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Abstract
We give a new proof for the interior regularity of strictly convex solutions of the Monge–
Ampère equation. Our approach uses a doubling inequality for the Hessian in terms of
the extrinsic distance function on the maximal Lagrangian submanifold determined by the
potential equation.

1 Introduction

In this note, we present a newproof of interior regularity for strictly convex viscosity solutions
of the Monge–Ampère equation in general dimension:

F(D2u) = det D2u = 1. (1.1)

Theorem 1.1 Let u be a strictly convex viscosity solution of (1.1) on a domain � ⊂ R
n for

n ≥ 2. Then u is smooth inside �.

In [7, 8], Pogorelov showed theHessian estimate using the strictly convex solution as a cut-
off function in a Bernstein–Pogorelov maximum principle argument; consequently interior
regularity for strictly convex solutions of (1.1) was derived. Recall that the generalized
solution in the integral sense there is equivalent to the generalized solution in the viscosity
sense for the Monge–Ampère equation. The singular solutions of Pogorelov illustrate that a
condition, such as strict convexity, is necessary for regularity in three and higher dimensions.
Earlier on, Alexandrov obtained strict convexity for the two dimensional Monge-Ampère
equation in [1].

Without the strict convexity condition in two dimensions, the interior Hessian estimate
was achieved byHeinz [5] using isothermal coordinates.More recently, new pointwise proofs
of the two dimensional estimate were found by Chen–Han–Ou [3] and Guan–Qiu [4] using
different test functions in themaximumprinciple argument.Other twodimensional proofs fol-
low from variousworks on the sigma-2 equation in higher dimensions and special Lagrangian

B Ravi Shankar
rs1838@princeton.edu

Yu Yuan
yuan@math.washington.edu

1 Department of Mathematics, Princeton University, Princeton, NJ 08544-1000, USA

2 Department of Mathematics, University of Washington, BOX 354350, Seattle, WA 98195, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-024-03508-6&domain=pdf


34 Page 2 of 7 R. Shankar, Y. Yuan

equation in the Euclidean setting over the past 16 years. Note that Liu’s partial Legendre proof
[6] uses the strict convexity in [1].

An integral proof of Hessian estimates for strictly convex solutions to (1.1) was recently
found in [12] using the maximal surface interpretation of the equation for potential u. The
Lagrangian or “gradient” graph in pseudo-Euclidean space (x, Du(x)) ⊂ (Rn ×R

n, 2dxdy)
is volume maximizing. By establishing a monotonicity formula in terms of the extrinsic
distance x · Du(x) to the origin (0, 0), integral arguments along the lines of Trudinger’s
proof of the gradient estimate for the minimal surface equation yield the Hessian estimate.

Our argument uses the extrinsic distance in a “doubling” way. It is natural to attempt
Pogorelov’s proof using the extrinsic distance x · Du as a cut-off function, instead of the
strictly convex potential u. That argument degenerates near x = 0, but we can establish an
a priori doubling inequality, Proposition 2.2, which controls the Hessian on outer balls by
its values on small inner balls, measured in the extrinsic distance. Alexandrov–Savin partial
regularity is stable under smooth approximation, so by placing the inner ball inside the smooth
set, the doubling inequality propagates the regularity to the outer ball. This argument is in a
similar spirit to the recent work on the sigma-2 equation in four dimensions [11], but requires
the extrinsic distance rather than the Euclidean one, since otherwise Pogorelov’s singular
solutions would satisfy the doubling property.

Nowwith two applications of the extrinsic distance done to theMonge–Ampère equation,
it is natural to ask if the strict convexity condition can be replaced by an alternative involving
only suitably defined extrinsic quantities.

2 Extrinsic properties

2.1 Doubling inequality under extrinsic distance

Taking the gradient of the both sides of the Monge–Ampère equation

ln det D2u = 0, (2.1)

we have
n∑

i, j=1
gi j∂i j (x, Du (x)) = 0, (2.2)

where
(
gi j

)
is the inverse of the inducedmetric g = (

gi j
) = D2u on the graph (x, Du (x)) ⊂

(Rn × R
n, 2dxdy) (for simplicity of notation, we drop the 2 in g = 2D2u). Because of (2.1)

and (2.2), the Laplace–Beltrami operator of the metric g also takes the non-divergence form
�g = ∑n

i, j=1g
i j∂i j . The inner product with respect to the metric g is 〈∇gv,∇gw〉 =

〈∇gv,∇gw〉g = ∑n
i, j=1g

i jviw j , in particular |∇gv|2 = 〈∇gv,∇gv〉.
The following strong subharmonicity of Hessian D2u was found in [12].

Proposition 2.1 (Jacobi inequality) Suppose u is a smooth solution to det D2u = 1. Then

�g ln det
[
I + D2u (x)

] ≥ 1

2n

∣
∣�g ln det

[
I + D2u (x)

]∣
∣2 (2.3)

or equivalently for a (x) = {
det

[
I + D2u (x)

]} 1
2n

�g a ≥ 2

∣
∣�ga

∣
∣2

a
. (2.4)
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Using the Jacobi inequality (2.4), we derive an a priori doubling estimate for the Hessian
in terms of the extrinsic balls of smooth strongly convex function u,

Du
r (p) = {x ∈ � : (x − p) · (Du(x) − Du(p)) < r2}.

Denote the extrinsic distance of the position vector (x, Du) to the origin by

z = x · ux = (x1, · · · , xn) · Du.

Then

∣
∣∇gz

∣
∣2 =

n∑

i, j=1
gi j∂i z∂ j z =

n∑

i, j=1
gi j

(

ui +
n∑

k=1

xkuki

) (

u j +
n∑

l=1

xlul j

)

=
n∑

i, j=1

⎡

⎣gi j ui u j +
n∑

k,l=1

gi j (xkuki )(xlul j ) +
n∑

k=1

2gi j (xkuki )u j

⎤

⎦

≥ 4
n∑

i, j,k=1

gi j (xkuki )u j = 4z, (2.5)

�gz = x · �gux + ux · �gx + 2
〈∇gx,∇gux

〉 = 2
n∑

i, j,k=1
gi j∂i xk∂ j uk

= 2
n∑

i, j=1

gi j ui j = 2n, (2.6)

where in (2.5), we usedCauchy–Schwartz, andwe used (2.2) for�gz.Given the “covariance”

of z = ρuρ
ρ=|x |= x · ux (x) = x̄ · vx̄ (x̄) for v (x̄) = u (Ax̄) under linear change of variables

x = Ax̄, (2.5) and (2.6) can also be derived by diagonalizing g = D2u, as in [12, p. 2]. It is
clear that (2.5) and (2.6) work for other centers as well, z = 〈x − p, Du(x) − Du(p)〉.
Proposition 2.2 (Doubling inequality) If u is a smooth solution of (1.1) on domain � ⊂ R

n

with Du
r4(p) ⊂⊂ � and a = det(I + D2u)1/2n, then for r1 < r2 < r3 < r4,

sup
Du
r2

(p)
a(x) ≤ C(n, r1, r2, r3) sup

Du
r1

(p)
a(x). (2.7)

Proof We form the following Korevaar type test function on Du
r3(p):

w(x) = η(x)a(x), η(x) =
[

exp

(
r23 − z(x)

h

)

− 1

]

+
,

where h = h(n, ri ) will be fixed below, and z(x) = 〈x − p, ·Du(x) − Du(p)〉. Let x = x∗
be the maximum point of w. By Dw(x∗) = 0,

Dη = −η

a
Da. (2.8)

By D2w(x∗) ≤ 0, (2.8), and Jacobi inequality (2.4), we obtain

0 ≥ �gw = a�gη + 2〈∇gη,∇ga〉 + η�ga

= a�gη + η

(

�ga − 2
|∇ga|2

a

)
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≥ a�gη

= a
η + 1

h2
(−h�gz + |∇gz|2

)
. (2.9)

Combining this with (2.5) and (2.6), we obtain at x = x∗,

z(x∗) ≤ nh/2 = r21

if h = 2r21/n. The doubling estimate (2.7) follows:

sup
Du
r2

(p)
a(x) ≤ sup

Du
r1

(p)

e(r23−z(x))/h − 1

e(r23−r22 )/h − 1
sup

Du
r1

(p)
a(x) ≤ er

2
3 /h − 1

e(r23−r22 )/h − 1
sup

Du
r1

(p)
a(x).

�


2.2 Extrinsic ball topology

We recall that a convex function u lies above its tangent planes, while a strictly convex
function only intersects a tangent plane at a single point, and a strongly convex function has
strictly positive Hessian. Its subdifferential ∂u(p) at a point p is the collection of slopes of
such tangent planes at p. The subdifferentials ∂u(x) are each closed and are locally bounded
in x as subsets of Rn . They increase: 〈x − p, y − q〉 ≥ 0 if y ∈ ∂u(x), q ∈ ∂u(p). They also
vary continuously with x and u: [9, Theorem 24.5] implies if uk → u uniformly on B2(0)
and xk → x ∈ B1(0), then for any ε > 0, there exists k0 such that

∂uk(xk) ⊂ ∂u(x) + εB1(0), k ≥ k0. (2.10)

Given p ∈ B1(0) and convex function v(x) on B2(0), we define the outer sections by

Sv
r (p) :=

{

x ∈ B1(0) : v(x) < v(p) + sup
y∈∂v(p)

[(x − p) · y] + r2
}

, (2.11)

and the extrinsic balls of a smooth such v by

Dv
r (p) := {x ∈ B1(0) : (x − p) · (Dv(x) − Dv(p)) < r2}. (2.12)

Euclidean balls “bound” the extrinsic balls from below: if x, p ∈ B1(0), then

Br2/M (p) ⊂ Dv
r (p), M = 1 + 2‖Dv‖L∞(B2(0)). (2.13)

Conversely, the sections “bound” the extrinsic balls from above:

Dv
r (p) ⊂ Sv

r (p). (2.14)

Indeed, by convexity,

v(p) ≥ v(x) + (p − x) · Dv(x), x, p ∈ B1(0),
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so if the nonnegative (x − p) · (Dv(x) − Dv(p)) < r2, then

v(x) ≤ v(p) + (x − p) · Dv(p) + (x − p)(Dv(x) − Dv(p))

< v(p) + (x − p) · Dv(p) + r2.

Remark 2.1 The containment (2.14) is still valid for general strictly convex functions, using
a subgradient version of the definition (2.12) of extrinsic balls.

The section Sur (p) shrinks to center p uniformly in terms of the center, as the height r2

goes to 0, provided u is strictly convex.

Lemma 2.1 Given u strictly convex on B2(0),

lim
r→0

sup
|p|<1

diam Sur (p) = 0. (2.15)

Proof If not, then there exist rk → 0 and pk, xk ∈ B1(0)with xk ∈ Surk (pk) and |xk − pk | ≥ ε

for some fixed ε > 0. We assume xk, pk → x, p ∈ B1(0). By xk ∈ Surk (pk), we have

u(x) < u(p) + (x − p) · yk + o(1)k, (2.16)

where yk ∈ ∂u(pk) is the maximizer in (2.11). By (2.10), we can find a subsequence where
yk → y ∈ ∂u(p), so (2.16) combined with strict convexity and |x − p| ≥ ε gives

u(x) ≤ u(p) + (x − p) · y < u(x).

This contradiction completes the proof. �

The section upper “bound” (2.14) is preserved under limits.

Lemma 2.2 Let u be a strictly convex function on B2(0) with convex uk → u uniformly on
B2(0). Then, for any 0 < δ < 1 and p ∈ B1(0), there exists k0 large enough such that for
all 0 < r < 1 and k ≥ k0, we have S

uk
r (p) ⊂ Sur+δ(p).

Proof If not, then there exists δ > 0, rk → r ∈ [0, 1], and xk ∈ B1(0)with xk → x ∈ B1(0),
xk ∈ Sukrk (p), but xk /∈ Surk+δ(p). The last condition implies

u(x) ≥ u(p) + sup
y∈∂u(p)

[(x − p) · y] + (r + δ)2 + o(1)k,

while xk ∈ Sukrk (p) implies

u(x) < u(p) + (x − p) · yk + r2 + o(1)k

for some yk ∈ ∂uk(p). By (2.10), we can find a subsequence such that yk → y ∈ ∂u(p), so

u(x) ≤ u(p) + (x − p) · y + r2 ≤ u(x) + r2 − (r + δ)2.

This contradiction completes the proof. �

As a consequence of Lemmas 2.1 and 2.2, we see that Duk

r (p) ⊂ Su2r (p) ⊂⊂ B1(0) if r
is small enough depending on u, and k is sufficiently large depending on u, r , and p. In this
case, open set Duk

r (p) has smooth boundary for smooth strictly convex uk and is star shaped
with center x = p.
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3 Proof of Theorem 1.1

Step 1: Approximation. Given viscosity solution u(x) on B3(0), we show that u is smooth
in a neighborhood of any given point in B3(0), say near x = 0. By solving the Dirichlet
problem, we find smooth solutions uk → u uniformly on B2(0)with Duk bounded on B2(0)
uniformly in k. In (2.13), we enlarge the constant M :

M := 1 + 2 sup
k

‖Duk‖L∞(B2(0)). (3.1)

Step 2: Partial regularity. By combining Alexandrov’s theorem (convex functions a.e.
twice differentiable) with Savin’s small perturbation theorem [10, Theorem 1.3], the singular
set sing(u) is closed andmeasure zero. By Savin’s small perturbation theorem again, uk → u
in C2,α

loc inside the open set sing(u)c := B2(0) \ sing(u), so the Hessians of uk are uniform
in fixed compact subsets of sing(u)c.

Step 3: Uniform radius of the doubling balls. We first find r2 to control x = 0 by x = p.
We first use (2.15) to find 0 < ρ < 1 small enough such that Su4ρ(p) ⊂⊂ B1(0) for all

|p| < 1/2. Next we observe that 0 ∈ Br2/M (p(r , e)) for p(r , e) = (r2/2M)e and any
e ∈ Sn−1. Since sing(u) is measure zero, we can fix 0 < r ≤ ρ and e ∈ Sn−1 such
that p = p(r , e) ∈ sing(u)c. This ensures 0 ∈ Br2/M (p) ⊂ Duk

r (p), by (2.13). We set
r2 = r , r3 = 2r , and r4 = 3r . For the inner radius, since p ∈ sing(u)c, we use (2.15) to find
r1 < r2 small enough such that Su2r1(p) ⊂⊂ sing(u)c.

Step 4: Doubling inequality. Now with p and r fixed, for k large enough, Lemma 2.2
and (2.14) show Duk

r4 (p) ⊂ Suk3r (p) ⊂ Su4r (p) ⊂⊂ B1(0), the equation domain �. We apply
Proposition 2.2 to obtain

max
D
uk
r2 (p)

|D2uk | ≤ C(r , r1, n, max
D
uk
r1 (p)

|D2uk |).

For large enough k, we have Duk
r1 (p) ⊂ Sukr1 (p) ⊂ Su2r1(p) ⊂⊂ sing(u)c. By Alexandrov-

Savin locally uniform convergence in C2,α of uk to u in sing(u)c, we conclude a uniform
Hessian bound in a fixed neighborhood of x = 0, if k is large enough:

max
Br2/M (p)

|D2uk | ≤ max
D
uk
r2 (p)

|D2uk | ≤ C(r , n, max
Su2r1

(p)
|D2u|).

ByCalabi [2] or Evans–Krylov, a subsequence uk converges inC
2,α
loc (Br2/M (p)).We conclude

u is smooth inside Br2/M (p), hence smooth near x = 0. This completes the proof of interior
regularity.
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