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Abstract

We describe properties of the previously constructed all-genus real Gromov-Witten theory in
the style of Kontsevich-Manin’s axioms and other classical equations and reconstruction results
of complex Gromov-Witten theory.

1 Introduction

The theory of J-holomorphic maps plays a prominent role in symplectic topology, algebraic geome-
try, and string theory. The counts of such maps give rise to the Gromov-Witten (or GW-) invariants
of symplectic manifolds. Their generating functions in the case of Calabi-Yau threefolds correspond
to the partition functions of type ITA topological string theory. From this point of view, they form
one of the sides of several intriguing dualities. For example, mirror symmetry relates them to
the Kodaira-Spencer theory of gravity [2] and the large N duality to Chern-Simons theory [19].
Kontsevich-Manin’s axioms [25] governing GW-invariants have proved instrumental for studying
these invariants via algebraic methods. For example, they underline the notion of Cohomologi-
cal Field Theory (or CohFT). Givental’s discovery of symplectic actions on CohFTs [17, 18] and
Teleman’s subsequent classification of semi-simple CohFTs [33] led to many reconstruction results,
Virasoro constraints, and mirror symmetry as well as strong connections to integrable systems [6, 7].

On the other hand, the progress in the theory of real J-holomorphic maps, i.e. of counts of J-
holomorphic curves in symplectic manifolds preserved by anti-symplectic involutions, has been
much slower. In particular, the associated numerical invariants of real symplectic manifolds, known
as real GW-invariants, did not even exist in positive genera until [14]; a detailed summary of the
construction of these invariants in [14] appears in [11]. In string theory, these invariants arise in
the context of orientifold background in the same way as their classical counterparts, but with
the inclusion of non-orientable worldsheets as well; see [35]. In particular, the real GW invariants
provide mathematical foundation for orientifold background type IIA theory, which, in parallel to
the classical theory, is again one side of dualities such as mirror symmetry and large N duality.
The present paper provides analogues of Kontsevich-Manin’s axioms and other standard algebraic
properties of complex GW-invariants for the real GW-invariants of [14]. It is intended to serve
as a base for establishing analogues of Givental’s and Teleman’s results and their wide-ranging
implications in real GW-theory.

A real symplectic manifold is a triple (X, w, ¢) consisting of a symplectic manifold (X,w) and an
anti-symplectic involution ¢. The fixed locus X¢ of ¢ is then a Lagrangian submanifold of (X, w).
A real bundle pair (V, ) — (X, ¢) consists of a complex vector bundle V'— X and a conjugation ¢



on V lifting ¢, i.e. p?>=idy and p: V, —>V¢(x) is a C-linear isomorphism for every z € X. For a
real bundle pair (V, ) — (X, ¢), we denote by

APV, 0) = (AZPV, AZP )

the top exterior power of V' over C with the induced conjugation. Direct sums, duals, and tensor
products over C of real bundle pairs over (X, ¢) are again real bundle pairs over (X, ¢). For any
complex vector bundle L — X, the homomorphisms

¢ Lpd* L — Ldg*L, ¢% (v, w) = (w,v), and
¢Y: Locy* L — LRc¢*L, ¢F(vew)=w®v,

are conjugations covering ¢.
Definition 1.1. A real orientation (L, [¢],s) on a real symplectic manifold (X,w, ¢) consists of

(RO1) a complex line bundle L — X such that

wa(TX?) =wa(L)|xe  and  ASP(TX,d¢) = (Loco L, 7). (1.1)

(RO2) a homotopy class [¢] of isomorphisms of real bundle pairs in (1.1), and

(RO3) a spin structure s on the real vector bundle TX?@® L*|ys over X? compatible with the
orientation induced by [¢].

By (RO2), a real orientation on (X, w, ¢) determines a homotopy class of isomorphisms
ARP(TX?) = AP ({3 €T X | xo: dp(d) =7}) = {rv@cv€ L@cd*L: vE L| 5o, rER}

and thus an orientation on X?. In particular, the real vector bundle TX?®L*| v» over X? in (RO3)
is oriented. By the first condition in (1.1), it admits a spin structure. By [10, Theorems 1.1,1.2], a
real orientation on (X,w, @) also determines a homotopy class of isomorphisms

u(TXO(L*DY*L"), dp®eF. ) ~ (ExC"2 o xc) (1.2)

over a symmetric, possibly nodal, surface (X, o) for every real map u: (X,0) — (X, ¢), where n is
half the real dimension of X and ¢ is the standard conjugation on C"*2. This homotopy class of
isomorphisms is one of the key ingredients in the construction of real GW-invariants in [14].

Theorem 1.2. Let (X, w, ¢) be a compact connected real symplectic manifold of dimension 2n with
ng2Z and (L, [1)],s) be a real orientation on (X,w, ¢). The associated real GW-invariants (.. .);g

in (4.15) and the linear maps I;J’fB in (4.18) are well-defined and satisfy the properties R1-R15 in
Sections 4.2 and 4.3 as well as Theorems 4.3 and 4.4 in Section 4.4.

A collection of homomorphisms Z¢, ; as in (3.11) which satisfies C6-C10, C11 with v =1, and
C12-C15 in Section 3.2 is called a system of GW-classes for (X,w) in [25, Definition 2.2]; a collec-
tion {Z¥, 5} satisfying the associated properties is called a tree-level system of GW-classes for (X, w)
in [25]. In light of the terminology used in the string theory literature, such as [36, 1], it would thus
be appropriate to call a collection of homomorphisms I; ’ZsB as in (4.18) which satisfies R6-R10,

R11 with v =1, and R12-R15 in Section 4.3 a ¢-extension of the system {Z., 5} of GW-classes
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for (X,w) and a collection ISJ’ ’ZB satisfying the associated properties a ¢-extension of the tree-level
system {Z¢, 5} of GW-classes for (X,w). Theorem 4.3, which is a real analogue of a now classical
result of [25], describes the structure of the latter extension. Similarly to the complex case of [25]
depending on the structure of the cohomology ring of the Deligne-Mumford moduli space Mo, of
rational nodal /-marked curves, the proof of Theorem 4.3 depends on the structure of the cohomol-
ogy ring of the Deligne-Mumford moduli space RMj ¢ of real rational nodal curves with £ conjugate
pairs of marked points. This was only recently obtained in [4, 5].

The anti-holomorphic involutions

[72,71,...,?,1,7”_1], if ne2Z;
[727717"'7771—17771—27771]7 1fn¢2Z7
2m: P2m_1 — ]P)2m_17 772m([Z1a cee ng]) = [725 7717 s )72m7 *Zmel]v

Th: ]P)n—l SN Pn_l, Tn([Zh .. ,Zn]) = {

are anti-symplectic with respect to the Fubini-Study symplectic forms w, and ws,, on the com-
plex projective spaces P*"~! and P?™~! respectively. The real symplectic manifolds (P"~!,w,, )
with n € 2Z and (P> ! wop, N2m) admit real orientations (L, [)],5) with L=0Opn-1(n/2) and
L=0p2m-1(m), respectively. Many other examples of compact real symplectic manifolds with real
orientations are described in [15, Section 1.1]. These include many projective complete intersec-
tions, such as the real quintic threefolds, i.e. the smooth hypersurfaces in P* cut out by degree 5
homogeneous polynomials on C® with real coefficients; they play a prominent role in the interactions
of symplectic topology with string theory and algebraic geometry.

Remark 1.3. The notion of real orientation provided by [14, Definition 1.2] and used in [14] to orient
moduli spaces of stable real maps replaces (L@c¢*L, ¢7) and (L*EB(;S*Z*, ¢%.) in (1.1) and (1.2) by

(L, $)®? and 2(L, ¢)*, respectively, for a real line bundle pair (L, ¢) over (X, ¢). For such a pair,
the homomorphism

®r:2(L,¢) — (Lod*L,¢F), ®r(v,w) = (v+iw, d(v—iw)), (1.3)

is an isomorphism of real bundle pairs over (X, ¢). Definition 1.1, which is a slightly reworded
version of [9, Definition A.1], thus weakens (broadens) the notion of real orientation of [14, Defini-
tion 1.2]. The compositions of the isomorphisms u*(idyx @ ®y+) and (1.2) yield a homotopy class
of isomorphisms

w (TXG2L*,dp®2¢%) = (SxC"2 g x¢) (1.4)

over a symmetric (X, o) for every real map u: (£,0) — (X, ¢). As noted in [9] and detailed in [16],
the construction of orientations of moduli spaces in [14] goes through almost verbatim with the
weaker notion of real orientation of Definition 1.1.

By [25, Theorem 4.5], a tree-level system of GW-classes determines a Frobenius structure on
H*(X;C) in the sense of [25, Section 4.2]. By [25, Example 6.3], a system of GW-classes deter-
mines a CohFT in the sense of [25, Definition 6.1]. This perspective makes it possible to recover
arbitrary-genus GW-invariants of some symplectic manifolds, such as P", from the genus 0 GW-
invariants; see [17, 18]. We hope that this perspective can be productively applied to ¢-extensions
of system of GW-classes based on the results of this paper. Okounkov-Pandharipande’s trilogy
[30, 31, 32] determines the (complex) Gromov-Witten theory of Riemann surfaces, in particular



showing that the GW-invariants of P! satisfy integrable hierarchies of Toda type and the GW-
invariants of Riemann surfaces satisfy the Witten and Virasoro conjectures. Guidoni [20] recently
showed that the real GW-invariants of P! satisfy integrable hierarchies of types CKP and KdV as
well as Virasoro type constraints. However, even the formulation of a Virasoro type conjecture for
real GW-invariants of arbitrary manifolds remains unknown. More geometric directions for future
research are indicated in [16].

After collecting the most frequently used notation and terminology in Section 2, we recall basic
properties of complex GW-invariants, Kontsevich-Manin’s axioms for these invariants, and two
reconstruction results in the genus 0 complex GW-theory in Section 3. We give a direct proof of
the second reconstruction result, Proposition 3.2, which readily adapts to the real setting. After
setting up the relevant notation in Section 4.1, we state and justify basic properties of the real
GW-invariants arising from [14] and analogues of Kontsevich-Manin’s axioms for the associated
real GW-theory in Sections 4.2 and 4.3. Real analogues of the two reconstruction results of Sec-
tion 3, Theorems 4.3 and 4.4, are established in Section 4.4. Section 5.2 contains the most technical
proofs, deducing the Genus Reduction and Splitting properties of Section 4.3 from the structural
results for the orientations of the moduli spaces of stable real maps established in [16].

The properties of real GW-invariants formulated in Sections 4.2 and 4.3 are algrebraic reformu-
lations of previously established geometric properties of these invariants. However, some of the
reformulations, in particular Genus Reduction and Splitting, require significant care to deduce
from the established geometric properties. Theorems 4.3 and 4.4 are completely new in the real
setting, while our proof of Proposition 3.2 in the complex setting applies in the symplectic category
(in contrast to the original proof in [26]).
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Nationale de la Recherche (France) and grant ROGW-864919 from the European Research Coun-
cil (EU). The second author was partially supported by grant DMS 2301493 from the National
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2 Notation and conventions

For /€Z72°, we denote by S; the ¢-th symmetric group. For ¢, g€ Z=°, define

w] = {1727"'7£}a ,P(gag) = {(91792;13 J) gla92€Z207 g1+92=g, [E]ZII—IJ}a
P(g,0) = {(¢d,90: I, K): ¢, g0 €Z2°, 29’ +go =g, [(] =TUJUK}.

A decomposition [¢/]=ILJ determines a permutation
{1,....0} —1uJ (2.1)

sending 1,...,|I| to the elements of I in the increasing order and |I|+1,...,¢ to the elements of J
in the increasing order. For disjoint subsets I, JCZ™, let

vy [[TUJ]] — TUJ

be the order-preserving bijection.



Let X be a compact connected oriented manifold as in the statement of Theorem 1.2. We denote
by H*(X;Q) the direct sum of the groups H?(X; Q) over all p€Z. For a homogeneous element p of
H*(X;Q), let |u| be its cohomology degree, i.e. |u|=p if p€ HP(X;Q). In any equation involving an
element pe€ H*(X;Q) and its cohomology degree ||, we implicitly assume that p is a homogeneous
element. We fix a basis {e;};e[n) of homogeneous elements for H*(X;Q) and let (g"/); ;e(n] be the
inverse of the associated matrix

(gij = <€iej’ X>)i,j€[N]

for the intersection form on H*(X;Q). If Ay € H.(X?;Q) is the homology class determined by
the diagonal in X? with the orientation induced from X, then

N
- Ax) = Zgij €; X ej (2.2)
1,5=1

by (2.5), (2.4), and (2.7) below.

Let £€Z=°, = (11:);efq be a tuple of homogeneous elements of H*(X;Q), and
il = pal+- -+ el

For I={i1,...,ipm} C[f] with i1 <...<ip, define
= (fiys - - - iy, ) -

For w €Sy and a partition [¢/]=1UJ, let

elm,p) = > |wil sl (@ T)m) =D |pal- sl

i,j€l] iel
i<j jed
w(i)>w(f) v>J

The parity of the first (resp. second) number above is the parity of the permutation on the odd-
degree classes p; induced by the permutation wo (resp. permutation (2.1)) of [¢]. For w € Sy, we
define a graded automorphism of H*(X;Q)%¢ by

@(®...Qup) = (-1 =Wy ®. . @pg).
This determines an action of Sy on H*(X;Q)®¢ by graded automorphisms. For
Pz(glngSIaJ) Gp(g>£)7 ﬁE (gl,go;I,J,K) Eﬁ(g>€)7 (23)

and n¢27, we define

"o Do), (Por) = =(1,). ).

en(Pyp) = en(P)+e(Pp)+(g1—Dlpgl,  e(P,p) = e(TUJ, K), ) .

en(P) =

For a tuple J= (41, j2, -..) € (Z=°)* and a complex vector bundle E— Y, let

=[] *(E) € H*(V;Q),

k=1



with 0°=1. By the Splitting Principle [28, Problem 7C], there exist universal coefficients Cylli}gz) <Y/
such that
€(E1 ®(CE2) = Z CS?{};U cr El)CJ2 (EQ)
J1,J2€(Z20)°

for all complex vector bundles E7, Fs — Y of ranks n; and ng, respectively.

For an orbifold M, we denote by H.(M;Q) and H*(M;Q) the homology and cohomology of the
sheaf of singular chains for the orbifold charts of M with rational coefficients and by H,(M;Q)
and H*(M;Q) the homology and cohomology of this sheaf twisted by the orientation system O

of M, as in [21, Section 3.H] and [3, Section V.10]. For a homogeneous element x of H*(M;Q), we
again denote by |u| its cohomology degree. We use the conventions for the cup and cap products
in the singular (co)homology theory as in §48 and §66, respectively, in [29], so that

(yUp) NA=~yn(pnA) VyeH* (M;Q), ,ueﬁ*(m; Q), Aefﬁ(ﬂ; Q); (2.4)

see Theorem 66.2 in [29]. An orientation on M identifies H,(M; Q) and H*(M; Q) with H,(M;Q)
and H*(M;Q), respectively, intertwining the cup and cap products in the two (co)homology the-
ories.

If in addition M is compact and either oriented or connected and unorientable, let [M] € H, (M;Q)
be its twisted fundamental class; it corresponds to the fundamental class of M in the first case and
to the fundamental class of the orientation double cover of M with its canonical orientation in the
second case. In either case, the homomorphisms

PDp: H' (M;Q) — H.(
PDp: H'(M;Q) — H.(

M;Q), -
. " PDy(y) =y M. (25)

;Q),

are isomorphisms; see Theorem 3H.6 in [21] and Theorem 9.3 and Corollary 10.2 in [3]. In such
cases, we also define

/H*MQ ) — Q, / = [ynM]|, (2.6)

where |-|T is the degree of (the weighted cardinality of the points in) the Ho-part of -. If M1 and Mo
are compact connected orbifolds, M is oriented, and My is either oriented or unorientable, then

/ Y XY2 = </’Y1></’Y2> Yy € H (My;Q), 12 € H (M2 Q). (2.7)
Mix Moy M1 Mo

Let §: M —Mbea surjective morphism between orbifolds. Suppose U’ c M is an open subset
so that
M-ucM and FM-U)cM (2.8)

are finite unions of suborbifolds of codimensions at least 2 and 1, respectively, the restriction of f
to U’ is a submersion, and the vector orbi-bundle

ker dﬂul — U’ (29)



is oriented. The short exact sequence

0 —> kerdf s FTM

—
w M

w0 (2.10)
of vector orbi-bundles over 4" and the orientation o of (2.9) determine an isomorphism
Dﬁ/‘ul ~ f*Dm‘ul

of local systems over U’. By the codimension 2 assumption above, this isomorphism extends over
—~— . .
all of M and thus determines and a homomorphism

H*(M;Q@H*(M;Q) — H*M;Q),  +®y — 7).

Furthermore, §~(u) C M’ is an oriented suborbifold for every uef(M — U’). If in addition M, M’
are compact and either oriented so that the exact sequence (2.10) respects the three orientations
or connected and unorientable, then §~1(u) C M’ is compact and

!

O (), M) = (S [ @)]) (s (M) (2.11)
for every y € ff*(ﬂ, Q) of top degree, every 7/ € H*(ﬂ,; Q), and every ue f(ﬂ/— u).
Let 1: M’ —> M be a codimension r immersion between orbifolds. Suppose the normal bundle

j—
T -
TN = Liﬂ — M
de(T M)
of ¢ is oriented. The short exact sequence

0— TM 25 *TM — N1 — 0 (2.12)

of vector orbi-bundles over M’ and the orientation o of A’z determine an isomorphism Dﬂ’ ~UO5
of local systems over M’ and thus a homomorphism
H*(M;Q)@H*(M;Q) — H*(M;Q),  ~ &y — ~(1*).

If in addition M, M’ are compact and either oriented so that the exact sequence (2.12) respects
the three orientations or connected and unorientable, then we obtain a pushforward homomorphism

i H' (MG Q) — H'(M; Q). u(y) = PDE; (1 (PDgp (7).

By (2.4)-(2.6),

!/

(' (), M) = (1) (0 )y, M) ¥ ye H(M;Q), o € H* (M; Q). (2.13)

Similarly to the definition on page 120 and Exercise 11-C in [28], the orientation o on N also
determines a class u” € H"(M; Q) so that

/ N

(M) ="' N[M] € H(M; Q). (2.14)

EN|



3 Complex Gromov-Witten theory

3.1 Moduli spaces

Let g € Z and ¢ € Z=°. We denote by ﬂgyg the Deligne-Mumford moduli space of stable closed
connected, but possibly nodal, ~-marked Riemann surfaces 3 of arithmetic genus g. This space is
a compact complex orbifold of complex dimension

dime My = 3(g—1)+¢ (3.1)

and is thus oriented; it is empty if g <0 or 2g+£< 3. A permutation w €Sy acts on ﬂgj by sending
a stable f-marked Riemann surface ¥ to the stable /-marked Riemann surface w(3) so that the
marked points of the two surfaces are related by

Zo() (@(R) = zi(8) Viel). (3.2)
This determines an action of Sy on Mgf by holomorphic automorphisms. Let
E— M%g

be the Hodge vector bundle of holomorphic differentials.

If £>0 and 2g+/¢>3, let o o
fo: Mge —> Mg o1

be the natural forgetful morphism dropping the last marked point. The preimage U/’ cﬂg,@ of the
open subspace M, _1 C M, ,_1 consisting of smooth curves satisfies the codimension conditions
below (2.8) and the orientation condition above (2.11). We note that

E=fE — M,y (3.3)

under the above assumptions.

We denote by o o
lge: M971’£+2 — Mg,e (34)

the immersion obtained by identifying the last two marked points of each Riemann surface in the
domain to form a node; this map is generically 2:1 onto its image. For each P€P(g,/) as in (2.3),
let

Lp: MPEM91’|]|+1 XM927‘J|+1 — ng (3.5)

be the immersion obtained by identifying the last marked points of each pair of Riemann surfaces
in the domain to form a node and by re-ordering the remaining pairs of marked points according
to the bijection (2.1). These two immersions are illustrated in Figure 1. The normal bundles to
these immersions have canonical orientations that satisfy the orientation condition above (2.13).

Let (X,w) be a compact symplectic manifold of real dimension 2n,
Hy(X;Z), = {B€Hy(X;Z): w(B)>0or B=0},

and J,, be the space of w-tamed almost complex structures on X. For g,/ € Z=°, B € Hy(X;7Z),

and J € 7, we denote by M, ,(B;J) the moduli space of stable J-holomorphic degree B maps



” U - = 6 zy l@l . A
g1 I J g2

Figure 1: Typical elements in the domains and images of the immersions (3.4) and (3.5), with the
genus and marked points of each irreducible component of an image of (3.5) indicated next to it.

from closed connected, but possibly nodal, /-marked Riemann surfaces of arithmetic genus g. This
space is empty if either B¢ Ho(X;7Z),, or B=0 and 2g+/¢<3. For each i=1,...,¢, let

evi: Mye(B;J) — X and 1 € H*(My(B; J); Q)

be the natural evaluation map at the i-th marked point and the Chern class of the universal cotan-
gent line bundle for this marked point, respectively. The symmetric group S, acts on M, ((B;J)
similarly to (3.2). This action satisfies

evi=evgow and Y =w P VweSy, i€[l]. (3.6)

By [27, 8], the moduli space My ,(B;J) carries a natural virtual fundamental class of dimen-
sion/degree

dim [y o(B; J)]"™" = 2((1—g)(n—3)+£+(c1 (X, w), B))

e (3.7)
= 2dim¢e My o+2(n(1—g)+{c1(X,w), B)).
This class is preserved by the Sy-action. For ay,...,a;€Z=° and p1, ..., ue€ H*(X;Q), let
(Tar (1), Tay (10) )y 5 = / W7 (evip) . (evim) (3.8)
(Mg, e (B3]

be the associated descendant GW-invariant. This number is independent of the choice of J € J,.

If 2g+/0>3, let

f : ﬁgyg(B; J) — ﬂgl (3.9)
be the natural forgetful morphism to the corresponding Deligne-Mumford moduli space. It satisfies
fow=wof : M, o(B; J) — My VweSy. (3.10)

We denote by
¢ ¢
TR, 0 X ./\/lg,gXX —>./\/[g7g,X

the component projection maps. Using Poincaré Duality on Mg,g and ﬂgj x Xt we define
T, p: H*(X;(@)@Z — H* (ﬂgj; Q) and CJyp € uH* (MQ,EXXZ; Q) (3.11)

by requiring that

/ VLo (s s o) :/ (Fv)(evip) .. .(evipe) and

Mg (Mg, (B; )]V

| w5t = [ (a)(evim) - (evin)
Mgex Xt =% [y, o (B;J)]vir



for all u; € H*(X;Q) and v€ H*(Mg; Q). The linear maps 1., p and the correspondences C;&B
in (3.11) are independent of the choice of J € J,. If g€Z>% or 2g+£< 3, we set 1, 5=0.

3.2 Properties of invariants

The descendant GW-invariants (3.8) satisfy the following properties:

C1 (Effectivity I): (7o, (1), - - -+ Ta,(110))g =0 if B¢ Hy(X;Z),, or B=0 and 2g-+(<3;

C2 (Grading I): (7a, (1), - - -, Ta, (120))g =0 if

¢

D (2ai+|mil) #2((1—g)(n=3)++{c1(X,w), B));

i=1
C3 (String): if B#0 or (g,¢)#(0,2),
<Ta1 (Ml)v cee 7Tae(M€)7 7—0(1)>MB

)

= E <Ta1 (}ul)a s Ta; gy (:ui—l)a Tlli—l(:ui)a Taiiq (Mi+1)> s Tay (ME)X‘;,B;
1<i<t
a; >0

C4 (Dilaton): if B#0 or (g,¢)#(1,0),
(Tar (1) -y 7o, (), 71 (1)) 5 = (29— 24£) (ray (1) -+ T (1)) 5
C5 (Divisor I): if pup1 € H*(X;Q) and either B#0 or 2g+/ > 3,

<Ta1 (Ml)v <o Tay (Mﬂ)v TO(M€+1)>{;,B = <:uf+17 B) <Ta1 (/1*1)7 <o Tay (N€)>;B

+ Z<7—a1 (Ml); s Ta; g (Mi—l)v Tai—l(ﬂi,ueJrl)v Tait1 (ui+1)7 -e s Tay (M€)>;B'

1<i<e
a; >0

The Effectivity properties above and below follow immediately from ﬁ%g(B; J) = 0 if either
B¢Hy(X;7Z), or B=0 and 2g+¢ < 3. The Grading properties above and below are conse-
quences of (3.7). For C3-C5, see [22, Section 26.3].

The linear maps (3.11) satisfy Kontsevich-Manin's axioms of [25, Section 2]:
C6 (Effectivity 1I): T, =0 if B¢ Ho(X;Z).w;
C7 (S¢-Covariance): the map I, p is Sy-equivariant;

C8 (Grading II): 7,  is homogeneous of degree 2(g—1)n—2(c1(X,w), B), i..
1 Z50 5] = lul +2(g—Dn—2(c1(X,w), B) ¥YpeH*(X;Q)"

C9 (Fundamental Class I): for all py, po€ H*(X;Q),

0, if B#£0;
s 1) =
03,5 (Ml,u% ) {</J,1/J,2, [X]>7 if B:Oa
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C10 (Fundamental Class II): if 2g+£>3 and p€ H*(X;Q)*,
I;K—H,B(Mv 1) = fZ+1( ;),z,B(N));

C11 (Divisor II): if 2g+¢>3, p€ H*(X;Q)", ppy1 € H*(X;Q), and v€ H* (M, 4;Q),

/ (Fo1) o1, (1 o) = <M+1,B>/ VZy,5(10);
Mg £+1 M

g,t

C12 (Mapping to Point): for all u1,...,ue€ H*(X;Q),

I;U,K,O (Mh ) Mf) = Z CF]?Z?]Z <CJ1 (Xv w)ru’l Ry R [X]>CJ2 (E*) € H* (ﬂg,f; Q)a
J1,J2€(Z20)0°

C13 (Genus Reduction): for all p€ H*(X;Q)Y,

tye(Zoen (1 29 "1 even (1 eirej);
,j=1

C14 (Splitting): for all pe H*(X;Q)" and P=(g1,g2:1,J)€P(g,{),

e(P,
vp(Z5ep(1) = + Z Zg auI141,By (nr.e:) XLy, 1141, B(€5 1)
Bl,BQGHQ(X Z) ,j=1
Bi1+B>=B

C15 (Motivic Aziom): T, 1 is induced by the correspondence C) p, i.e.

I;&B(ul,...,ug) PDf <{7TM }P i ;XXZ( ggB({TrXZ} 1 X . XW)))>

for all puy,...,uee H*(X;Q).

The property C7 follows from the S,-invariance of the virtual fundamental class of M, ,(B;.J),
the first identity in (3.6), and (3.10). The property C15 is immediate from (2.4), (2.5), and the
definitions of 7, 5 and Cy, p after (3.11). The statements C9-C14 are consequences of natural

properties of the virtual fundamental class for M, ¢(B;J) constructed in [27, 8]. The analogous
properties in the real GW-theory are established in Sections 4.3 and 5.2.

The g=0 case of C12 is equivalent to

2&470(/11, ce ,,Ug) = <u1. . .,u,[,X> S HO(MOJ; Q) (3.12)
The g=1 case of C12 is equivalent to
<M1'--Mfcn(X¢w)7X>7 if,ula'-w,ufeHo(X;Q);
Ife,o(ﬂla---,ﬂé) = —(p1. . ppen—1(X,w), X)c1(E), if |pr|+. ..+ |pe| =25 (3.13)
0, otherwise.

By C12, (3.1), and (3.3), the restriction of I;%;_;(/u, <.y fig) to M, vanishes if g>2 and n>4.
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3.3 Reconstruction of invariants

Following [25, Definition 2.2], we call a collection of homomorphisms 15y p @s in (3.11) with £>3
and B € Hy(X;Z) which satisfies the properties C6-C10, C11 with y=1, and C12-C15 a tree-level
system of GW-classes for (X,w). By Proposition 2.5.2 and Theorem 3.1 in [25], a tree-level system
of GW-classes for (X,w) can be reconstructed from a small subcollection of the full collection.
This follows readily from the fact that the ring H* (MO% Q) is generated by the Poincaré duals of
the “boundary” classes, the images of the immersion ¢p in (3.5) with P € P(g,{); see (1) and (4)
on pb45 in [24].

Proposition 3.1 ([25]). Let (X,w) be a compact symplectic manifold of real dimension 2n. A
tree-level system {1, g} of GW-classes for (X,w) is determined by the numbers

[ Tsmeq itk 0, BeM(X:D, pe H(X;Q)
Mo
i.e. by the codimension 0 classes I¢ , 5(w). If in addition H*(X;Q) is generated as a ring by H*(X;Q),

then this system is determined by the codimension 0 classes 2&373(/L1,,U,2,,u3) with

B € Hy(X;Z)y, (c1(X,w),B) <n+1, |pi]+|pe| =2n+2(c1(X,w),B)—2, |us|=2.

A manifestation of the first statement of this proposition is the renown WDVV equation for GW-
invariants:

Z Z Z 1)L D)) <M1,€z>0 8,9 Tej ), By

]l=IuJ Bi+B2=B1,j=1

1,2€1,3,4€J
= Z Z Z (L) </”7€l>0 Blg <erlU>o ,Bs

=JUJ B1+B2= B’Lj 1
1361 24eJ

(3.14)

for all £ € ZT, B € Hy(X;Z), and pu € H*(X;Q)’. The full collection of relations (3.14) is
equivalent to the associativity of the multiplication in the quantum cohomology of (X,w). For
(X,w)=(P? wgs), it is equivalent to Kontsevich’s recursion [25, Claim 5.2.1] enumerating rational
curves in P2, For (X,w) = (P",wrs), (3.14) is equivalent to the recursion of [34, Theorem 10.4]
enumerating rational curves in P".

Proposition 3.1 is an early example of reconstruction in complex GW-theory. Another example is
Proposition 3.2 below that reduces the g =0 descendant GW-invariants (3.8) to the primary ones,
i.e. those with a; =0 for all i € [¢]. Its statement for smooth projective varieties is [26, Corol-
lary 1]. We give a proof of this proposition assuming instead that the strata of 9 ¢(B; J) are of
the expected dimension. This proof, motivated by an approach initiated in [23] and formalized
in [37, 38|, adapts readily to semi-positive symplectic manifolds via Ruan-Tian’s global inhomoge-
neous perturbations and with some technical care to arbitrary symplectic manifolds via the virtual
fundamental class constructions of [27, §].
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For £€Z*, i,j€ (] distinct, and B, By, Bo € Ho(X;Z) with B+ By = B, we denote by
Dpyigyj C Moe(B;J) (3.15)
the subspace of maps u from domains Y1 UX, such that
e 31, Y9 are connected genus 0 curves with one point in common,
e the i-th (resp. j-th) marked z; (resp. z;) lies on ¥ (resp. ¥), and
e the restrictions of u to ¥ and Y9 are of degrees B; and Bo, respectively.

Under ideal circumstances, Dp,; B,; is a union of smooth divisors in ﬁoyg(B ; J) intersecting trans-
versely. By [27, 8], Dp,i B,; carries a natural virtual fundamental class. The meaning of the
equation (3.16) below is that the integral of the product of the left-hand side with a descendant
cohomology class 7, as in the integrand in (3.8), against 9% ¢(B; J)]'"" equals the integral of the
product of the difference on the right-hand side with n against [Mg ,(B; J)]*™* plus the integral of
against the weighted sum of [Dp,; p,;]"™

Proposition 3.2. Let (X,w) be a compact symplectic manifold. For (€ Z, B€ Hy(X;Z), i,j € [{]
distinct, and p€ H*(X;Q),

(1, B)thi = (evip—evip) + Z (1, Ba)[Dpyipoj] ™ € H? (Mo o(B; J); Q) . (3.16)
B1+Bs=B

Proof. We can assume that w(B) > 0. By the linearity of both sides of (3.16) in u, we can also
assume that ;1 can be represented by a (generic) pseudocycle M in X as defined in Section 1 in [40].
Let d = (i1, B) and h € RT be the minimal value of {w,u.[P!]) for a non-constant J-holomorphic
map u: P! — X,

We denote by M the set of representatives u: X — X for the elements of ﬁo,g(B ;J) such that
e the ¢-th marked point z; =0 on the irreducible component IP’il C X containing it;
e if the j-th marked point z; lies on P}, then 2j = 00;

e if 2; does not lie on P}, then the node of P} separating it from the irreducible component of ¥
containing z; is the point ooEIP’Zl;

e the interior of the closed unit disk D C IP’} centered at z; =0 contains no marked points other
than z; and no nodes;

o either [pu*w = h/2 and D C P! contains no marked points other than z; and no nodes or
f]D) uw*w<h/2 and ]DCIP)i1 contains a marked point other than z; or a node;

see Figure 2.

We call two elements of 9t equivalent if they differ by a reparametrization of the domain that
restricts to the identity on the irreducible component P} containing z;. Gromov’s convergence

induces a topology on the set M of the resulting equivalence classes of elements of . M. The action
of S! on P} induces a continuous action on M so that Ny (X, B) is the quotient Dﬁ/ St and

L=Mx g C — My (X,B)
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00
2j =00

Figure 2: A typical element of M and a representative for a typical element of Dp,; p,; in M.

is the universal tangent line bundle for the i-th marked point. Below we define a “meromorphic”
section of L®? and determine its zero/pole locus.

A generic element u: P! — X of M intersects M transversely at points

yf(u),...,y;l(u) eC” and  y; (u),...,y; (u)eC”
positively and negatively, respectively, so that d=d —d_. The resulting element

s([ul) = [u,ui (u) .y, (W) /y7 (u (w)] € L

depends only on the image [u] € Mg ¢(B;J) of u e M. This construction induces a section of L4

over generic elements of ﬁ075(3; J). This section extends to a “meromorphic” section over all
of mo’g(B; J)

The section s has a zero (resp. pole) whenever u meets M positively (resp. negatively) at z; =0 and
a pole (resp. zero) whenever u meets M positively (resp. negatively) at z; =o0. It also has a pole
(resp. zero) whenever u€ Dp,; p,; meets M at any point of ¥ (in the terminology around (3.15))
positively (resp. negatively). Thus,

s710) = (ev; (M) —ev; (M) = > (1, Bo)Dpyi,Byj C Moe(B; J).
B1+B>=B

Since (u, B); = —c1(L®?), this implies (3.16). O

It is often convenient to combine GW-invariants into generating functions. Suppose {e;};c[n] is a
basis of homogeneous elements for H*(X; Q) with e; =1, (gi;); je[n] is the associated matrix for the
intersection form on H*(X;Q), and (g%); jen is its inverse as before. Let ¢; and t,; with i € [N]
and a € Z>° be formal variables with

tit; = (—1)|ei‘|6j|t]’ti, taith; = (_1)|€z’||ej\tbjtai

Define
N
w w

t= Z eiti, <€i1ti17 ceey eiiti5>g,B = <€Z'1, ey 6i£>g’Bt’ie' . .til,
i=1
co N

t= Z Z Ta(ei)tai’ <Ta1 (e’il)talila -y Tag (eig)tagig >;B = <Ta1 (6i1)7 ---5Tay (ei€)>;Btali£' . ‘talil .
a=0 =1
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The (primary) genus 0 GW-potential and the descendant genus g GW-potential of (X,w) are the
formal power series

= ) Z ¢" and Ftg)= Y > 4 C q"
BeH>(X) £>0 ¢ 2 OB ! BEH(X;7Z) >0 ! gB

respectively. The full descendant GW-potential is the formal power series

F¥(t,q) = ZF"thAQQQ
g>0

Thus, ®“ is the coefficient of A™2 in F* with to; =t; and t,; =0 for a>0.

In light of C1, C2, and (3.12), C3 is equivalent to the string differential equation

OF® )
W(n 5)\ Zgl]tOJtOZ + Z Zt a+1 8‘[; (317)

1<i,j<N a=0 i=1

In light of C1, C2, and (3.13), C4 is equivalent to the dilaton differential equation

OF¥ X(X w
oty 24 { +Zzt‘”8tm}F

The relations (3.14) are equivalent to the WDVV differential equations

N
Z 8,51.1 8% 6tj (I)w . gjkatkati?) 8% (I)w
Jk=1

N
= (—1)lenlllenlHesD Z O, O, O, ¥ - gjkatkatilé?% 2t
k=1

with 41, 19,13,i4=1,2,...,N; see [25, (4.13)].

4 Real Gromov-Witten theory

4.1 Moduli spaces

A symmetric Riemann surface (X, 0,j) is a closed, but possibly nodal and disconnected, Riemann
surface (¥,j) with an anti-holomorphic involution o. For example, there are two topological types
of such involutions on P!

1 1
T,n: P! — P T(2) = B n(z) = —3 (4.1)

If ¢ is an involution on another space X, a map u:X — X is ¢-real (or just real) if uoo=d¢ou.

Let g€Z and ¢ € Z=°. We denote by RMM the Deligne-Mumford moduli space of stable closed
connected, but possibly nodal, symmetric Riemann surfaces (X, 0,j) of arithmetic genus g with

£ conjugate pairs (zl+ ,2; ) of marked points. This space is a smooth compact orbifold of dimension

dimRM,, = 3(g—1)+2¢; (4.2)
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it is empty if ¢ <0 or g+£<1. The symmetric group Sy acts on Rﬂg,g by smooth automorphisms
permuting pairs of conjugate marked points analogously to (3.2). For each i €[], let

0;: ng,g — Rﬂgj
be the automorphism interchanging the marked points in the ¢-th conjugate pair.

Similarly to the complex case, let o
(E, pr) — RM,

be the Hodge vector bundle of holomorphic differentials and the conjugation induced by the real
structure on each surface. We denote by

ER — RM,, (4.3)
the pp-fixed part of E; this is a real vector orbi-bundle of rank g. If />0 and g+¢>2, let
i RMyp — RM, oy

be the natural forgetful morphism dropping the last conjugate pair of marked points. The open
subspace U’ CRMy ¢ of the marked curves [C] such that the irreducible component of C carrying
the marked point zj also carries either

e at least three nodes and/or marked points 2 with i€ [¢—1] or
e precisely one node and at least one other marked point

satisfies the codimension conditions below (2.8). We orient the kernel of dfﬂ}]u/ by the position of
the marked point z, in the fiber (which is a nodal Riemann surface). Similarly to (3.3),

(B, 0x) = {F/ ' (E, vr) — RM,y (4.4)

under the above assumptions.

We denote by
LS,ZZ RMy_9¢190 — RM,, and ngz RMg 1041 — RM, (4.5)

the immersion obtained by identifying the marked points Zéil and z, , of each curve in the domain
with Zé:z and z, ,, respectively, to form a conjugate pair of nodes and the immersion obtained by
identifying the marked point er+1 of each curve in the domain with 2z, , to form an isolated real
node, called E-node in [14] and elsewhere. The first immersion is generically 4:1 onto its image,
while the second is generically 2:1. For each element PeP(g—1,¢) as in (2.3), let

7C JR— R JR—
L%: Mp ERMgl,\Il—H XRM‘q2’|J|+1 — RMg, (4.6)

be the immersion obtained by identifying the marked points z . and z;,, of the first Riemann

[7]+1 |7]+1
surface in the domain with the marked points ZIJ«FJI 41 and z| Tl of the second Riemann surface in
the domain to form a conjugate pair of nodes and by re-ordering the remaining pairs of marked

points according to the bijection (2.1). These three immersions are illustrated by the first three
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iel, jed

Figure 3: Typical elements in the domains and images of the immersions (4.5)-(4.9), with the genus
and marked points of each irreducible component of an image of (4.6)-(4.9) indicated next to it.

diagrams in Figure 3.

For a Riemann surface (3,)), let D(%,j)= (f],?, o) be the symmetric Riemann surface given by
={+,-IxZ, Jlagxz =5, o(£2) = (F,2) VzeD.

For disjoint subsets I, JCZ"% and a marked curve C= (X, ], (2i)ie)iuy)), define

_ +,2), ificy, ()
@ C - @ E;. ) 2%7,2, 7 Wlth Z;t - ( s IJ ’ 47
1J(C) = (D(X.3), (", 2 ieqrun) ; {(:F,Zi), ificy 2(J). (4.7)
For each PeP(g, () as in (2.3), let
7([: JR— JR— JR—
L%Z MﬁEMg’,UuJ\—Fl XRMQO,|K|+1 — RMg’g (48)

be the immersion sending ([C'],[Cy]) to the equivalence class of the marked curve obtained by
identifying the marked points the marked points z\J}UJIH and 2,4y of Dyiyrr413,5(C") with the

+ p—
|K|+1 and ?IK|+1

remaining pairs of marked points according to the bijection (2.1) with (I, J) replaced by (IUJ, K).
If [(]=1UJ, let

marked points z of Cy to form a conjugate pair of nodes and by re-ordering the

LS,(I,J) : ﬂ(g_l)/27g+2 — Rﬂgﬁ and Li(LJ) : ﬂg/274+1 — Rﬂg,g (49)

be the immersion sending [C’] to the equivalence class of the marked curve obtained by identifying
the marked points Zé:l and zé:2 of @Iu{€+1}7ju{g+2}(cl) with z,\ ; and z,_,, respectively, to form
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a conjugate pair of nodes and the immersion sending [C'] to the equivalence class of the marked
curve obtained by identifying the marked point zz;l of Qlu{g_;’_l}’J(C,) with 2z, ; to form an E-node.
These three immersions are illustrated by the last three diagrams in Figure 3.

For each i€ [/], let
Li— My, and L — RM,,

be the universal tangent complex line orbi-bundles at the marked points z; and z;r , respectively.
In either case, let

(£i®Z)R = {TU@((:UEL;’@((:E: veEL;, T’ER}. (4.10)

This real line bundle is canonically oriented by the standard orientation of R. There are canonical
isomorphisms

—_— R —_—
Nigym Lo1®@ Loy — RMy g 0ps and NiJy~ (Lo @Lin)” — BRMy a1 (4.11)

of the normal bundles to the immersions in (4.5). With the assumptions as in (4.6)-(4.9),

* * 7@ —_— —_
NG ~ 7 Ly141 @75 L 511 — Mp, NLS,(I,J) ~ Lopy1®@Loys — Mg1y/2,011 (4.12)
* * -—C - \R AA ’
NL% ~ Wlﬁ‘[uj|+1 ®7T2£|K|+1 — Mﬁ, NLg(I,J) ~ (,Cg+1 ®£Z+1) — Mg/27£+1,

where 71,79 are the component projections from the domains in (4.6) and (4.8). Via the iso-
morphisms in (4.11) and (4.12), the normal bundles to the six immersions in (4.5)-(4.9) inherit
orientations from the complex orientation of £; and the canonical orientation of (£, 1® Ly 1)R.

Let (X,w, ¢) be a compact real symplectic manifold of real dimension 2n with n¢2Z. Define

Hy(X;Z), = {Be Hy(X;Z)y,: ¢(B)=—B}, Hi(X;Q) = {peH*(X;Q): ¢*pu==u},
Je={JeTu: ¢*J=—T}.

For g,¢ € ZZ°, B € Hy(X;Z), and J € jﬁs, we denote by ﬁjg(B; J) the moduli space of stable
real J-holomorphic degree B maps from closed connected, but possibly nodal, symmetric Riemann
surfaces of arithmetic genus g with ¢ conjugate pairs of marked points. This space is empty if
B¢ Hy(X;Z)3 or B=0 and g+(<1.

For each i=1,...,4, let
ev;: ﬁzé(B; J)— X and v € HQ(ﬁjg(B; J); Q)

be the natural evaluation map at the marked point zj and the Chern class of the universal cotangent
line bundle for this marked point, respectively. Let

P 79
O;: My o(B;J) — M ((B; J)

be the automorphism interchanging the marked points in the i-th conjugate pair. It satisfies

_ =i _ . if j=i:
evjol; = poev 1 j Z and 0 = ¥ 1 ‘7 Z (4.13)
evj, if j#£4; v, i jA.
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The symmetric group Sy acts on ﬁjg(B ;J) by permuting pairs of conjugate marked points anal-
ogously to (3.2). This action again satisfies (3.6).

By [14, Theorem 1.4], a real orientation on (X,w, ¢) endows the moduli space ﬁjg(B; J) with a
virtual fundamental class of dimension/degree

dim [0 ,(B; J)]™ = (1—g)(n—3)+20+(c1 (X, w), B)

_ (4.14)
= dimRMg + (n(1—g)+{c1(X,w), B)) € 2Z;
see also [16, Section 3.3]. This class is preserved by the Sp-action. For ai,...,a;€Z=° and
K1, 'a/'LZGH*(X;Q)a let
(Tay (1) -+ Ta (1)), 5 o /¢ i (evipm) - pt(evie) (4.15)
(Mg o (B;J)]V

be the associated real descendant GW-invariant. This number is independent of the choice of J € J2.

If g+0>2, let
PO ,(B; ) — RMgy (4.16)

the natural forgetful morphism to the corresponding Deligne-Mumford moduli space. It satisfies
fow=wof, fob; =f;of : MM ((B; J) — RM,,  VeweSy, i€ll]. (4.17)

We denote by o , o
WRﬂg,z’ Txe: Rngg X X" — RMQZ, X

the component projection maps. Using Poincaré Duality on Rﬂg,g and Rﬂgl x Xt we define
T HY(X; Q) — H*(RMy;Q) and C27p € H* (RMg . x X% Q) (4.18)

by requiring that

/RMH VIl (s pe) = /¢ () (evipa) .. -(evine) and

g ¢ (B; )]V

i, ) ol Koo X :/ N (evipr) .. .(ev)
/RMQ,EXXZ(WRMg,ﬂ) ortn (e (11 ue)) [ﬁf;,z(B;J)]vir(f 7)(evim) - (evime)

for all ;€ H*(X; Q) and v€ H*(RM, ¢; Q). The linear maps I; ’Z’B and the correspondences C’;fB
in (4.18) are independent of the choice of JeJg. 1f g<0or g+¢<1, we set I;’Z’B =0.

4.2 Properties of invariants I

The real descendant GW-invariants (4.15) satisfy the following properties:

R1 (Eﬁectzvzty D): (7a, (1), - Taé(w)}gB =0if B¢ Hy(X;Z)9, or B=0 and g+¢ < 1, or
pi€Hy ( ; Q) for some i€ [{];
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R2 (Grading I): (1o, (1), - -+ Ta, (W»g“jg:o if

4
> (2ai+|mil) # (1-g)(n—3) + 2 + (1 (X, w), B);
=1

R3 (StTZTLg) <Tll1 (Ml)a <o Tay (ME), 7'0(1)>;g:07

R4 (Dilaton): (Ta, (1), Ta, (1), 1 (V)5 = 209 =140) (Tay (1), -+, Tay ()25

R5 (Divisor I): if ppq € H2 (X;Q),

7¢ ¢
<Ta1 (:ul)a sy Tay (:UJZ)a TU(MZ+1)>;B = <:u€+17 B><Ta1 (/‘1) -+ Tay (M€)>;B
+2 Z<Ta1 (:U’l)v s Ta; g (Ni—1)7 Tai—l(ﬂiﬂl+1)7 Tait1 (Ni—}—l) y Tay (:uf»g g
1<i<e
a; >0

The Effectivity properties above in the first two cases and in Section 4.3 follow immediately from
the moduli space ﬁ;ﬁg(B; J) being empty if either B€ Hy(X:Z)5 or B=0 and g+¢ < 1. The
Effectivity property above in the third case follows from (4.13) and the fact that 0; reverses the

orientation of the moduli space ﬁzg(B; J). The Grading properties above and in Section 4.3 are
consequences of (4.14). The vanishing in R3 is immediate from the third case in R1.

The proofs of R4 and R5 are similar to the complex case. Suppose first that either B#0 or g+£>2
so that the forgetful morphism

me a?
a1t My e41(B; J) — M o(B; J) (4.19)
dropping the last conjugate pair of marked points is well-defined. For i€ [¢], let
D C My, (B: J) (4.20)

be the subspace of maps from domains ¥ so that one of the irreducible components ¥; of 3 is P!
which has precisely one node, carries only the marked points zZ-+ and zgﬁ_l, and is contracted by
the map. The forgetful morphism (4.19) restricts to an isomorphism

~ M (B ). (4.21)
The (virtual) normal bundle N'DF of D in ﬁj,e +1(B; J) is canonically isomorphic to the complex

line bundle of the smoothings of the above node of ¥;, as in [12, Lemma 5.2]. By [16, Corol-
lary 3.17], the sign of the isomorphism (4.21) with respect to the orientation on Dii determined by

the orientations of ﬁjHl(B; J) and N'Df is +1.

By the same reasoning as in the complex case,

Vil pro o] pr = 0, i = {T Y it [DF T+ D7 € B (M2 111(B; 1); Q); (4.22)
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the meaning of the last identity in (4.22) is analogous to that of (3.16), as explained above Propo-
sition 3.2. Under the identification (4.21),

aWDF) ~ —tis {Fla Wil pe =05 VI, Wil pe =5 Vield-{i}.

Along with (4.22), this gives
(Tay (p1), - .- »Tag(w)ﬁl(l»;’g = / . (T Y (i (evim) - . (evime) e,
Mg, 041(B;J)

<Ta1 (Hl)v <y Tay (/‘3)7 7—0(/‘)>::g = /[Dﬁ¢ ( { €+1 (%Z)?l(eVTHl) s %LZ(GVZW)) (evzj‘lﬂ)
g,0+1

BJ)vir
+Z/ (Hw evu]> U CHT ) (Hw evug)

1<i<t (BN 52 j=it1
a; >0

The identities R4 and R5 follow from the above two equations,
<cl(£ZiI‘E®TE>7E> = 267 <eVéi1M72> = <:u’7 B>7 (423)

where Y. is a generic fiber of the forgetful morphism ?EQH in (4.19) oriented by the position of the
marked point ZZH and Ly —>ﬁ§,e 4+1(B; J) is the universal tangent line bundle at zzg_l, and from

the compatibility, as in (2.11), of the virtual fundamental classes for ﬁzé 4+1(B;J) and ﬁ;g(B i)
with this fiber orientation. We justify (4.23) below.

The second identity in (4.23) follows from the fact that the intersection of any degree B curve in X
with a generic representative for the Poincare dual of u is (i, B). The pairing

Lo s®TS — C,  ¢p@v —s h(v), (4.24)

vanishes transversely at the marked points zl-i €Y with i€ [¢] (which correspond to the intersections
of ¥ with Dli) It also vanishes on the real locus 37 of ¢ (which corresponds to the intersection
of ¥ with the subspace of ﬁiz 4+1(B; J) of maps from domains ¥’ so that one of the irreducible
components of ¥’ is P! which has precisely one node, carries only the marked points ZEEH, and is
contracted by the map). Each of the 2¢ points 2" €. is a positive zero of the pairing (4.24). The
fixed locus X7 is a disjoint union of circles with a trivial normal bundle. A small deformation of
the section of L% |[s®T given by (4.24) does not vanish near ¥?. Thus, 37 does not contribute
to the first number in (4.23). This establishes the first identity in (4.23).

The remaining cases of R4 and R5 are B=0 and either (g,¢)=(0,1) or (g,¢)=(1,0). The right-
hand sides of the equations in R4 and R5 vanish in either case. The left-hand sides are integrals
against the virtual classes of

ﬁé’g(o; J)~RMpax X?  and zml 1(0; ) ~ RM 1 x X9 (4.25)
With 71, mo denoting the projections of the right-hand sides above to the two factors,

W &= T and ev; i & T (/M;!)m)
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under these identifications. Since RMg 2~ S, ¥1,12=0 if (g,£)=(0,1). Thus, the left-hand sides
of the equations in R4 and R5 also vanish in this case. Since the connected two-dimensional moduli
space RM 1 is not orientable, the left-hand side of the equation in R4 vanishes in the (g, £)=(1,0)
case as well.

Since the obstruction bundle for Wﬁl(o; J) is isomorphic to 7} (ER)*®@73TX? under the second
identification in (4.25),

(ro(w))ys = £{(m3p)e(r; (B%)* @m3TX?), RMy 1 x X?)

=) (4.26)
= +{e(n}(ER)* @m3TX?), RMy 1 x (MNX?))

if M is a generic representative for the Poincaré dual of y. For dimensional reasons, the restriction
of TX? to MNX? contains a trivial rank 2 subbundle; we denote its complement by V. By (4.26),

(ro(w))yy = (e (B @ (E%)"), KMy )(e(V), MNX?).

Since RMj ; is not orientable (resp. V is oriented and of odd rank), the first (resp. second) factor
on the right-hand side above vanishes. This establishes the remaining case of R5.

4.3 Properties of invariants II

For PeP(g,0) as in (2.3) and Be Hy(X;Z), let
PE(B) = {(B', By) € Ha(X; Z)*: B'—.(B')+By=B}.
For a complex line bundle L — X, g €Z, disjoint subsets I,JCZ*, and B € Hy(X;Z), define

SL e L
I;J,(?,J),B: H*(X; QM — B (M, 1005 Q),

19, L o
I;?J),B (k1,5 o)) = (—1)tthe (B»I;),\ILLILB (K- - v/ﬂlll_l]|)v (4.27)
L it i),
where =40 e
—¢ i, ifi€ (7).

Each moduli space RM, with £ > 2 is oriented as described in [16, Section 3.5]. For the pur-
poses of the B =0 case of R9 and the g =0 case of R12 below, we identify IA—IZ*(RMM; Q) with
H*(RMO’K; Q) via this orientation. The identities in R10, R13, and R14 depend on the choices of
orientations for a generic fiber of the forgetful morphism f§+1 and for the normal bundle of the
immersions in (4.5)-(4.9); these are specified in Section 4.1.

The linear maps (4.18) satisfy analogues of Kontsevich-Manin’s axioms of [25, Section 2]:
R6 (Effectivity 11): T, =0 if B¢ Hy(X;2)%;
R7 (Covariance): the map I; ’ZsB is Sy-equivariant and
T (i, i1, & iy ity ) = 07 T g (i, ) Y, o€ HY (X5 Q);
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R8 (Grading II): I;’Z’B is homogeneous of degree (g—1)n—(c1(X,w), B), i.e.
|I;JzB )| = lul+ (9—Dn—{c1(X,w), B) V peH*(X;Q)%
R9 (Fundamental Class I): for all pe H*(X;Q),

o o, if B£0:
Fakalio )‘{—<u,[x¢]>, it B0

R10 (Fundamental Class II): if g+£>2 and pe€ H*(X;Q),
Iwﬁi—lB( 1) = (f%%rl) (I:]J;)B( ))

R11 (Divisor II): it g+£>2, p€ H*(X; Q)Y, i1 € H(X;Q), and 7 € H* (R M, 1 Q),

/ (f%gﬂ)VI O+1, B(N’WH) = <M6+1aB>/ ’VI;,Z(?B(M)Q
R. RMg ,

M9,2+1

R12 (Mapping to Point): for all pi,...,u€ H*(X;Q),

—(p1- e, [X?)), if g=0, £>2;
T (o) = ., [XO))e(BR), if n=1, g€ 227,
0, otherwise;

R13 (Genus Reduction): for all pe H*(X;Q)",

() (Z505 () }:ynﬂzﬂmgwgﬂﬂ

4,7=1
(Lﬁe)*(lfk¢3(u)) (— )QHMdeiz 13(1“7 PD;cl([X(b]X))?

R14 (Splitting): for all u € H*(X;Q)!, P € P(g—1,¢) as in (2.3), P € P(g,¢) as in (2.3), and
partitions [(|=1UJ,

(L%)* (I;),’ed,)B(F‘)) = an(Pu Z Zg o, |1|+1 B /”7 el) XI;; | J]+1, BQ(CJ" :“J)’
Bl,BQEHQ(X Z)’l,] 1
B1+B2=B
(L%)* (I;’Z)B(/‘) = P Z Z gmzw ?}u{ul} J), pliu, ei) XI;JO |K|+1, Bg(ek’ pi),

(B' Bo>e7>“ﬁ< Bybk=1

(Lg,(I,J))*(I;’ed,)B(F‘)) = Z Zngw i 1)/2,(TU{e+1},JU{(+2}),B’ (ks eive),

B’'eH>(X;Z) i,j=1
B — ¢*(B/)—

() (T () DY I;J/g’(fu{zﬂ} .5 (1 PDX ([XP]x));

B’eH2 X; Z)
B/ —¢. (B)
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R15 (Motivic Aziom): I, fB is induced by the correspondence C;’XB.

The first property in R7 follows from the Sy-invariance of the twisted fundamental class of Rﬂ%g

and of the virtual fundamental class of ﬁjx(B; J), the first identity in (3.6), and the first identity
in (4.17). The second property in R7 follows from

O (RMy]) = ~[RMyel, 0 ([0 (B 1)]™) = — [0 o(B: )], (4.28)

the first identity in (4.13), and the second identity in (4.17). The property R10 is a consequence of
the compatibility, as in (2.11), of the virtual fundamental classes for ﬁ?,e +1(B;J) and ﬁ‘?e(B i)
with the orientation of a generic fiber of the forgetful morphism ?§+1 in (4.19) by the position of the
marked point ZZH- Since the intersection of any degree B curve in X with a generic representative
for the Poincare dual of u € H?(X;Q) is (u, B), this compatibility also implies R11. Similarly
to the complex case, R15 is immediate from (2.4), (2.5), and the definitions of I;J,fB and C’;’Z)B
after (4.18). We establish R13 and R14 in Section 5.2.

Proof of R9 and R12,g=0. By definition,
[ o) = [ ) (evin). (1.29)
RMo,2 [9g o (B;J)] Vi

If B#0, ev] u:%{*ev“{ 1 and a generic fiber of
an? a?
}121{: 93?0’2(3; J) — im0,1(B§ J)

is P1. Since RMj 2~ RP!, the integral on the right-hand side of (4.29) thus vanishes for dimen-
sional reasons. This establishes the B#0 case of (R9).

Let ¢>2. By [16, Corollary 3.19], the natural isomorphism
MG ,(0;.J) ~ RMo ¢ x X

is orientation-reversing with respect to the orientations on RMy, and ﬁ&(o; J) specified in [16,
Section 3.5]. Along with (2.7), this implies the B=0 case of R9 and the g=0 case of R12. O

Proof of R12,g>1. There is a natural identification
W2 4(0; ) ~ XOxRM,0. (4.30)

We denote by 7y, o : @jg(o; J)—X ¢ Rﬂg’g the two projections. The kernels of the lineariza-
tions D(rx q¢) of the d;-operators on the space of real maps from symmetric surfaces to (X, )
form the vector bundle 7T X? over the moduli space on the left-hand side of (4.30). The cokernels
of these linearizations form a vector orbi-bundle isomorphic to the real part

(T TX@mE)" ~ miTX?@75(EF) — X?xRM,, (4.31)

of the complex vector bundle 777X ®@5E* with the conjugation induced by the involutions on X
and E.
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For a symmetric, possibly nodal, Riemann surface (3, 0), we denote by 5(270) the rea_l Cauchy-
Riemann operator on the real line pair (X¥xC, ox¢) over (X, o) induced by the standard d-operator
on the smooth functions on ¥; see [16, Section 2]. The determinants of the operators 5(2,0) form a
real line orbi-bundle det dc over Rﬂgj; see [41]. Since the kernel of each operator 5(270) consists
of constant R-valued functions, there is a canonical homotopy class of isomorphisms

det e ~ AP (ER) (4.32)

of real line orbi-bundles over RM,,. By [14, Propositions 5.9/6.1], there is also a canonical
homotopy class of isomorphisms

AP (T(RM, () = det Oc (4.33)
of real line orbi-bundles over Rﬂg,g.

The determinants of the linearizations of the 0;-operators on the space of real maps from symmetric

surfaces to (X, ¢) form a real line orbi-bundle det D7 x q44) over ﬁ?Z(O; J); see [14, Section 4.3].
The forgetful morphism (4.16) induces an isomorphism

AP (TR ,(05.7) =~ (det Drx agy) @F (AP (T(RM, 1) (4.34)

of real line orbi-bundles over ﬁjg(o; J); the line orbi-bundle on the left-hand side is the top exterior

power of the virtual tangent bundle for the moduli space ﬁzg((); J). A real orientation (L, [¢],s)
on (X,w, ¢) determines a homotopy class of isomorphisms

det D(TX,d(f)) ~ f*((det g@)®n) (435)

of real line orbi-bundles over ﬁje(o; J) via (1.2) for each stable map u representing an element of

ﬁjf(o; J); see [16, Section 3.2]. By [16, Lemma 3.1] with rkcL=1 and deg L=0, the homotopy
class of isomorphisms in (4.35) is determined by the orientation of X? induced by (L, [¢/], ) if and
only if g(g—1)/2 is even.

Combining (4.33)-(4.35) with the identification of the cokernels of the operators D1y q4) in (4.31),
we obtain a homotopy class of isomorphisms

AR (T (XOXRMy ) ® (AR(mi T X @3 (EF)"))" = AP (T9 4(0; J)) (4.36)
~ 7

~ (det Dirx ag)) OF (AP (T(RMj,0) (( det aC) (D)

of real line orbi-bundles over ﬁ?) ¢(0; J). Since n+1 € 2Z, the last line bundle in (4.36) is canonically
oriented. Thus,

[0 ,(0: )] = £e(miTX?@m3(EX)*) N [X? xR My (4.37)

The cap product above is taken with respect to the relative orientation of the vector orbi-bundle (4.31)
determined via (4.36). This relative orientation depends on the choice of a coherent system of de-
terminant line bundles as in [41], and so does the sign in (4.37).
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If 27, the rank of miTX?®75(ER)* is odd. The Euler class in (4.37) thus vanishes in this case.
If g>2, ;iTX?®73(EX)* is pulled back from X?xRM, . Since

k(T X% @73 (ER)) > dim(X?xRM,0)  if n>3, g>2,

the Euler class in (4.37) also vanishes if n>3 and g>2 (just as happens in the complex case). If
n=1,3, the vector bundle TX? over X is trivial. Since

3rk(E®) > dimRM, o if g>2,
the Euler class in (4.37) also vanishes if n=3 and g>2.

In the remaining n=1, g€2Z* case of R12, (4.36) and (4.37) reduce to

AP(T(X? X RMy,0)) @ ARP(m3 (B)*) ~ AP (TIg (05 ) = F((det Dc)*2), (438)
[0 )] "™ = £(=1)2/2([X?] x (e((B®))n [RM, ). (4.39)

The cap product above is taken with respect to the relative orientation of the vector orbi-bundle (4.3)
determined by the homotopy class of isomorphisms

ARP(ER) = det dc ~ AP (T(RM,))

induced by (4.32) and (4.33). The sign in (4.39) depends on the choice of a coherent system of
determinant line bundles as in [41]. By (2.7) and (2.4), the sign in the middle case of R12 is
opposite to the overall sign in (4.39). O

Remark 4.1. By the second part of Section 5.3 in the 5th arXiv version of [41], the choice of a
coherent system of determinant line bundles determines the sign between the virtual fundamental
class of a smooth moduli space with an obstruction bundle and the cap product of the Euler class of
the obstruction bundle with the fundamental class of the moduli space with respect to the relative
orientation induced by the orientation of the moduli space as in (4.37). A coherent system of
determinant line bundles also determines the homotopy class of the isomorphisms (4.33) and the
homotopy class of the isomorphisms

ARP(T(X? X RM ) 9 Ag(m TX @3 (EF)*) = (det Dirx ag)) OF (Ag" (TRMj,0))

induced by the identification in (4.36) and the isomorphism in (4.34). By Proposition 5.10 in the
5th arXiv version of [41], the sign in (4.37) for the “base” coherent system of determinant line
bundles given by [41, (4.10)] is plus. The sign + in (4.39) is plus as well for this system. In
general, the sign + in (4.39) is the same as the sign of the component A;_, ,€R* corresponding,
as in Theorem 2 in Section 3.4 of [41], to the coherent system of determinant line bundles used.
The signs of A;_4 4 also correspond to the two relative orientations of the vector orbi-bundle (4.3)
determined by the homotopy class of isomorphisms (4.33). As explained in [16, Section 3.5], the
construction of this homotopy class in [14] involves a somewhat arbitrary sign choice which can be
fixed systematically from an orientation of RM o.

Remark 4.2. The properties R1-R15 are stated for the orientations on the moduli spaces ﬁzg(B i J)
induced by a real orientation (L, [¢],5) on (X, w, ¢) via (1.2) as in [16, Section 3.3]. These properties
remain valid with the modifications described below if ¢ is a conjugation on L lifting ¢ and the
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orientations on the moduli spaces are instead induced via (1.4) as in [14]. The homotopy class of
isomorphisms in (4.35) is then always determined by the orientation of X¢ induced by (L, [¢/],s),
and thus (—1)9/2 should be omitted from (4.39). By Remark 5.1, the right-hand side in the first
equation in R13 should be negated, while g in the sign exponent in the second equation in R13
should be replaced with (¢;1(X,w), B)/2—1. Each summand on the right-hand side of the first
equation in R14 should be multiplied by (—1)%s1.92(B1:52) with

€g1,92(B1, B2) = (1 —1+(c1(X,w), B1)/2) (ga—1+{c1(X, w), B2)/2),

and the entire right-side should be negated. For the purposes of the last three equations in R14, the

leading sign should be dropped from the definition of I‘g" (dl’g) 5 in (4.27); this makes I‘g" (?5) 5 inde-
pendent of the complex line bundle L, which can thus be omitted from the superscript. The leading

sign exponents, in front of the sums, in these three equations should changed to (—1)5(P )+
(=1)+/2 and (—1)I#+9/2  vespectively. The sum of &, (P) and e,, g,(B1, B2) is even, i.e. it does
not contribute to the overall sign in the first equation in R14, if n = 3 mod 4 and ¢;(X,w) is
divisible by 4 on the classes in Ho(X;Z) representable by real maps. This is in particular the case
if X is a Calabi-Yau threefold or the complex projective space P3.

4.4 Reconstruction of invariants

We call a collection of homomorphisms 7 ’fB as in (4.18) with ¢>2 and B € Hy(X;Z) which satisfies
the properties R6-R10, R11 with y=1, and R12-R15 an extension of the tree-level system {I§, 5}
of GW-classes for (X,w). Theorem 4.3 below is the real analogue of Proposition 3.1. Accoryd,mg
to it, an extension of a tree-level system of GW-classes for (X,w) can be reconstructed from a
small subcollection of the full collection. Similarly to Proposition 3.1, Theorem 4.3 follows readily
from the fact that H*(RMo¢; Q) is generated as a ring by certain “boundary” classes.

Theorem 4.3. Let (X,w, ) be a compact real symplectic manifold of dimension 2n and {I(L)ie,B}

be a tree-level system of GW-classes for (X,w). A ¢-extension {Ig’fB} of {Z§, g} is determined
by the numbers

TP (W) eQ  with £€Z7° BeHy(X;Z)8, pe H(X;Q),
RM(LZ [ad}

i.e. by the codimension 0 classes Ig’fB(u) with p€ H* (X;Q)*. If in addition H* (X;Q) is generated
as a ring by H*(X;Q) and H%(X;Q), then this extension is determined by the codimension 0

classes ISJ”;’)B (1, p2) with
B e HyX;2)®, (c1(X,w),B) <n+l, (4.40)
m € HE(X;Q), || =n+(a1(X,w),B)=1, ps € H2(X;Q). '

Proof. By [4, Theorem 2.2], the cohomology ring H*(RMj ¢; Q) is generated by the Poincaré duals
of the images of the immersions L% in (4.8) with P € P(0,¢) and LOE(I gy in (4.9) with [f]=TUJ.
Along with Poincaré Duality for RMo 4, this implies that

ﬂ(ker L%*) N ﬂ(ker L(f(*LJ)) = H*73 (RMo;Q),
PeP(0,6) (=107
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with L((»:«* and LO ( ) denoting the pullback homomorphisms on the rational cohomology. Thus,

every positive codimension cohomology class IS’ ’fB (1) on RMg is determined by its pullbacks

STEP () € H (M5 Q) with PeP(0,6)  and

B ¢ = . (4.41)
L07(§’J)I&’E,B(/L) € H* (Mo41;Q) with [{]=1TUJ.

By the last identity in R14, each of the latter pullbacks is a linear combination of classes ¢, g (i)
determined by the tree-level system {Z¢’, 5 }. By the second identity in R14, each of the former pull-

backs in (4.41) to a nonempty domain is a linear combination of the products Zg ;s /(1 NXI zﬁ B, (H0)
with £y <£. By induction, this implies that a ¢-extension {Z7’ i B} of {Z§, p} is determined by the
codimension 0 classes IO 7 B( ) with € H*(X;Q)*. By the second property in R7 and the first

identity in (4.28), the codimension 0 classes Ig)’fB(ul, -y pg) with p; € HY (X;Q) for some i € [/]
vanish. This establishes the first claim.

Suppose H* (X; Q) is generated as a ring by H2(X;Q) and H% (X;Q). By the proof of [12, Corol-
lary 2.4(2)], which depends only on a homology relation between the images of the immersions
of L(Cv the second identity in R14, C9, R9, R11, and the above vanishing property, every codimen-

sion 0 class I}, Y B(,u) is then determined by the codimension 0 classes I ’fB(ul, 2) satisfying (4.40)
and the complex codimension 0 classes Iy, p(1t). Combining this with the first claim, we obtain
the second claim. O

A manifestation of the first statement of Theorem 4.3 is the WDV V-type equation for real GW-
invariants established in [12]. Define

0 Hy(X;Z) — Ha(X;Z),  o(B') = B'—.(B).
For [(]=1UJ and pc H*(X;Q), let
Wi () = (—1)=(DmglIl
According to [12, Theorem 2.1],

N
PO oD s R T

=IUJ By,B'€Hy(X;Z) i,j=1
2eI,1,3eJ Bo+3(B')=B

N
= Z Z Z Wi, (1) {pr, 6i>§y’gog”<6p MJ>(6)7B/

=1UJ Bo,B'€Hy(X;Z) i,j=1
3eI,1,2eJ Bo+3(B')=B

(4.42)

for all te Z", Be Hy(X;Z), and p= (g, ..., pe) with py € H{(X;Q), and po, ..., m e H* (X;Q).
The full collection of relations (4.42) is equivalent to the compatibility of the homomorphism Ry
on the extended quantum cohomology of (X,w) defined at the end of [12, Section 7] with the
quantum product. This collection completely determines all real genus 0 GW-invariants (. . >6‘)g of
(X,w)=(P", wrg) with n¢2Z from the basic input (pt>‘(i"£::|:1, i.e. the number of real lines in P"
through a conjugate pair of points.
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Theorem 4.3 is a reconstruction result in real GW-theory. Another result is Theorem 4.4 below
that reduces the g=0 descendant GW-invariants (4.15) to the primary ones, i.e. those with a; =0
for all i€ [¢]. Its proof is similar to that of Proposition 3.2. We give it under the assumption that

the strata of ﬁgg(B; J) are of the expected dimension. It adapts readily to semi-positive sym-
plectic manifolds via real analogues of Ruan-Tian’s global inhomogeneous perturbations as in [42]
and with some technical care to arbitrary real symplectic manifolds with real orientations via the
virtual fundamental class constructions of [27, 8]. The zero-contribution arguments in the last two
paragraphs of the proof of Theorem 4.4 are similar to the proofs of [13, Corollary 3.4(2)] and [12,
Lemma 6.2], respectively.

For (€Z™, i€ (] distinct, and B, By, B'€ Hy(X;Z) with By+09(B’)= B, we denote by
RDp, g C Ty o(B; J) (4.43)
the subspace of real maps u from domains X TUYoUX ™ such that

e X 3, Y are connected genus 0 curves with ¥y sharing a node with ¥* and another node
with X7,

e the involution ¢ on the domain preserves ¥ and interchanges X% and X,
e the first point zz+ in the i-th conjugate pair of marked points lies on X7, and
e the restrictions of u to ¥y and X1 are of degrees By and B’, respectively.

Under ideal circumstances, RDpg, p; is a union of smooth codimension 2 submanifolds in ﬁge(B i J)
intersecting transversely. The (virtual) normal bundle of each of these submanifolds is naturally
isomorphic to the complex line bundle of the smoothings of the node shared by ¥g and ¥T, as in
[12, Lemma 5.2]. These submanifolds thus inherit orientations from that of ﬁ(‘ig(B; J). By [27, 8],
RDp, p; carries a natural virtual fundamental class. The meaning of the equation (4.44) below is
that the integral of the product of the left-hand side with a descendant cohomology class 7, as in

the integrand in (4.15), against [ﬁgg(B ; J)]' equals the integral of the product of the first term
on the right-hand side with 7 against [ﬁg’g(B; D)V plus the integral of 1 against the weighted
sum of [RDBD’B/i]Vir.

Theorem 4.4. Let (X,w, ¢) be a compact real symplectic manifold of dimension 2n with n¢ 27 and
(L, [¥)],s) be a real orientation on (X,w, ). For {€ZT, BE Hy(X;Z), ic[l], and p€ H*(X;Q),

(. By = —2evip+ > {u Bo)[RDpypi] ™" € H* (MG ((B; J); Q) . (4.44)
Bo,B'€Ha(X;Z)
Bo+0(B")=B

Proof. We can assume that w(B) >0 and ¢.B=—B. By the linearity and continuity of both sides
of (4.44) in p, we can also assume that ¢*u = —p and that g can be represented by a (generic)
pseudocycle ¢ : M — X. Let d = (u, B) and h € R* be the minimal value of (w,u.[P']) for a
non-constant .J-holomorphic map u: P! — X.

We denote by 9 the set. of representatives u: ¥ — X for the elements of ﬁg,Z(B ;J) such that

° zj' =0 on the irreducible component P}; 4 C3J containing it;
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o if 2~ epl!

iips then z; =00;

o if 27 ¢P) , then

B4

o the node of Pl .+ separating it from the irreducible component IP’l of ¥ containing z; is the

point <>o€IP’Z 4

o the interior of the unit disk D C Pl .+ centered at z = 0 contains no marked points other
than z and no nodes;

o either [pu*w=~h/2 and DC P} i+ contains no marked points other than z and no nodes or

Jp u*w<h/2 and ]DDC}P’Z-;+ contains a marked point other than z;” or a node.

We call two elements of 9t equivalent if they differ by a reparametrization of the domain which
commutes with the involution on the domain and restricts to the identity on the irreducible com-
ponent Pil; . containing z;r . Gromov’s convergence induces a topology on the set 9t of the resulting

equivalence classes of elements of M. The action of S on IP’l .+ induces a continuous action on m
so that ﬁ(‘f’g(B; J) is the quotient ﬁ/Sl and

L=Mx g C — My ,(B; J)

is the universal tangent line bundle for the marked point zj

section of L®? and determine its zero/pole locus.

. Below we define a “meromorphic”

A generic element u: P! — X of M intersects M transversely at points

yf(u),...,y(}:(u) eC” and  yy (u),...,y; (u)€C*

positively and negatively, respectively, so that d=dy—d_. The resulting element
_ d
s([u]) = [u,yi (W) .. yg, (u) /yy (u (u)] e L

depends only on the image [u] eﬁfig(B; J) of ue M. This construction induces a section of L4
over generic elements of ﬁ§7£<B ;J). This section extends to a “meromorphic” section over all
of MY ,(B; J).

The section s has a zero (resp. pole) whenever u meets M positively (resp. negatively) at z;” =0 and
a pole (resp. zero) whenever u meets M positively (resp. negatively) at z;” =o0. It also has a pole
(resp. zero) whenever u€ RDp, pr; meets M at any point of ¥y (in the terminology around (4.43))
positively (resp. negatively). The same is the case if w € RDp, p/; meets M at any point of 3~
or the domain of u consists of two components, IP’%; 4 and IP’%;_, interchanged by the involution and
u meets M at any point of IP’};; We denote the two sets of such elements by RDp g, (M) and

RE; (M), respectively. Thus,
s71(0) =(ev; H(M)—{goevi} 1 (M) = Y (u, Bo)RDpy, i

By,B'€H2(X;Z)
Bo+o(B’)=B

U |URDg, i (M)URE; (M) € M (B3 ).

Bo,BIEHQ(X;Z)
Bo+o(B')=B

(4.45)
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The rows in the commutative diagram

poev;

M ,(B; J) X A
\Lid L¢ lid
W ((B; J) — X" Ny

induce two fiber-product orientations on
TG (B3 J) goovs X0 M = Ty 1(B; J) ov, X gou M .

Since the diffeomorphism ¢ of X is orientation-reversing, these two orientations are opposite. Since
¢*pu=—p and ¢,[M]=[M], the difference in (4.45) contributes 2ev}u to

~ (. Byt = er (L) € H2 (M (B; J): Q). (4.46)

The contribution of the sum in (4.45) is exactly as in the complex case of Proposition 3.2. We show
below that the subsets RDp p,,(M) and RE; (M) of 57 1(o00) do not contribute to (4.46) and thus
establish (4.44).

After intersecting with a cycle corresponding to integration against a descendant cohomology class 7
on ﬁg,z(B; J), as in the integrand in (4.15), we can assume that RDp p,;(M) is a finite collection
of points. Let d'=(u, B'), ug€RDp p,;(M), and

yf,...,y(LEC* and Y ,--.y, €C

with d’ =d, —d_, be the points at which the restriction of uy to ¥~ intersects M positively and
negatively, respectively. The complex smoothing parameter ¢ corresponding to the node shared
by Yo and X1 also smooths out the node shared by ¥y and ¥~ according to the smoothing
parameter ¢, i.e. a point 1/w € ¥~ in the domain of u corresponds to the point ~ 1/|c[?>w in the
domain of the associated smoothed out map u. meeting M. The section s on a neighborhood of ug
can thus be approximated by the map

C —C, c— (yl_...ygi/yf'...yjl;)\crm .

It follows that s can be deformed to a section with no zeros or poles on this neighborhood. This
implies that RDp p,;(M) does not contribute to (n, [s71(0)]).

If RE; (M) #0, then d€2Z. After intersecting with a cycle corresponding to integration against a

descendant cohomology class 1 on ﬁgj(B ;J), we can assume that RE; (M) is a finite collection of
circles. The normal bundle to RE; (M) is the trivial line bundle. The section s on a neighborhood
of a circle S CRE; (M) can be approximated by a map

S'xR — C, (u, ) — c(u)r=42,

for some continuous map c: S* — C*. The signed number of zeros of a deformation of s on this
neighborhood is
—(d/2){e((S* xC)/(S* xcR)), S*) = 0;

see Propositions 2.18A and B in [39]. Thus, RE; (M) does not contribute to (n, [s~1(0)]) either. [
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As in the complex case in Section 3.3, the properties of real GW-invariants of Sections 4.2 and 4.3
can be reformulated in terms of differential equations on generating functions for these invariants.
We continue with the notation at the end of Section 3.3. For the purposes of (4.47) below, we
assume each basis element e; for H*(X;Q) lies in either H} (X;Q) or H* (X;Q). Let

SRS z( > (et )
BeH, X)e>0' B'€Ho(X;Z) 7 b
(B )=B

The (primary) real genus 0 GW-potential and the descendant real genus g GW-potential of (X, w, ¢)
are the formal power series

Q?(t, q) Z Z . t/2, t/2> i q° and

BeH>(X £>0

Fpiha = Y Z(m 2d®

BeH(X;Z) £>0
respectively. The full descendant GW-potential is the formal power series

Fooltq) =) Folt g,
g>0

Thus, Q¥? is the coefficient of A1 in F*¢ with toj=t; and t,; =0 for a>0.

The real string relation R3 is equivalent to the differential equation

OF=®
Otor

The real dilaton relation R4 is equivalent to the differential equation

OF "
i { +ZZ%(% }]—" ¢

a=0 j=1

The relations (4.42) are equivalent to the WDV V-type differential equations

N
Z 8751’1 8% 8tj e gjkatk atz's Qe
-
e N (4.47)
=(-1) leig lles | Z 8ti1 atl_g 8tj WP . ijatk a% Qo
Jik=1

with i1,49,i3=1,2,..., N such that e;, € H}(X;Q) and e;,,e;; € H* (X;Q).
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5 Genus reduction and splitting

Let (X,w, ¢) and n be as in Theorem 1.2. For the remainder of this paper, we fix J € .70? and omit
it from the notation for the moduli spaces of maps. We define the arithmetic genus g of a closed,
possibly nodal and disconnected, Riemann surface (X,j) by

m
g—1=> (9:—1)
i=1
if g1,...,gm are the arithmetic genera of the topological components of 3.

5.1 Comparisons of orientations

For g € Z, £ € Z2°, and B€ Hy(X;Z), we denote by ﬁjﬁZ(B) the moduli space of stable real
J-holomorphic degree B maps from closed, possibly nodal and disconnected, symmetric Riemann
surfaces of arithmetic genus g with £ conjugate pairs of marked points. Thus,

an® ;e
M, (B) M, (B)
is a union of topological components. For each i€ [{], let
evi: Moy (B) — X and L, — Moy (B)

be the natural evaluation map and the universal tangent line orbi-bundle, respectively, at the
marked point zf . Let

(£¢®E)R = {rv@eveﬁi(@czz vEL;, TER}.
This real line bundle over ﬁ?; (B) is canonically oriented by the standard orientation of R.

For each element PeP(g—1,¢) as in (2.3), let

C _ ey o) anrd;e
50 Mp(B)= || M, 700 (Br) x Dy, 5111 (Ba) — M5 15(B) (5.1)
B1,B2€H2(X;Z)
Bi1+B>=B

be the open embedding obtained by taking the disjoint union of the two maps and by re-ordering the
pairs of marked points according to the bijection (2.1) with (I, J) replaced by (IL{¢+1}, JU{¢+2}).
For disjoint subsets I, J C Z' and a map u= (C,u) from a marked curve C with the underlying
Riemann surface (X,j) as in (4.7), define

Dr(u) = (Dr(C),D(w): S—X)  with D()|(1yxs =u, D(W)|_jxx = pou.
For each PeP(g, () as in (2.3), let

o™ an? e
Lpo- Mp(B)= |_| g’,|ILIJH—1(B/) ><§mgo,|K|+1(BO) - mg—2,€+2(B) (5.2)

(B',Bo)ePL(B)

33



be the open embedding sending ([u'], [ug]) to the equivalence class of the marked map obtained by
taking the disjoint union of D o413, s(u') and up and by re-ordering the pairs of marked points
according to the bijection (2.1) with (I, J) replaced by (JUJU{¢+ 1}, KU{¢+2}). If [(]=1UJ, let

~ —C —
Ty 10 Mgonyoer2(B) = || Mg—1)/2.042(B ") — M2y o(B)  and
B'€Hy(X;Z)
B'—¢.(B')=B
I o (53)
Lo 1.0 Mg2e1(B) = |_| My/2,041(B") — mg 1041(B)
B'€Hy(X7)
B/—q‘)*(B/):B

be the open embedding sending [u'] to the equivalence class of D111}, juge12) (1) and the open
embedding sending [u’] to the equivalence class of D ys41y, (). If g€27Z (resp. g #27), we define

5=C <E
M (g—1)/2,0+2(B) (resp. M5 011(B)) to be the empty set.
Define

ﬁlg(@.MH(B) = {[u]@mg % 0r2(B): evepr ([u]) =evppo([u])},
M5 1 4o(B) = {[W] €T, 1.1 (B): evey([u]) € X}

The short exact sequences

ol *

0 — TM,"5 4 2(B) — szg 2049 ( ’*"bam(B) — evi TX — 0,
//¢y *

0— T, 41 (B) — szg Les( ’*”"’IM(B) — evi Ny X? — 0

induce isomorphisms

o o /e * o
Ag™(T (mg 2.0+2(B }*'(“ e2(B) ~ AR (T(My25 p42(B)) @eviy (AxT(TX)), 5.4
o o P * o ’
ARP(T (mg 1e41(B }*’“"Hl(B) ~ AP (T (M2 g1 (B)) @eviyy (AxT (Nx X?))
of real line bundles over ﬁ;b—;.z,e 4o(B) and 93?;/¢’1 ¢41(B), respectively.
We denote by
~ ﬁ’fb;' B ﬁd);. B d ~ . ﬁ,/(ﬁ;. B ﬁd);. B 5 5
Lg,f' g—2,£+2( ) — g,ﬂ( ) an Lg,é' g—l,f—i—l( ) — g,@( ) ( : )

the immersion obtained by identifying the marked points ZZ+1 and z,, , of the domain of each map
with ZZH and z,_ ,, respectively, to form a conjugate pair of nodes and the immersion obtained by
identifying the marked point zZH of the domain of each map with z,,; to form an E-node. The
first immersion is generically 4 :1 onto its image, while the second is generically 2:1. There are
canonical isomorphisms
75 oM
NG, = T(im 5D ~ Loy1@cLita,
dy, (T(m,” " era(B)

7T (B))
T AT 41 (B))

(5.6)

~ (Lot ®££+1)R
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They induce isomorphisms
T3 (AZP (T (B)) = ARP (T 442(B) ©AF (Lo @ Lova),

73 (AZP (T (B)) ~ ARP (T, 41 (B) @ (Lo @ L)

of real line bundles over ﬁff_;;,g 1o(B) and 937/9@’1 14+1(B), respectively.

(5.7)

The symplectic orientation on X and the orientation on X% induced by a real orientation (L, [/], )
on (X,w, $) determines an orientation on N'x X? via the short exact sequence

0—TX? — TX|xo — NxX?—0

of real vector bundles over X?. By [16, Section 3.3], (L, [¢/],s) endows the moduli space ﬁzz (B)
with an orientation and a virtual fundamental class of dimension (4.14). The space ﬁjjz (B)

naturally splits into unions of topological components such as ﬁi’g(B) and the images of 75‘%0
with P e P(g+1,0—2), ¢ L~ with P € P(g+2,0—2), 7€ Lova(1.7)0 With [(—2]=1UJ, and TF g1 (1):0

with [(—1]=IUJ. By the ﬁrst statements of [16, Propositions 3.12/3], the signs (—1) of the open
embeddings in (5.1)-(5.3) with respect to the orientations induced by (L, [¢],s) and the complex
orientations on the complex moduli space My (B') are given by

5(1%;0 =en(P), 5%0‘ﬁ ) \IuJ|+1(B/)Xﬁ¢ |K\+1(BO = (a1(L B)+|J],
(u 10l 1) meea(ery = (1T >+\J|+1 (5.8)
gL ) o‘gmg/”+1 gy = (c1(L), ¢ B’>+\J’
respectively.
Along with the canonical orientations on L1 ®c Lero and (Lep1 @ Loy1)®, (L, [10],5) also de-
termines orientations on ﬁ/jﬁ;,g+2(3) and ﬁlg,ﬁ.’@rl(B) via (5.4) and (5.7). By the first state-

ment of [16, Proposition 3.14], the orientations on ﬁff—;;,f 1o(B) defined via the first isomorphisms
in (5.4) and (5.7) are the same. By the first statement of [16, Proposition 3.16], the orientations

on 9)?;/¢’1 ¢4+1(B) defined via the second isomorphisms in (5.4) and (5.7) are opposite.

5.2 Proof of R13 and R14
Fix a tuple = (11);efq of elements of H*(X;Q). Let '€ H*(RMgy_1 ¢41; Q) and
ﬁﬁl,m(fﬁ) = ﬁlg/f;l.,€+l(3)mﬁj—l,é—‘rl(B)‘

By the definition of I;)’fB below (4.18) and (2.4),
@ -1
Lo AT s (0 PDR (X))
RMg_1,641

= /¢ (7Y) (evim) - .. (evipe) (eviy (PDX (IX?1x))  (5.9)
1 041(B)

]Vir

¢ .
g—1,041(B)]VIE

- | (/g (v - evie)
o
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The last virtual fundamental class above is taken with respect to the orientation on ﬁlg/fm 11(B)
induced by (L, [¢],s) via the second isomorphism in (5.4). By (2.13) with r=1 and RS,

Lo B @) = (o BT )
RMgfl,Eﬁ»l RMg,Z (5 10)

= (-1t /m;z(B.J)]m (740~ D evim) - (evime)

The restriction 7% g0 of Uy o to SJTQ 1,0+1(B) is the fiber product of the forgetful morphism f in (4.16)
and the immersion ¢ g 1D (4.5). The bundle homomorphism

df: N’l\:‘gg :N,L\Zyg‘ﬁ/@ — {ﬂ—qu )}*Nbge

1,041(B) 210 (B

induced by the differential of f, with f on the right-hand side as in (4.16) with (g,¢) replaced by
(g—1,€41), is generically an isomorphism that intertwines the two canonical orientations. Thus,
the integral on the right-hand side of (5.10) equals to the right-hand side in (5.9) with the orien-

tation on Sﬁg 1,¢+1(B) induced by (L, [¢/],s) via the second isomorphism in (5.7). Along with the
first statement of [16, Proposition 3.16], this implies the second claim in R13.

Let [¢(]=IUJ and g€ Z=°. The spaces

ﬁ/(gfl)/2,f+1(B) = {[u] Eﬁgfl)/2,€+2(B): eV(ZH([uD:¢(eV£+1([u]))} and

M, 15041 (B) = {[u] €M, )5 041(B): evera([u]) € X7}

inherit orientations from the complex orientations of ﬁ((cg_l) /2,0+2(B) and ﬁgE/u 4+1(B) via the
analogues of the isomorphisms in (5.4). Furthermore,

/ 1" —II1p;e

_ /¢, —~ —
Ta1.0y0 Mgy j2,042(B) C M5 15(B) and 71 5y.0(Mgoe41(B) € M 11 (B).

Suppose in addition g€ 2729 and 4/ € H* (ﬂg /2,041; Q). The composition Zf( L) of the restriction
of TgE,(I,J);O to ﬁlg,/u_H(B) with 77 , is the fiber product of the forgetful morphism f in (4.16) and
the immersion Lf (1,7) 0 (4.9). The bundle homomorphism

bevld

. ~F ~FE * E
df: g XN gelse o — e, Vo)

induced by the differential of f, with f on the right-hand side as in (3.9) with (g, ¢) replaced by
(9/2,€41), is generically an isomorphism that intertwines the two canonical orientations. By the
first statements of [16, Propositions 3.13/6], the orientation on ﬁfq//?l 4+1(B) induced from the
canonical orientation of N Tf( 1,7) Via the analogue of the second isomorphism in (5.7) differs from

the above orientation by —1 to the power of 5;?(1,J);0+1' Along with (5.9) and (5.10) with

-— b /P ~11 E
RMg-1,41, I;—l,e+1,37 Dﬁg 1@+1(B) mgfl,éJrl(B)? Lg.0> and lge
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replaced by

<5/

Mg/2,€+17 I;”/’fj(ﬁj),B,, ﬁg/2,e+1(B/)7 mg/2,€+1(B)mﬁg/Q,ZJrl(Bl)? Ti(l,J)7 and Li(LJ)

respectively, this implies the last claim in R14.
Let 7/ € H*(RMy_2,s42; Q) and

/¢ I¢p;0 R
My o p42(B) =My o 110(B)NMy_s p10(B).

By the definition of I;k({)B below (4.18), (2.2), and (2.4),

N
> g¥ - VIS a5 (s €ir€5)
ij=1 g—2,04+2
B /W (B)]wr(f*’/)(eVTMI) - (evipe) ({evesi xevepa } (PD 2 (Ax))) (5.11)
g—2,0+2

= [T v i)
g—2,0+2

The last virtual fundamental class above is taken with respect to the orientation on ﬁlj_u 12(B)
induced by (L, [¢],s) via the first isomorphism in (5.4). By (2.13) with r=2,

/]R Y (tge) (@ p(w) = /ng,e(égé)*@/)z;%%(“)

My_2.042

(5.12)

The restriction Zg’é of 7, , to ﬁlgd)_MH(B) is the fiber product of the forgetful morphism f in (4.16)

C
g,¢

df: Ni€,=N7 | — s I
f 9.t g’z‘fm;ﬁ—z,uz(B) {ﬂmlf—z,z-‘-z

and the immersion ¢, in (4.5). The bundle homomorphism

induced by the differential of f, with § on the right-hand side as in (4.16) with (g, ¢) replaced by
(9—2,¢+2), is C-linear with respect to the identifications in (4.11) and (5.6) and is generically an
isomorphism. Thus, the right-hand side of (5.12) equals to the right-hand side in (5.11) with the

orientation on ﬁ/f,u 42(B) induced by (L, [¢],s) via the first isomorphism in (5.7). Along with
the first statement of [16, Proposition 3.14], this implies the first claim in R13.

Suppose [(] =IUJ, g € Z* =27, and v € H*(My4_1)/2,0+2;Q). The composition T;JC(I gy of the

restriction of ZS(I,J);O to ﬁ/(g_l)/MH(B) with Z’Q’é is the fiber product of the forgetful morphism f
in (4.16) and the immersion LS (1) 1n (4.9). The bundle homomorphism

. A5C ~7Cx ~ | - * C
dj: NLg,(LJ) NLg,(LJ);ONLg,Z|£m’(g,1)/2,u2(3) } {ﬂm’(g,U/ZHQ(B)} NLg,(I,J)
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induced by the differential of f, with f on the right-hand side as in (3.9) with (g, ¢) replaced by
(g—1)/2,¢+2), is C-linear with respect to the identifications in (4.12) and (5.6) and is gener-
ically an isomorphism. By the first statements of [16, Propositions 3.13/4], the orientation on
ﬁ/(gfl) /2,042(B) induced from the complex orientation of Nfg( 1,5) Via the analogue of the first

isomorphism in (5.7) differs from the orientation induced via the analogue of the first isomorphism

in (5.4) by —1 to the power of 55:(17]);0. Along with (5.11) and (5.12) with

A 7¢ 7¢ 7/(25 ~ C
RMgoev2: L% 0 Mg opa(B), My_gpin(B), gy and iy

replaced by
- - ., -
Mg-1)/2,0+2, I&’f’lL)/zy(M)’B/, Mg—1)/2,042(B)s Mg_1)2.001(B)NMg_1)2,042(B"),

Zg( 17y and LS( 1)’ respectively, this implies the third claim in R14.

For I={i1,...,imn} C[l] with i1 <...<ip, let
evip = (evip,). . .(evom i, )-
For PeP(g—1,¢) as in (2.3), define
M (B) = {([w], [u2]) €Mp(B): evippsa () =evipsa ([ua])},
PToB]™ = 3 [ pa (Bu)] ™ x P, 1 (B2)] ™

B1,B2€Ho(XZ)
B1+B2=B

m;(g(B)] vir {eV|[H_1 XGV|J|+1}*(PD;(12 (AX)) N W(IE(B)] vir‘

For PeP(g,!) as in (2.3), we similarly define
W5 (B) = {([W], [uo]) €M(B): eV (') =evireps1 (o))}

[ﬁ%(B)]Vir = Z @g’,|IuJ|+1(B/)]VirX [ﬁjo,\K\H(BO)]Vir?
(B'.Bo)€PE(B)

[ (B)]"™ = {evirupi1 xevixia1 ) (PDRA(AX) N [ME(B)]*™ .

With PeP(g—1,¢) as in (2.3), let
’YIEH*(ngI,mH;Q) and 72 GH*(RMgQ,\J|+1§Q)~

By the definition of ), below (4.18), (2.7), R8, R7, (2.2), and (2.4),

N
% 7¢) ’¢
Z Zgw/ o ('71 X’VZ) (I;7|[|+1,Bl(/$l>ei)XI;;"JHLBQ(eijJ))
Bi,Ba€Ha(X;Z) inj=1 7 BMgy 141 XRMg, 17141
B1+B2=B

= ) (i o) ey <o Y PP @) O

]vir

_ (_1)(911)VQ|+6(P,My
[ﬁlc

p(

(< (1 x12) 75" (evim) - (evipe)

BV
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By (2.13) with r=2,

Cy* ) C ,
/ - ) (B) (@) = / (P x )T ()
RMgy 11141 XBMgy 17141 RM, ¢

(5.14)
- /[¢ (BJ)]vir (F(ep)+ (1 x12) (evipm) . - (evipe) -

The image of WE(B ) under 2«1;;0 is contained in ﬁjﬁ;x +2(B). The composition 7% of the restriction
of Z(%D to ﬁf( B) with 7 , is the fiber product of the forgetful morphism f in (4.16) and the
immersion ¢ in (4.6). The bundle homomorphism

dlez%NbpoNLgé‘—/(C —>{fo|—£ )}*NL%

induced by the differential of f, with § on the right-hand side as in (4.16) with (g, ¢) replaced by
(91,]1]4+1) and (g2,|J|+1), is C-linear with respect to the identifications in (4.12) and (5.6) and is
generically an isomorphism. Thus, the right-hand side of (5.14) equals to the last integral in (5.13)
with the orientation on ﬁ;(g(B) induced from the complex orientation of 7% via the analogue of
the first isomorphism in (5.7). Along with the first statements of [16, Propositions 3.12/4], this
implies the first claim in R14.

Suppose now that PeP(g,£) is as in (2.3),
NeEH My 1uy+1:Q) and v e H*(RMy, ki+1; Q).

The image of ﬁ/jac(B) under Z%O is again contained in E)ﬁg 5 t+2(B). The composition Z% of the

restriction of ¢ AC , o ﬁg( B) with ¢ , is the fiber product of the forgetful morphism f in (4.16) and

the immersion L~ in (4.8). The bundle homomorphism

NTE 7l N
df.NLPNLP;ONL

sl )

— {fxﬂﬁg(m YN

induced by the differential of f, with f on the right-hand side as in (3.9) with (g, ¢) replaced by
(¢',[IUJ|+1) and as in (4.16) with (g, ¢) replaced by (go, |K|+1), is C-linear with respect to the
identifications in (4.12) and (5.6) and is generically an isomorphism. By the first statements of [16,
Propositions 3.12/3/4], the orientation on

—e — — —C
ME (B)N (Mg 11141 (B') x Mgy 141 (Bo)) € Mp(B)

induced from the complex orientation of N Z% via the analogue of the first isomorphism in (5.7)

differs from the orientation induced via the analogue of the first isomorphism in (5.4) by —1 to the
power of (c1(L), ¢«(B")+|J|. Along with (5.13) and (5.14) with

N N
E: o RMg 41, RMg, 171415 I;,\IIJrl,Bl’ I;Q,|J|+1,Bgv
B1,B2€H>(X;Z)
B1+B2=B

I, J, g Mp(B), Mp(B), %, and
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replaced by

AA AA ’¢7L ?¢
§ : o My e, RMgg k41, IZ\IIJJHI,B” I;),\K\-i-l,BO’
(B',Bo)ePE(B)

IuJ, K, 2¢-1, Mp(B), Mp(B), S, and S,

respectively, this implies the second claim in R14.

Remark 5.1. Suppose 5 is a conjugation on L lifting ¢ and the moduli spaces ﬁjg(B) are ori-

ented via (1.4) as in [14]. By the second statement of [16, Proposition 3.14], the orientations
on ﬁ/f_;;’g 12(B) defined via the first isomorphisms in (5.4) and (5.7) are then opposite. By the

second statement of [16, Proposition 3.16], the orientations on ﬁgﬁig +1(B) defined via the second
isomorphisms in (5.4) and (5.7) are the same if and only if g+ (c;(X,w), B)/2 is even. By the
second statements of [16, Propositions 3.12/3], the sign exponents in (5.8) become

Fo= "o 0= D(e- 1+ (9 1+{en(X,0), Bi)/2) (92 1+ {en(X, ), Ba)/2),

C

/
€L | — =qg—14|J
P§0‘mgl,|IuJ|+1(B’)Xmgo,|x|+1(BO) g 171,

C — (g— E _ = —
gg’(l"]);o‘ﬁ<971)/2,£+2(3') - (g 1)/2+|J|’ 89’(1:J);0‘9ﬁg/2,e+1(3’) o 9/2 1—HJ"
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