;

/* Online Inference with context H */

s0 ⇓ env.reset();
o ⇓ {C0, R0, s0};
a0 ⇓ ϑϱ,ϖ(o);
for t = 1, · · · , T ↘ 1 do

Rollout: st, rt, ct = env.step(at→1);
Predict reward value: R̂(st, at) ⇓ ↼

r(st);
Predict cost value: Ĉ(at, st) ⇓ ↼

c(st);
Update rtg token: Rt ⇓ max{R̂(st, at), Rt→1 ↘ rt};
Update ctg token: Ct ⇓ min{Ĉ(st, at), Ct→1 ↘ ct};
Update context: o ⇓ {{at→1, Ct, Rt, st}}t→H:t;
Predict action: at ⇓ ϑϱ,ϖ(o) ;

A. Experiment Setup

a) Evalation Environment: We evaluate our algorithm
on MetaDrive [41], a light-weighted, realistic, and diverse
autonomous driving simulator, which can specifically test
the generalizability of learned agents on unseen driving
environments with its capability to generate an unlimited
number of scenes with various road networks and traffic flows.

The observation of the agents consists of the following
components: (i) the ego states and navigation information,
which contains the estimation of the ego vehicle’s relative
position with respect to the closest waypoint for navigation; (ii)
the LiDAR observation with 240 laser bins; (iii) the Birds-eye-
view (BEV) observation, which is an 84↑84↑5 multi-channel
image that captures the road contexts and the recent trajectories
of the ego and surrounding vehicles.

We collect the offline dataset by IDM polices [42] with
diverse levels and styles of aggressiveness of the ego and
surrounding drivers. We manually set different acceleration and
deceleration rates to adjust the aggressiveness level in the IDM
policy. The offline dataset consists of 2,000 trajectories with
over 400,000 timesteps under 6 different road configurations.

We evaluate the following quantitative metrics to demonstrate
the effectiveness of FUSION:

• The Utility Reward metric evaluates the efficacy and

efficiency of autonomous vehicles to finish the task,
which is a weighted combination of the cumulative
driving distance, driving speed, and waypoint arrival, as
is introduced in (1).

• The Safety Cost metric evaluates the overall safety
level of autonomous vehicles, which comes from three
safety-critical scenarios in autonomous driving, including
collision, out-of-lane, and over-speed, as is defined in (2).
The speed limit vlimit is set to be 40 kph.

• The Success Rate metric indicates the ratio of episodes
in which the agent successfully reaches the destination
within a maximum number of timesteps.

We test our methods in six different types of road con-
figurations (see Figure 5). As introduced in (2), the safety
violation costs are due to three sources: (i) collision, (ii)
out-of-lane, and (iii) over-speed. The cost for collision and
out-of-lane is 1 at each occurrence, and the over-speed cost
cspeed = max{0, 0.02(v ↘ vlimit)}. An episode will end if any
one of the risk scenarios (i) (ii) happens, or the overall timestep
is greater than a preset decision horizon of 1,000. When the
agent reaches the destination without any collision or getting
off the road, it will be counted as a success.

We compare our proposed methods and baselines in the
following two settings:

• Policy Mismatch stands for the case where the offline
dataset is sampled from the non-perfect expert policy, and
the agents need to tackle the generalization challenge from
mixed-quality and potentially unsafe offline data towards
the deployment in the online environment.

• Dynamics mismatch stands for the case where the agent
needs to tackle another generalization challenge from the
training environments (where the offline data is collected)
with sparser traffic flows, towards the testing environments
where the traffic flows are 1.5↑ denser than the training.
b) Baselines: We illustrate our results by comparing

FUSION against two types of baselines: (i) safe imitation
learning and (ii) offline safe reinforcement learning. Specifically,
the implementation of these baselines aims to solve the
multi-modal sensory inputs in the sequential decision-making
problems of autonomous driving.

IL-based methods select safe trajectories or conduct uncer-
tainty quantification to avoid entering uncertain and unsafe
regions. This kind of baseline includes Safe Behavior Cloning
(Safe BC [2]) that only uses safe trajectories to train the agent,
Invariant Causal Imitation Learning (ICIL [16]) that derives
invariant state abstraction to learn generalizable policies by the
model ensemble, like GSA [17] and BNN [15], which both use
hierarchical state abstraction in generalizable decision making.

On the other hand, offline Safe RL baselines generally solve
a constrained optimization problem of C

2-MDP by adding
Lagrangian terms in the policy evaluation step. Two of them are
BEAR Lagrangian (BEAR-Lag) and BCQ Lagrangian (BCQ-
Lag), which are safety-aware variants of Offline RL algorithms
BEAR [19] and BCQ [18], respectively. Constrained Penalized
Q-Learning (CPQ [20]) aims to learn safe policy by penalizing
the cost from the offline dataset. All Offline Safe RL baselines
set an episodic cost constraint threshold ϖc = 1. Based on the
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TABLE I
EVALUATION PERFORMANCE IN BOTH POLICY MISMATCH AND DYNAMICS MISMATCH SETTINGS. EACH OF THE BASELINE RESULTS IS EVALUATED UNDER

5 RANDOM SEEDS. BOLD MEANS THE BEST.

Mismatch Metrics Safe BC ICIL BNN GSA BEAR-Lag BCQ-Lag CPQ FUSION

Policy
Reward (→) 106.28±7.49 122.66±4.85 118.61±3.09 89.94±6.84 109.62±3.91 111.36±5.26 9.01±0.87 139.95±4.24

Cost (↑) 12.79±0.70 11.07±1.11 4.46±0.41 13.18±1.26 4.46±0.29 0.89±0.08 1.05±0.18 0.52±0.06
Succ. Rate (→) 0.47±0.10 0.76±0.05 0.74±0.11 0.34±0.08 0.72±0.06 0.79±0.08 0.00±0.00 0.90±0.03

Dynamics
Reward (→) 81.07±3.80 88.21±5.30 113.35±5.68 102.40±6.44 113.38±5.25 122.72±7.64 7.47±0.59 117.40±4.30

Cost (↑) 9.44±0.55 7.29±0.72 19.16±0.55 11.88±0.98 7.86±0.66 6.22±0.76 0.71±0.09 0.90±0.14
Succ. Rate (→) 0.12±0.06 0.32±0.05 0.59±0.06 0.03±0.02 0.32±0.05 0.39±0.08 0.00±0.00 0.82±0.04

design of the safety cost introduced in Section V-A, when the
episodic cost is lower than 1, it means that no critical violence,
including collision and out-of-lane, occurred in this episode.

B. Results and Analysis

We design experiments and corresponding ablation studies
to answer the following important research questions:

• (RQ1) How does FUSION perform with non-perfect
offline data with diverse behavior policies from IDM and
humans, compared with Safe Offline IL and RL baselines?

• (RQ2) How does FUSION perform under unseen dynam-
ics that the offline dataset does not cover, compared with
all baselines?

• (RQ3) Can FUSION consistently outperform other base-
lines and expert policies in diverse road contexts?

• (RQ4) Do sequential modeling and causal representation
learning benefit FUSION in capturing spatio-temporal
dynamics contexts?

For RQ1 and RQ2, we compare FUSION with the base-
lines aforementioned in both policy mismatch and dynamics
mismatch settings. The results in Table I demonstrate the
advantages of FUSION compared to baselines in both the safety
cost and driving reward performance. (i) In the policy mismatch
setting where the agent must overcome the suboptimality of the
offline data, FUSION performs better in the reward (driving
efficiency), cost (safety performance), and success rate. Notice
that all the Safe IL baselines failed to learn a low-cost
driving policy because these IL-based methods do not have
explicit cost or reward feedback, and only fitting on those safe
state and action transition pairs are insufficient to satisfy the
safety requirements due to the imperfection of the offline
demonstrations. Meanwhile, the Safe RL baselines seem
to perform better, as they explicitly constrain the learned
target policy with a preset cost threshold. The actor-critic
framework that alternates between policy improvement and
policy evaluation could implicitly guide the target policy to
avoid some low-reward or high-cost behaviors. However, CPQ
seems overly conservative in that it fails to balance efficiency
and safety, thus always procrastinating near the starting zone
to avoid getting a large cost penalty. On the other hand, ICIL,
BNN, BEAR-Lag, and BCQ-Lag seem to have high success
rates in policy mismatch settings, yet FUSION could still
outperform them by a large margin (over 10%). (ii) In the
dynamics mismatch case where the online testing environments
have significantly different traffic dynamics and different types
of roadblocks from training environments, the performance
gap between our methods and other baselines even enlarged,

for example, we can see that the success rate of Bear-Lag and
BCQ-Lag drops by 40%, and the evaluation cost of BCQ-Lag
also violates the cost constraints. In contrast, although FUSION
has a slightly lower reward than what it has in policy mismatch,
the cost is still below the set threshold 1, and the success rate
is also significantly higher than other baselines by more than
30%.

Sc
en

ar
io

 1
:M

er
ge

 In
Sc

en
ar

io
 2

:C
ut

 In

Ego Vehicle (BEV) Others Vehicles (BEV) Ego Vehicle (3PV) Other Vehicles (3PV)

T=0s T=0.5s T=1.0s T=1.5s T=2.0s

T=0s T=0.5s T=1.0s T=1.5s T=2.0s

Fig. 4. The figure shows both birds-eye-view (BEV) and third-person-view
(3PV) images of two case studies in roundabouts. The first case is a merge-in
behavior from normal traffic, and the ego vehicles controlled by FUSION
will decelerate reasonably to keep the distance from the front vehicle. The
second case is an adversarial driver trying to cut in from the wrong side of
the roundabout exit, FUSION manages to yield to it safely.

For RQ3, we take a deeper look at the exact driving
performance by case studies in Figure 4. We also provide
comparisons of safety metrics in different road contexts as
a radar plot in Figure 5. The larger the pentagon is, the
better overall safety performance it has. We calculate the
safety metrics by the episode-wise frequency of five different
safety behavior categories, including (i) AR: arrival rate in all
episodes; (ii) NS: not speeding in the episode, which counts
the time step ratio in which the agent exceeds a speed limit
of 40 kph on the urban local roads; (iii) IT: in-time (complete
the route within the time limit of 1,000 steps per episode);
(iv) CF: collision-free in a single episode; (v) SL: stay in-lane
without violating the lane constraints. The result shows that our
proposed FUSION agent can drive reasonably under complex
contexts, especially in the hardest Roundabout environment.

For RQ4, we provide additional ablation studies in Table II.
We compare FUSION with three of its variants: (i) FUSION-
Short, which uses a shorter context in the safety-aware
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TABLE II
ABLATION STUDIES ON FUSION’S VARIANTS TO SHOW THE CONTRIBUTION OF EACH MODULE. BOLD MEANS THE BEST.

Mismatch Metrics FUSION Short FUSION w/o CEWM FUSION w/o CBL FUSION Expert Policy

Policy
Reward (→) 100.86±3.40 94.24±6.50 104.54±4.04 139.95±4.24 131.32±29.60

Cost (↑) 0.77±0.09 0.67±0.11 3.46±0.21 0.52±0.06 16.02±9.46
Succ. Rate (→) 0.34±0.07 0.41±0.06 0.58±0.09 0.90±0.03 0.81±0.15

Dynamics
Reward (→) 98.63±2.36 81.70±3.82 90.34±4.28 117.40±4.30 129.71±28.84

Cost (↑) 0.79±0.06 0.60±0.04 5.60±0.32 0.90±0.14 17.58± 9.71
Succ. Rate (→) 0.34±0.04 0.24±0.04 0.08±0.01 0.82±0.04 0.72±0.20

Fig. 5. The figure shows the comparison of FUSION on different road
configurations with baselines. The larger lidar plot on each coordinate stands
for the safer performance in each safety metric. (AR: Arrival, NS: Not speeding,
IT: In-time, CF: Collision-free, SL: Stay in-lane.)

transformer to model the whole sequence; (ii) FUSION w/o
CEWM, which does not consider the learning of the causal
ensemble world model, and only uses the behavior cloning
term as supervised signals; (iii) FUSION w/o CBL, which
neglects safety-aware bisimulation learning. The result confirms
that the FUSION benefits from all its design, including the
spatio-temporal information from CEWM and additional safety
awareness in the transformer model via CBL.

Furthermore, we visualize the normalized attention map of
FUSION’s safety-aware causal transformer in Figure 6. The
x-axis represents the source (previous) nodes, and the y-axis
represents the target (future) nodes. The attention map is a
low-triangular matrix because only the tokens of previous
timesteps affect the tokens in the future. We find that FUSION
has a clear hierarchy in the attention map: (i) the attention
map of the first layer is quite sparse, as FUSION only attends
tokens from previous one timestep, which essentially models
the whole decision-making process in a Markovian manner. (ii)
FUSION attends the preference tokens that include cost-to-go
and reward-to-go to the future state and action tokens, trying
to balance both for the decision-making process in a long
horizon. (iii) FUSION captures world dynamics and policy by
attending previous states to the future value prediction and
action. Such semantically meaningful interpretation, as well
as the heterogeneity of attention weights on different layers,
indicate that FUSION benefits from CEWM by hierarchically
capturing structural information reflected in the attention maps.
On the contrary, as shown in the second row of Figure 6,
FUSION without CEWM has a higher average entropy among
all the layers, indicating that it does not capture the above
sparsity and interpretability. The reason is that the variant
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Fig. 6. Visualization of average attention matrix over 30 trajectories. We
compare different layers of the attention map of two models: FUSION and
FUSION w/o CEWM. We compare the mean entropy through all three attention
layers in one head of our Transformer encoder. The result shows that FUSION
has a lower entropy than the ablation variant, which means its attention map
is more sparse compared to the baselines without causal representation.

without CEWM ignores sequential awareness which has more
informative training signals during the offline training stage.

VI. CONCLUSIONS

In this paper, we propose FUSION, a trustworthy au-
tonomous driving system with a causality-empowered safe
reinforcement learning algorithm in an offline setting. We first
design a safety-aware causal transformer termed CEWM to
model the causal relationship between the state space, reward
value, and cost value at different timesteps. Then we regularize
the learned representation in CEWM with a CBL via safety-
aware bisimulation in an implicit way, then greedily infer
the action during online deployment. Exhaustive empirical
results show that our method consistently outperforms several
strong baselines of LfID and causal abstraction in diverse
autonomous driving scenarios. We also conduct extensive case
analysis to analyze the benefits of different modules that we
design in FUSION and show a comprehensive and interpretable
evaluation of FUSION. One potential limitation is that all
the experiments are conducted in the portable MetaDrive
simulator instead of more high-fidelity simulators like CARLA.
Meanwhile, in the FUSION pipeline, CBL relies on a good
estimation of transition dynamics, which in general requires
good coverage and diversity in offline samples. In the future, it
would be interesting to extend FUSION’s framework to other
autonomous vehicle platforms and tackle more challenging
scenarios in multi-agent RL settings.
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