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Abstract

We give a new proof for the interior regularity of strictly convex solutions of the Monge—
Ampere equation. Our approach uses a doubling inequality for the Hessian in terms of
the extrinsic distance function on the maximal Lagrangian submanifold determined by the
potential equation.

1 Introduction

In this note, we present a new proof of interior regularity for strictly convex viscosity solutions
of the Monge—Ampere equation in general dimension:

F(D?u) = det D*u = 1. (1.1)

Theorem 1.1 Let u be a strictly convex viscosity solution of (1.1) on a domain 2 C R” for
n > 2. Then u is smooth inside <.

In[7, 8], Pogorelov showed the Hessian estimate using the strictly convex solution as a cut-
off function in a Bernstein—Pogorelov maximum principle argument; consequently interior
regularity for strictly convex solutions of (1.1) was derived. Recall that the generalized
solution in the integral sense there is equivalent to the generalized solution in the viscosity
sense for the Monge—Ampere equation. The singular solutions of Pogorelov illustrate that a
condition, such as strict convexity, is necessary for regularity in three and higher dimensions.
Earlier on, Alexandrov obtained strict convexity for the two dimensional Monge-Ampere
equation in [1].

Without the strict convexity condition in two dimensions, the interior Hessian estimate
was achieved by Heinz [5] using isothermal coordinates. More recently, new pointwise proofs
of the two dimensional estimate were found by Chen—-Han—Ou [3] and Guan—Qiu [4] using
different test functions in the maximum principle argument. Other two dimensional proofs fol-
low from various works on the sigma-2 equation in higher dimensions and special Lagrangian
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equation in the Euclidean setting over the past 16 years. Note that Liu’s partial Legendre proof
[6] uses the strict convexity in [1].

An integral proof of Hessian estimates for strictly convex solutions to (1.1) was recently
found in [12] using the maximal surface interpretation of the equation for potential u#. The
Lagrangian or “gradient” graph in pseudo-Euclidean space (x, Du(x)) C (R" xR", 2dxdy)
is volume maximizing. By establishing a monotonicity formula in terms of the extrinsic
distance x - Du(x) to the origin (0, 0), integral arguments along the lines of Trudinger’s
proof of the gradient estimate for the minimal surface equation yield the Hessian estimate.

Our argument uses the extrinsic distance in a “doubling” way. It is natural to attempt
Pogorelov’s proof using the extrinsic distance x - Du as a cut-off function, instead of the
strictly convex potential . That argument degenerates near x = 0, but we can establish an
a priori doubling inequality, Proposition 2.2, which controls the Hessian on outer balls by
its values on small inner balls, measured in the extrinsic distance. Alexandrov—Savin partial
regularity is stable under smooth approximation, so by placing the inner ball inside the smooth
set, the doubling inequality propagates the regularity to the outer ball. This argument is in a
similar spirit to the recent work on the sigma-2 equation in four dimensions [11], but requires
the extrinsic distance rather than the Euclidean one, since otherwise Pogorelov’s singular
solutions would satisfy the doubling property.

Now with two applications of the extrinsic distance done to the Monge—Ampere equation,
itis natural to ask if the strict convexity condition can be replaced by an alternative involving
only suitably defined extrinsic quantities.

2 Extrinsic properties

2.1 Doubling inequality under extrinsic distance

Taking the gradient of the both sides of the Monge—Ampéere equation
Indet D*u = 0, 2.1)

we have

M:

§"8;j (x, Du (x)) =0, 2.2)
i,j=1

<
Il

where (g'/) is the inverse of the induced metric g = (g;;) = D?u on the graph (x, Du (x)) C
(R" x R", 2dxdy) (for simplicity of notation, we drop the 2 in g = 2D%u). Because of (2.1)
and (2.2), the Laplace—Beltrami operator of the metric g also takes the non-divergence form
Ay = Zﬁjzlg’f 0;j- The inner product with respect to the metric g is (Vyv, Vow) =
(Veu, Vow), = Zf”jzlgijviwj, in particular |ng|2 = (Vgu, Vgu).

The following strong subharmonicity of Hessian D?u was found in [12].

Proposition 2.1 (Jacobi inequality) Suppose u is a smooth solution to det D*u = 1. Then

AglIndet[I 4+ D*u (x)] = ZL | Vg Indet [I + D*u (x)]|2 (2.3)
n
or equivalently for a (x) = {det [1 + D%y (x)]}z%

2.4)
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Using the Jacobi inequality (2.4), we derive an a priori doubling estimate for the Hessian
in terms of the extrinsic balls of smooth strongly convex function u,

D!(p) ={x € Q: (x — p) - (Du(x) — Du(p)) < r’}.
Denote the extrinsic distance of the position vector (x, Du) to the origin by
Z=x-uyx = (x1, -+ ,xy) - Du.
Then

2

Il
M:

|V,z

i.j=l1 i,j=1

. n .. n n
g’Jc’),-zajz = Z glj (“i + Zxkuk,) (uj + szulj)
k=1 =1

n n
g uju; + Z &' (xxupi) (xqupj) + Zzg”(xkuki)uj
1 ki=1 k=1
n
>4 ¢ Copupi)uj = 4z, (2.5)
ij k=1

I
7=

i

n ..
Ngz =x - Dgty +uty - Ngx + Z(Vgx, Vgux> =2 > g"Yoixidjuk
i j.k=1

n
=2 gluj =2n, (2.6)
ij=1

where in (2.5), we used Cauchy—Schwartz, and we used (2.2) for A, z. Given the “covariance™

of z = pu, = X - uy (x) = X - vz (x) for v (x) = u (Ax) under linear change of variables

x = AXx, (2.5) and (2.6) can also be derived by diagonalizing g = D?u, asin[12, p- 2]. Itis
clear that (2.5) and (2.6) work for other centers as well, z = (x — p, Du(x) — Du(p)).

Proposition 2.2 (Doubling inequality) Ifu is a smooth solution of (1.1) on domain Q@ C R"
with Dy, (p) CC Q and a = det(I + D2u)Y/2 then forry < ry < r3 < ra,

sup a(x) < C(n,r1,r2,r3) sup a(x). 2.7)
Dy, (p) Dy, (p) :

Proof We form the following Korevaar type test function on Dy (p):

2 —
wx) = nxax), nx) = |:exp (Vzhz(x)> 3 1i| ,
+

where h = h(n, r;) will be fixed below, and z(x) = (x — p, -Du(x) — Du(p)). Let x = x,
be the maximum point of w. By Dw(x,) = 0,

py=-"pa. 2.8)
a

By D?w(x,) <0, (2.8), and Jacobi inequality (2.4), we obtain

0> Agw =alAgn+2(Vgn, Vea) +nlAga

|Vgal®
=alAgn+n|Aga —2———
a
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> algn
n+l

= da h2

(=hAgz + |Vgzl?). (2.9)
Combining this with (2.5) and (2.6), we obtain at x = x,,
2(xe) <nhj2 =r}
if h = 2r?/n. The doubling estimate (2.7) follows:

e(r%—z(x))/h -1 er32/h 1
sup a(x) < sup —5———— sup a(x) < ————— sup a(x).
DY, () Dy (p) DM 1 Dy (p) 3= — 1y (p)

2.2 Extrinsic ball topology
We recall that a convex function u lies above its tangent planes, while a strictly convex
function only intersects a tangent plane at a single point, and a strongly convex function has
strictly positive Hessian. Its subdifferential du(p) at a point p is the collection of slopes of
such tangent planes at p. The subdifferentials du(x) are each closed and are locally bounded
in x as subsets of R”. They increase: (x — p, y —q) > 0if y € du(x), g € du(p). They also
vary continuously with x and u: [9, Theorem 24.5] implies if ux — u uniformly on B»(0)
and x; — x € B(0), then for any ¢ > 0, there exists k¢ such that

duy (xx) C du(x) + eB1(0), k > ko. (2.10)

Given p € B;1(0) and convex function v(x) on B>(0), we define the outer sections by

SY(p) = {x € B1(0) : v(x) <v(p)+ sup [(x —p)-y] +r2}, 2.11)
yeav(p)

and the extrinsic balls of a smooth such v by
DY(p) := {x € B1(0) : (x — p) - (Dv(x) — Dv(p)) < r?}. (2.12)
Euclidean balls “bound” the extrinsic balls from below: if x, p € B1(0), then
Boyy(p) CDY(p). M =142 Dvllr(s,0)- 2.13)
Conversely, the sections “bound” the extrinsic balls from above:
D} (p) C S} (p). (2.14)
Indeed, by convexity,

v(p) Zv(x) +(p —x)- Dv(x), x,p e Bi(0),
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so if the nonnegative (x — p) - (Dv(x) — Dv(p)) < r?, then

v(x) <v(p) + (x — p)- Dv(p) + (x — p)(Dv(x) — Dv(p))
<v(p) + (x — p) - Du(p) +r.

Remark 2.1 The containment (2.14) is still valid for general strictly convex functions, using
a subgradient version of the definition (2.12) of extrinsic balls.

The section S¥(p) shrinks to center p uniformly in terms of the center, as the height r?
goes to 0, provided u is strictly convex.

Lemma 2.1 Given u strictly convex on B,(0),

lim sup diam S/ (p) = 0. (2.15)

r—>0|p|<1

Proof If not, then there exist ry, — Oand pg, x;x € B1(0) withx; € Sﬁ‘k (pr) and |xg — pr| > €
for some fixed ¢ > 0. We assume xi, py — x, p € B1(0). By x; € S;‘k (pk), we have

u(x) <u(p)+ (x —=p) -y +o(ly, (2.16)

where yx € du(py) is the maximizer in (2.11). By (2.10), we can find a subsequence where
Yk — ¥y € du(p), so (2.16) combined with strict convexity and |x — p| > ¢ gives

ux) <u(p)+x —=p)-y <u).
This contradiction completes the proof. O
The section upper “bound” (2.14) is preserved under limits.

Lemma 2.2 Let u be a strictly convex function on B,(0) with convex uy — u uniformly on
B>(0). Then, for any 0 < § < 1 and p € B1(0), there exists ko large enough such that for
all0 < r < Land k > ko, we have S;* (p) C Sy s(P).

Proof If not, then there exists § > 0, ry — r € [0, 1], and x; € B1(0) withxy — x € B1(0),
X € S}’kk (p), but xi ¢ ka+5 (p). The last condition implies

u(x) > u(p)+ sup [(x —p)-yl+ (r +8)* +o(l),
ye€u(p)

while x; € S;*(p) implies
u(x) < u(p)+ (x = p) - yk +r° +o(L)
for some y; € dui(p). By (2.10), we can find a subsequence such that yy — y € du(p), so
w() < u(p) + (x = p) -y +r2 <ul) +r> = +8>%

This contradiction completes the proof. O

As a consequence of Lemmas 2.1 and 2.2, we see that D;* (p) C 83.(p) CC Bi(0)ifr
is small enough depending on u, and k is sufficiently large depending on u, r, and p. In this
case, open set D,* (p) has smooth boundary for smooth strictly convex u; and is star shaped
with center x = p.
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3 Proof of Theorem 1.1

Step 1: Approximation. Given viscosity solution u(x) on B3(0), we show that u is smooth
in a neighborhood of any given point in B3(0), say near x = 0. By solving the Dirichlet
problem, we find smooth solutions u; — u uniformly on B;(0) with Duy bounded on B> (0)
uniformly in k. In (2.13), we enlarge the constant M:

M:=1+ 281]:[) ||Duk||Loo(32(0)). 3.1)

Step 2: Partial regularity. By combining Alexandrov’s theorem (convex functions a.e.
twice differentiable) with Savin’s small perturbation theorem [10, Theorem 1.3], the singular
set sing(u) is closed and measure zero. By Savin’s small perturbation theorem again, uy — u
in Cl inside the open set sing(u)¢ := B»(0) \ sing(u), so the Hessians of uj are uniform
in ﬁxed compact subsets of sing(u)°.

Step 3: Uniform radius of the doubling balls. We first find r, to control x = 0 by x = p.
We first use (2.15) to find 0 < p < 1 small enough such that Sffp (p) CC B1(0) for all
|p| < 1/2. Next we observe that 0 € B,z/M(p(r, e)) for p(r,e) = (r2/2M)e and any
e € §" L. Since sing(u) is measure zero, we can fix 0 < r < pand e € $"=1 such
that p = p(r,e) € sing(u)‘. This ensures 0 € B2,y (p) C D*(p), by (2.13). We set
ro =r,r3 = 2r, and r4 = 3r. For the inner radius, since p € sing(u)¢, we use (2.15) to find
r1 < rp small enough such that Sgr] (p) CC sing(u)°.

Step 4: Doubling inequality Now with p and r fixed, for k large enough, Lemma 2.2
and (2.14) show Dy (p) C S5*(p) C S}.(p) CC B1(0), the equation domain Q. We apply
Proposition 2.2 to obtain

max |D ug| < C(r,ry,n, max |D ugl).
r2 (]7) Dr] (p)

For large enough k, we have D,”]" (p) C S}‘l" (p) C S2“,l (p) CC sing(u)¢. By Alexandrov-
Savin locally uniform convergence in C>% of uy to u in sing(x)¢, we conclude a uniform
Hessian bound in a fixed neighborhood of x = 0, if k is large enough:

max | D%ui| < max |D%ux| < C(r,n, max |D?ul).
B2,y (p) r2 ) 2 (P

By Calabi [2] or Evans—Krylov, a subsequence u; converges in c* loc (B,z /M (p)). We conclude
u is smooth inside B, y;(p), hence smooth near x = 0. This completes the proof of interior
regularity.
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