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Abstract

We describe properties of the previously constructed all-genus real Gromov-Witten theory in
the style of Kontsevich-Manin’s axioms and other classical equations and reconstruction results
of complex Gromov-Witten theory.

1 Introduction

The theory of J-holomorphic maps plays a prominent role in symplectic topology, algebraic geome-
try, and string theory. The counts of such maps give rise to the Gromov-Witten (or GW-) invariants
of symplectic manifolds. Their generating functions in the case of Calabi-Yau threefolds correspond
to the partition functions of type IIA topological string theory. From this point of view, they form
one of the sides of several intriguing dualities. For example, mirror symmetry relates them to
the Kodaira-Spencer theory of gravity [2] and the large N duality to Chern-Simons theory [19].
Kontsevich-Manin’s axioms [25] governing GW-invariants have proved instrumental for studying
these invariants via algebraic methods. For example, they underline the notion of Cohomologi-
cal Field Theory (or CohFT). Givental’s discovery of symplectic actions on CohFTs [17, 18] and
Teleman’s subsequent classification of semi-simple CohFTs [33] led to many reconstruction results,
Virasoro constraints, and mirror symmetry as well as strong connections to integrable systems [6, 7].

On the other hand, the progress in the theory of real J-holomorphic maps, i.e. of counts of J-
holomorphic curves in symplectic manifolds preserved by anti-symplectic involutions, has been
much slower. In particular, the associated numerical invariants of real symplectic manifolds, known
as real GW-invariants, did not even exist in positive genera until [14]; a detailed summary of the
construction of these invariants in [14] appears in [11]. In string theory, these invariants arise in
the context of orientifold background in the same way as their classical counterparts, but with
the inclusion of non-orientable worldsheets as well; see [35]. In particular, the real GW invariants
provide mathematical foundation for orientifold background type IIA theory, which, in parallel to
the classical theory, is again one side of dualities such as mirror symmetry and large N duality.
The present paper provides analogues of Kontsevich-Manin’s axioms and other standard algebraic
properties of complex GW-invariants for the real GW-invariants of [14]. It is intended to serve
as a base for establishing analogues of Givental’s and Teleman’s results and their wide-ranging
implications in real GW-theory.

A real symplectic manifold is a triple (X,Ë, Ç) consisting of a symplectic manifold (X,Ë) and an
anti-symplectic involution Ç. The fixed locus XÇ of Ç is then a Lagrangian submanifold of (X,Ë).
A real bundle pair (V, ×)2³(X,Ç) consists of a complex vector bundle V 2³X and a conjugation ×
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on V lifting Ç, i.e. ×2=idV and × : Vx2³V Ç(x) is a C-linear isomorphism for every x*X. For a
real bundle pair (V, ×)2³(X,Ç), we denote by

Λtop
C (V, ×) =

(
Λtop
C V,Λtop

C ×
)

the top exterior power of V over C with the induced conjugation. Direct sums, duals, and tensor
products over C of real bundle pairs over (X,Ç) are again real bundle pairs over (X,Ç). For any
complex vector bundle L2³X, the homomorphisms

Ç·L : L·Ç7L 2³ L·Ç7L, Ç·L (v, w) = (w, v), and

Ç·L : L·CÇ
7L 2³ L·CÇ

7L, Ç·L (v·w) = w·v,

are conjugations covering Ç.

Definition 1.1. A real orientation (L, [Ë], s) on a real symplectic manifold (X,Ë, Ç) consists of

(RO1) a complex line bundle L2³X such that

w2(TX
Ç) = w2(L)|XÇ and Λtop

C (TX, dÇ) j
(
L·CÇ

7L, Ç·L
)
, (1.1)

(RO2) a homotopy class [Ë] of isomorphisms of real bundle pairs in (1.1), and

(RO3) a spin structure s on the real vector bundle TXÇ·L7|XÇ over XÇ compatible with the
orientation induced by [Ë].

By (RO2), a real orientation on (X,Ë, Ç) determines a homotopy class of isomorphisms

Λtop
R

(
TXÇ

)
=Λtop

R

({
ẋ*TX|XÇ : dÇ(ẋ)= ẋ

})
j
{
rv·Cv*L·CÇ

7L : v*L|XÇ , r*R
}

and thus an orientation on XÇ. In particular, the real vector bundle TXÇ·L7|XÇ over XÇ in (RO3)
is oriented. By the first condition in (1.1), it admits a spin structure. By [10, Theorems 1.1,1.2], a
real orientation on (X,Ë, Ç) also determines a homotopy class of isomorphisms

u7
(
TX·(L7·Ç7L

7
), dÇ·Ç·L7

)
j
(
Σ×Cn+2, Ã×c

)
(1.2)

over a symmetric, possibly nodal, surface (Σ, Ã) for every real map u : (Σ, Ã)2³(X,Ç), where n is
half the real dimension of X and c is the standard conjugation on Cn+2. This homotopy class of
isomorphisms is one of the key ingredients in the construction of real GW-invariants in [14].

Theorem 1.2. Let (X,Ë, Ç) be a compact connected real symplectic manifold of dimension 2n with

n 6*2Z and (L, [Ë], s) be a real orientation on (X,Ë, Ç). The associated real GW-invariants 〈. . .〉Ë,Çg,B

in (4.15) and the linear maps IË,Ç
g,3,B in (4.18) are well-defined and satisfy the properties R1-R15 in

Sections 4.2 and 4.3 as well as Theorems 4.3 and 4.4 in Section 4.4.

A collection of homomorphisms IË
g,3,B as in (3.11) which satisfies C6-C10, C11 with ³ = 1, and

C12-C15 in Section 3.2 is called a system of GW-classes for (X,Ë) in [25, Definition 2.2]; a collec-
tion {IË

0,3,B} satisfying the associated properties is called a tree-level system of GW-classes for (X,Ë)
in [25]. In light of the terminology used in the string theory literature, such as [36, 1], it would thus

be appropriate to call a collection of homomorphisms IË,Ç
g,3,B as in (4.18) which satisfies R6-R10,

R11 with ³ = 1, and R12-R15 in Section 4.3 a Ç-extension of the system {IË
g,3,B} of GW-classes
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for (X,Ë) and a collection IË,Ç
0,3,B satisfying the associated properties a Ç-extension of the tree-level

system {IË
0,3,B} of GW-classes for (X,Ë). Theorem 4.3, which is a real analogue of a now classical

result of [25], describes the structure of the latter extension. Similarly to the complex case of [25]
depending on the structure of the cohomology ring of the Deligne-Mumford moduli space M0,3 of
rational nodal 3-marked curves, the proof of Theorem 4.3 depends on the structure of the cohomol-
ogy ring of the Deligne-Mumford moduli space RM0,3 of real rational nodal curves with 3 conjugate
pairs of marked points. This was only recently obtained in [4, 5].

The anti-holomorphic involutions

Çn : P
n21 2³ Pn21, Çn

(
[Z1, . . . , Zn]

)
=

{
[Z2, Z1, . . . , Zn, Zn21], if n*2Z;

[Z2, Z1, . . . , Zn21, Zn22, Zn], if n 6*2Z;

·2m : P2m21 2³ P2m21, ·2m
(
[Z1, . . . , Z2m]

)
=
[
Z2,2Z1, . . . , Z2m,2Z2m21

]
,

are anti-symplectic with respect to the Fubini-Study symplectic forms Ën and Ë2m on the com-
plex projective spaces Pn21 and P2m21, respectively. The real symplectic manifolds (Pn21, Ën, Çn)
with n * 2Z and (P2m21, Ë2m, ·2m) admit real orientations (L, [Ë], s) with L=OPn21(n/2) and
L=OP2m21(m), respectively. Many other examples of compact real symplectic manifolds with real
orientations are described in [15, Section 1.1]. These include many projective complete intersec-
tions, such as the real quintic threefolds, i.e. the smooth hypersurfaces in P4 cut out by degree 5
homogeneous polynomials on C5 with real coefficients; they play a prominent role in the interactions
of symplectic topology with string theory and algebraic geometry.

Remark 1.3. The notion of real orientation provided by [14, Definition 1.2] and used in [14] to orient
moduli spaces of stable real maps replaces (L·CÇ

7L, Ç·L ) and (L7·Ç7L
7
, Ç·L7) in (1.1) and (1.2) by

(L, Ç̃)·2 and 2(L, Ç̃)7, respectively, for a real line bundle pair (L, Ç̃) over (X,Ç). For such a pair,
the homomorphism

ΦL : 2(L, Ç̃) 2³
(
L·Ç7L, Ç·L

)
, ΦL(v, w) =

(
v+iw, Ç̃(v2iw)

)
, (1.3)

is an isomorphism of real bundle pairs over (X,Ç). Definition 1.1, which is a slightly reworded
version of [9, Definition A.1], thus weakens (broadens) the notion of real orientation of [14, Defini-
tion 1.2]. The compositions of the isomorphisms u7(idTX·ΦL7) and (1.2) yield a homotopy class
of isomorphisms

u7
(
TX·2L7, dÇ·2Ç̃7

)
j
(
Σ×Cn+2, Ã×c

)
(1.4)

over a symmetric (Σ, Ã) for every real map u : (Σ, Ã)2³(X,Ç). As noted in [9] and detailed in [16],
the construction of orientations of moduli spaces in [14] goes through almost verbatim with the
weaker notion of real orientation of Definition 1.1.

By [25, Theorem 4.5], a tree-level system of GW-classes determines a Frobenius structure on
H7(X;C) in the sense of [25, Section 4.2]. By [25, Example 6.3], a system of GW-classes deter-
mines a CohFT in the sense of [25, Definition 6.1]. This perspective makes it possible to recover
arbitrary-genus GW-invariants of some symplectic manifolds, such as Pn, from the genus 0 GW-
invariants; see [17, 18]. We hope that this perspective can be productively applied to Ç-extensions
of system of GW-classes based on the results of this paper. Okounkov-Pandharipande’s trilogy
[30, 31, 32] determines the (complex) Gromov-Witten theory of Riemann surfaces, in particular
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showing that the GW-invariants of P1 satisfy integrable hierarchies of Toda type and the GW-
invariants of Riemann surfaces satisfy the Witten and Virasoro conjectures. Guidoni [20] recently
showed that the real GW-invariants of P1 satisfy integrable hierarchies of types CKP and KdV as
well as Virasoro type constraints. However, even the formulation of a Virasoro type conjecture for
real GW-invariants of arbitrary manifolds remains unknown. More geometric directions for future
research are indicated in [16].

After collecting the most frequently used notation and terminology in Section 2, we recall basic
properties of complex GW-invariants, Kontsevich-Manin’s axioms for these invariants, and two
reconstruction results in the genus 0 complex GW-theory in Section 3. We give a direct proof of
the second reconstruction result, Proposition 3.2, which readily adapts to the real setting. After
setting up the relevant notation in Section 4.1, we state and justify basic properties of the real
GW-invariants arising from [14] and analogues of Kontsevich-Manin’s axioms for the associated
real GW-theory in Sections 4.2 and 4.3. Real analogues of the two reconstruction results of Sec-
tion 3, Theorems 4.3 and 4.4, are established in Section 4.4. Section 5.2 contains the most technical
proofs, deducing the Genus Reduction and Splitting properties of Section 4.3 from the structural
results for the orientations of the moduli spaces of stable real maps established in [16].

The properties of real GW-invariants formulated in Sections 4.2 and 4.3 are algrebraic reformu-
lations of previously established geometric properties of these invariants. However, some of the
reformulations, in particular Genus Reduction and Splitting, require significant care to deduce
from the established geometric properties. Theorems 4.3 and 4.4 are completely new in the real
setting, while our proof of Proposition 3.2 in the complex setting applies in the symplectic category
(in contrast to the original proof in [26]).

Acknowledgments. The first author was partially supported by grant 18-CE40-0009 from Agence
Nationale de la Recherche (France) and grant ROGW-864919 from the European Research Coun-
cil (EU). The second author was partially supported by grant DMS 2301493 from the National
Science Foundation (US).

2 Notation and conventions

For 3*Zg0, we denote by S3 the 3-th symmetric group. For 3, g*Zg0, define

[3] = {1, 2, . . . , 3
}
, P(g, 3) =

{
(g1, g2; I, J) : g1, g2*Zg0, g1+g2=g, [3]=I¶J

}
,

P̃(g, 3) =
{
(g2, g0; I, J,K) : g2, g0*Zg0, 2g2+g0=g, [3]=I¶J¶K

}
.

A decomposition [3]=I¶J determines a permutation

{
1, . . . , 3

}
2³ I¶J (2.1)

sending 1, . . . , |I| to the elements of I in the increasing order and |I|+1, . . . , 3 to the elements of J
in the increasing order. For disjoint subsets I, J¢Z+, let

»I,J :
[
|I¶J |

]
2³ I¶J

be the order-preserving bijection.
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Let X be a compact connected oriented manifold as in the statement of Theorem 1.2. We denote
by H7(X;Q) the direct sum of the groups Hp(X;Q) over all p*Z. For a homogeneous element µ of
H7(X;Q), let |µ| be its cohomology degree, i.e. |µ|=p if µ*Hp(X;Q). In any equation involving an
element µ*H7(X;Q) and its cohomology degree |µ|, we implicitly assume that µ is a homogeneous
element. We fix a basis {ei}i*[N ] of homogeneous elements for H7(X;Q) and let (gij)i,j*[N ] be the
inverse of the associated matrix (

gijc〈eiej , X〉
)
i,j*[N ]

for the intersection form on H7(X;Q). If ∆X *H7(X
2;Q) is the homology class determined by

the diagonal in X2 with the orientation induced from X, then

PD21
X2

(
∆X

)
=

N∑

i,j=1

gij ei×ej (2.2)

by (2.5), (2.4), and (2.7) below.

Let 3*Zg0, µc(µi)i*[3] be a tuple of homogeneous elements of H7(X;Q), and

|µ| = |µ1|+. . .+ |µ3|.

For Ic{i1, . . . , im}¢ [3] with i1<. . .<im, define

µI =
(
µi1 , . . . , µim

)
.

For �*S3 and a partition [3]=I¶J , let

·
(
�,µ

)
=

∑

i,j*[3]
i<j

�(i)>�(j)

∣∣µi
∣∣·
∣∣µj
∣∣, ·

(
(I, J), µ

)
=
∑

i*I
j*J
i>j

|µi|·|µj |.

The parity of the first (resp. second) number above is the parity of the permutation on the odd-
degree classes µi induced by the permutation � (resp. permutation (2.1)) of [3]. For � * S3, we
define a graded automorphism of H7(X;Q)·3 by

�
(
µ1·. . .·µ3

)
= (21)·(�,(µi)i*[3])µ�(1)·. . .·µ�(3).

This determines an action of S3 on H
7(X;Q)·3 by graded automorphisms. For

P c (g1, g2; I, J) * P(g, 3), P̃ c
(
g2, g0; I, J,K) * P̃(g, 3), (2.3)

and n 6*2Z, we define

·n(P ) =
n21

2
(g121)(g221), ·

(
P, µ

)
= ·
(
(I, J), µ

)
,

·n
(
P, µ

)
= ·n(P )+·

(
P, µ

)
+(g121)|µJ |, ·

(
P̃ , µ

)
= ·
(
(I¶J,K), µ

)
.

For a tuple Jc(j1, j2, ...)*(Zg0)> and a complex vector bundle E2³Y , let

cJ(E) =
>∏

k=1

cjkk (E) * H7(Y ;Q),

5



with 00c1. By the Splitting Principle [28, Problem 7C], there exist universal coefficients C
(n1,n2)
J1,J2

*Z

such that
e
(
E1·CE2

)
=

∑

J1,J2*(Zg0)>

C
(n1,n2)
J1,J2

cJ1(E1)cJ2(E2)

for all complex vector bundles E1, E22³Y of ranks n1 and n2, respectively.

For an orbifold M, we denote by H7(M;Q) and H7(M;Q) the homology and cohomology of the
sheaf of singular chains for the orbifold charts of M with rational coefficients and by H̃7(M;Q)
and H̃7(M;Q) the homology and cohomology of this sheaf twisted by the orientation system OM

of M, as in [21, Section 3.H] and [3, Section V.10]. For a homogeneous element µ of H̃7(M;Q), we
again denote by |µ| its cohomology degree. We use the conventions for the cup and cap products
in the singular (co)homology theory as in §48 and §66, respectively, in [29], so that

(
³*µ

)
+A = ³ +

(
µ+A

)
" ³*H7(M;Q), µ*H̃7(M;Q), A*H̃7(M;Q); (2.4)

see Theorem 66.2 in [29]. An orientation on M identifies H̃7(M;Q) and H̃7(M;Q) with H7(M;Q)
and H7(M;Q), respectively, intertwining the cup and cap products in the two (co)homology the-
ories.

If in addition M is compact and either oriented or connected and unorientable, let [M]*H̃7(M;Q)
be its twisted fundamental class; it corresponds to the fundamental class of M in the first case and
to the fundamental class of the orientation double cover of M with its canonical orientation in the
second case. In either case, the homomorphisms

PDM : H̃7(M;Q) 2³ H7(M;Q),

PDM : H7(M;Q) 2³ H̃7(M;Q),
PDM(³) = ³+[M], (2.5)

are isomorphisms; see Theorem 3H.6 in [21] and Theorem 9.3 and Corollary 10.2 in [3]. In such
cases, we also define

∫

M
: H̃7(M;Q) 2³ Q,

∫

M
³ =

〈
³, [M]

〉
=
∣∣³+[M]

∣∣±, (2.6)

where |·|± is the degree of (the weighted cardinality of the points in) theH0-part of ·. IfM1 andM2

are compact connected orbifolds, M1 is oriented, and M2 is either oriented or unorientable, then

∫

M1×M2

³1×³2 =

(∫

M1

³1

)(∫

M2

³2

)
" ³1*H

7(M1;Q), ³2*H̃
7(M2;Q). (2.7)

Let f : M
2
2³M be a surjective morphism between orbifolds. Suppose U 2¢M

2
is an open subset

so that
M

2
2 U 2 ¢ M

2
and f

(
M

2
2 U 2

)
¢ M (2.8)

are finite unions of suborbifolds of codimensions at least 2 and 1, respectively, the restriction of f
to U 2 is a submersion, and the vector orbi-bundle

ker df|U 2 2³ U 2 (2.9)
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is oriented. The short exact sequence

0 2³ ker df
∣∣
U 2 2³ TM

2∣∣
U 2

df
2³ f7TM

∣∣
U 2 2³ 0 (2.10)

of vector orbi-bundles over U 2 and the orientation o of (2.9) determine an isomorphism

O
M

2 |U 2 j f7OM|U 2

of local systems over U 2. By the codimension 2 assumption above, this isomorphism extends over
all of M

2
and thus determines and a homomorphism

H7(M
2
;Q)·H̃7(M;Q) 2³ H̃7(M

2
;Q), ³2·³ 2³ ³2(f7³).

Furthermore, f21(u)¢M
2
is an oriented suborbifold for every u* f(M

2
2 U 2). If in addition M,M

2

are compact and either oriented so that the exact sequence (2.10) respects the three orientations

or connected and unorientable, then f21(u)¢M
2
is compact and

〈
³2(f7³), [M

2
]
〉
=
〈
³2, [f21(u)]

〉〈
³, [M]

〉
(2.11)

for every ³*H̃7(M;Q) of top degree, every ³2*H7(M
2
;Q), and every u* f(M

2
2 U 2).

Let » : M
2
2³M be a codimension r immersion between orbifolds. Suppose the normal bundle

Ã : N » c
»7TM

d»(TM
2
)
2³ M

2

of » is oriented. The short exact sequence

0 2³ TM
2 d»
22³ »7TM 2³ N » 2³ 0 (2.12)

of vector orbi-bundles overM
2
and the orientation o of N » determine an isomorphism O

M
2 j »7OM

of local systems over M
2
and thus a homomorphism

H7(M
2
;Q)·H̃7(M;Q) 2³ H̃7(M

2
;Q), ³2·³ 2³ ³2(»7³).

If in addition M,M
2
are compact and either oriented so that the exact sequence (2.12) respects

the three orientations or connected and unorientable, then we obtain a pushforward homomorphism

»7 : H
7(M

2
;Q) 2³ H7(M;Q), »7(³

2) = PD21
M

(
»7
(
PD

M
2(³2)

))
.

By (2.4)-(2.6),

〈
³2(»7³), [M

2
]
〉
= (21)r|³|

〈
(»7³

2)³, [M]
〉

" ³*H7(M
2
;Q), ³2*H̃7(M;Q). (2.13)

Similarly to the definition on page 120 and Exercise 11-C in [28], the orientation o on N » also
determines a class u22*Hr(M;Q) so that

»7
(
[M

2
]
)
= u22+[M] * H̃7(M;Q). (2.14)
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3 Complex Gromov-Witten theory

3.1 Moduli spaces

Let g * Z and 3 * Zg0. We denote by Mg,3 the Deligne-Mumford moduli space of stable closed
connected, but possibly nodal, 3-marked Riemann surfaces Σ of arithmetic genus g. This space is
a compact complex orbifold of complex dimension

dimCMg,3 = 3(g21)+3 (3.1)

and is thus oriented; it is empty if g<0 or 2g+3<3. A permutation �*S3 acts on Mg,3 by sending
a stable 3-marked Riemann surface Σ to the stable 3-marked Riemann surface �(Σ) so that the
marked points of the two surfaces are related by

z�(i)

(
�(Σ)

)
= zi(Σ) " i* [3]. (3.2)

This determines an action of S3 on Mg,3 by holomorphic automorphisms. Let

E 2³ Mg,3

be the Hodge vector bundle of holomorphic differentials.

If 3>0 and 2g+3>3, let
f3 : Mg,3 2³ Mg,321

be the natural forgetful morphism dropping the last marked point. The preimage U 2¢Mg,3 of the
open subspace Mg,321¢Mg,321 consisting of smooth curves satisfies the codimension conditions
below (2.8) and the orientation condition above (2.11). We note that

E = f73E 2³ Mg,3 (3.3)

under the above assumptions.

We denote by
»g,3 : Mg21,3+2 2³ Mg,3 (3.4)

the immersion obtained by identifying the last two marked points of each Riemann surface in the
domain to form a node; this map is generically 2 :1 onto its image. For each P *P(g, 3) as in (2.3),
let

»P : MP cMg1,|I|+1×Mg2,|J |+1 2³ Mg,3 (3.5)

be the immersion obtained by identifying the last marked points of each pair of Riemann surfaces
in the domain to form a node and by re-ordering the remaining pairs of marked points according
to the bijection (2.1). These two immersions are illustrated in Figure 1. The normal bundles to
these immersions have canonical orientations that satisfy the orientation condition above (2.13).

Let (X,Ë) be a compact symplectic manifold of real dimension 2n,

H2(X;Z)Ë =
{
B*H2(X;Z) : Ë(B)>0 or B=0

}
,

and JË be the space of Ë-tamed almost complex structures on X. For g, 3*Zg0, B *H2(X;Z),
and J * JË, we denote by Mg,3(B; J) the moduli space of stable J-holomorphic degree B maps
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z3+1 z3+2 »g,3
z|I|+1 z|J|+1 »P

g1 g2I J

Figure 1: Typical elements in the domains and images of the immersions (3.4) and (3.5), with the
genus and marked points of each irreducible component of an image of (3.5) indicated next to it.

from closed connected, but possibly nodal, 3-marked Riemann surfaces of arithmetic genus g. This
space is empty if either B 6*H2(X;Z)Ë or B=0 and 2g+3<3. For each i=1, . . . , 3, let

evi : Mg,3(B; J) 2³ X and Ëi * H2
(
Mg,3(B; J);Q

)

be the natural evaluation map at the i-th marked point and the Chern class of the universal cotan-
gent line bundle for this marked point, respectively. The symmetric group S3 acts on Mg,3(B; J)
similarly to (3.2). This action satisfies

evi=ev�(i)ç� and Ëi=�
7Ë�(i) "�*S3, i* [3]. (3.6)

By [27, 8], the moduli space Mg,3(B; J) carries a natural virtual fundamental class of dimen-
sion/degree

dim [Mg,3(B; J)]vir = 2
(
(12g)(n23)+3+

〈
c1(X,Ë), B

〉)

= 2dimCMg,3+2
(
n(12g)+

〈
c1(X,Ë), B

〉)
.

(3.7)

This class is preserved by the S3-action. For a1, . . . , a3*Zg0 and µ1, . . . , µ3*H
7(X;Q), let

〈
Ça1(µ1), . . . , Ça3(µ3)

〉Ë
g,B

=

∫

[Mg,3(B;J)]vir
Ëa1
1

(
ev71µ1

)
. . . Ëa3

3

(
ev73µ3

)
(3.8)

be the associated descendant GW-invariant. This number is independent of the choice of J *JË.

If 2g+3g3, let
f : Mg,3(B; J) 2³ Mg,3 (3.9)

be the natural forgetful morphism to the corresponding Deligne-Mumford moduli space. It satisfies

fç�=�çf : Mg,3(B; J) 2³ Mg,3 "�*S3 . (3.10)

We denote by
ÃMg,3

, ÃX3 : Mg,3×X
3 2³ Mg,3, X

3

the component projection maps. Using Poincaré Duality on Mg,3 and Mg,3×X
3, we define

IË
g,3,B : H7(X;Q)·3 2³ H7

(
Mg,3;Q

)
and CË

g,3,B * H7
(
Mg,3×X

3;Q
)

(3.11)

by requiring that
∫

Mg,3

³IË
g,3,B

(
µ1, . . . , µ3

)
=

∫

[Mg,3(B;J)]vir

(
f7³
)(
ev71µ1

)
. . .
(
ev73µ3

)
and

∫

Mg,3×X3

(
Ã7
Mg,3

³
)
CË
g,3,B

(
Ã7X3(µ1×. . .×µ3)

)
=

∫

[Mg,3(B;J)]vir

(
f7³
)(
ev71µ1

)
. . .
(
ev73µ3

)
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for all µi*H
7(X;Q) and ³*H7(Mg,3;Q). The linear maps IË

g,3,B and the correspondences CË
g,3,B

in (3.11) are independent of the choice of J *JË. If g 6*Zg0 or 2g+3<3, we set IË
g,3,B=0.

3.2 Properties of invariants

The descendant GW-invariants (3.8) satisfy the following properties:

C1 (Effectivity I): 〈Ça1(µ1), . . . , Ça3(µ3)〉
Ë
g,B=0 if B 6*H2(X;Z)Ë or B=0 and 2g+3<3;

C2 (Grading I): 〈Ça1(µ1), . . . , Ça3(µ3)〉
Ë
g,B=0 if

3∑

i=1

(
2ai+|µi|

)
6= 2
(
(12g)(n23)+3+

〈
c1(X,Ë), B

〉)
;

C3 (String): if B 6=0 or (g, 3) 6=(0, 2),
〈
Ça1(µ1), . . . , Ça3(µ3), Ç0(1)

〉Ë
g,B

=
∑

1fif3
ai>0

〈
Ça1(µ1), . . . , Çai21(µi21), Çai21(µi), Çai+1(µi+1), . . . , Ça3(µ3)

〉Ë
g,B

;

C4 (Dilaton): if B 6=0 or (g, 3) 6=(1, 0),

〈
Ça1(µ1), . . . , Ça3(µ3), Ç1(1)

〉Ë
g,B

=
(
2g22+3

)〈
Ça1(µ1), . . . , Ça3(µ3)

〉Ë
g,B

;

C5 (Divisor I): if µ3+1*H
2(X;Q) and either B 6=0 or 2g+3 g 3,

〈
Ça1(µ1), . . . , Ça3(µ3), Ç0(µ3+1)

〉Ë
g,B

= 〈µ3+1, B〉
〈
Ça1(µ1), . . . , Ça3(µ3)

〉Ë
g,B

+
∑

1fif3
ai>0

〈
Ça1(µ1), . . . , Çai21(µi21), Çai21(µiµ3+1), Çai+1(µi+1), . . . , Ça3(µ3)

〉Ë
g,B
.

The Effectivity properties above and below follow immediately from Mg,3(B; J) = ' if either
B 6*H2(X;Z)Ë or B = 0 and 2g+ 3 < 3. The Grading properties above and below are conse-
quences of (3.7). For C3-C5, see [22, Section 26.3].

The linear maps (3.11) satisfy Kontsevich-Manin’s axioms of [25, Section 2]:

C6 (Effectivity II): IË
g,3,B=0 if B 6*H2(X;Z)Ë;

C7 (S3-Covariance): the map IË
g,3,B is S3-equivariant;

C8 (Grading II): IË
g,3,B is homogeneous of degree 2(g21)n22〈c1(X,Ë), B〉, i.e.

∣∣IË
g,3,B(µ)

∣∣ = |µ|+ 2(g21)n22
〈
c1(X,Ë), B

〉
"µ*H7(X;Q)3;

C9 (Fundamental Class I): for all µ1, µ2*H
7(X;Q),

IË
0,3,B

(
µ1, µ2, 1

)
=

{
0, if B 6=0;〈
µ1µ2, [X]

〉
, if B=0;
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C10 (Fundamental Class II): if 2g+3g3 and µ*H7(X;Q)3,

IË
g,3+1,B(µ, 1) = f73+1

(
IË
g,3,B(µ)

)
;

C11 (Divisor II): if 2g+3g3, µ*H7(X;Q)3, µ3+1*H
2(X;Q), and ³*H7(Mg,3;Q),

∫

Mg,3+1

(
f73+1³

)
IË
g,3+1,B

(
µ, µ3+1

)
= 〈µ3+1, B〉

∫

Mg,3

³IË
g,3,B(µ);

C12 (Mapping to Point): for all µ1, . . . , µ3*H
7(X;Q),

IË
g,3,0

(
µ1, . . . , µ3

)
=

∑

J1,J2*(Zg0)>

C
(n,g)
J1,J2

〈
cJ1(X,Ë)µ1 . . . µ3, [X]

〉
cJ2(E

7) * H7
(
Mg,3;Q

)
;

C13 (Genus Reduction): for all µ*H7(X;Q)3,

» 7g,3
(
IË
g,3,B(µ)

)
=

N∑

i,j=1

gijIË
g21,3+2,B

(
µ, ei, ej

)
;

C14 (Splitting): for all µ*H7(X;Q)3 and P c(g1, g2; I, J)*P(g, 3),

»7P
(
IË
g,3,B(µ)

)
= (21)·(P,µ)

∑

B1,B2*H2(X;Z)
B1+B2=B

N∑

i,j=1

gijIË
g1,|I|+1,B1

(
µI , ei

)
×IË

g2,|J |+1,B2

(
ej , µJ

)
;

C15 (Motivic Axiom): IË
g,3,B is induced by the correspondence CË

g,3,B , i.e.

IË
g,3,B(µ1, . . . , µ3) = PD21

Mg,3

({
ÃM"

g,3

}
7
PDMg,3×X3

(
CË
g,3,B

({
ÃX3

}7
(µ1×. . .×µ3)

)))

for all µ1, . . . , µ3*H
7(X;Q).

The property C7 follows from the S3-invariance of the virtual fundamental class of Mg,3(B; J),
the first identity in (3.6), and (3.10). The property C15 is immediate from (2.4), (2.5), and the
definitions of IË

g,3,B and CË
g,3,B after (3.11). The statements C9-C14 are consequences of natural

properties of the virtual fundamental class for Mg,3(B; J) constructed in [27, 8]. The analogous
properties in the real GW-theory are established in Sections 4.3 and 5.2.

The g=0 case of C12 is equivalent to

IË
0,3,0

(
µ1, . . . , µ3

)
=
〈
µ1. . .µ3, X

〉
* H0

(
M0,3;Q

)
. (3.12)

The g=1 case of C12 is equivalent to

IË
1,3,0

(
µ1, . . . , µ3

)
=

ù
üú
üû

〈µ1. . .µ3cn(X,Ë), X〉, if µ1, . . . , µ3*H
0(X;Q);

2〈µ1. . .µ3cn21(X,Ë), X〉c1(E), if |µ1|+. . .+|µ3|=2;

0, otherwise.

(3.13)

By C12, (3.1), and (3.3), the restriction of IË
g,3,B(µ1, . . . , µ3) to Mg,3 vanishes if gg2 and ng4.
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3.3 Reconstruction of invariants

Following [25, Definition 2.2], we call a collection of homomorphisms IË
0,3,B as in (3.11) with 3g3

and B*H2(X;Z) which satisfies the properties C6-C10, C11 with ³=1, and C12-C15 a tree-level

system of GW-classes for (X,Ë). By Proposition 2.5.2 and Theorem 3.1 in [25], a tree-level system
of GW-classes for (X,Ë) can be reconstructed from a small subcollection of the full collection.
This follows readily from the fact that the ring H7(M0,3;Q) is generated by the Poincaré duals of
the “boundary” classes, the images of the immersion »P in (3.5) with P * P(g, 3); see (1) and (4)
on p545 in [24].

Proposition 3.1 ([25]). Let (X,Ë) be a compact symplectic manifold of real dimension 2n. A
tree-level system {IË

0,3,B} of GW-classes for (X,Ë) is determined by the numbers

∫

M0,3

IË
0,3,B(µ) * Q with 3 * Zg0, B*H2(X;Z)Ë, µ*H

7(X;Q)3,

i.e. by the codimension 0 classes IË
0,3,B(µ). If in addition H7(X;Q) is generated as a ring by H2(X;Q),

then this system is determined by the codimension 0 classes IË
0,3,B(µ1, µ2, µ3) with

B * H2(X;Z)Ë, 〈c1(X,Ë), B〉 f n+1, |µ1|+|µ2| = 2n+2
〈
c1(X,Ë), B

〉
22, |µ3| = 2.

A manifestation of the first statement of this proposition is the renown WDVV equation for GW-
invariants:

∑

[3]=I¶J
1,2*I, 3,4*J

∑

B1+B2=B

N∑

i,j=1

(21)·((I,J),µ)
〈
µI , ei

〉Ë
0,B1

gij
〈
ej , µJ

〉Ë
0,B2

=
∑

[3]=I¶J
1,3*I, 2,4*J

∑

B1+B2=B

N∑

i,j=1

(21)·((I,J),µ)
〈
µI , ei

〉Ë
0,B1

gij
〈
ej , µJ

〉Ë
0,B2

(3.14)

for all 3 * Z+, B * H2(X;Z), and µ * H7(X;Q)3. The full collection of relations (3.14) is
equivalent to the associativity of the multiplication in the quantum cohomology of (X,Ë). For
(X,Ë)=(P2, ËFS), it is equivalent to Kontsevich’s recursion [25, Claim 5.2.1] enumerating rational
curves in P2. For (X,Ë) = (Pn, ËFS), (3.14) is equivalent to the recursion of [34, Theorem 10.4]
enumerating rational curves in Pn.

Proposition 3.1 is an early example of reconstruction in complex GW-theory. Another example is
Proposition 3.2 below that reduces the g=0 descendant GW-invariants (3.8) to the primary ones,
i.e. those with ai = 0 for all i * [3]. Its statement for smooth projective varieties is [26, Corol-
lary 1]. We give a proof of this proposition assuming instead that the strata of M0,3(B; J) are of
the expected dimension. This proof, motivated by an approach initiated in [23] and formalized
in [37, 38], adapts readily to semi-positive symplectic manifolds via Ruan-Tian’s global inhomoge-
neous perturbations and with some technical care to arbitrary symplectic manifolds via the virtual
fundamental class constructions of [27, 8].
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For 3*Z+, i, j* [3] distinct, and B,B1, B2*H2(X;Z) with B1+B2=B, we denote by

DB1i,B2j ¢ M0,3(B; J) (3.15)

the subspace of maps u from domains Σ1*Σ2 such that

" Σ1,Σ2 are connected genus 0 curves with one point in common,

" the i-th (resp. j-th) marked zi (resp. zj) lies on Σ1 (resp. Σ2), and

" the restrictions of u to Σ1 and Σ2 are of degrees B1 and B2, respectively.

Under ideal circumstances, DB1i,B2j is a union of smooth divisors in M0,3(B; J) intersecting trans-
versely. By [27, 8], DB1i,B2j carries a natural virtual fundamental class. The meaning of the
equation (3.16) below is that the integral of the product of the left-hand side with a descendant
cohomology class ·, as in the integrand in (3.8), against [M0,3(B; J)]vir equals the integral of the
product of the difference on the right-hand side with · against [M0,3(B; J)]vir plus the integral of ·
against the weighted sum of [DB1i,B2j ]

vir.

Proposition 3.2. Let (X,Ë) be a compact symplectic manifold. For 3*Z+, B*H2(X;Z), i, j* [3]
distinct, and µ*H2(X;Q),

〈µ,B〉Ëi =
(
ev7jµ2ev7iµ

)
+

∑

B1+B2=B

〈µ,B2〉
[
DB1i,B2j

]vir
* H2

(
M0,3(B; J);Q

)
. (3.16)

Proof. We can assume that Ë(B)> 0. By the linearity of both sides of (3.16) in µ, we can also
assume that µ can be represented by a (generic) pseudocycleM in X as defined in Section 1 in [40].
Let d= 〈µ,B〉 and ~ *R+ be the minimal value of 〈Ë, u7[P

1]〉 for a non-constant J-holomorphic
map u : P12³X.

We denote by M̃ the set of representatives u : Σ2³X for the elements of M0,3(B; J) such that

" the i-th marked point zi=0 on the irreducible component P1
i ¢Σ containing it;

" if the j-th marked point zj lies on P1
i , then zj=>;

" if zj does not lie on P1
i , then the node of P1

i separating it from the irreducible component of Σ
containing zj is the point >*P1

i ;

" the interior of the closed unit disk D¢ P1
i centered at zi = 0 contains no marked points other

than zi and no nodes;

" either
∫
D
u7Ë = ~/2 and D ¢ P1

i contains no marked points other than zi and no nodes or∫
D
u7Ë<~/2 and D¢P1

i contains a marked point other than zi or a node;

see Figure 2.

We call two elements of M̃ equivalent if they differ by a reparametrization of the domain that
restricts to the identity on the irreducible component P1

i containing zi. Gromov’s convergence

induces a topology on the set M̂ of the resulting equivalence classes of elements of M̃. The action
of S1 on P1

i induces a continuous action on M̂ so that M0,3(X,B) is the quotient M̂/S1 and

LcM̂×S1C 2³ M0,3(X,B)
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zi=0

zj=>

B
>

zi=0

zj

B1

B2

Figure 2: A typical element of M̃ and a representative for a typical element of DB1i,B2j in M̃.

is the universal tangent line bundle for the i-th marked point. Below we define a “meromorphic”
section of L·d and determine its zero/pole locus.

A generic element u : P12³X of M̂ intersects M transversely at points

y+1 (u), . . . , y
+
d+

(u) * C7 and y21 (u), . . . , y
2
d2

(u) * C7

positively and negatively, respectively, so that d=d+2d2. The resulting element

s
(
[u]
)
c
[
u, y+1 (u) . . . y

+
d+

(u)
/
y21 (u) . . . y

2
d2

(u)
]
* L·d

depends only on the image [u]*M0,3(B; J) of u* M̂. This construction induces a section of L·d

over generic elements of M0,3(B; J). This section extends to a “meromorphic” section over all
of M0,3(B; J).

The section s has a zero (resp. pole) whenever u meetsM positively (resp. negatively) at zi=0 and
a pole (resp. zero) whenever u meets M positively (resp. negatively) at zj=>. It also has a pole
(resp. zero) whenever u*DB1i,B2j meets M at any point of Σ2 (in the terminology around (3.15))
positively (resp. negatively). Thus,

s21(0) =
(
ev21

i (M)2ev21
j (M)

)
2

∑

B1+B2=B

〈µ,B2〉DB1i,B2j ¢ M0,3(B; J) .

Since 〈µ,B〉Ëi = 2c1(L
·d), this implies (3.16).

It is often convenient to combine GW-invariants into generating functions. Suppose {ei}i*[N ] is a
basis of homogeneous elements for H7(X;Q) with e1=1, (gij)i,j*[N ] is the associated matrix for the
intersection form on H7(X;Q), and (gij)i,j*[N ] is its inverse as before. Let ti and tai with i* [N ]
and a*Zg0 be formal variables with

titj = (21)|ei||ej |tjti, taitbj = (21)|ei||ej |tbjtai .

Define

t =
N∑

i=1

eiti,
〈
ei1ti1 , . . . , ei3ti3

〉Ë
g,B

=
〈
ei1 , . . . , ei3

〉Ë
g,B
ti3 . . .ti1 ,

t̃ =
>∑

a=0

N∑

i=1

Ça(ei)tai,
〈
Ça1(ei1)ta1i1 , . . . , Ça3(ei3)ta3i3

〉Ë
g,B

=
〈
Ça1(ei1), . . . , Ça3(ei3)

〉Ë
g,B
ta3i3 . . .ta1i1 .
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The (primary) genus 0 GW-potential and the descendant genus g GW-potential of (X,Ë) are the
formal power series

ΦË(t, q) =
∑

B*H2(X)

∑

3g0

1

3!

〈
t, . . . , t︸ ︷︷ ︸

3

〉Ë
0,B
qB and FË

g (̃t, q) =
∑

B*H2(X;Z)

∑

3g0

1

3!

〈̃
t, . . . , t̃︸ ︷︷ ︸

3

〉Ë
g,B
qB ,

respectively. The full descendant GW-potential is the formal power series

FË (̃t, q) =
∑

gg0

FË
g (̃t, q)»

2g22.

Thus, ΦË is the coefficient of »22 in FË with t0i= ti and tai=0 for a>0.

In light of C1, C2, and (3.12), C3 is equivalent to the string differential equation

"FË

"t01
=

1

2
»22

∑

1fi,jfN

gijt0jt0i +
>∑

a=0

N∑

i=1

t(a+1)i
"FË

"tai
. (3.17)

In light of C1, C2, and (3.13), C4 is equivalent to the dilaton differential equation

"FË

"t11
=
Ç(X)

24
+

{
»
"

"»
+

>∑

a=0

N∑

i=1

tai
"

"tai

}
FË .

The relations (3.14) are equivalent to the WDVV differential equations

N∑

j,k=1

"ti1"ti2"tjΦ
Ë · gjk"tk"ti3"ti4Φ

Ë

= (21)|ei1 |(|ei2 |+|ei3 |)
N∑

j,k=1

"ti2"ti3"tjΦ
Ë · gjk"tk"ti1"ti4Φ

Ë

with i1, i2, i3, i4=1, 2, . . . , N ; see [25, (4.13)].

4 Real Gromov-Witten theory

4.1 Moduli spaces

A symmetric Riemann surface (Σ, Ã, j) is a closed, but possibly nodal and disconnected, Riemann
surface (Σ, j) with an anti-holomorphic involution Ã. For example, there are two topological types
of such involutions on P1:

Ç, · : P1 2³ P1, Ç(z) =
1

z̄
, ·(z) = 2

1

z̄
. (4.1)

If Ç is an involution on another space X, a map u :Σ2³X is Ç-real (or just real) if uçÃ=Ççu.

Let g *Z and 3*Zg0. We denote by RMg,3 the Deligne-Mumford moduli space of stable closed
connected, but possibly nodal, symmetric Riemann surfaces (Σ, Ã, j) of arithmetic genus g with
3 conjugate pairs (z+i , z

2
i ) of marked points. This space is a smooth compact orbifold of dimension

dimRMg,3 = 3(g21)+23 ; (4.2)
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it is empty if g<0 or g+3f1. The symmetric group S3 acts on RMg,3 by smooth automorphisms
permuting pairs of conjugate marked points analogously to (3.2). For each i* [3], let

»i : RMg,3 2³ RMg,3

be the automorphism interchanging the marked points in the i-th conjugate pair.

Similarly to the complex case, let
(E, ×E) 2³ RMg,3

be the Hodge vector bundle of holomorphic differentials and the conjugation induced by the real
structure on each surface. We denote by

ER 2³ RMg,3 (4.3)

the ×E-fixed part of E; this is a real vector orbi-bundle of rank g. If 3>0 and g+3g2, let

fR3 : RMg,3 2³ RMg,321

be the natural forgetful morphism dropping the last conjugate pair of marked points. The open
subspace U 2¢RMg,3 of the marked curves [C] such that the irreducible component of C carrying
the marked point z+3 also carries either

" at least three nodes and/or marked points z±i with i* [321] or

" precisely one node and at least one other marked point

satisfies the codimension conditions below (2.8). We orient the kernel of dfR3 |U 2 by the position of
the marked point z+3 in the fiber (which is a nodal Riemann surface). Similarly to (3.3),

(E, ×E) =
{
fR3
}
7(E, ×E) 2³ RMg,3 (4.4)

under the above assumptions.

We denote by

»Cg,3 : RMg22,3+2 2³ RMg,3 and »Eg,3 : RMg21,3+1 2³ RMg,3 (4.5)

the immersion obtained by identifying the marked points z+3+1 and z
2
3+1 of each curve in the domain

with z+3+2 and z23+2, respectively, to form a conjugate pair of nodes and the immersion obtained by

identifying the marked point z+3+1 of each curve in the domain with z23+1 to form an isolated real
node, called E-node in [14] and elsewhere. The first immersion is generically 4 : 1 onto its image,
while the second is generically 2 :1. For each element P *P(g21, 3) as in (2.3), let

»CP : M
C

P cRMg1,|I|+1×RMg2,|J |+1 2³ RMg,3 (4.6)

be the immersion obtained by identifying the marked points z+|I|+1 and z2|I|+1 of the first Riemann

surface in the domain with the marked points z+|J |+1 and z2|J |+1 of the second Riemann surface in
the domain to form a conjugate pair of nodes and by re-ordering the remaining pairs of marked
points according to the bijection (2.1). These three immersions are illustrated by the first three
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z+3+1

z23+1

z+3+2

z23+2

Ã »Cg,3 Ã

z+3+1

z23+1

Ã »Eg,3 Ã

z+|I|+1

z2|I|+1

z+|J|+1

z2|J|+1

Ã »CP Ãg2 g1

z+i

z2i

z+j

z2j
i*I, j*J

z3+1

»E
g,(I,J) Ã

z+i z2j

z2i z+j

i*I, j*J

Ã

z+|K|+1

z2|K|+1

z|I¶J|+1

»C
P̃ Ã

z+k

z2k

z+i

z2i

z2j

z+j

g2

g2

g0

i*I
j*J
k*K

z3+1

z3+2

»C
g,(I,J)

Ã
z+i z2j

z+j z2i

i*I, j*J

Figure 3: Typical elements in the domains and images of the immersions (4.5)-(4.9), with the genus
and marked points of each irreducible component of an image of (4.6)-(4.9) indicated next to it.

diagrams in Figure 3.

For a Riemann surface (Σ, j), let D(Σ, j)c(Σ̂, ĵ, Ã) be the symmetric Riemann surface given by

Σ̂ = {+,2}×Σ, ĵ|{±}×Σ = ±j, Ã(±, z) = (3, z) " z*Σ.

For disjoint subsets I, J¢Z+ and a marked curve Cc(Σ, j, (zi)i*[|I¶J |]), define

DI,J(C) =
(
D(Σ, j), (z+i , z

2
i )i*[|I¶J |]

)
with z±i =

{
(±, zi), if i* » 21

I,J (I);

(3, zi), if i* » 21
I,J (J).

(4.7)

For each P̃ *P̃(g, 3) as in (2.3), let

»C
P̃
: M

C

P̃ cMg2,|I¶J |+1×RMg0,|K|+1 2³ RMg,3 (4.8)

be the immersion sending ([C2], [C0]) to the equivalence class of the marked curve obtained by
identifying the marked points the marked points z+|I¶J |+1 and z2|I¶J |+1 of DI¶{3+1},J(C

2) with the

marked points z+|K|+1 and z2|K|+1 of C0 to form a conjugate pair of nodes and by re-ordering the

remaining pairs of marked points according to the bijection (2.1) with (I, J) replaced by (I¶J,K).
If [3]=I¶J , let

»Cg,(I,J) : M(g21)/2,3+2 2³ RMg,3 and »Eg,(I,J) : Mg/2,3+1 2³ RMg,3 (4.9)

be the immersion sending [C2] to the equivalence class of the marked curve obtained by identifying
the marked points z+3+1 and z+3+2 of DI¶{3+1},J¶{3+2}(C

2) with z23+1 and z23+2, respectively, to form
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a conjugate pair of nodes and the immersion sending [C2] to the equivalence class of the marked
curve obtained by identifying the marked point z+3+1 of DI¶{3+1},J (C

2) with z23+1 to form an E-node.
These three immersions are illustrated by the last three diagrams in Figure 3.

For each i* [3], let
Li 2³ Mg,3 and Li 2³ RMg,3

be the universal tangent complex line orbi-bundles at the marked points zi and z
+
i , respectively.

In either case, let (
Li·Li

)R
=
{
rv·Cv*Li·CLi : v*Li, r*R

}
. (4.10)

This real line bundle is canonically oriented by the standard orientation of R. There are canonical
isomorphisms

N »Cg,3 j L3+1·L3+2 2³ RMg22,3+2 and N »Eg,3 j
(
L3+1·L3+1

)R
2³ RMg21,3+1 (4.11)

of the normal bundles to the immersions in (4.5). With the assumptions as in (4.6)-(4.9),

N »CP j Ã71L|I|+1·Ã
7
2L|J |+1 2³ M

C

P , N »Cg,(I,J) j L3+1·L3+2 2³ M(g21)/2,3+1,

N »C
P̃
j Ã71L|I¶J |+1·Ã

7
2L|K|+1 2³ M

C

P̃ , N »Eg,(I,J) j
(
L3+1·L3+1

)R
2³ Mg/2,3+1,

(4.12)

where Ã1, Ã2 are the component projections from the domains in (4.6) and (4.8). Via the iso-
morphisms in (4.11) and (4.12), the normal bundles to the six immersions in (4.5)-(4.9) inherit
orientations from the complex orientation of Li and the canonical orientation of (L3+1·L3+1)

R.

Let (X,Ë, Ç) be a compact real symplectic manifold of real dimension 2n with n 6*2Z. Define

H2(X;Z)ÇË =
{
B*H2(X;Z)Ë : Ç7(B)=2B

}
, H7

±(X;Q) =
{
µ*H7(X;Q) : Ç7µ=±µ

}
,

J Ç
Ë =

{
J *JË : Ç

7J=2J
}
.

For g, 3 * Zg0, B * H2(X;Z), and J * J Ç
Ë , we denote by M

Ç
g,3(B; J) the moduli space of stable

real J-holomorphic degree B maps from closed connected, but possibly nodal, symmetric Riemann
surfaces of arithmetic genus g with 3 conjugate pairs of marked points. This space is empty if
B 6*H2(X;Z)ÇË or B=0 and g+3f1.

For each i=1, . . . , 3, let

evi : M
Ç
g,3(B; J) 2³ X and Ëi * H2

(
M

Ç
g,3(B; J);Q

)

be the natural evaluation map at the marked point z+i and the Chern class of the universal cotangent
line bundle for this marked point, respectively. Let

»̃i : M
Ç
g,3(B; J) 2³ M

Ç
g,3(B; J)

be the automorphism interchanging the marked points in the i-th conjugate pair. It satisfies

evjç»̃i =

{
Ççevi, if j= i ;

evj , if j 6= i ;
and »̃7i Ëj =

{
2Ëi, if j= i ;

Ëj , if j 6= i .
(4.13)
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The symmetric group S3 acts on M
Ç
g,3(B; J) by permuting pairs of conjugate marked points anal-

ogously to (3.2). This action again satisfies (3.6).

By [14, Theorem 1.4], a real orientation on (X,Ë, Ç) endows the moduli space M
Ç
g,3(B; J) with a

virtual fundamental class of dimension/degree

dim
[
M

Ç
g,3(B; J)

]vir
= (12g)(n23)+23+

〈
c1(X,Ë), B

〉

= dimRMg,3+
(
n(12g)+

〈
c1(X,Ë), B

〉)
* 2Z ;

(4.14)

see also [16, Section 3.3]. This class is preserved by the S3-action. For a1, . . . , a3*Zg0 and
µ1, . . . , µ3*H

7(X;Q), let

〈
Ça1(µ1), . . . , Ça3(µ3)

〉Ë,Ç
g,B

=

∫

[M
Ç
g,3(B;J)]vir

Ëa1
1

(
ev71µ1

)
. . . Ëa3

3

(
ev73µ3

)
(4.15)

be the associated real descendant GW-invariant. This number is independent of the choice of J *J Ç
Ë .

If g+3g2, let

f : M
Ç
g,3(B; J) 2³ RMg,3 (4.16)

the natural forgetful morphism to the corresponding Deligne-Mumford moduli space. It satisfies

fç�=�çf, fç»̃i=»içf : M
Ç
g,3(B; J) 2³ RMg,3 "�*S3, i* [3]. (4.17)

We denote by
ÃRMg,3

, ÃX3 : RMg,3×X
3 2³ RMg,3, X

3

the component projection maps. Using Poincaré Duality on RMg,3 and RMg,3×X
3, we define

IË,Ç
g,3,B : H7(X;Q)·3 2³ H̃7

(
RMg,3;Q

)
and CË,Ç

g,3,B * H̃7
(
RMg,3×X

3;Q
)

(4.18)

by requiring that

∫

RMg,3

³IË,Ç
g,3,B

(
µ1, . . . , µ3

)
=

∫

[M
Ç
g,3(B;J)]vir

(f7³
)(
ev71µ1

)
. . .
(
ev73µ3

)
and

∫

RMg,3×X3

(
Ã7
RMg,3

³
)
CË,Ç
g,3,B

(
Ã7X3(µ1×. . .×µ3)

)
=

∫

[M
Ç
g,3(B;J)]vir

(f7³
)(
ev71µ1

)
. . .
(
ev73µ3

)

for all µi*H
7(X;Q) and ³*H7(RMg,3;Q). The linear maps IË,Ç

g,3,B and the correspondences CË,Ç
g,3,B

in (4.18) are independent of the choice of J *J Ç
Ë . If g<0 or g+3f1, we set IË,Ç

g,3,B=0.

4.2 Properties of invariants I

The real descendant GW-invariants (4.15) satisfy the following properties:

R1 (Effectivity I): 〈Ça1(µ1), . . . , Ça3(µ3)〉
Ë,Ç
g,B = 0 if B 6* H2(X;Z)ÇË, or B = 0 and g+ 3 f 1, or

µi*H
7
(21)ai(X;Q) for some i* [3];
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R2 (Grading I): 〈Ça1(µ1), . . . , Ça3(µ3)〉
Ë,Ç
g,B =0 if

3∑

i=1

(
2ai+|µi|

)
6= (12g)(n23) + 23+

〈
c1(X,Ë), B

〉
;

R3 (String): 〈Ça1(µ1), . . . , Ça3(µ3), Ç0(1)〉
Ë,Ç
g,B =0;

R4 (Dilaton):
〈
Ça1(µ1), . . . , Ça3(µ3), Ç1(1)

〉Ë,Ç
g,B

= 2(g21+3)〈Ça1(µ1), . . . , Ça3(µ3)〉
Ë,Ç
g,B ;

R5 (Divisor I): if µ3+1*H
2
2(X;Q),

〈
Ça1(µ1), . . . , Ça3(µ3), Ç0(µ3+1)

〉Ë,Ç
g,B

= 〈µ3+1, B〉
〈
Ça1(µ1), . . . , Ça3(µ3)

〉Ë,Ç
g,B

+ 2
∑

1fif3
ai>0

〈
Ça1(µ1), . . . , Çai21(µi21), Çai21(µiµ3+1), Çai+1(µi+1), . . . , Ça3(µ3)

〉Ë,Ç
g,B

.

The Effectivity properties above in the first two cases and in Section 4.3 follow immediately from

the moduli space M
Ç
g,3(B; J) being empty if either B 6*H2(X;Z)ÇË or B = 0 and g+3 f 1. The

Effectivity property above in the third case follows from (4.13) and the fact that »̃i reverses the

orientation of the moduli space M
Ç
g,3(B; J). The Grading properties above and in Section 4.3 are

consequences of (4.14). The vanishing in R3 is immediate from the third case in R1.

The proofs of R4 and R5 are similar to the complex case. Suppose first that either B 6=0 or g+3g2
so that the forgetful morphism

f̃R3+1 : M
Ç
g,3+1(B; J) 2³ M

Ç
g,3(B; J) (4.19)

dropping the last conjugate pair of marked points is well-defined. For i* [3], let

D±
i ¢ M

Ç
g,3+1(B; J) (4.20)

be the subspace of maps from domains Σ so that one of the irreducible components Σi of Σ is P1

which has precisely one node, carries only the marked points z+i and z±3+1, and is contracted by
the map. The forgetful morphism (4.19) restricts to an isomorphism

D±
i j M

Ç
g,3(B; J) . (4.21)

The (virtual) normal bundle ND±
i of D±

i in M
Ç
g,3+1(B; J) is canonically isomorphic to the complex

line bundle of the smoothings of the above node of Σi, as in [12, Lemma 5.2]. By [16, Corol-
lary 3.17], the sign of the isomorphism (4.21) with respect to the orientation on D±

i determined by

the orientations of M
Ç
g,3+1(B; J) and ND±

i is ±1.

By the same reasoning as in the complex case,

Ëi

∣∣
D±

i
, Ë3+1

∣∣
D±

i
= 0, Ëi =

{̃
fR3+1

}7
Ëi+[D+

i ]
vir+[D2

i ]
vir * H2

(
M

Ç
g,3+1(B; J);Q

)
; (4.22)
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the meaning of the last identity in (4.22) is analogous to that of (3.16), as explained above Propo-
sition 3.2. Under the identification (4.21),

c1(ND±
i ) j 2Ëi,

{̃
fR3+1

}7
Ëj

∣∣
D±

i
j Ëj " j* [3], Ëj

∣∣
D±

i
j Ëj " j* [3]2{i} .

Along with (4.22), this gives

〈
Ça1(µ1), . . . , Ça3(µ3), Ç1(1)

〉Ë,Ç
g,B

=

∫

[M
Ç
g,3+1(B;J)]vir

{̃
fR3+1

}7(
Ëa1
1

(
ev71µ1

)
. . . Ëa3

3

(
ev73µ3

))
Ë3+1,

〈
Ça1(µ1), . . . , Ça3(µ3), Ç0(µ)

〉Ë,Ç
g,B

=

∫

[M
Ç
g,3+1(B;J)]vir

{̃
fR3+1

}7(
Ëa1
1

(
ev71µ1

)
. . . Ëa3

3

(
ev73µ3

))(
ev 7

3+1µ
)

+
∑

1fif3
ai>0

∫

[M
Ç
g,3(B;J)]vir

( i21∏

j=1

Ë
aj
j

(
ev7jµj

))
Ëai21
i

(
ev7i (µi(µ2Ç

7µ))
)( 3∏

j=i+1

Ë
aj
j

(
ev7jµj

))
.

The identities R4 and R5 follow from the above two equations,

〈
c1(L

7
3+1|Σ·TΣ),Σ

〉
= 23, 〈ev 7

3+1µ,Σ〉 = 〈µ,B〉, (4.23)

where Σ is a generic fiber of the forgetful morphism f̃R3+1 in (4.19) oriented by the position of the

marked point z+3+1 and L3+12³M
Ç
g,3+1(B; J) is the universal tangent line bundle at z+3+1, and from

the compatibility, as in (2.11), of the virtual fundamental classes for M
Ç
g,3+1(B; J) and M

Ç
g,3(B; J)

with this fiber orientation. We justify (4.23) below.

The second identity in (4.23) follows from the fact that the intersection of any degree B curve in X
with a generic representative for the Poincare dual of µ is 〈µ,B〉. The pairing

L 7
3+1|Σ·TΣ 2³ C, Ë·v 2³ Ë(v), (4.24)

vanishes transversely at the marked points z±i *Σ with i* [3] (which correspond to the intersections
of Σ with D±

i ). It also vanishes on the real locus ΣÃ of Ã (which corresponds to the intersection

of Σ with the subspace of M
Ç
g,3+1(B; J) of maps from domains Σ2 so that one of the irreducible

components of Σ2 is P1 which has precisely one node, carries only the marked points z±3+1, and is

contracted by the map). Each of the 23 points z±i *Σ is a positive zero of the pairing (4.24). The
fixed locus ΣÃ is a disjoint union of circles with a trivial normal bundle. A small deformation of
the section of L 7

3+1|Σ·TΣ given by (4.24) does not vanish near ΣÃ. Thus, ΣÃ does not contribute
to the first number in (4.23). This establishes the first identity in (4.23).

The remaining cases of R4 and R5 are B=0 and either (g, 3)= (0, 1) or (g, 3)= (1, 0). The right-
hand sides of the equations in R4 and R5 vanish in either case. The left-hand sides are integrals
against the virtual classes of

M
Ç
0,2(0; J) j RM0,2×X

Ç and M
Ç
1,1(0; J) j RM1,1×X

Ç . (4.25)

With Ã1, Ã2 denoting the projections of the right-hand sides above to the two factors,

Ëi j Ã71Ëi and ev7iµi j Ã72
(
µi|XÇ

)
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under these identifications. Since RM0,2jS
1, Ë1, Ë2=0 if (g, 3)=(0, 1). Thus, the left-hand sides

of the equations in R4 and R5 also vanish in this case. Since the connected two-dimensional moduli
space RM1,1 is not orientable, the left-hand side of the equation in R4 vanishes in the (g, 3)=(1, 0)
case as well.

Since the obstruction bundle for M
Ç
1,1(0; J) is isomorphic to Ã71(E

R)7·Ã72TX
Ç under the second

identification in (4.25),

〈
Ç0(µ)

〉Ë,Ç
1,0

= ±
〈
(Ã72µ)e(Ã

7
1(E

R)7·Ã72TX
Ç),RM1,1×X

Ç
〉

= ±
〈
e(Ã71(E

R)7·Ã72TX
Ç),RM1,1×(M+XÇ)

〉 (4.26)

if M is a generic representative for the Poincaré dual of µ. For dimensional reasons, the restriction
of TXÇ to M+XÇ contains a trivial rank 2 subbundle; we denote its complement by V . By (4.26),

〈
Ç0(µ)

〉Ë,Ç
1,0

= ±
〈
e
(
(ER)7·(ER)7

)
,RM1,1

〉〈
e(V ),M+XÇ

〉
.

Since RM1,1 is not orientable (resp. V is oriented and of odd rank), the first (resp. second) factor
on the right-hand side above vanishes. This establishes the remaining case of R5.

4.3 Properties of invariants II

For P̃ *P̃(g, 3) as in (2.3) and B*H2(X;Z), let

PÇ

P̃
(B) =

{
(B2, B0)*H2(X;Z)2 : B22Ç7(B

2)+B0=B
}
.

For a complex line bundle L2³X, g*Z, disjoint subsets I, J¢Z+, and B*H2(X;Z), define

IË,Ç,L
g,(I,J),B : H7(X;Q)|I¶J | 2³ H7

(
Mg,|I¶J |;Q

)
,

IË,Ç,L
g,(I,J),B

(
µ1, . . . , µ|I¶J |

)
= (21)〈c1(L),Ç7(B)〉IË

g,|I¶J |,B

(
µ21, . . . , µ

2
|I¶J |

)
, (4.27)

where µ2i =

{
µi, if i* »21

I,J (I);

2Ç7µi, if i* »21
I,J (J).

Each moduli space RM0,3 with 3 g 2 is oriented as described in [16, Section 3.5]. For the pur-

poses of the B = 0 case of R9 and the g = 0 case of R12 below, we identify H̃7(RM0,3;Q) with
H7(RM0,3;Q) via this orientation. The identities in R10, R13, and R14 depend on the choices of
orientations for a generic fiber of the forgetful morphism fR3+1 and for the normal bundle of the
immersions in (4.5)-(4.9); these are specified in Section 4.1.

The linear maps (4.18) satisfy analogues of Kontsevich-Manin’s axioms of [25, Section 2]:

R6 (Effectivity II): IË,Ç
g,3,B=0 if B 6*H2(X;Z)ÇË;

R7 (Covariance): the map IË,Ç
g,3,B is S3-equivariant and

IË,Ç
g,3,B

(
µ1, . . . , µi21, Ç

7µi, µi+1, . . . , µ3
)
= »7i I

Ë,Ç
g,3,B(µ1, . . . , µ3) "µ1, . . . , µ3*H

7(X;Q);
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R8 (Grading II): IË,Ç
g,3,B is homogeneous of degree (g21)n2〈c1(X,Ë), B〉, i.e.

∣∣IË,Ç
g,3,B(µ)

∣∣ = |µ|+ (g21)n2
〈
c1(X,Ë), B

〉
" µ*H7(X;Q)3;

R9 (Fundamental Class I): for all µ*H7(X;Q),

IË,Ç
0,2,B(µ, 1) =

{
0, if B 6=0;

2〈µ, [XÇ]〉, if B=0;

R10 (Fundamental Class II): if g+3g2 and µ*H7(X;Q)3,

IË,Ç
g,3+1,B(µ, 1) =

(
fR3+1

)7(
IË,Ç
g,3,B(µ)

)
;

R11 (Divisor II): if g+3g2, µ*H7(X;Q)3, µ3+1*H
2(X;Q), and ³*H7(RMg,3;Q),

∫

RMg,3+1

(fR3+1)
7³ IË,Ç

g,3+1,B

(
µ, µ3+1

)
= 〈µ3+1, B〉

∫

RMg,3

³IË,Ç
g,3,B(µ);

R12 (Mapping to Point): for all µ1, . . . , µ3*H
7(X;Q),

IË,Ç
g,3,0

(
µ1, . . . , µ3

)
=

ù
üú
üû

2〈µ1. . .µ3, [X
Ç]〉, if g=0, 3g2;

±〈µ1. . .µ3, [X
Ç]〉e(ER), if n=1, g*2Z+;

0, otherwise;

R13 (Genus Reduction): for all µ*H7(X;Q)3,

(
»Cg,3
)7(

IË,Ç
g,3,B(µ)

)
=

N∑

i,j=1

gijIË,Ç
g22,3+2,B

(
µ, ei, ej

)
,

(
»Eg,3
)7(

IË,Ç
g,3,B(µ)

)
= (21)g+|µ|IË,Ç

g21,3+1,B

(
µ,PD21

X

(
[XÇ]X

))
;

R14 (Splitting): for all µ * H7(X;Q)3, P * P(g21, 3) as in (2.3), P̃ * P̃(g, 3) as in (2.3), and
partitions [3]=I¶J ,

(
»CP
)7(

IË,Ç
g,3,B(µ)

)
= (21)·n(P,µ)

∑

B1,B2*H2(X;Z)
B1+B2=B

N∑

i,j=1

gijIË,Ç
g1,|I|+1,B1

(
µI , ei

)
×IË,Ç

g2,|J |+1,B2

(
ej , µJ

)
,

(
»C
P̃

)7(
IË,Ç
g,3,B(µ)

)
= (21)·(P̃ ,µ)

∑

(B2,B0)*P
Ç

P̃
(B)

N∑

i,k=1

gikIË,Ç,L
g2,(I¶{3+1},J),B2

(
µI¶J , ei

)
×IË,Ç

g0,|K|+1,B0

(
ek, µK

)
,

(
»Cg,(I,J)

)7(
IË,Ç
g,3,B(µ)

)
=

∑

B2*H2(X;Z)
B22Ç7(B2)=B

N∑

i,j=1

gijIË,Ç,L
(g21)/2,(I¶{3+1},J¶{3+2}),B2

(
µ, ei, ej

)
,

(
»Eg,(I,J)

)7(
IË,Ç
g,3,B(µ)

)
= (21)|µ|

∑

B2*H2(X;Z)
B22Ç7(B2)=B

IË,Ç,L
g/2,(I¶{3+1},J),B2

(
µ,PD21

X

(
[XÇ]X

))
;
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R15 (Motivic Axiom): IË,Ç
g,3,B is induced by the correspondence CË,Ç

g,3,B .

The first property in R7 follows from the S3-invariance of the twisted fundamental class of RMg,3

and of the virtual fundamental class of M
Ç
g,3(B; J), the first identity in (3.6), and the first identity

in (4.17). The second property in R7 follows from

»i7
(
[RMg,3]

)
= 2[RMg,3], »̃i7

([
M

Ç
g,3(B; J)

]vir)
= 2

[
M

Ç
g,3(B; J)

]vir
, (4.28)

the first identity in (4.13), and the second identity in (4.17). The property R10 is a consequence of

the compatibility, as in (2.11), of the virtual fundamental classes for M
Ç
g,3+1(B; J) and M

Ç
g,3(B; J)

with the orientation of a generic fiber of the forgetful morphism f̃R3+1 in (4.19) by the position of the

marked point z+3+1. Since the intersection of any degree B curve in X with a generic representative
for the Poincare dual of µ * H2(X;Q) is 〈µ,B〉, this compatibility also implies R11. Similarly

to the complex case, R15 is immediate from (2.4), (2.5), and the definitions of IË,Ç
g,3,B and CË,Ç

g,3,B

after (4.18). We establish R13 and R14 in Section 5.2.

Proof of R9 and R12, g=0. By definition,
∫

RM0,2

³IË,Ç
0,2,B

(
µ, 1
)
=

∫

[M
Ç
0,2(B;J)]vir

(f7³
)(
ev71µ

)
. (4.29)

If B 6=0, ev71µ= f̃R 7
2 ev71µ and a generic fiber of

f̃R2 : M
Ç
0,2(B; J) 2³ M

Ç
0,1(B; J)

is P1. Since RM0,2 jRP1, the integral on the right-hand side of (4.29) thus vanishes for dimen-
sional reasons. This establishes the B 6=0 case of (R9).

Let 3g2. By [16, Corollary 3.19], the natural isomorphism

M
Ç
0,3(0; J) j RM0,3×X

Ç

is orientation-reversing with respect to the orientations on RM0,3 and M
Ç
0,3(0; J) specified in [16,

Section 3.5]. Along with (2.7), this implies the B=0 case of R9 and the g=0 case of R12.

Proof of R12, gg1. There is a natural identification

M
Ç
g,3(0; J) j XÇ×RMg,3 . (4.30)

We denote by Ã1, Ã2 : M
Ç
g,3(0; J)2³XÇ,RMg,3 the two projections. The kernels of the lineariza-

tions D(TX,dÇ) of the "̄J -operators on the space of real maps from symmetric surfaces to (X,Ç)

form the vector bundle Ã71TX
Ç over the moduli space on the left-hand side of (4.30). The cokernels

of these linearizations form a vector orbi-bundle isomorphic to the real part

(
Ã71TX·Ã72E

7
)R

j Ã71TX
Ç·Ã72(E

R)7 2³ XÇ×RMg,3 (4.31)

of the complex vector bundle Ã71TX·Ã72E
7 with the conjugation induced by the involutions on X

and E.

24



For a symmetric, possibly nodal, Riemann surface (Σ, Ã), we denote by "̄(Σ,Ã) the real Cauchy-
Riemann operator on the real line pair (Σ×C, Ã×c) over (Σ, Ã) induced by the standard "̄-operator
on the smooth functions on Σ; see [16, Section 2]. The determinants of the operators "̄(Σ,Ã) form a

real line orbi-bundle det "̄C over RMg,3; see [41]. Since the kernel of each operator "̄(Σ,Ã) consists
of constant R-valued functions, there is a canonical homotopy class of isomorphisms

det "̄C j Λtop
R (ER) (4.32)

of real line orbi-bundles over RMg,3. By [14, Propositions 5.9/6.1], there is also a canonical
homotopy class of isomorphisms

Λtop
R

(
T (RMg,3)

)
j det "̄C (4.33)

of real line orbi-bundles over RMg,3.

The determinants of the linearizations of the "̄J -operators on the space of real maps from symmetric

surfaces to (X,Ç) form a real line orbi-bundle detD(TX,dÇ) over M
Ç
g,3(0; J); see [14, Section 4.3].

The forgetful morphism (4.16) induces an isomorphism

Λtop
R

(
TM

Ç
g,3(0; J)

)
j
(
detD(TX,dÇ)

)
·f7
(
Λtop
R (T (RMg,3)

))
(4.34)

of real line orbi-bundles over M
Ç
g,3(0; J); the line orbi-bundle on the left-hand side is the top exterior

power of the virtual tangent bundle for the moduli space M
Ç
g,3(0; J). A real orientation (L, [Ë], s)

on (X,Ë, Ç) determines a homotopy class of isomorphisms

detD(TX,dÇ) j f7
(
(det "̄C)

·n
)

(4.35)

of real line orbi-bundles over M
Ç
g,3(0; J) via (1.2) for each stable map u representing an element of

M
Ç
g,3(0; J); see [16, Section 3.2]. By [16, Lemma 3.1] with rkCL=1 and degL=0, the homotopy

class of isomorphisms in (4.35) is determined by the orientation of XÇ induced by (L, [Ë], s) if and
only if g(g21)/2 is even.

Combining (4.33)-(4.35) with the identification of the cokernels of the operators D(TX,dÇ) in (4.31),
we obtain a homotopy class of isomorphisms

Λtop
R

(
T (XÇ×RMg,3)

)
·
(
Λtop
R

(
Ã71TX

Ç·Ã72(E
R)7
))7

c Λtop
R

(
TM

Ç
g,3(0; J)

)

j
(
detD(TX,dÇ)

)
·f7
(
Λtop
R (T (RMg,3)

))
j f7

(
(det "̄C)

·(n+1)
) (4.36)

of real line orbi-bundles over M
Ç
g,3(0; J). Since n+1*2Z, the last line bundle in (4.36) is canonically

oriented. Thus, [
M

Ç
g,3(0; J)

]vir
= ±e

(
Ã71TX

Ç·Ã72(E
R)7
)
+
[
XÇ×RMg,3

]
. (4.37)

The cap product above is taken with respect to the relative orientation of the vector orbi-bundle (4.31)
determined via (4.36). This relative orientation depends on the choice of a coherent system of de-
terminant line bundles as in [41], and so does the sign in (4.37).
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If g 6*2Z, the rank of Ã71TX
Ç·Ã72(E

R)7 is odd. The Euler class in (4.37) thus vanishes in this case.
If gg2, Ã71TX

Ç·Ã72(E
R)7 is pulled back from XÇ×RMg,0. Since

rk
(
Ã71TX

Ç·Ã72(E
R)7
)
> dim

(
XÇ×RMg,0

)
if n>3, gg2,

the Euler class in (4.37) also vanishes if n>3 and gg2 (just as happens in the complex case). If
n=1, 3, the vector bundle TXÇ over XÇ is trivial. Since

3 rk(ER) > dimRMg,0 if gg2,

the Euler class in (4.37) also vanishes if n=3 and gg2.

In the remaining n=1, g*2Z+ case of R12, (4.36) and (4.37) reduce to

Λtop
R

(
T (XÇ×RMg,3)

)
·Λtop

R

(
Ã72(E

R)7
)
j Λtop

R

(
TM

Ç
g,3(0; J)

)
j f7

(
(det "̄C)

·2
)
, (4.38)

[
M

Ç
g,3(0; J)

]vir
= ±(21)g/2

(
[XÇ]×

(
e((ER)7)+

[
RMg,3

]))
. (4.39)

The cap product above is taken with respect to the relative orientation of the vector orbi-bundle (4.3)
determined by the homotopy class of isomorphisms

Λtop
R (ER) j det "̄C j Λtop

R

(
T (RMg,3)

)

induced by (4.32) and (4.33). The sign in (4.39) depends on the choice of a coherent system of
determinant line bundles as in [41]. By (2.7) and (2.4), the sign in the middle case of R12 is
opposite to the overall sign in (4.39).

Remark 4.1. By the second part of Section 5.3 in the 5th arXiv version of [41], the choice of a
coherent system of determinant line bundles determines the sign between the virtual fundamental
class of a smooth moduli space with an obstruction bundle and the cap product of the Euler class of
the obstruction bundle with the fundamental class of the moduli space with respect to the relative
orientation induced by the orientation of the moduli space as in (4.37). A coherent system of
determinant line bundles also determines the homotopy class of the isomorphisms (4.33) and the
homotopy class of the isomorphisms

Λtop
R

(
T (XÇ×RMg,3)

)
·Λtop

R

(
Ã71TX

Ç·Ã72((E
R)7)

)
j
(
detD(TX,dÇ)

)
·f7
(
Λtop
R (TRMg,3)

)

induced by the identification in (4.36) and the isomorphism in (4.34). By Proposition 5.10 in the
5th arXiv version of [41], the sign in (4.37) for the “base” coherent system of determinant line
bundles given by [41, (4.10)] is plus. The sign ± in (4.39) is plus as well for this system. In
general, the sign ± in (4.39) is the same as the sign of the component A12g,g*R7 corresponding,
as in Theorem 2 in Section 3.4 of [41], to the coherent system of determinant line bundles used.
The signs of A12g,g also correspond to the two relative orientations of the vector orbi-bundle (4.3)
determined by the homotopy class of isomorphisms (4.33). As explained in [16, Section 3.5], the
construction of this homotopy class in [14] involves a somewhat arbitrary sign choice which can be
fixed systematically from an orientation of RM0,2.

Remark 4.2. The properties R1-R15 are stated for the orientations on the moduli spaces M
Ç
g,3(B; J)

induced by a real orientation (L, [Ë], s) on (X,Ë, Ç) via (1.2) as in [16, Section 3.3]. These properties
remain valid with the modifications described below if Ç̃ is a conjugation on L lifting Ç and the
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orientations on the moduli spaces are instead induced via (1.4) as in [14]. The homotopy class of
isomorphisms in (4.35) is then always determined by the orientation of XÇ induced by (L, [Ë], s),
and thus (21)g/2 should be omitted from (4.39). By Remark 5.1, the right-hand side in the first
equation in R13 should be negated, while g in the sign exponent in the second equation in R13
should be replaced with 〈c1(X,Ë), B〉/221. Each summand on the right-hand side of the first
equation in R14 should be multiplied by (21)·g1,g2 (B1,B2) with

·g1,g2(B1, B2) =
(
g121+〈c1(X,Ë), B1〉/2

)(
g221+〈c1(X,Ë), B2〉/2

)
,

and the entire right-side should be negated. For the purposes of the last three equations in R14, the
leading sign should be dropped from the definition of IË,Ç,L

g,(I,J),B in (4.27); this makes IË,Ç,L
g,(I,J),B inde-

pendent of the complex line bundle L, which can thus be omitted from the superscript. The leading

sign exponents, in front of the sums, in these three equations should changed to (21)·(P̃ ,µ)+g2 ,
(21)(g+1)/2, and (21)|µ|+g/2, respectively. The sum of ·n(P ) and ·g1,g2(B1, B2) is even, i.e. it does
not contribute to the overall sign in the first equation in R14, if n >= 3 mod 4 and c1(X,Ë) is
divisible by 4 on the classes in H2(X;Z) representable by real maps. This is in particular the case
if X is a Calabi-Yau threefold or the complex projective space P3.

4.4 Reconstruction of invariants

We call a collection of homomorphisms IË,Ç
0,3,B as in (4.18) with 3g2 and B*H2(X;Z) which satisfies

the properties R6-R10, R11 with ³=1, and R12-R15 an extension of the tree-level system {IË0,3,B}
of GW-classes for (X,Ë). Theorem 4.3 below is the real analogue of Proposition 3.1. According
to it, an extension of a tree-level system of GW-classes for (X,Ë) can be reconstructed from a
small subcollection of the full collection. Similarly to Proposition 3.1, Theorem 4.3 follows readily
from the fact that H7(RM0,3;Q) is generated as a ring by certain “boundary” classes.

Theorem 4.3. Let (X,Ë, Ç) be a compact real symplectic manifold of dimension 2n and {IË
0,3,B}

be a tree-level system of GW-classes for (X,Ë). A Ç-extension {IË,Ç
0,3,B} of {IË

0,3,B} is determined
by the numbers

∫

RM0,3

IË,Ç
0,3,B(µ) * Q with 3 * Zg0, B*H2(X;Z)ÇË, µ*H

7
2(X;Q)3,

i.e. by the codimension 0 classes IË,Ç0,3,B(µ) with µ*H
7
2(X;Q)3. If in addition H7

2(X;Q) is generated

as a ring by H2
2(X;Q) and H7

+(X;Q), then this extension is determined by the codimension 0

classes IË,Ç
0,2,B(µ1, µ2) with

B * H2(X;Z)ÇË, 〈c1(X,Ë), B〉 f n+1,

µ1 * H7
2(X;Q), |µ1| = n+

〈
c1(X,Ë), B

〉
21, µ2 * H2

2(X;Q).
(4.40)

Proof. By [4, Theorem 2.2], the cohomology ring H7(RM0,3;Q) is generated by the Poincaré duals

of the images of the immersions »C
P̃

in (4.8) with P̃ * P̃(0, 3) and »E0,(I,J) in (4.9) with [3]=I¶J .

Along with Poincaré Duality for RM0,3, this implies that

⋂

P̃*P̃(0,3)

(
ker »C7

P̃

)
+

⋂

[3]=I¶J

(
ker »E7

0,(I,J)

)
= H2323

(
RM0,3;Q

)
,
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with »C7
P̃

and »E7
0,(I,J) denoting the pullback homomorphisms on the rational cohomology. Thus,

every positive-codimension cohomology class IË,Ç
0,3,B(µ) on RM0,3 is determined by its pullbacks

»C7
P̃
IË,Ç
0,3,B(µ) * H7

(
M

C

P̃ ;Q
)

with P̃ *P̃(0, 3) and

»E 7
0,(I,J)I

Ë,Ç
0,3,B(µ) * H7

(
M0,3+1;Q

)
with [3]=I¶J .

(4.41)

By the last identity in R14, each of the latter pullbacks is a linear combination of classes IË
0,3+1,B2(µ2)

determined by the tree-level system {IË
0,3,B}. By the second identity in R14, each of the former pull-

backs in (4.41) to a nonempty domain is a linear combination of the products IË
0,32,B2(µ2)×IË,Ç

0,30,B0
(µ0)

with 30<3. By induction, this implies that a Ç-extension {IË,Ç
0,3,B} of {IË

0,3,B} is determined by the

codimension 0 classes IË,Ç0,3,B(µ) with µ *H7(X;Q)3. By the second property in R7 and the first

identity in (4.28), the codimension 0 classes IË,Ç0,3,B(µ1, . . . , µ3) with µi *H
7
+(X;Q) for some i* [3]

vanish. This establishes the first claim.

Suppose H7
2(X;Q) is generated as a ring by H2

2(X;Q) and H7
+(X;Q). By the proof of [12, Corol-

lary 2.4(2)], which depends only on a homology relation between the images of the immersions
of »C

P̃
, the second identity in R14, C9, R9, R11, and the above vanishing property, every codimen-

sion 0 class IË,Ç0,3,B(µ) is then determined by the codimension 0 classes IË,Ç0,3,B(µ1, µ2) satisfying (4.40)
and the complex codimension 0 classes IË0,3,B(µ

2). Combining this with the first claim, we obtain
the second claim.

A manifestation of the first statement of Theorem 4.3 is the WDVV-type equation for real GW-
invariants established in [12]. Define

d : H2(X;Z) 2³ H2(X;Z), d(B2) = B22Ç7(B
2).

For [3]=I¶J and µ*H7(X;Q)3, let

WI,J(µ) = (21)·((I,J),µ)2|J | .

According to [12, Theorem 2.1],

∑

[3]=I¶J
2*I, 1,3*J

∑

B0,B2*H2(X;Z)
B0+d(B2)=B

N∑

i,j=1

WI,J(µ)
〈
µI , ei

〉Ë,Ç
0,B0

gij
〈
ej , µJ

〉Ë
0,B2

=
∑

[3]=I¶J
3*I, 1,2*J

∑

B0,B2*H2(X;Z)
B0+d(B2)=B

N∑

i,j=1

WI,J(µ)
〈
µI , ei

〉Ë,Ç
0,B0

gij
〈
ej , µJ

〉Ë
0,B2

(4.42)

for all 3*Z+, B*H2(X;Z), and µc (µ1, . . . , µ3) with µ1*H
7
+(X;Q), and µ2, . . . , µ3*H

7
2(X;Q).

The full collection of relations (4.42) is equivalent to the compatibility of the homomorphism RÇ

on the extended quantum cohomology of (X,Ë) defined at the end of [12, Section 7] with the

quantum product. This collection completely determines all real genus 0 GW-invariants 〈. . .〉Ë,Ç0,B of

(X,Ë)=(Pn, ËFS) with n 6*2Z from the basic input 〈pt〉Ë,Ç0,L=±1, i.e. the number of real lines in Pn

through a conjugate pair of points.
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Theorem 4.3 is a reconstruction result in real GW-theory. Another result is Theorem 4.4 below
that reduces the g=0 descendant GW-invariants (4.15) to the primary ones, i.e. those with ai=0
for all i* [3]. Its proof is similar to that of Proposition 3.2. We give it under the assumption that

the strata of M
Ç
0,3(B; J) are of the expected dimension. It adapts readily to semi-positive sym-

plectic manifolds via real analogues of Ruan-Tian’s global inhomogeneous perturbations as in [42]
and with some technical care to arbitrary real symplectic manifolds with real orientations via the
virtual fundamental class constructions of [27, 8]. The zero-contribution arguments in the last two
paragraphs of the proof of Theorem 4.4 are similar to the proofs of [13, Corollary 3.4(2)] and [12,
Lemma 6.2], respectively.

For 3*Z+, i* [3] distinct, and B,B0, B
2*H2(X;Z) with B0+d(B2)=B, we denote by

RDB0,B2i ¢ M
Ç
0,3(B; J) (4.43)

the subspace of real maps u from domains Σ+*Σ0*Σ
2 such that

" Σ+,Σ0,Σ
2 are connected genus 0 curves with Σ0 sharing a node with Σ+ and another node

with Σ2,

" the involution Ã on the domain preserves Σ0 and interchanges Σ+ and Σ2,

" the first point z+i in the i-th conjugate pair of marked points lies on Σ+, and

" the restrictions of u to Σ0 and Σ+ are of degrees B0 and B2, respectively.

Under ideal circumstances, RDB0,B2i is a union of smooth codimension 2 submanifolds inM
Ç
0,3(B; J)

intersecting transversely. The (virtual) normal bundle of each of these submanifolds is naturally
isomorphic to the complex line bundle of the smoothings of the node shared by Σ0 and Σ+, as in

[12, Lemma 5.2]. These submanifolds thus inherit orientations from that of M
Ç
0,3(B; J). By [27, 8],

RDB0,B2i carries a natural virtual fundamental class. The meaning of the equation (4.44) below is
that the integral of the product of the left-hand side with a descendant cohomology class ·, as in

the integrand in (4.15), against [M
Ç
0,3(B; J)]vir equals the integral of the product of the first term

on the right-hand side with · against [M
Ç
0,3(B; J)]vir plus the integral of · against the weighted

sum of [RDB0,B2i]
vir.

Theorem 4.4. Let (X,Ë, Ç) be a compact real symplectic manifold of dimension 2n with n 6*2Z and
(L, [Ë], s) be a real orientation on (X,Ë, Ç). For 3*Z+, B*H2(X;Z), i* [3], and µ*H2(X;Q),

〈µ,B〉Ëi = 22 ev7iµ+
∑

B0,B2*H2(X;Z)
B0+d(B2)=B

〈µ,B0〉
[
RDB0,B2i

]vir
* H2

(
M

Ç
0,3(B; J);Q

)
. (4.44)

Proof. We can assume that Ë(B)>0 and Ç7B=2B. By the linearity and continuity of both sides
of (4.44) in µ, we can also assume that Ç7µ=2µ and that µ can be represented by a (generic)
pseudocycle » : M 2³ X. Let d = 〈µ,B〉 and ~ * R+ be the minimal value of 〈Ë, u7[P

1]〉 for a
non-constant J-holomorphic map u : P12³X.

We denote by M̃ the set of representatives u : Σ2³X for the elements of M
Ç
0,3(B; J) such that

" z+i =0 on the irreducible component P1
i;+¢Σ containing it;
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" if z2i *P1
i;+, then z

2
i =>;

" if z2i 6*P1
i;+, then

ç the node of P1
i;+ separating it from the irreducible component P1

i;2 of Σ containing z2i is the

point >*P1
i;+;

ç the interior of the unit disk D ¢ P1
i;+ centered at z+i = 0 contains no marked points other

than z+i and no nodes;

ç either
∫
D
u7Ë = ~/2 and D¢ P1

i;+ contains no marked points other than z+i and no nodes or∫
D
u7Ë<~/2 and D¢P1

i;+ contains a marked point other than z+i or a node.

We call two elements of M̃ equivalent if they differ by a reparametrization of the domain which
commutes with the involution on the domain and restricts to the identity on the irreducible com-
ponent P1

i;+ containing z+i . Gromov’s convergence induces a topology on the set M̂ of the resulting

equivalence classes of elements of M̃. The action of S1 on P1
i;+ induces a continuous action on M̂

so that M
Ç
0,3(B; J) is the quotient M̂/S1 and

LcM̂×S1C 2³ M
Ç
0,3(B; J)

is the universal tangent line bundle for the marked point z+i . Below we define a “meromorphic”
section of L·d and determine its zero/pole locus.

A generic element u : P12³X of M̂ intersects M transversely at points

y+1 (u), . . . , y
+
d+

(u) * C7 and y21 (u), . . . , y
2
d2

(u) * C7

positively and negatively, respectively, so that d=d+2d2. The resulting element

s
(
[u]
)
c
[
u, y+1 (u) . . . y

+
d+

(u)
/
y21 (u) . . . y

2
d2

(u)
]
* L·d

depends only on the image [u]*M
Ç
0,3(B; J) of u* M̂. This construction induces a section of L·d

over generic elements of M
Ç
0,3(B; J). This section extends to a “meromorphic” section over all

of M
Ç
0,3(B; J).

The section s has a zero (resp. pole) whenever u meetsM positively (resp. negatively) at z+i =0 and
a pole (resp. zero) whenever u meets M positively (resp. negatively) at z2i =>. It also has a pole
(resp. zero) whenever u*RDB0,B2i meets M at any point of Σ0 (in the terminology around (4.43))
positively (resp. negatively). The same is the case if u * RDB0,B2i meets M at any point of Σ2

or the domain of u consists of two components, P1
i;+ and P1

i;2, interchanged by the involution and

u meets M at any point of P1
i;2. We denote the two sets of such elements by RD2

B0,B2i(M) and

RE2
i (M), respectively. Thus,

s21(0) =
(
ev21

i (M)2{Ççevi}
21(M)

)
2

∑

B0,B2*H2(X;Z)
B0+d(B2)=B

〈µ,B0〉RDB0,B2i

*
⋃

B0,B2*H2(X;Z)
B0+d(B2)=B

(
RD2

B0,B2i(M)*RE2
i (M)

)
¢ M

Ç
0,3(B; J) .

(4.45)
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The rows in the commutative diagram

M
Ç
0,3(B; J)

Ççevi //

id
��

X

Ç

��

M
»oo

id

��

M
Ç
0,3(B; J)

evi // X M
Çç»

oo

induce two fiber-product orientations on

M
Ç
0,3(B; J) Ççevi×» M = M

Ç
0,3(B; J) evi×Çç» M .

Since the diffeomorphism Ç of X is orientation-reversing, these two orientations are opposite. Since
Ç7µ=2µ and Ç7[M ]=[M ], the difference in (4.45) contributes 2 ev7iµ to

2〈µ,B〉Ëi = c1(L
·d) * H2

(
M

Ç
0,3(B; J);Q

)
. (4.46)

The contribution of the sum in (4.45) is exactly as in the complex case of Proposition 3.2. We show
below that the subsets RD2

B0,B2i(M) and RE2
i (M) of s21(>) do not contribute to (4.46) and thus

establish (4.44).

After intersecting with a cycle corresponding to integration against a descendant cohomology class ·

on M
Ç
0,3(B; J), as in the integrand in (4.15), we can assume that RD2

B0,B2i(M) is a finite collection

of points. Let d2=〈µ,B2〉, u0*RD2
B0,B2i(M), and

y+1 , . . . , y
+
d+

* C7 and y21 , . . . , y
2
d2

* C7,

with d2 = d+2d2, be the points at which the restriction of u0 to Σ2 intersects M positively and
negatively, respectively. The complex smoothing parameter c corresponding to the node shared
by Σ0 and Σ+ also smooths out the node shared by Σ0 and Σ2 according to the smoothing
parameter c, i.e. a point 1/w *Σ2 in the domain of u corresponds to the point > 1/|c|2w in the
domain of the associated smoothed out map uc meeting M . The section s on a neighborhood of u0
can thus be approximated by the map

C 2³ C, c 2³
(
y21 . . .y

2
d2
/y+1 . . .y

+
d+

)
|c|22d2 .

It follows that s can be deformed to a section with no zeros or poles on this neighborhood. This
implies that RD2

B0,B2i(M) does not contribute to 〈·, [s21(0)]〉.

If RE2
i (M) 6=', then d*2Z. After intersecting with a cycle corresponding to integration against a

descendant cohomology class · on M
Ç
0,3(B; J), we can assume that RE2

i (M) is a finite collection of

circles. The normal bundle to RE2
i (M) is the trivial line bundle. The section s on a neighborhood

of a circle S1¢RE2
i (M) can be approximated by a map

S1×R 2³ C, (u, r) 2³ c(u)r2d/2 ,

for some continuous map c : S12³C7. The signed number of zeros of a deformation of s on this
neighborhood is

2(d/2)
〈
e
(
(S1×C)/(S1×cR)

)
, S1
〉
= 0 ;

see Propositions 2.18A and B in [39]. Thus, RE2
i (M) does not contribute to 〈·, [s21(0)]〉 either.
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As in the complex case in Section 3.3, the properties of real GW-invariants of Sections 4.2 and 4.3
can be reformulated in terms of differential equations on generating functions for these invariants.
We continue with the notation at the end of Section 3.3. For the purposes of (4.47) below, we
assume each basis element ej for H7(X;Q) lies in either H7

+(X;Q) or H7
2(X;Q). Let

ΦË,Ç(t, q) =
∑

B*H2(X)

∑

3g0

1

3!

( ∑

B2*H2(X;Z)
d(B2)=B

〈
t, . . . , t︸ ︷︷ ︸

3

〉Ë
0,B2

)
qB .

The (primary) real genus 0 GW-potential and the descendant real genus g GW-potential of (X,Ë, Ç)
are the formal power series

ΩË,Ç(t, q) =
∑

B*H2(X)

∑

3g0

1

3!

〈
t/2, . . . , t/2︸ ︷︷ ︸

3

〉Ë,Ç
0,B
qB and

FË,Ç
g (̃t, q) =

∑

B*H2(X;Z)

∑

3g0

1

3!

〈̃
t/2, . . . , t̃/2︸ ︷︷ ︸

3

〉Ë,Ç
g,B
qB ,

respectively. The full descendant GW-potential is the formal power series

FË,Ç(̃t, q) =
∑

gg0

FË,Ç
g (̃t, q)»g21.

Thus, ΩË,Ç is the coefficient of »21 in FË,Ç with t0j= tj and taj=0 for a>0.

The real string relation R3 is equivalent to the differential equation

"FË,Ç

"t01
= 0 .

The real dilaton relation R4 is equivalent to the differential equation

"FË,Ç

"t11
=

{
»
"

"»
+

>∑

a=0

N∑

j=1

taj
"

"taj

}
FË,Ç .

The relations (4.42) are equivalent to the WDVV-type differential equations

N∑

j,k=1

"ti1"ti2"tjΦ
Ë,Ç · gjk"tk"ti3Ω

Ë,Ç

= (21)|ei2 ||ei3 |
N∑

j,k=1

"ti1"ti3"tjΦ
Ë,Ç · gjk"tk"ti2Ω

Ë,Ç

(4.47)

with i1, i2, i3=1, 2, . . . , N such that ei1 *H
7
+(X;Q) and ei2 , ei3 *H

7
2(X;Q).
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5 Genus reduction and splitting

Let (X,Ë, Ç) and n be as in Theorem 1.2. For the remainder of this paper, we fix J *J Ç
Ë and omit

it from the notation for the moduli spaces of maps. We define the arithmetic genus g of a closed,
possibly nodal and disconnected, Riemann surface (Σ, j) by

g21 =
m∑

i=1

(gi21)

if g1, . . . , gm are the arithmetic genera of the topological components of Σ.

5.1 Comparisons of orientations

For g * Z, 3 * Zg0, and B*H2(X;Z), we denote by M
Ç;"
g,3 (B) the moduli space of stable real

J-holomorphic degree B maps from closed, possibly nodal and disconnected, symmetric Riemann
surfaces of arithmetic genus g with 3 conjugate pairs of marked points. Thus,

M
Ç
g,3(B) ¢ M

Ç;"
g,3 (B)

is a union of topological components. For each i* [3], let

evi : M
Ç;"
g,3 (B) 2³ X and Li 2³ M

Ç;"
g,3 (B)

be the natural evaluation map and the universal tangent line orbi-bundle, respectively, at the
marked point z+i . Let

(
Li·Li

)R
=
{
rv·Cv*Li·CLi : v*Li, r*R

}
.

This real line bundle over M
Ç;"
g,3 (B) is canonically oriented by the standard orientation of R.

For each element P *P(g21, 3) as in (2.3), let

»̃CP ;0 : M
C

P (B)c
⊔

B1,B2*H2(X;Z)
B1+B2=B

M
Ç
g1,|I|+1(B1)×M

Ç
g2,|J |+1(B2) 2³ M

Ç;"
g22,3+2(B) (5.1)

be the open embedding obtained by taking the disjoint union of the two maps and by re-ordering the
pairs of marked points according to the bijection (2.1) with (I, J) replaced by (I¶{3+1}, J¶{3+2}).
For disjoint subsets I, J ¢ Z+ and a map uc (C, u) from a marked curve C with the underlying
Riemann surface (Σ, j) as in (4.7), define

DI,J(u) =
(
DI,J(C),D(u) : Σ̂2³X

)
with D(u)|{+}×Σ = u, D(u)|{2}×Σ = Ççu.

For each P̃ *P̃(g, 3) as in (2.3), let

»̃C
P̃ ;0

: M
C

P̃ (B)c
⊔

(B2,B0)*P
Ç

P̃
(B)

Mg2,|I¶J |+1(B
2)×M

Ç
g0,|K|+1(B0) 2³ M

Ç;"
g22,3+2(B) (5.2)
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be the open embedding sending ([u2], [u0]) to the equivalence class of the marked map obtained by
taking the disjoint union of DI¶{3+1},J (u

2) and u0 and by re-ordering the pairs of marked points
according to the bijection (2.1) with (I, J) replaced by (I¶J¶{3+1},K¶{3+2}). If [3]=I¶J , let

»̃Cg,(I,J);0 : M
C

(g21)/2,3+2(B) c
⊔

B2*H2(X;Z)
B22Ç7(B2)=B

M(g21)/2,3+2(B
2) 2³ M

Ç;"
g22,3+2(B) and

»̃Eg,(I,J);0 : M
E
g/2,3+1(B) c

⊔

B2*H2(X;Z)
B22Ç7(B2)=B

Mg/2,3+1(B
2) 2³ M

Ç;"
g21,3+1(B)

(5.3)

be the open embedding sending [u2] to the equivalence class of DI¶{3+1},J¶{3+2}(u
2) and the open

embedding sending [u2] to the equivalence class of DI¶{3+1},J (u
2). If g*2Z (resp. g 6*2Z), we define

M
C

(g21)/2,3+2(B) (resp. M
E
g/2,3+1(B)) to be the empty set.

Define

M
2Ç;"
g22,3+2(B) =

{
[u]*M

Ç;"
g22,3+2(B) : ev3+1([u])=ev3+2([u])

}
,

M
22Ç;"
g22,3+2(B) =

{
[u]*M

Ç;"
g21,3+1(B) : ev3+1([u])*X

Ç
}
.

The short exact sequences

0 2³ TM
2Ç;"
g22,3+2(B) 2³ TM

Ç;"
g22,3+2(B)

∣∣
M

2Ç;"
g22,3+2(B)

2³ ev 7
3+1TX 2³ 0,

0 2³ TM
22Ç;"
g21,3+1(B) 2³ TM

Ç;"
g21,3+1(B)

∣∣
M

22Ç;"
g21,3+1(B)

2³ ev 7
3+1NXX

Ç 2³ 0

induce isomorphisms

Λtop
R

(
T
(
M

Ç;"
g22,3+2(B)

))∣∣
M

2Ç;"
g22,3+2(B)

j Λtop
R

(
T
(
M

2Ç;"
g22,3+2(B)

))
·ev73+1

(
Λtop
R (TX)

)
,

Λtop
R

(
T
(
M

Ç;"
g21,3+1(B)

))∣∣
M

22Ç;"
g21,3+1(B)

j Λtop
R

(
T
(
M

22Ç;"
g21,3+1(B)

))
·ev73+1

(
Λtop
R (NXX

Ç)
) (5.4)

of real line bundles over M
2Ç;"
g22,3+2(B) and M

22Ç;"
g21,3+1(B), respectively.

We denote by

»̃2g,3 : M
2Ç;"
g22,3+2(B) 2³ M

Ç;"
g,3 (B) and »̃22g,3 : M

22Ç;"
g21,3+1(B) 2³ M

Ç;"
g,3 (B) (5.5)

the immersion obtained by identifying the marked points z+3+1 and z23+1 of the domain of each map

with z+3+2 and z23+2, respectively, to form a conjugate pair of nodes and the immersion obtained by

identifying the marked point z+3+1 of the domain of each map with z23+1 to form an E-node. The
first immersion is generically 4 : 1 onto its image, while the second is generically 2 : 1. There are
canonical isomorphisms

N »̃2g,3 c
»̃2 7g,3T (M

Ç;"
g,3 (B))

d»̃2g,3(T (M
2Ç;"
g22,3+2(B)))

j L3+1·CL3+2,

N »̃22g,3 c
»̃22 7g,3T (M

Ç;"
g,3 (B))

d»22g,3(T (M
22Ç;"
g21,3+1(B)))

j
(
L3+1·L3+1

)R
.

(5.6)
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They induce isomorphisms

»̃2 7g,3
(
Λtop
R

(
T (M

Ç;"
g,3 (B))

))
j Λtop

R

(
T
(
M

2Ç;"
g22,3+2(B)

))
·Λ2

R

(
L3+1·CL3+2

)
,

»̃22 7g,3

(
Λtop
R

(
T (M

Ç;"
g,3 (B))

))
j Λtop

R

(
T
(
M

22Ç;"
g21,3+1(B)

))
·
(
L3+1·L3+1

)R (5.7)

of real line bundles over M
2Ç;"
g22,3+2(B) and M

22Ç;"
g21,3+1(B), respectively.

The symplectic orientation on X and the orientation on XÇ induced by a real orientation (L, [Ë], s)
on (X,Ë, Ç) determines an orientation on NXX

Ç via the short exact sequence

0 2³ TXÇ 2³ TX|XÇ 2³ NXX
Ç 2³ 0

of real vector bundles over XÇ. By [16, Section 3.3], (L, [Ë], s) endows the moduli space M
Ç;"
g,3 (B)

with an orientation and a virtual fundamental class of dimension (4.14). The space M
Ç;"
g,3 (B)

naturally splits into unions of topological components, such as M
Ç
g,3(B) and the images of »̃CP ;0

with P * P(g+1, 322), »̃C
P̃ ;0

with P̃ * P̃(g+2, 322), »̃Cg+2,(I,J);0 with [322]=I¶J , and »̃Eg+1,(I,J);0

with [321]=I¶J . By the first statements of [16, Propositions 3.12/3], the signs (21)· of the open
embeddings in (5.1)-(5.3) with respect to the orientations induced by (L, [Ë], s) and the complex
orientations on the complex moduli space Mg2,32(B

2) are given by

·CP ;0 = ·n(P ), ·C
P̃ ;0

∣∣
Mg2,|I¶J|+1(B

2)×M
Ç
g0,|K|+1(B0)

=
〈
c1(L), Ç7(B

2)
〉
+|J |,

·Cg,(I,J);0
∣∣
M(g21)/2,3+2(B

2)
=
〈
c1(L), Ç7(B

2)
〉
+|J |+1,

·Eg,(I,J);0
∣∣
Mg/2,3+1(B

2)
=
〈
c1(L), Ç7(B

2)
〉
+|J |,

(5.8)

respectively.

Along with the canonical orientations on L3+1·CL3+2 and (L3+1·L3+1)
R, (L, [Ë], s) also de-

termines orientations on M
2Ç;"
g22,3+2(B) and M

22Ç;"
g21,3+1(B) via (5.4) and (5.7). By the first state-

ment of [16, Proposition 3.14], the orientations on M
2Ç;"
g22,3+2(B) defined via the first isomorphisms

in (5.4) and (5.7) are the same. By the first statement of [16, Proposition 3.16], the orientations

on M
22Ç;"
g21,3+1(B) defined via the second isomorphisms in (5.4) and (5.7) are opposite.

5.2 Proof of R13 and R14

Fix a tuple µc(µi)i*[3] of elements of H7(X;Q). Let ³2*H7(RMg21,3+1;Q) and

M
22Ç
g21,3+1(B) = M

22Ç;"
g21,3+1(B)+M

Ç
g21,3+1(B).

By the definition of IË,Ç
g,3,B below (4.18) and (2.4),

∫

RMg21,3+1

³2IË,Ç
g21,3+1,B

(
µ,PD21

X

(
[XÇ]X

))

=

∫

[M
Ç
g21,3+1(B)]vir

(f7³2)
(
ev71µ1

)
. . .
(
ev73µ3

)(
ev 7

3+1

(
PD21

X

(
[XÇ]X

)))

=

∫

[M
22Ç
g21,3+1(B)]vir

(f7³2)»̃22 7g,3

(
(ev71µ1) . . .(ev

7
3µ3)

)
.

(5.9)
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The last virtual fundamental class above is taken with respect to the orientation on M
22Ç
g21,3+1(B)

induced by (L, [Ë], s) via the second isomorphism in (5.4). By (2.13) with r=1 and R8,

∫

RMg21,3+1

³2
(
»Eg,3
)7(

IË,Ç
g,3,B(µ)

)
= (21)g21+|µ|

∫

RMg,3

(
»Eg,3
)
7(³

2)IË,Ç
g,3,B(µ)

= (21)g21+|µ|

∫

[M
Ç
g,3(B;J)]vir

(
f7
(
(»Eg,3)7(³

2)
))
(ev71µ1) . . .(ev

7
3µ3) .

(5.10)

The restriction »̃Eg,3 of »̃
22
g,3 to M

22Ç
g21,3+1(B) is the fiber product of the forgetful morphism f in (4.16)

and the immersion »Eg,3 in (4.5). The bundle homomorphism

df : N »̃Eg,3=N »̃22g,3
∣∣
M

22Ç
g21,3+1(B)

2³
{
f|
M

22Ç
g21,3+1(B)

}7
N »Eg,3

induced by the differential of f, with f on the right-hand side as in (4.16) with (g, 3) replaced by
(g21, 3+1), is generically an isomorphism that intertwines the two canonical orientations. Thus,
the integral on the right-hand side of (5.10) equals to the right-hand side in (5.9) with the orien-

tation on M
22Ç
g21,3+1(B) induced by (L, [Ë], s) via the second isomorphism in (5.7). Along with the

first statement of [16, Proposition 3.16], this implies the second claim in R13.

Let [3]=I¶J and g*Zg0. The spaces

M
2
(g21)/2,3+1(B) c

{
[u]*M

C

(g21)/2,3+2(B) : ev3+1([u])=Ç
(
ev3+1([u])

)}
and

M
22
g/2,3+1(B) c

{
[u]*M

E
g/2,3+1(B) : ev3+1([u])*X

Ç
}

inherit orientations from the complex orientations of M
C

(g21)/2,3+2(B) and M
E
g/2,3+1(B) via the

analogues of the isomorphisms in (5.4). Furthermore,

»̃Cg,(I,J);0
(
M

2
(g21)/2,3+2(B)

)
¢ M

2Ç;"
g22,3+2(B) and »̃Eg,(I,J);0

(
M

22
g/2,3+1(B)

)
¢ M

22Ç;"
g21,3+1(B).

Suppose in addition g*2Zg0 and ³2*H7(Mg/2,3+1;Q). The composition »̃Eg,(I,J) of the restriction

of »̃Eg,(I,J);0 to M
22
g/2,3+1(B) with »̃22g,3 is the fiber product of the forgetful morphism f in (4.16) and

the immersion »Eg,(I,J) in (4.9). The bundle homomorphism

df : N »̃Eg,(I,J)j »̃
E 7
g,(I,J);0N »̃22g,3

∣∣
M

22
g/2,3+1(B)

2³
{
f|
M

22
g/2,3+1(B)

}7
N »Eg,(I,J)

induced by the differential of f, with f on the right-hand side as in (3.9) with (g, 3) replaced by
(g/2, 3+1), is generically an isomorphism that intertwines the two canonical orientations. By the

first statements of [16, Propositions 3.13/6], the orientation on M
22
g/2,3+1(B) induced from the

canonical orientation of N »̃Eg,(I,J) via the analogue of the second isomorphism in (5.7) differs from

the above orientation by 21 to the power of ·Eg,(I,J);0+1. Along with (5.9) and (5.10) with

RMg21,3+1, IË,Ç
g21,3+1,B, M

Ç
g21,3+1(B), M

22Ç
g21,3+1(B), »̃22g,3, and »Eg,3
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replaced by

Mg/2,3+1, IË,Ç,L
g/2,(I,J),B2 , Mg/2,3+1(B

2), M
22
g/2,3+1(B)+Mg/2,3+1(B

2), »̃Eg,(I,J), and »Eg,(I,J)

respectively, this implies the last claim in R14.

Let ³2*H7(RMg22,3+2;Q) and

M
2Ç
g22,3+2(B) = M

2Ç;"
g22,3+2(B)+M

Ç
g22,3+2(B).

By the definition of IË,Ç
g,3,B below (4.18), (2.2), and (2.4),

N∑

i,j=1

gij
∫

RMg22,3+2

³2IË,Ç
g22,3+2,B(µ, ei, ej)

=

∫

[M
Ç
g22,3+2(B)]vir

(f7³2)
(
ev71µ1

)
. . .
(
ev73µ3

)({
ev3+1×ev3+2

}7(
PD21

X2(∆X)
))

=

∫

[M
2Ç
g22,3+2(B)]vir

(f7³2)»̃2 7g,3
(
(ev71µ1) . . .(ev

7
3µ3)

)
.

(5.11)

The last virtual fundamental class above is taken with respect to the orientation on M
2Ç
g22,3+2(B)

induced by (L, [Ë], s) via the first isomorphism in (5.4). By (2.13) with r=2,

∫

RMg22,3+2

³2
(
»Cg,3
)7(

IË,Ç
g,3,B(µ)

)
=

∫

RMg,3

(
»Cg,3
)
7(³

2)IË,Ç
g,3,B(µ)

=

∫

[M
Ç
g,3(B;J)]vir

(
f7
(
(»Cg,3)7(³

2)
))
(ev71µ1) . . .(ev

7
3µ3) .

(5.12)

The restriction »̃Cg,3 of »̃
2
g,3 to M

2Ç
g22,3+2(B) is the fiber product of the forgetful morphism f in (4.16)

and the immersion »Cg,3 in (4.5). The bundle homomorphism

df : N »̃Cg,3=N »̃2g,3
∣∣
M

2Ç
g22,3+2(B)

2³
{
f|
M

2Ç
g22,3+2(B)

}7
N »Cg,3

induced by the differential of f, with f on the right-hand side as in (4.16) with (g, 3) replaced by
(g22, 3+2), is C-linear with respect to the identifications in (4.11) and (5.6) and is generically an
isomorphism. Thus, the right-hand side of (5.12) equals to the right-hand side in (5.11) with the

orientation on M
2Ç
g22,3+2(B) induced by (L, [Ë], s) via the first isomorphism in (5.7). Along with

the first statement of [16, Proposition 3.14], this implies the first claim in R13.

Suppose [3] = I ¶J , g * Z+22Z, and ³2 * H7(M(g21)/2,3+2;Q). The composition »̃Cg,(I,J) of the

restriction of »̃Cg,(I,J);0 to M
2
(g21)/2,3+1(B) with »̃2g,3 is the fiber product of the forgetful morphism f

in (4.16) and the immersion »Cg,(I,J) in (4.9). The bundle homomorphism

df : N »̃Cg,(I,J)j »̃
C 7
g,(I,J);0N »̃2g,3

∣∣
M

2
(g21)/2,3+2(B)

2³
{
f|
M

2
(g21)/2,3+2(B)

}7
N »Cg,(I,J)
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induced by the differential of f, with f on the right-hand side as in (3.9) with (g, 3) replaced by
((g21)/2, 3+2), is C-linear with respect to the identifications in (4.12) and (5.6) and is gener-
ically an isomorphism. By the first statements of [16, Propositions 3.13/4], the orientation on

M
2
(g21)/2,3+2(B) induced from the complex orientation of N »̃Cg,(I,J) via the analogue of the first

isomorphism in (5.7) differs from the orientation induced via the analogue of the first isomorphism
in (5.4) by 21 to the power of ·Cg,(I,J);0. Along with (5.11) and (5.12) with

RMg22,3+2, IË,Ç
g22,3+2,B, M

Ç
g22,3+2(B), M

2Ç
g22,3+2(B), »̃2g,3, and »Cg,3

replaced by

M(g21)/2,3+2, IË,Ç,L
(g21)/2,(I,J),B2 , M(g21)/2,3+2(B

2), M
2
(g21)/2,3+1(B)+M(g21)/2,3+2(B

2),

»̃Cg,(I,J), and »
C
g,(I,J), respectively, this implies the third claim in R14.

For Ic{i1, . . . , im}¢ [3] with i1<. . .<im, let

ev7Iµ =
(
ev 7

1µi1
)
. . .
(
ev 7

mµim
)
.

For P *P(g21, 3) as in (2.3), define

M
2C
P (B) =

{(
[u1], [u2]

)
*M

C

P (B) : ev|I|+1([u1])=ev|J |+1([u2])
}
,

[
M

C

P (B)
]vir

=
∑

B1,B2*H2(X;Z)
B1+B2=B

[
M

Ç
g1,|I|+1(B1)

]vir
×
[
M

Ç
g2,|J |+1(B2)

]vir
,

[
M

2C
P (B)

]vir
=
{
ev|I|+1×ev|J |+1

}7(
PD21

X2(∆X)
)
+
[
M

C

P (B)
]vir

.

For P̃ *P̃(g, 3) as in (2.3), we similarly define

M
2C
P̃ (B) =

{(
[u2], [u0]

)
*M

C

P̃ (B) : ev|I¶J |+1([u
2])=ev|K|+1([u0])

}
,

[
M

C

P̃ (B)
]vir

=
∑

(B2,B0)*P
Ç

P̃
(B)

[
Mg2,|I¶J |+1(B

2)
]vir

×
[
M

Ç
g0,|K|+1(B0)

]vir
,

[
M

2C
P̃ (B)

]vir
=
{
ev|I¶J |+1×ev|K|+1

}7(
PD21

X2(∆X)
)
+
[
M

C

P̃ (B)
]vir

.

With P *P(g21, 3) as in (2.3), let

³1*H
7(RMg1,|I|+1;Q) and ³2*H

7(RMg2,|J |+1;Q).

By the definition of IË,Ç
g,3,B below (4.18), (2.7), R8, R7, (2.2), and (2.4),

∑

B1,B2*H2(X;Z)
B1+B2=B

N∑

i,j=1

gij
∫

RMg1,|I|+1×RMg2,|J|+1

(
³1×³2

)(
IË,Ç
g1,|I|+1,B1

(µI , ei)×IË,Ç
g2,|J |+1,B2

(ej , µJ)
)

= (21)(g121)|³2|

∫

[M
C

P (B)]vir

(
(f7³1)×(f7³2)

)(
(ev7Iµ)×(ev7Jµ)

)({
ev|I|+1×ev|J |+1

}7(
PD21

X2(∆X)
))

= (21)(g121)|³2|+·(P,µ)

∫

[M
2C
P (B)]vir

(
{f×f}7(³1×³2)

)
»̃C 7
P

(
(ev71µ1) . . .(ev

7
3µ3)

)
.

(5.13)
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By (2.13) with r=2,

∫

RMg1,|I|+1×RMg2,|J|+1

(³1×³2)
(
»CP
)7(

IË,Ç
g,3,B(µ)

)
=

∫

RMg,3

(
»CP
)
7(³1×³2)I

Ë,Ç
g,3,B(µ)

=

∫

[M
Ç
g,3(B;J)]vir

(
f7
(
(»CP )7(³1×³2)

))
(ev71µ1) . . .(ev

7
3µ3) .

(5.14)

The image of M
2C
P (B) under »̃CP ;0 is contained in M

2Ç;"
g22,3+2(B). The composition »̃CP of the restriction

of »̃CP ;0 to M
2C
P (B) with »̃2g,3 is the fiber product of the forgetful morphism f in (4.16) and the

immersion »CP in (4.6). The bundle homomorphism

df : N »̃CP j »̃C 7
P ;0N »̃2g,3

∣∣
M

2C
P (B)

2³
{
f×f|

M
2C
P (B)

}7
N »CP

induced by the differential of f, with f on the right-hand side as in (4.16) with (g, 3) replaced by
(g1, |I|+1) and (g2, |J |+1), is C-linear with respect to the identifications in (4.12) and (5.6) and is
generically an isomorphism. Thus, the right-hand side of (5.14) equals to the last integral in (5.13)

with the orientation on M
2C
P (B) induced from the complex orientation of N »̃CP via the analogue of

the first isomorphism in (5.7). Along with the first statements of [16, Propositions 3.12/4], this
implies the first claim in R14.

Suppose now that P̃ *P̃(g, 3) is as in (2.3),

³1*H
7(Mg2,|I¶J |+1;Q) and ³2*H

7(RMg0,|K|+1;Q).

The image of M
2C
P̃ (B) under »̃C

P̃ ;0
is again contained in M

2Ç;"
g22,3+2(B). The composition »̃C

P̃
of the

restriction of »̃C
P̃ ;0

to M
2C
P̃ (B) with »̃2g,3 is the fiber product of the forgetful morphism f in (4.16) and

the immersion »C
P̃
in (4.8). The bundle homomorphism

df : N »̃C
P̃
j »̃C 7

P̃ ;0
N »̃2g,3

∣∣
M

2C
P̃ (B)

2³
{
f×f|

M
2C
P̃ (B)

}7
N »C

P̃

induced by the differential of f, with f on the right-hand side as in (3.9) with (g, 3) replaced by
(g2, |I¶J |+1) and as in (4.16) with (g, 3) replaced by (g0, |K|+1), is C-linear with respect to the
identifications in (4.12) and (5.6) and is generically an isomorphism. By the first statements of [16,
Propositions 3.12/3/4], the orientation on

M
2C
P̃ (B)+

(
Mg2,|I¶J |+1(B

2)×M
Ç
g0,|K|+1(B0)

)
¢ M

C

P̃ (B)

induced from the complex orientation of N »̃C
P̃

via the analogue of the first isomorphism in (5.7)

differs from the orientation induced via the analogue of the first isomorphism in (5.4) by 21 to the
power of 〈c1(L), Ç7(B

2)〉+|J |. Along with (5.13) and (5.14) with

∑

B1,B2*H2(X;Z)
B1+B2=B

, RMg1,|I|+1, RMg2,|J |+1, IË,Ç
g1,|I|+1,B1

, IË,Ç
g2,|J |+1,B2

,

I, J, g1, M
C

P (B), M
2C
P (B), »̃CP , and »CP
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replaced by

∑

(B2,B0)*P
Ç

P̃
(B)

, Mg2,|I¶J |+1, RMg0,|K|+1, IË,Ç,L
g,|I¶J |+1,B2 , IË,Ç

g0,|K|+1,B0
,

I¶J, K, 2g221, M
C

P̃ (B), M
2C
P̃ (B), »̃C

P̃
, and »C

P̃
,

respectively, this implies the second claim in R14.

Remark 5.1. Suppose Ç̃ is a conjugation on L lifting Ç and the moduli spaces M
Ç
g,3(B) are ori-

ented via (1.4) as in [14]. By the second statement of [16, Proposition 3.14], the orientations

on M
2Ç;"
g22,3+2(B) defined via the first isomorphisms in (5.4) and (5.7) are then opposite. By the

second statement of [16, Proposition 3.16], the orientations on M
22Ç;"
g21,3+1(B) defined via the second

isomorphisms in (5.4) and (5.7) are the same if and only if g+〈c1(X,Ë), B〉/2 is even. By the
second statements of [16, Propositions 3.12/3], the sign exponents in (5.8) become

·CP ;0 =
n21

2
(g121)(g221)+

(
g121+〈c1(X,Ë), B1〉/2

)(
g221+〈c1(X,Ë), B2〉/2

)
,

·C
P̃ ;0

∣∣
Mg2,|I¶J|+1(B

2)×M
Ç
g0,|K|+1(B0)

= g221+|J |,

·Cg,(I,J);0
∣∣
M(g21)/2,3+2(B

2)
= (g21)/2+|J |, ·Eg,(I,J);0

∣∣
Mg/2,3+1(B

2)
= g/221+|J |.
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