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Abstract

Let G be a split semisimple group over a global function field K. Given a cuspidal
automorphic representation Π of G satisfying a technical hypothesis, we prove that
for almost all primes �, there is a cyclic base change lifting of Π along any Z/�Z-
extension of K. Our proof does not rely on any trace formulas; instead it is based on
using modularity lifting theorems, together with a Smith theory argument, to obtain
base change for residual representations. As an application, we also prove that for any
split semisimple group G over a local function field F , and almost all primes �, any
irreducible admissible representation of G(F ) admits a base change along any Z/�Z-
extension of F . Finally, we characterize local base change more explicitly for a class of
toral representations considered in work of Chan and Oi.
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1. Introduction

A particular case of Langlands’ principle of functoriality is cyclic base change, which has been
established in significant generality over global fields of characteristic 0, but not global fields
of characteristic p. The results towards cyclic base change functoriality in characteristic 0 were
worked out in a long series of papers by many authors, including Saito, Shintani, Langlands,
Arthur, Clozel, Labesse, and Harris (see the introduction to [Fen24] for references), all following
a strategy proposed by Langlands that is based on studying the twisted trace formula. But this
strategy encounters complications in characteristic p, for example because of the contribution of
inseparable elements to the trace formula.

In this paper we establish (under technical assumptions) cyclic base change liftings over
characteristic-p global fields, using a completely different strategy that is instead predicated
upon the theory of automorphy lifting. Furthermore, we prove novel types of results regarding
cyclic base change in the Genestier–Lafforgue correspondence. The results and proofs will be
described in more detail in the rest of this introduction.

1.1 Global base change

Let X be a smooth, projective, geometrically connected curve over the finite field Fq with function
field K := Fq(X), and let G be a split semisimple algebraic group over Fq. Let Π be a cuspidal
automorphic representation of G(AK) defined over a number field.1 For a field extension K ′/K,
a (weak) base change lifting of Π to K ′ is a cuspidal automorphic representation Π′ of G(AK′)
such that for almost all places v of K where Π is unramified, Π′ is also unramified at all places
of K ′ above v, and the Satake parameters of Π and of Π′ over v are related by the base change
homomorphism for spherical Hecke algebras. (Later in the paper we will define and prove stronger
notions of base change lifting.)

Over number fields, the existence of such a base change lifting is proved in complete generality
for cuspidal automorphic representations of GLn [AC89], and it is proved under some technical

1 Every cuspidal automorphic representation over a field of characteristic 0 admits a model over a number field,
so this assumption incurs no loss of generality for the questions we will study.
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assumptions by Labesse [Lab99] for general groups, still over number fields, by a comparison
of the stable trace formula for G(AK) with the stable trace formula for G(AK′) twisted with
respect to a generator of Gal(K ′/K). It is expected that the stable trace formula will eventually
provide weak base change over function fields as well, but the proof of such a formula faces a
number of obstacles and even the first steps of the proof of the general trace formula are only
now becoming available [LL21].

In this paper we take a different approach to establish the existence of weak base change
liftings (under technical hypotheses), based on automorphy lifting arguments instead of the
trace formula. In particular, we use the results of Vincent Lafforgue on the global Langlands
correspondence [Laf18]. Let Ĝ denote the dual group of G, considered as a split semisimple
group scheme over Z. For each prime � we fix an algebraic closure Q� of Q�. A conse-
quence of V. Lafforgue’s work in [Laf18] is the construction, for each cuspidal automorphic
representation Π of G(AK) valued in Q�, of a finite set of Ĝ(Q�)-conjugacy classes of contin-
uous Galois representations σ : Gal(Ks/K) → Ĝ(Q�), each of which has the property that its
Frobenius eigenvalues at unramified places match the Satake parameters of Π (see § 4 for the
precise formulation).

Suppose Π is a cuspidal automorphic representation defined over Q. Then for each � �= p,
we may choose an embedding Q ↪→ Q�, and then apply Lafforgue’s theory, obtaining as above
a finite set of Galois representations. These will be referred to as the Galois representations
‘attached to Π by Lafforgue’s correspondence.’ A consequence of our main result is the following
theorem.

Theorem 1.1. Let Π be a cuspidal automorphic representation of G(AK) over Q. Suppose that
for some (equivalently, any) prime �′ �= p, some (equivalently, each) of the Galois representations
attached to Π by Lafforgue’s correspondence has Zariski dense image in Ĝ. Then there exists
a constant c(Π) such that for all primes � > c(Π), and all cyclic �-extensions K ′/K, there is a
weak base change lifting of Π to a cuspidal automorphic representation Π′ of G(AK′).

This follows from a more precise and refined result, Theorem 6.3, which guarantees that Π′

may be chosen to be a base change lifting in the strongest possible sense (including a compatibility
at ramified places). However, the latter requires more discussion in order to formulate, so we
postpone it for now.

Remark 1.2. In [ST21], the Ramanujan conjecture is proved for cuspidal automorphic repre-
sentations satisfying certain types of local conditions, conditionally upon the existence of base
change liftings (with compatibility at ramified places as well) for constant extensions of large
enough degree. Our Theorem 6.3 provides this type of base change lifting. However, it is not
hard to deduce the Ramanujan conjecture directly when our hypothesis is satisfied.

We sketch the approach of the proof. It is based on the automorphy lifting techniques pio-
neered by Taylor and Wiles. The first ingredient in this program is residual automorphy, and
this is provided by [Fen24], which established the existence of base change for automorphic forms
over F� in the special case where the extension K ′/K is cyclic of order �. (It was essential for
the argument of [Fen24] that the characteristic � of the automorphic forms coincides with the
order � of the extension.) To prove Theorem 1.1, we use compatible systems of Galois representa-
tions (whose existence is guaranteed by the Zariski density assumption) to bootstrap from this
case and lift the automorphy to characteristic 0. In particular, we prove an automorphy lifting
theorem for representations with arbitrary ramification, going beyond the everywhere unramified
case which was established by four of the authors in [BHKT19].

1961

https://doi.org/10.1112/S0010437X24007243 Published online by Cambridge University Press
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We briefly discuss some of the new issues that go into proving this ramified automorphy lifting
result. First, we need to arrange local deformation rings that are well behaved, which is one reason
for requiring � > c(Π). We show that such a condition guarantees that the unrestricted local
deformation condition is smooth (see § 5 for discussion of this). A second issue is that we need
to know that the image of the associated �-adic Galois representation is large enough to provide
a sufficient supply of Taylor–Wiles primes, for all � > c(Π). The condition used in [BHKT19]
is that the image is Ĝ-abundant. For the ‘potential automorphy’ theorem of [BHKT19], it was
enough to know that the image mod � is abundant outside a set of � having Dirichlet density 0.
Since the �-adic image is Zariski dense, this follows from a result of Larsen [Lar95]. In order to
obtain base change liftings for � > c(Π), we need the stronger result that the image mod � is
abundant for all but finitely many �. For this we use a recent theorem proved by one of us with
Gajda and Petersen [BGP19]; see also [Dri18, E.10].

1.2 Local base change

From Theorem 1.1 we draw some applications to the local Langlands correspondence. To state
them, let F be a local function field of characteristic p, WF the Weil group of F , and G a split
semisimple group over F . Genestier and Lafforgue [GL17] have constructed a semisimplified local
Langlands correspondence

{
irreducible admissible representations

π of G(F ) over Q�

}
/ ∼−→

{
semisimple L-parameters

σπ : WF → G(Q�)

}
/ ∼ . (1.1)

If F ′/F is a field extension, we say that an irreducible admissible representation π′ of G(F ′) is
a base change lifting of an irreducible admissible representation π of G(F ) if σπ′ ∼= σπ|WF ′ .

Using our global results, we deduce in § 7 the following theorem.

Theorem 1.3. Let π be an irreducible admissible representation of G(F ) over Q. There exists
a constant c(π) such that for all primes � > c(π), for any Z/�Z-extension F ′/F there exists a
base change lifting of π ⊗

Q
Q� to G(F ′).

An analogous theorem was proved for mod � representations, when F ′/F is cyclic of degree
�, in [Fen24]. The strategy here is completely different. The idea is to globalize π to a cuspidal
automorphic representation Π, and the extension F ′/F to a global extension K ′/K, to which we
can apply Theorem 1.1. If we can do this, then we can extract the local component of Π′ to obtain
a local base change π′. However, we must take care to construct a globalization Π satisfying the
hypotheses of Theorem 1.1. This is accomplished by setting up Π with specified local conditions
at a finite number of auxiliary places, so that the corresponding Galois representation σΠ has
Zariski dense image. For example, we put a supercuspidal local component ‘Vφ’ at one auxiliary
place whose Genestier–Lafforgue parameter σVφ

is already absolutely irreducible, in order to
guarantee that σΠ is absolutely irreducible. For this, we require knowledge of σVφ

. This is obtained
by finding a different globalization Πaux of Vφ whose corresponding global Galois representation
σΠaux can be calculated explicitly, from which we extract the Genestier–Lafforgue parameter of
Vφ using local–global compatibility; the work of Heinloth, Ngô, and Yun [HNY13] provides a
convenient such ‘auxiliary globalization.’

In the final section § 8, we study local base change more explicitly for a class of supercuspi-
dal representations singled out in [Kal19] under the name ‘toral supercuspidal representations.’
This is a fairly broad class of supercuspidal representations, encompassing examples of arbi-
trary depth, for which Kaletha has constructed in [Kal19, § 6] an explicit parametrization
by L-parameters, satisfying good properties of the expected local Langlands correspondence.
The ‘Howe-unramified’ toral supercuspidal representations have been studied further by
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Chan and Oi [CO23] (noting that the ‘toral representations’ of [Kal19] are described as ‘0-toral’
in [CO23] (see, in particular, [CO23, § 8])—we follow the terminology of [CO23] in the body
of this paper). For the representations studied in [CO23], we are able to explicitly character-
ize unramified base change along the Genestier–Lafforgue correspondence under some technical
assumptions. A motivation behind the results of § 8 is consistency between Kaletha’s parametriza-
tion and the Genestier–Lafforgue correspondence. Roughly speaking, we prove, under genericity
conditions, that the base change of mod � toral supercuspidal representations along unramified
Z/�Z-extensions, under the Genestier–Lafforgue correspondence, behaves as would be predicted
by Kaletha’s parametrization. See § 8.4 for the precise formulations.

Next we comment on the proof. The mechanism for understanding base change of mod
� representations is a conjecture of Treumann and Venkatesh [TV16, Conjecture 6.6], which
predicts that Tate cohomology should realize functoriality in the local Langlands correspondence
for mod � representations. This was proved in [Fen24, Theorem 1.2] for the Genestier–Lafforgue
correspondence, thanks to which our task amounts to computing the Tate cohomology of toral
supercuspidal representations. However, Tate cohomology is tricky to calculate in general; for a
general supercuspidal representation presented via a Yu datum, as considered in [Kal19], it would
be a challenge even to determine whether the Tate cohomology is non-zero. Crucial traction for
this problem is provided by recent work of Chan and Ivanov [CI21] and of Chan and Oi [CO23] on
geometric models for toral supercuspidal representations in terms of ‘deep level Deligne–Lusztig
induction’; we ultimately compute the Tate cohomology by applying equivariant localization
tools to their deep level Deligne–Lusztig varieties.

2. Notation and terminology

We fix a finite field Fq of characteristic p. Let X be a smooth, geometrically connected, and
projective curve over Fq and K = Fq(X), and let G be a split reductive group over K. The
notation � always denotes a prime not equal to p.

2.1 Notation related to global and local fields

We write Ks for a fixed choice of separable closure and ΓK := Gal(Ks/K) for the corresponding
Galois group. For S a finite set of places of K, we write KS for the maximal subextension of Ks

unramified outside S, and ΓK,S := Gal(KS/K). If v is a place of K, then ΓKv = Gal(Ks
v/Kv) will

denote the decomposition group, and ΓKv → ΓK the homomorphism corresponding to a fixed
choice of K-embedding Ks ↪→ Ks

v. If v �∈ S, then Frobv ∈ ΓK,S denotes a choice of geometric
Frobenius element at the place v. We will identify the set of places of K with the set of closed
points of X. For a place v ∈ |X| we write qv = #k(v) = #(OKv/�vOKv) for the size of the
residue field at v. We write | · |v for the norm on Kv, normalized so that |�v|v = q−1

v ; then
the product formula holds. We write ÔK =

∏
v∈X OKv . We will write WKv for the Weil group of

the local field Kv.

2.2 Notation related to group schemes

If G, H, . . . are group schemes over a base S, then we use Gothic letters g, h, . . . to denote their
Lie algebras, and GT , gT , . . . to denote the base changes of these objects relative to a scheme
T → S. If G acts on an S-scheme X and x ∈ X(T ), then we write ZG(x) or ZGT

(x) for the
scheme-theoretic stabilizer of x; it is a group scheme over T . We denote the center of G by ZG.
We say that a group scheme G over S is reductive if G is smooth and affine with reductive (and
therefore connected) geometric fibres.
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2.3 Notation related to coefficient rings

When doing deformation theory, we will generally fix a prime � and an algebraic closure Q�

of Q�. A finite extension E/Q� inside Q� will be called a coefficient field; when such a field E has
been fixed, we will write O or OE for its ring of integers, k or kE for its residue field, and � or
�E for a choice of uniformizer of OE . We write CO for the category of Artinian local O-algebras
with residue field k; if A ∈ CO, then we write mA for its maximal ideal. Then A comes with the
data of an isomorphism k ∼= A/mA.

2.4 Dual groups

In this paper, we will view the dual group Ĝ of G as a split reductive group over Z. Our definition
of Ĝ follows [BHKT19, § 2.1]. A prime � is called a very good characteristic for Ĝ if it satisfies
the conditions in the table below for all the simple factors of Ĝ (referring to the absolute root
system types):

Condition Types

� � n + 1 An

� �= 2 B,C,D,E, F,G
� �= 3 E,F,G

� �= 5 E8

3. Deformation problems

In this section we set up the results on Galois deformation theory that will be used later for
automorphy lifting.

3.1 Setup for the general theory

Let Ĝ be a split semisimple group over Z. We fix a prime � which is a very good characteristic
for Ĝ, as well as a coefficient field E ⊂ Q�. We also fix an absolutely irreducible representation σ
of ΓK,S . We recall the results of [BHKT19] on the deformation theory of representations of ΓK,S

to Ĝ with �-adic coefficients.

Lemma 3.1 [BHKT19, Lemma 5.1]. Let σ : ΓK,S → Ĝ(k) be an absolutely Ĝ-irreducible

homomorphism. The scheme-theoretic centralizer of σ(ΓK,S) in Ĝad
k is étale over k, and

H0(ΓK,S , adσ) = 0.

Let A ∈ CO. We define liftings and deformations of σ over A as in [BHKT19, § 5.1], and let
Defσ : CO → Sets be the functor that associates to A ∈ CO the set of deformations of σ over A.
Then we have the following proposition.

Proposition 3.2 [BHKT19, Propositions 5.10]. The functor Defσ is pro-represented by a com-
plete Noetherian local O-algebra Rσ = Rσ,S . (We will include the subscript S in the notation
when we want to let S vary.)

3.2 Local deformation conditions

So far we have considered deformations of σ with no restriction on the points in S. We now
introduce local deformation conditions, following the discussion in [CHT08, § 2.2], and for general
groups in [Pat16, § 3.2], with notation as in [KT17, § 4]. For each v ∈ S let ΓKv ⊂ ΓK,S be a
decomposition group at v, and let σv denote the restriction of σ to ΓKv . Let D�

σ,v denote the

1964

https://doi.org/10.1112/S0010437X24007243 Published online by Cambridge University Press



Cyclic base change over function fields

functor on CO which to A ∈ CO associates the set of liftings of σ to A; then D�
σ,v is represented

by a ring R�
σ,v. As in [KT17, Definition 4.1], we define a local deformation problem for σv to be

a subfunctor Dv ⊂ D�
σ,v such that:

• Dv is represented by a quotient of R�
σ,v; and

• for any A ∈ O, if σ ∈ Dv(A) and α ∈ ker[Ĝ(A) → Ĝ(k)] then ad(α)(σ) ∈ Dv(A).

Definition 3.3. A global deformation problem for σ is a collection D := (S, {Dv}v∈S) where for
each v ∈ S, Dv is a local deformation problem for σv.

For A ∈ CO, a deformation σ : ΓK,S → Ĝ(A) is of type D if for every v ∈ S, the restriction of
σ to ΓKv belongs to Dv.

The functor of deformations of σ of type D is denoted Defσ,D = Defσ,S,D. Again, we will
emphasize the subscript S when we want to contemplate varying S.

To each local deformation problem Dv we attach a k-subspace Lv ⊂ H1(GKv , ad(σ)) as in
[Pat16, § 3.2].

Definition 3.4. The deformation problem Dv is balanced if dimLv = dimH0(GKv , ad(σ)).

Example. The minimal deformation problems considered in [CHT08, § 2.4.4] are balanced.

Example 3.5. The deformation problem Dv is unrestricted if Dv = D�
σ,v. In this case we have

Lv = H1(ΓKv , ad(σ)).
Recall that for all v ∈ S, Tate’s local Euler characteristic formula for any k[ΓKv ]-module M

reduces to

h0(ΓKv , M) − h1(ΓKv , M) + h2(ΓKv , M) = 0

because � �= p. Hence, if H2(ΓKv , ad(σ)) = 0 then the unrestricted deformation problem Dv is
balanced.

Note that local duality implies that

H2(ΓKv , ad(σ)) = 0 ⇔ H0(ΓKv , ad(σ)∨(1)) = 0. (3.1)

3.3 Selmer groups

Given a global deformation problem D, we define

H1
D(ΓK,S , ad(σ)) := ker

[
H1(ΓK,S , ad(σ)) →

⊕

v∈S

H1(ΓKv , ad(σ))/Lv

]
, (3.2)

and let h1
D(ΓK,S , ad(σ)) := dimk H1

D(ΓK,S , ad(σ)).
With Lv as above, let L⊥

v ⊂ H1(ΓKv , ad(σ)∨(1)) denote its orthogonal complement under
the local duality pairing. We define

H1
D⊥(ΓK,S , ad(σ)∨(1)) := ker

[
H1(ΓK,S , ad(σ)∨(1)) →

⊕

v∈S

H1(ΓKv , ad(σ)∨(1))/L⊥
v

]
,

and let h1
D⊥(ΓK,S , ad(σ)∨(1)) := dimk H1

D⊥(ΓK,S , ad(σ)∨(1)).

Proposition 3.6. (i) The functor Defσ,D is pro-represented by a complete Noetherian local
O-algebra Rσ,D = Rσ,S,D.

(ii) There is a surjection O[[X1, . . . Xg]] � Rσ,S,D, where g = dimk H1
D(ΓK,S , adσ).

Proof. For (i) the proof is the same as for [CHT08, Proposition 2.2.9], and for (ii) the proof is
the same as for [CHT08, Corollary 2.2.12]. �
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3.4 Abundant subgroups

We recall two definitions from [BHKT19].

Definition 3.7. Let Γ be an abstract group, and let Ĝ be a reductive group over k.

(i) A homomorphism σ : Γ → Ĝ(k) is said to be absolutely Ĝ-completely reducible (respectively,
absolutely Ĝ-irreducible) if it is Ĝ-completely reducible (respectively, Ĝ-irreducible) after
extension of scalars to an algebraic closure of k.

Suppose now that Ĝ is semisimple, and let k be an algebraic closure of k.

(iii) A finite subgroup H ⊂ Ĝ(k) is said to be Ĝ-abundant over k if it satisfies the following
conditions:
(a) The group H is contained in Ĝ(k).
(b) The groups H0(H, ĝk), H0(H, ĝ∨k ), H1(H, ĝ∨k ), and H1(H, k) all vanish.

(c) For each regular semisimple element h ∈ H, the torus Z
Ĝ
(h)◦ ⊂ Ĝ is split over k.

(d) For every simple k[H]-submodule W ⊂ ĝ∨, there exists a regular semisimple element
h ∈ H such that W h �= 0 and Z

Ĝ
(h) is connected. (We recall that Z

Ĝ
(h) is always

connected if Ĝ is simply connected.)

Lemma 3.8. Suppose Ĝ is simple and split over k. Let Ĝsc denote the simply connected cover of
Ĝ, and let Ĝ(k)+ denote the image of Ĝsc(k) in Ĝ(k). Let H be a group with Ĝ+(k) ⊂ H ⊂ Ĝ(k)
and suppose that (k, type of Ĝ) is not in the following list:

{(F3, A1), (F5, A1)} ∪ {(Fq, Cn) | q ∈ {3, 5, 9}, n ≥ 2}.

Then there exists a finite field k1 ⊃ k such that for all finite fields k′ ⊃ k1 the group H is
Ĝ-abundant over k′.

Proof. We will prove the following claims for (k, type of Ĝ) not in the above list:

(i) The adjoint module ĝk is self-dual as a k[H]-representation,
(ii) The groups H0(H, ĝk), H1(H, ĝk), and H1(H, k) all vanish.
(iii) The action of H on ĝk is absolutely irreducible.
(iv) The group H contains strongly regular semisimple elements h, i.e. h such that Z

Ĝ
(h) is

connected.

Let us first show that the claims suffice to prove the lemma. Indeed, condition (a) is obvious,
condition (b) is the same as (ii) (given (i)), while condition (c) is automatic if k1 is chosen to
split all of the finitely many k-rational tori Z

Ĝ
(h)◦ in Ĝ. Finally, given (iii), condition (d) comes

down to the existence of strongly regular semisimple h, as in (iv), because (ĝ∨)h always contains
the Lie algebra of the centralizer of h.

It remains to establish the claim. Parts (i) to (iii) with many details can be found in [AB, § 3],
which, however, largely builds on further references, which we now briefly recall. We first observe
that ĝk is an absolutely irreducible k[H]-representation, essentially by results of Hiss [His84] and
Hogeweij [Hog82]; see [AB, Proposition 3.22]. Now because ĝk is absolutely irreducible, to prove
self-duality it suffices to see that ĝk and ĝ∨k have the same weights. But this is clear since with
any root α of the Lie algebra ĝk, −α is also a root, and both have multiplicity 1. This settles (i)
and (iii), and the first assertion of (ii).

Next, a largely classical result, completed by Tits, asserts that Ĝ(k)+ is perfect, unless
(k, type of Ĝ) is (F3, A1); see [MT11, Thm. 24.17]. Because Ĝ is split and l is of very good
characteristic for Ĝ, there is only a single exception. The latter also implies that Ĝ(k)/Ĝ(k)+
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is of order prime to the characteristic l of k. Hence H1(H, k) = Hom(H, k) vanishes, and this
shows the third part of (ii); see [AB, Corollary 3.12].

We now turn to the remaining condition H1(Ĝ(k), ĝk) = 0 from (ii). The most complete
vanishing results for H1(H, ĝk) are due to Völklein with earlier work by Cline, Parshall, Scott
in the A-D-E cases and by Hertzig (unpublished). We observe that Lie Ĝ has trivial center

because l is very good for Ĝ. The latter also excludes the case (k, type of Ĝ) = (F2, A1). The
cases (F5, A1) and (Fq, Cn), q ∈ {3, 5, 9}, n ≥ 2, for (k, type of Ĝ) are ruled out by our list of

exceptions. It follows from [Völ89, Theorem and Remarks] that H1(Ĝ(k), ĝk) = 0.
Finally, we prove (iv). If Ĝ is simply connected, then by [SS70, II.3.9] the group Z

Ĝ
(h) is

connected for all regular semisimple h ∈ H, and we are done. We now focus on the case where
Ĝ of adjoint type, where we find a suitable h using [FS88]. The last paragraph explains how this
gives (iv) for Ĝ of any other type.

Suppose that Ĝ is of adjoint type. Then by [FS88, Theorem 3.1] there exists a maximal torus
T ⊂ Ĝ defined over k such that the following statements hold:

(1) The group T+(k) := Ĝ+(k) ∩ T (k) is cyclic. Let h be a generator.
(2) One has Z

Ĝ(k)
(h) = T (k), and the order of h is given in [FS88, Table III].

(3) If Ĝ is of type An, then T is quotient of a totally anisotropic maximal torus of GLn+1

(over k) modulo its center, i.e. T ∼= Resk
k(n+1) Gm/Gm, the quotient of the Weil restriction

of Gm from the unique degree-(n + 1) extension k(n+1) of k to k modulo Gm.

Let C := Z
Ĝ
(h), and let π0(C) = C/C0 be its component group scheme. It follows from

[Sei83, 2.9 and its proof] that the identity component C0 is a (commuting) product of Chevalley
groups over k and of the center of C0, and so from (1) above the natural map T → C0 must be
an isomorphism because any Chevalley group has k-points of order l. In particular, h is regular
semisimple.

Next we gather results on π0(C) that will allow us to identify it with the trivial group. By
[SS70, Corollary II.4.4] there is an injective morphism of group schemes π0(C) → Z(Ĝsc) to the
center Z(Ĝsc) of Ĝsc. Because l is good for Ĝ, the finite commutative group scheme Z(Ĝsc) is
étale over k. The centers are completely known, and a list can be found, for instance, in [AB,
Table 1]. Using the Bruhat decomposition of Ĝ over k, and that h is regular semisimple, it is not
difficult to show that C is a subgroup of the normalizer of T in Ĝ (over k), and hence π0(C) is
a subgroup of the Weyl group of G. Moreover, by [SS70, I.2.11] one has a short exact sequence

0 → T (k) → C(k) → π0(C)(k) → 0.

From (2) above we deduce that T (k) → C(k) is an isomorphism, and hence π0(C)(k) is trivial.
Now suppose the type is Bn, Cn, Dn or E7. Then l cannot be 2, and so 2 divides the order

of k×. It follows from the classification of the centers Z(Ĝsc), that any non-trivial subgroup
scheme will contain an element of exact order 2. But then π0(C) must be trivial, because we
know already that π0(C)(k) is trivial.

The types E8, F4 and G2 need not be considered, since here Z(Ĝsc) is trivial and hence Ĝ
itself is simply connected. Next we consider type E6, so that Z(Ĝsc) ∼= μ3. Let q = #k. If q ≡ 1
(mod 3), we can argue as in the previous paragraph to deduce that π0(C) is trivial. If, on the
other hand, q ≡ −1 (mod 3), then from [FS88, Table III] we find that

#T (k) = (q2 + q + 1)(q4 − q2 + 1) ≡ −1 (mod 3),

so that the order of h is not divisible by 3. It follows from [SS70, Corollary 4.6] that π0(C) is
connected.
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It remains to discuss the type An. For n = 1, by (3) the element h is given as a diagonal
matrix diag(x, xq) in GL2 /Gm for some x ∈ (k(2))× of order q2 − 1, so that h has order q + 1.
Because C is spanned by T and at most some Weyl group elements, we need to understand
whether the unique non-trivial Weyl group element w of Ĝ = PGL2 lies in C. The element w
exchanges the entries of h. If it would fix h, then diag(x, xq) ≡ diag(xq, x) (mod k

×
), so that

there exists a ∈ k
×

with ax = xq and axq = x. This firstly implies a ∈ {±1}, and then that the
order of x divides 2(q − 1). Because q + 1 divides the order of x, this could only happen for
q = 2, which is forbidden, since l is assumed to be very good for Ĝ = PGL2.

Now suppose n ≥ 2. Then h is given by diag(x, xq, . . . , xqn
) ∈ GLn+1 /Gm(k) for some x ∈

(k(n+1))× of order qn+1 − 1. Let w be in the Weyl group of PGLn, which we identify with
Sn+1. Suppose that h = w ◦ h, i.e. that w is the image of an element of C. Because π0(C) ⊂
Z(PGLn+1) ∼= μn+1 we may assume that w is cyclic of order dividing n + 1. Let r1 ≥ · · · rs ≥ 2
be the lengths in the cycle decomposition of w, and let r = gcd(r1, . . . rs), which is now a divisor

of n + 1. As in the case n = 1, we find a ∈ k
×

of order dividing r and such that xqw(i)
= axqi

, or
equivalently xqw(i)−qi

= a, for i = 0, . . . , n.
To get further, let t be a large Zsygmondy prime for (q, n + 1) in the sense of [FS88,

Theorem 2.1], i.e. t is a prime that divides qn+1 − 1, that does not divide qm − 1 for 1 ≤ m ≤ n

and with either t > n + 1 or t2|(qn+1 − 1). We deduce that t divides the order of xqw(i)−qi
for any

i with w(i) �= i, and it follows that t divides r and in turn n + 1, unless w is trivial. But then
modulo the prime t and using Fermat’s little theorem we have

qn+1 − 1 = (qt)(n+1)/t − 1 ≡ q(n+1)/t − 1 (mod t).

This contradicts that t is a Zsygmondy prime for (q, n + 1). Hence w must be trivial and T = C.
Finally, for a general Ĝ consider the central isogeny Ĝ → Ĝad to the adjoint quotient Ĝad of

Ĝ. Let Had ⊂ Ĝad(k) be the image of H. Now the element h in Had,+(k) from (1) above clearly
lifts to some h′ ∈ Ĝ+(k) with h′ regular semisimple. Moreover, we have a left exact sequence
0 → Z(Ĝ) → Z

Ĝ
(h′) → Z

Ĝad(h). In it, Z
Ĝad(h) is a maximal torus, Z

Ĝ
(h′) contains a maximal

torus, and the center Z(Ĝ) lies in any maximal torus of Ĝ. Hence Z
Ĝ
(h′) is a (maximal) torus,

and thus connected. �

3.5 Taylor–Wiles primes

Following [BHKT19, Definition 5.16], we define a Taylor–Wiles datum for σ to be a pair
(Q, {ϕv}v∈Q), where the following statements hold:

• Q is a finite set of places v of K such that σ(Frobv) is regular semisimple and qv ≡ 1 mod �
• For each v ∈ Q, ϕv : T̂k

∼= Z
Ĝ
(σ(Frobv)) is a choice of inner isomorphism. In particular, this

forces Z
Ĝ
(σ(Frobv)) to be connected.

For a global deformation problem D = (S, {Dv}v∈S) and a Taylor–Wiles datum (Q, {ϕv}v∈Q)
with Q ∩ S = ∅, we define a new global deformation problem DQ = (S ∪ Q, (DQ)v) with

(DQ)v =

{
Dv v ∈ S,

D�
σ,v v ∈ Q.

The proposition below guarantees the existence of sets of Taylor–Wiles primes suitable for patch-
ing, generalizing [BHKT19, Proposition 5.19]. Actually there are some typos in the statement
and proof of [BHKT19, Proposition 5.19]; the argument below can be used to rectify them.

Proposition 3.9. Suppose that the group ρ(ΓK(ζ�)) ⊂ Ĝ(k) is Ĝ-abundant. Let D :=
(S, {Dv}v∈S) be a global deformation problem such that for each v ∈ S the local deformation
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problem Dv is balanced, with corresponding subspace Lv ⊂ H1(ΓKv , ad(σ)). Then for each j ≥ 1,
there is a Taylor–Wiles datum (Q, {ϕv}v∈Q), satisfying the following conditions:

(i) Q ∩ S = ∅, and for each v ∈ Q, we have qv ≡ 1 mod �j , and

#Q = h1
D(ΓK,S , ad(σ)) = h1

D⊥(ΓK,S , ad(σ)∨(1)).

(ii) We have h1
DQ

(ΓK,S∪Q, ad(σ)∨(1)) = 0.

(iii) There exists a surjection O[[X1, . . . , Xg]] � Rσ,S∪Q,D with g = h1
D(ΓK,S , ad(σ)) +

(r − 1)#Q, where r = rank Ĝ.

Proof. If S ∪ Q = ∅ then (i) and (ii) are vacuous and (iii) is an immediate consequence of
Proposition 3.6(ii). For the rest of the proof, we assume that S ∪ Q is non-empty.

We apply [Čes15, Theorem 6.2], using that H0(ΓK,S∪Q, ad(σ)(1)) = H0(ΓK,S∪Q, ad(σ)) = 0
by the abundance assumption, and the local and global Euler characteristic formulas (note our
assumption that S ∪ Q is non-empty) to deduce that

h1
DQ

(ΓK,S∪Q, ad(σ)) − h1
D⊥

Q

(ΓK,S∪Q, ad(σ)∨(1)) =
∑

v∈S

(dimLv − h0(Γv, ad(σ))) +
∑

v∈Q

r. (3.3)

The assumption that Dv is balanced for all v ∈ S implies that dimLv − h0(GFv , ad(σ)) = 0 for
all v ∈ S. We claim that once we can arrange (i) and (ii), then (iii) follows automatically. Indeed,
if h1

D⊥
Q

(ΓK,S∪Q, ad(σ)∨(1)) vanishes then (3.3) implies that

h1
DQ

(ΓK,S∪Q, ad(σ)) = r#Q = h1
D(ΓK,S , ad(σ)) + (r − 1)#Q,

from which (iii) follows by invoking Proposition 3.6.
It therefore remains to show that Q can be chosen so that

H1
D⊥

Q

(ΓK,S∪Q, ad(σ)∨(1))

:= ker

(
H1(ΓK,S∪Q, ad(σ)∨(1)) →

( ⊕

v∈S

H1(Kv, ad(σ)∨(1))

Lv
⊕

⊕

v∈Q

H1(Kv, ad(σ)∨(1))

))

vanishes. By a comparison of inflation-restriction exact sequences, the inflation map
H1(ΓK,S , ad(σ)∨(1)) → H1(ΓK,S∪Q, ad(σ)∨(1)) takes

ker

(
H1(ΓK,S , ad(σ)∨(1)) →

⊕

v∈Q

H1(k(v), ad(σ)∨(1))

)

∼
−→ ker

(
H1(ΓK,S∪Q, ad(σ)∨(1)) →

⊕

v∈Q

H1(Kv, ad(σ)∨(1))

)
.

Therefore it suffices by induction to show that for any j and any non-zero [ψ] ∈ H1(ΓK,S , ĝ∨k (1)),
we can find infinitely many places v �∈ S of K such that qv ≡ 1 mod �j , ρ(Frobv) is regu-
lar semisimple with connected centralizer in Ĝk, and resKv [ψ] �= 0. The rest of the argument
concludes exactly as in [BHKT19, Proof of Proposition 5.19]. �

4. Automorphy lifting

In this section we prove the automorphy lifting theorem that will be used to deduce cyclic base
change. Such automorphy lifting theorems have been the subject of much study over number
fields, and our proof employs similar techniques, but we are able to obtain results for more
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general groups thanks to the different numerical behavior of the Euler characteristics of function
fields.

To put our results in context, we compare them to [BHKT19, Theorem 8.20], which handled
everywhere unramified Galois representations. The main novelty of the present situation is that
we need to implement automorphy lifting for arbitrarily ramified residual representations. In this
section we use the Taylor–Wiles method to prove an automorphy lifting theorem (Theorem 4.6)
whenever one knows that all the local deformation problems are well behaved (e.g. formally
smooth). In the unramified case it was easy to see that the unramified local deformation problem
is formally smooth; in the next section we give a suitable extension to unrestricted deformations
for ramified representations, when � is large enough.

4.1 Spaces of automorphic forms

We define integral spaces of automorphic forms as in [BHKT19, § 8.1]. For any open subgroup
U ⊂ G(Ô) and any Z[1/p]-algebra R, we define:

• C(U, R) to be the R-module of functions f : G(K)\G(AK)/U → R;
• Cc(U, R) ⊂ C(U, R) to be the R-submodule of functions f which have finite support; and
• Ccusp(U, R) to be the R-submodule of functions f which are cuspidal, in the sense that for all

proper parabolic subgroups P ⊂ G and for all g ∈ G(AK), the integral
∫

n∈N(K)\N(AK)
f(ng) dn

vanishes, where N is the unipotent radical of P .

This last integral is normalized by endowing N(K)\N(AK) with its probability Haar measure
(which makes sense because we are assuming that p is a unit in R). We have Ccusp(U, R) ⊂
Cc(U, R) by [BHKT19, Proposition 8.2].

We define Ccusp(G, R) := lim
−→U

Ccusp(U, R).
Let N =

∑
v nv · v ⊂ X be an effective divisor and let U(N) := ker(

∏
v G(OKv) → G(ON )).

The underlying set of places |N | =
⋃

nv>0{v} will play the role of the set S from § 3.

4.2 The excursion algebra and Lafforgue’s parametrization

For the remainder of this section we choose a prime � �= p and coefficient field E ⊂ Q�. For
R ∈ {k,O, E} we denote by B(U(N), R) the R-subalgebra of EndR(Ccusp(U(N), R)) generated
by V. Lafforgue’s excursion operators, as in [BHKT19, § 8.4]. For any fixed N , this is a finite
R-algebra. The Hecke operators TV,v as lying in B(U(N), R), for v /∈ |N | and V a representation

of Ĝ, are defined as in [BHKT19].
The points of SpecB(U(N), R) are naturally identified with semisimple L-parameters, in a

manner that we will presently review. Combining [BHKT19, Corollaries 8.6, 8.11], we have the
following (with notation as in those corollaries).

Theorem 4.1. Let R = E or k and m ⊂ B(U(N), R) be a maximal ideal. Fix an embedding
B(U(N), R)/m ↪→ R. Then the following statements hold:

(i) There exists a continuous, absolutely Ĝ-completely reducible representation σm : ΓK →
Ĝ(R) satisfying the following condition: for all excursion operators SI,(γi)i∈I ,f , we have

f((σm(γi))i∈I) = SI,(γi)i∈I ,f mod m. (4.1)

(ii) The representation σm is uniquely determined up to Ĝ(R)-conjugacy by (4.1).
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(iii) The representation σm is unramified outside |N |. If v �∈ |N |, then it satisfies the expected
local–global compatibility relation at v: for all irreducible representations V of Ĝ

Q�
, we have

TV,v ∈ B(U(N), R) and

χV (σm(Frobv)) = TV,v ∈ B(U(N), R)/m.

For R ∈ {k, E} and any N , V. Lafforgue constructs a decomposition of Ccusp(U(N), R)

into summands indexed by L-parameters σ ∈ H1(ΓK,N , Ĝ(R)). More specifically, this decom-
position comes from the generalized eigenspace decomposition for the action of B(U(N), R)
on Ccusp(U(N), R). If Π ⊂ Ccusp(G, R) is a subspace such that ΠU(N) is stable under the
B(U(N), R)-action and supported over a unique maximal ideal, we will denote this maximal
ideal by m = mΠ ⊂ B(U(N), R). The corresponding L-parameter is then denoted σΠ := σm, and
we say that σΠ is the L-parameter attached to Π. This assignment Π �→ σΠ is independent of
the choice of N such that ΠU(N) �= 0. This correspondence has the property that Π and σΠ

match under the local Langlands correspondence at all places where Π is unramified, although
we caution that this property does not characterize it for general groups.

Remark 4.2 (A one-to-finite correspondence). We continue to assume R ∈ {k, E}. Not every
irreducible G(A)-subspace Π of Ccusp(G, R) is attached to an L-parameter σΠ in the sense of the
previous paragraph. The notation σΠ will only be used if Π is attached to σΠ in the manner of
the above paragraph. However, we do have the following construction which produces a finite
set of L-parameters, each of which matches Π locally at all unramified places.

Let Ccusp(G, R)[Π] be the Π-isotypic subspace of Ccusp(G, R) for the G(AK)-action. Then
the space Ccusp(G, R)[Π]U(N) is stable under the action of B(U(N), R), and finite-dimensional
for every N . We define ρ

Π
to be the finite set of L-parameters corresponding to the maximal

ideals of B(U(N), R) in the support of Ccusp(G, R)[Π]U(N). Since each σ ∈ ρ
Π

is associated to
an automorphic representation isomorphic to Π at all local places, in particular the unramified
ones, we have that each ρ matches Π at every unramified place under the (unramified) local
Langlands correspondence.

We note that by [BHKT19, Proposition 6.4], if some σ ∈ ρ
Π

has Zariski dense image in Ĝ,
then in fact ρ

Π
is a singleton, so ρ

Π
= {σΠ}.

In § 5 we will need to work with collections of representations with Q� or F� coefficients, as
� varies. We may therefore write σΠ,� for σΠ and σΠ,� for σΠ when it is necessary to specify the
coefficients.

Definition 4.3. Let Π be a cuspidal automorphic representation of G(AK) defined over a
number field L. We say that the Mumford–Tate group of Π is Ĝ if for some (equivalently, every)
prime � �= p and embedding L → Q�, the image of σΠ,� is Zariski dense in Ĝ. As explained in
Remark 4.2, this notion does not depend on the choice of σΠ,� ∈ ρ

Π⊗LQ�
.

4.3 Automorphy lifting theorems

Let χ : B(U(N),O) → Z� be a homomorphism. After possibly enlarging E, we can assume that
χ takes values in O. Let m ⊂ B(U(N),O) be the maximal ideal which is the kernel of the
composition of χ with O → k, and σm the Galois representation corresponding to m under
Theorem 4.1. After possibly further enlarging E, we can assume that σm takes values in Ĝ(k).

With Definition 3.7 in mind, we make the following assumptions on σm:

(i) � � #W . This implies, in particular, that � is a very good characteristic for Ĝ.
(ii) The subgroup Z

Ĝad(σm(ΓK,|N |)) of Ĝk is scheme-theoretically trivial.
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(iii) The representation σm is absolutely Ĝ-irreducible.
(iv) The subgroup σm(ΓK(ζ�),|N |) of Ĝ(k) is Ĝ-abundant.

In addition, we choose a global deformation problem D := (|N |, {Dv}v∈|N |) for σm such that
all places of ramification for σm are contained in |N |, and:

(v) For each v ∈ |N |, the local deformation problem Dv is balanced in the sense of Definition 3.4
and unrestricted in the sense of Example 3.5. (So we require that H2(ΓKv , adσ) = 0 for
v ∈ |N |.)

Remark 4.4. Points (i), (ii), and (iv) are copied from [BHKT19, § 8.4], where their roles are
explained. Point (iii) is a weakening of the ‘strongly Ĝ-irreducible’ condition of [BHKT19, § 8.4],
which we are able to avoid here by appeal to the results of [Xue20b]. Point (v) allows us to
invoke Proposition 3.9 to produce Taylor–Wiles primes for patching.

Let Rσm ,|N |,D be the corresponding global deformation ring (Proposition 3.6). From
[BHKT19, Theorem 8.5] we have a pseudocharacter ΘU(N) = (ΘU(N),n)n≥1 valued in
B(U(N),O), which factors through the quotient ΓK → ΓK,|N |. Write ΘU(N),m for the projection of

the pseudocharacter ΘU(N) to B(U(N),O)m, and σuniv : ΓK → Ĝ(Rσm ,|N |,D) for a representative
of the universal deformation.

The following lemma is a variant of [BHKT19, Lemma 8.19].

Lemma 4.5. There is a unique morphism fm : Rσm ,|N |,D → B(U(N),O)m of O-algebras such that
fm,∗ tr σuniv = ΘU(N),m. It is surjective.

Proof. The existence and uniqueness of fm follow from [BHKT19, Theorem 4.10]. It is surjective
because the ring B(U(N),O)m is generated by the excursion operators SI,(γi)i∈I ,f , each of which
is explicitly realized as the image of the element f(σuniv(γi)i∈I) ∈ Rσm ,|N |,D. �

We can now prove the following generalization of [BHKT19, Theorem 8.20] that allows for
ramification.

Theorem 4.6. Suppose m satisfies assumptions (i)–(v) as above. Then Ccusp(U(N),O)m is a
free Rσm ,|N |,D-module, fm is an isomorphism, and Rσm ,|N |,D is a complete intersection O-algebra.

Proof. The proof is an implementation of the Taylor–Wiles method. The argument runs similarly
to [BHKT19, Theorem 8.20], but we give a summarized version with the necessary changes for
our situation, and only sketching the parts which are the same.

Lemma 4.7. Let U =
∏

v Uv be an open compact subgroup of G(ÔK). Let V =
∏

v Vv ⊂ U be
an open normal subgroup such that U/V is abelian of �-power order. Let v0 be a place of K, and
let �M denote the order of an �-Sylow subgroup of G(Fqv0

). Let V ≤ W ≤ U be a subgroup such

that (U/V )[�M ] ≤ W/V . Finally, m ⊂ B(W,O) be a maximal ideal such that σm is absolutely
Ĝ-irreducible. Then Ccusp(W,O)m is a finite free O[U/W ]-module.

Proof. In the case that σm is strongly Ĝ-irreducible, this is exactly [BHKT19, Theorem 8.17].
Without this assumption, [BHKT19, Lemma 8.18] shows that Cc(W,O) is a free O[U/W ]-module
(though of infinite rank). Let u be a place of K such that Wu = G(OKu), and let HG,u denote
the unramified Hecke algebra at u with O-coefficients. Then Cc(W,O) is a finite HG,u-module
[Xue20b, Theorem 0.0.3]. According to [Xue20b, § 8], it is possible to define an O-subalgebra
Bc(W,O) ≤ EndO(Cc(W,O)) of excursion operators, leaving invariant Ccusp(W,O), and extend-
ing B(W,O). Moreover, this ring contains the image of HG,u in EndO(Cc(W,O)), showing that
Bc(W,O) is a finite HG,u-algebra and that Cc(W,O) is a finite Bc(W,O)-module.
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Let us identify m with its pre-image in Bc(W,O) under the canonical surjection Bc(W,O) →
B(W,O) (given by restricting excursion operators to Ccusp(W,O)). To prove the lemma, it
is enough to show that Ccusp(W,O)m is a direct summand Bc(W,O)-submodule of the free
O[U/W ]-module Cc(W,O). Using the constructions of [Xue20b], we see that there is a short
exact sequence, respecting the action of excursion operators:

0 → Ccusp(W,O) → Cc(W,O)

∏
P≤G cP

→
∏

P≤G

C(U(AK)M(K)\G(AK/W,O),

where the sum ranges over a set of representatives for the conjugacy classes of proper parabolic
subgroups P = MU of G, and cP denotes the corresponding constant term morphism. Let C

denote the image of Cc(W,O) under
∏

P≤G cP , a Bc(W,O)-module. The proof will be complete if

we can show that Cm = 0. This follows from the absolute Ĝ-irreducibility of σm. Indeed, if Cm �= 0,
then the compatibility of excursion operators with constant term morphisms ([Xue20b, § 8.4])
shows, along exactly the same lines as in [Xue20a, § 4.2], that σm must factor through M̂(F�)
for some proper parabolic P = MU of G. This is a contradiction to the absolute Ĝ-irreducibility
of σm. �

We begin by preparing the usual setup for patching. Recall that we have fixed a choice T ⊂
B ⊂ G of split maximal torus and Borel subgroup of G. For a Taylor–Wiles datum (Q, {ϕv}v∈Q),
as in § 3.5, with Q disjoint from |N |, we introduce the following notation. Extend the global defor-
mation problem D = (|N |, {Dv}v∈|N |) to DQ := (|N | ∪ Q, {DQ,v}v∈|N |∪Q) by setting DQ,v = Dv

if v ∈ |N | and DQ,v = D�
σ,v (the unrestricted deformation problem) if v ∈ Q. Define ∆Q to be

the maximal �-power order quotient of the group
∏

v∈Q T (k(v)). Using local class field theory,
the action of the universal deformation ring for the restriction of σm to the tame inertia groups
at places in Q equips Rσm ,|N |∪Q,DQ

with a O[∆Q]-algebra structure. Writing aQ ⊂ O[∆Q] for the
augmentation ideal, we have a canonical isomorphism Rσm ,|N |∪Q,DQ

/aQ
∼= Rσm ,|N |,D.

We now define the relevant level structures for patching. We define open compact subgroups
U1(Q) ⊂ U0(Q) ⊂ U(N) as follows:

• U0(Q) =
∏

v U0(Q)v, where U0(Q)v = U(N)v = ker(G(OKv) → G(Onv ·v)) if v �∈ Q, and
U0(Q)v is an Iwahori group if v ∈ Q;

• U1(Q) =
∏

v U1(Q)v, where U1(Q)v = U(N)v if v �∈ Q, and U1(Q)v is the maximal pro-prime-
to-� subgroup of U0(Q)v if v ∈ Q.

Thus U1(Q) 
 U0(Q) is a normal subgroup, and there is a canonical isomorphism
U0/U1

∼= ∆Q.
We fix a place v0 of K, and write �M for the order of the �-Sylow subgroup of

G(Fqv0
).

We now need to define auxiliary spaces of modular forms. We define H ′
0 = Ccusp(U(N),O)m.

There are surjective maps B(U1(Q),O) � B(U0(Q),O) � B(U(N),O), and we write m as well
for the pullback of m ⊂ B(U(N),O) to these two algebras. As in Lemma 4.5, we have surjective
morphisms

Rσm ,|N |∪Q,DQ
� B(U1(Q),O)m � B(U0(Q),O)m.

We define H ′
Q,1 := Ccusp(U1(Q),O)m and H ′

Q,0 := Ccusp(U0(Q),O)m.
We discuss how to cut H ′

0 out of H ′
Q,0 as a direct summand, and an analogous construction

for H ′
Q,1. This will make use of the Hecke algebras HU0(Q),v at a place v ∈ Q (where it is the

Iwahori–Hecke algebra by our choice of level structure) and HU1(Q),v. The ‘translation part’ of
Bernstein’s presentation of the Iwahori–Hecke algebra is an embedding O[X∗(T )] → HU0(Q)v

,
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whose action on H ′
Q,0 for v ∈ Q induces an Rσm ,|N |∪Q,DQ

[
∏

v∈Q X∗(T )]-module structure
on H ′

Q,0. We write nQ,0 ⊂ O[
∏

v∈Q X∗(T )] for the maximal ideal which is associated to the tuple
of characters (v ∈ Q):

ϕ−1
v ◦ σm|WKv

: WKv → T̂ (k). (4.2)

Then H ′
Q,0,nQ,0

is a direct factor Rσm ,|N |∪Q,DQ
-module of H ′

Q,0, and there is a canonical

isomorphism H ′
Q,0,nQ,0

∼= H ′
0 of Rσm ,|N |∪Q,DQ

-modules.2

Similarly, for v ∈ Q we write T (Kv)� for the quotient of T (Kv) by its maximal pro-prime-
to-� subgroup. Then there is a structure of Rσm ,|N |∪Q,DQ

[
∏

v∈Q T (Kv)�]-module on H ′
Q,1, where

the copy of T (Kv)� corresponding to v ∈ Q acts via the analogous embedding O[T (Kv)�] →
HU1(Q)v

. We write nQ,1 ⊂ O[
∏

v∈Q T (Kv)�] for the maximal ideal which is associated to the
tuple of characters (4.2). Then H ′

Q,1,nQ,1
is a direct factor Rσm ,|N |∪Q,DQ

-module of H ′
Q,1,

and the two structures of O[∆Q]-module on H ′
Q,1,nQ,1

, one arising from the homomorphism

O[∆Q] → Rσm ,|N |∪Q,DQ
and the other from the homomorphism O[∆Q] → O[

∏
v∈Q T (Kv)�], are

the same.
We need two key properties of the modules H ′

Q,1 (with fixed j as in Proposition 3.9):

• The natural inclusion

Ccusp(U0(Q),O) ⊂ Ccusp(U1(Q),O)

induces an identification H ′
Q,0,nQ,0

= (H ′
Q,1,nQ,1

)∆Q .

• By Lemma 4.7, we then have that if qv ≡ 1 mod �M ′

for each v ∈ Q and for some M ′ ≥ M ,
then (H ′

Q,1)
�j∆Q is a free O[∆Q/�j∆Q]-module for each 0 ≤ j ≤ M ′ − M . This property

implies in turn that (H ′
Q,1,nQ,1

)�j∆Q is a free O[∆Q/�j∆Q]-module. Observe that ∆Q/�j∆Q
∼=

(Z/�jZ)⊕r#Q, where r = rank Ĝ.

For patching it is a bit more convenient to work with the modules HQ :=

HomO((H ′
Q,1,nQ,1

)�j∆Q ,O) and H0 := HomO(H ′
0,O). These are finite free O-modules, which

we endow with their natural structures of Rσm ,|N |∪Q,DQ
⊗O[∆Q] O[∆Q/�j∆Q]-module and

Rσm ,|N |,DQ
-module, respectively, by dualization. We can summarize the preceding discussion

as follows:

• The module HQ is a finite free O[∆Q/�j∆Q]-module, where O[∆Q/�j∆Q] acts via the algebra
homomorphism

O[∆Q/�j∆Q] → Rσm ,|N |∪Q,DQ
⊗O[∆Q] O[∆Q/�j∆Q].

• There is a natural surjective map HQ � H0, which factors through an isomorphism
(HQ)∆Q

∼
−→ H0, and is compatible with the isomorphism Rσm ,|N |∪Q,DQ

/aQ
∼= Rσm ,|N |,D.

Let h := h1
D(ΓK,|N |, ad σ). By Proposition 3.9, we can find for each j ≥ 1 a Taylor–Wiles

datum (Qj , {ϕv}v∈Qj
) which satisfies the following conditions:

• Qj is disjoint from |N |.
• For each v ∈ QN , we have qv ≡ 1 mod �j+M and #Qj = h.
• There exists a surjection O[[x1, . . . , xg]] � Rσm ,|N |∪Qj ,D, where g = hr.

2 This uses that for v ∈ Q, the stabilizer in the Weyl group of the regular semisimple element ρm(Frobv) ∈ Ĝ(k)

is trivial, which is equivalent to the condition that the centralizer in Ĝk of ρm(Frobv) is connected, which is part
of the definition of a Taylor–Wiles datum.
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Define R∞ = O[[X1, . . . , Xg]]. The situation is summarized in the following diagram.

We now patch these objects together. This involves quotienting the objects in the diagram
by open ideals to get diagrams of Artinian objects. Then because there are only finitely many
isomorphism classes of such diagrams, one can pass to the inverse limit. The details of this process
are the same as in [BHKT19, p. 48–49], so we skip to the conclusion. Define ∆∞ := Zg

� , ∆j :=
∆∞/�j∆∞, S∞ := O[[∆∞]], bj := ker(S∞ → O[[∆j ]]), and b0 := ker(S∞ → O). By patching, we
have the following objects:

• R∞, a complete Noetherian local O-algebra with residue field k, which is equipped with
structures of S∞-algebra and a surjective map R∞ � R∞;

• H∞, a finite R∞-module;
• α∞, an isomorphism R∞/b0

∼= Rσm ,|N |,D;
• β∞, an isomorphism H∞/b0

∼= H0.

These objects have the following additional properties:

• H∞ is free as an S∞-module.
• The isomorphisms α∞, β∞ are compatible with the structure of Rσm ,|N |,D-module on H0.

The situation is summarized in the following diagram.

Since S∞ is topologically free, we may choose the dashed arrow so that the leftmost triangle
commutes.

We find that

dimR∞ ≥ depthR∞ H∞ ≥ depthS∞
H∞ = dimS∞ = dimR∞ ≥ dimR∞,

and hence that these inequalities are equalities, R∞ → R∞ is an isomorphism, and (by the
Auslander–Buchsbaum formula) H∞ is also a free R∞-module. It follows that H∞/b0

∼= H0 is
a free R∞/b0

∼= Rσm ,|N |,D-module, and that Rσm ,|N |,D is an O-flat complete intersection. This
in turn implies that Ccusp(U,O)m

∼= HomO(H0,O) is a free Rσm ,|N |,D-module (since complete
intersections are Gorenstein). This completes the proof of the theorem. �

5. Formal smoothness of local deformations

This section is devoted to the proof of the following theorem, which guarantees that for all large
enough �, the unrestricted local condition will be balanced at a place of ramification for any
given cuspidal automorphic representation.

Theorem 5.1. Let Π ⊂ Ccusp(G, Q) be a cuspidal automorphic representation of G(AK) with
coefficients in Q. For any prime number � �= p let Π� = Π ⊗

Q
Q� denote its base change to Q�.

Suppose Π is unramified outside the finite set S, and σ� ∈ ρ
Π,�

(notation as in Remark 4.2) has

Zariski dense image. (As explained in Remark 4.2, this implies a posteriori that σΠ,� exists, and
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then σ� = σΠ,�.) Then, letting

σ� : ΓK,S → Ĝ(F�)

be a reduction of σ� mod �, there is an integer c(Π), depending only on Π, such that, for all
v ∈ S and all � > c(Π), we have

H2(ΓKv , ad(σ�)) = 0.

We concurrently found two very different proofs of Theorem 5.1, and include them both
below, as they both establish general results along the way that may be of independent interest.
The proof in § 5.1 is based on a lifting theorem (Theorem 5.6) for global Galois representa-
tions, which is analogous to [BGGT14, Theorem 4.3.1]; cf. also [KW09, Corollary 4.7]. The
lifting theorem implies that if H2(ΓKv , ad(σ�)) �= 0, then there is another lift of σ� to char-
acteristic 0 which is ‘less ramified’ at v than σ�. By the global Langlands correspondence
for GLn established by Lafforgue [Laf02], such a lift must come from another cuspidal auto-
morphic representation—of which only finitely many contribute at any given level structure—
congruent to Π modulo �. The idea is then that there can only be finitely many such
congruences, because otherwise strong multiplicity one for GLn would be violated. We remark
that a similar strategy, for an analogous situation over number fields, was used in the proof of
[Gui20, Corollary 7.11].

The proof in § 5.2 is of a more geometric nature. We reduce Theorem 5.1 to a torsion version
of the weight-monodromy conjecture, formulated by Ito [Ito21], for the compactifications con-
structed by Laurent Lafforgue to prove the global Langlands correspondence for GLn. Then we
prove this torsion weight-monodromy conjecture for the intersection cohomology of any proper
variety over an equal characteristic local field (generalizing work of Ito in the smooth proper
case [Ito21]). A crucial tool is an integral version of the decomposition theorem recently proved
by Cadoret and Zheng, which we use to reduce to the smooth and proper case established by Ito.
This second argument actually yields a more general statement, Theorem 5.9.

Although neither argument gives an effective estimate on the constant c(Π), they give differ-
ent starting points for obtaining such an estimate. (That is one reason why it seems valuable to
include both arguments.) In the first approach, what must be controlled is the set of primes at
which cusp forms can have congruences to other cusp forms. In the second approach, what must
be controlled has to do with the torsion in the integral intersection cohomology of L. Lafforgue’s
compactifications of moduli spaces of shtukas for GLn.

5.1 Approach based on lifting theorems for Galois representations

First we show that Theorem 5.1 follows from the same statement when G = GLn. Pick a faithful
irreducible representation of G on a finite projective Z-module, say of rank n > 1. This induces
an injection g ↪→ gln, which is split over Z� for all sufficiently large � and therefore induces an
injection H2(ΓKv , ad(σ�)) ↪→ H2(ΓKv , gln ◦ σ�). This reduces the claim to the case Ĝ = GLn, so
for the rest of this subsection we focus on the case G = GLn.

5.1.1 Some linear algebra. We recall the following result of Deligne [Del80, Proposition 1.6.1].

Proposition 5.2. Let k be a field and let V be a finite-dimensional k-vector space, equipped
with a nilpotent endomorphism N : V → V . Then there exists a unique increasing filtration M•

of V such that NMi ⊂ Mi−2 and, for each k ≥ 0, Nk induces isomorphisms grk M• → gr−k M•.

If N is a nilpotent endomorphism of an n-dimensional vector space, we will write Jord(N)
for the partition of n given by the sizes of the Jordan blocks of N . We recall that there is a
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partial order on partitions n which can be viewed as corresponding to the closure ordering of
nilpotent orbits in the adjoint representation of GLn.

Let v be a place of K, and suppose given a prime � > n not dividing q. Let E/Q� be a finite
extension with residue field kE = OE/(�E), and suppose given a continuous representation ρ :
GKv → GLn(OE). Fix a choice of (geometric) Frobenius lift φv ∈ GKv , and t� ∈ GKv a generator
for the �-part of tame inertia. Let us say that ρ is good if the following conditions are satisfied:

• ρ is unipotently ramified. Let N = log(ρ(t�)) ∈ Mn(OE); then φvNφ−1
v = q−1N .

• The eigenvalues of ρ(φv) all lie in E.
• ρ is pure of weight 0. This means that the eigenvalues of ρ(φv) on V = En are qv-Weil num-

bers and that, writing Vi ⊂ V for the subspace where the eigenvalues are of weight i, Nk

induces an isomorphism Vk → V−k for each k ≥ 0. (Note that the filtration associated to N
by Proposition 5.2 is then Mk =

⊕
i≤k Vi.)

• Let fi(X) = det(X − ρ(φv)|Vi
) ∈ OE [X]. Then for each i �= j, the reduced polynomials

f i(X), f j(X) ∈ kE [X] are coprime.

• For each i, j, the polynomials f i(X), f j(q
−1
v X) ∈ kE [X] fail to be coprime only if j = i + 2.

Let L = On
E , so that V = L ⊗OE

E, and define Li = Vi ∩ L. Hensel’s lemma implies that if ρ is
good then L =

⊕
i∈Z Li.

Lemma 5.3. Suppose that ρ is good, and let N ∈ Mn(kE) denote the reduction of N modulo �E .
If Jord(N) = Jord(N), then H2(Kv, ad ρ) = 0.

Proof. The equality Jord(N) = Jord(N) is equivalent to the equalities dimE ker Nk =

dimkE
ker N

k
for each k ≥ 0. Let L = L ⊗OE

kE and Li = Li ⊗OE
kE . We first claim that for

each k ≥ 0, N
k

induces an isomorphism Lk → L−k. Equivalently, the intersection (kerN
k
) ∩ Lk

is 0.
The equality dimE ker Nk = dimkE

kerN
k

implies that in fact kerN
k

= (ker Nk ∩ L) ⊗OE

kE . Since kerNk is invariant under Ad ρ(φv), we find that in fact

(ker N
k
) ∩ Lk = (ker Nk ∩ Lk) ⊗OE

kE = 0.

This establishes the claim. By linear algebra, we then have a decomposition

L =
⊕

i∈Z

i⊕

j=0

N
j
L(i),

where L(i) = Li ∩ (ker N
i+1

).
By Tate duality, we need to show that H0(Kv, ad ρ(1)) = HomGKv

(L,L(1)) = 0. An element

of this Hom space determines a linear map F : L → L which commutes with N and satisfies
F (Li) ⊂ Li+2 for each i ∈ Z. To show the Hom space vanishes, it is enough to show that F
annihilates each L(i). However, if x ∈ L(i) then we find F (x) ∈ Li+2 and

N
i+1

F (x) = F (N
i+1

x) = 0.

The restriction of N
i+1

to Li+2 is injective, so this forces F (x) = 0, hence F = 0, as required. �

5.1.2 Local lifting rings. Let � > n be a prime not dividing q and let E/Q� be a finite exten-
sion with residue field kE = OE/(�E). Let v be a place of K and fix a continuous homomorphism
ρv : GKv → GLn(kE) and a continuous character χ : GK → O×

E such that det ρv = χ|GKv
. Let

CNLOE
denote the category of complete Noetherian local OE-algebras with residue field kE .

1977

https://doi.org/10.1112/S0010437X24007243 Published online by Cambridge University Press
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Then the functor Lχ
v which associates to each A ∈ CNLOE

the set of lifts ρv,A : GKv → GLn(A)

of ρv of determinant χ|GKv
is represented by an object R�,χ

v ∈ CNLOE
. This ring has a pleasant

geometry.

Proposition 5.4. Let assumptions be as above. Then the following statements hold:

(i) The ring R�,χ
v is a reduced local complete intersection.

(ii) For each minimal prime q ⊂ R�,χ
v , the quotient R�,χ

v /q is a domain of Krull dimension n2.

(iii) Let q ⊂ R�,χ
v be a minimal prime, and let Lχ,q

v ⊂ Lχ
v be the corresponding subfunctor.

Then Lχ,q
v is a local deformation problem, in the sense that for each A ∈ CNLOE

, the subset
Lχ,q

v (A) ⊂ Lχ
v (A) is invariant under the conjugation action of the group ker(GLn(A) →

GLn(kE)).

Proof. The first two points follow from [Yao, Proposition 2.13]. The third is established in
[BGGT14, § 1.3] in the case where the determinant is not fixed and Kv is replaced by a finite
extension of Qp (p �= �); the same proof applies here. �

We will use the following lemma.

Lemma 5.5. With assumptions as above, suppose further that � > n and that ρv is unipotently
ramified. Then there exists a minimal prime q ⊂ R�,χ

v such that R�,χ
v /q is formally smooth over

OE and such that for every homomorphism R�,χ
v /q → Q�, corresponding to a lifting ρv : GKv →

GLn(Z�) of ρv of determinant χ|GKv
, the following conditions are satisfied:

(i) ρv is unipotently ramified.
(ii) If t� ∈ IKv(�) denotes a generator of the �-part of tame inertia, then Jord(log(ρv(t�))) =

Jord(log(ρv(t�))).

Proof. We can take R�,χ
v /q to be the functor parametrizing liftings which are minimally ramified,

in the sense of [CHT08, Definition 2.4.14], and of determinant χ|GKv
. The claimed properties

follow from [CHT08, Lemma 2.4.19]. �

5.1.3 Existence of lifts.

Theorem 5.6. Let � > n be a prime such that (�, 2q) = 1, and let ρ : GK → GLn(F�) be a
continuous representation such that ρ|G

K·Fq
is irreducible. Let S be a finite set of places of K,

containing the places at which ρ is ramified, and fix the following data:

(i) a finite extension E/Q� inside Q�;
(ii) a character χ : GK → O×

E of finite order lifting det ρ, unramified outside S;

(iii) for each v ∈ S, a minimal prime q of the universal lifting ring R�,χ
v .

Then we can find a continuous lifting ρ : GK → GLn(Q�) of ρ satisfying the following
conditions:

(i) det ρ = χ.
(ii) For each place v �∈ S of K, ρ|GKv

is unramified.

(iii) For each place v ∈ S of K, ρ|GKv
defines a homomorphism R�,χ

v /q → Q�.

Proof. Let D : CNLOE
→ Sets denote the functor of deformations ρA : GK → GLn(A) of ρ

satisfying the following conditions:

(i) det ρA = χ.

(ii) If v ∈ S, then ρA|GKv
defines a map R�,χ

v /q → A.
(iii) If v �∈ S, then ρA|GKv

is unramified.
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Then D is represented by an object R ∈ CNLOE
, and a standard computation in Galois coho-

mology and using Proposition 5.4 (see [Yao, Corollary 5.4]) shows that R has Krull dimension
dim R ≥ 1. On the other hand, R is a finite OE-algebra (see [Yao, Theorem 5.5], where this
is deduced from work of de Jong and Gaitsgory, [deJ01, Gai07]). It follows that R is an
OE-flat complete intersection and, in particular, that there exists a homomorphism R → Q�,
which implies the existence of a lift ρ : GK → GLn(Z�) with the desired properties. �

5.1.4 Minimality.

Theorem 5.7. Let π be a cuspidal automorphic representation of GLn(AK) over Q of finite
central character and such that the associated compatible system (rλ(π))λ is connected, in the
sense of [BGP19]. Let S be a finite set of places of K, including the set of places at which π is
ramified. Then there exists an integer N > max(2, q, n) such that for each prime number � > N
and for each place λ of Q of residue characteristic �, the following conditions are satisfied:

(i) ρλ|GK·Fq
is irreducible.

(ii) For each v ∈ S, H2(Kv, ad ρλ) = 0.

Proof. Let χ denote the central character of π, which we identify with a character χ : GK → Q
×
.

After replacing K by a finite Galois extension, we may assume that for each place v ∈ S, πv is
unipotently ramified. We can associate to each v ∈ S a partition Jord(πv) of n, namely the
one given by the Jordan decomposition of the nilpotent part of the Weil–Deligne representation
recKv(πv).

By [BGP19, Corollary 6.12], we can find an integer N0 > max(2, q, n) such that for each
prime number � > N and for each place λ of Q of residue characteristic �, ρλ|GKFq

is irreducible.

Since S is finite, it suffices to fix a single w ∈ S and show that the number of primes � > N0 such
that there is a place λ|� of Q such that H2(Kw, ad ρλ) �= 0 is finite.

Let L ⊂ Q be a number field such that the compatible system (rλ(π))λ is L-rational and
such that the roots of f(X) = det(X − recKw(πw)(φw)) lie in L. By the Ramanujan conjecture
(established in [Laf02, Theorem VI.10]), recKw(πw) is pure of weight 0, and we may factor
f(X) =

∏
i fi(X), where the roots of fi(X) are qw-Weil numbers of weight i. The polynomials

f(X), fi(X) lie in OL[1/q, X]. If i �= j then the polynomials fi(X), fj(X) are coprime. If i �= j + 2
then the polynomials fi(X), fj+2(qwX) are coprime. After increasing N0, we can therefore assume
that for each prime � > N0 and for each place λ|� of Q, the representation ρλ|GKw

(conjugated
to take values in GLn(OE) for some E/Q�) is good, in the sense of § 5.1.1.

Lemma 5.8. For each prime number � > N0 and place λ|� of Q such that H2(Kw, ad ρλ) �= 0,
there exists a cuspidal automorphic representation π′ of GLn(AK) over Q satisfying the following
conditions:

(i) π′ has central character χ and is unramified outside S.
(ii) For each place v ∈ S, π′

v is unipotently ramified.
(iii) Jord(π′

w) < Jord(πw).
(iv) There is an isomorphism rλ(π) ∼= rλ(π′).

Proof. We would like to apply Theorem 5.6. We need to specify a minimal prime of each
lifting ring R�,χ

v (v ∈ S). If v �= w then we take any component containing the point corre-
sponding to rλ(π). If v = w then we take the minimal lifting ring described in Lemma 5.5. We
then apply Theorem 5.6 with these choices to obtain a lift ρ of rλ(π), which by the global
Langlands correspondence for GLn(AK) corresponds to a cuspidal automorphic representation
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G. Böckle et al.

π′ of GLn(AK). The only property that remains to be justified is that Jord(π′
w) < Jord(πw).

By local–global compatibility, we have Jord(π′
w) = Jord(ρ|GKw

) (where we define the Jordan
partition of a unipotently ramified representation to be that of the image of a generator
of tame inertia). The definition of the minimally ramified deformation problem shows that
Jord(ρ|GKw

) = Jord(rλ(π)|GKw
). Finally, Lemma 5.3 and our hypothesis that H2(Kw, ad ρλ) �= 0

show together that Jord(rλ(π)|GKw
) < Jord(πw). �

We now use the preceding lemma to finish the proof of the theorem. The set of cuspidal
automorphic representations of GLn(AK) over Q of central character χ, unramified outside S,
and unipotently ramified inside S, is finite [Har74, Corollary 1.2.3]. Enlarge the number field L
so that each such automorphic representation is in fact defined over L. If the number of places
λ of L for which H2(Kw, ad ρλ) �= 0 is infinite, then by the pigeonhole principle we can find an
automorphic representation π′ in this set such that for infinitely many places λ of L there is an
isomorphism rλ(π) ∼= rλ(π′), and yet Jord(π′

w) < Jord(πw). In particular, π �= π′.
If v �∈ S is a place of K then, in particular, we find det(X − rλ(π)(Frobv)) ≡ det(X −

rλ(π′)(Frobv)) mod λ for infinitely many places λ, and therefore πv
∼= π′

v. The strong multiplicity-
one theorem then implies that π = π′, contradicting the inequality Jord(π′

w) < Jord(πw). This
concludes the proof. �

5.2 Geometric approach based on the torsion weight-monodromy conjecture

We will actually establish the following more general statement, which handles arbitrary
compatible systems of irreducible representations (as opposed to specifically the adjoint
representation).

Theorem 5.9. Let {σ� : ΓK,S → GLn(Q�)} be any compatible system of irreducible
n-dimensional representations. For each v ∈ |X|, Grothendieck’s quasi-unipotence theorem
implies that there is an open subgroup Jv ⊂ IKv such that σ�(Jv) is unipotent for all � �= p.
Choose for each v ∈ |X| a tv ∈ Jv projecting to a generator of the pro-� part of tame inertia for
all but finitely many � �= p. Then all but finitely many primes � have the properties that:

• σ� is irreducible;
• for all v, σ�(tv) − 1 has torsion-free cokernel on some (equivalently any) lattice.

5.2.1 Some reductions. By assumption G is semisimple; we may reduce to the case where G
is simple since the statement of the theorem is compatible with taking finite direct sums.

The representation σ� is defined over a finite extension E/Q�. Let OE be the ring of integers
of E, and σ̃� be a lattice in σ�, with mod-� reduction σ�.

Lemma 5.10. If the cokernel of (σ̃�(tv) − 1)i is torsion-free for every i, then H2(Kv, σ�) = 0.

Proof. By [Ito21, Lemma 3.7], the torsion-freeness implies that Jord(σ̃�(tv) − 1) =
Jord(σ�(tv) − 1) in the notation of Lemma 5.3, and then applying the same proof as for
Lemma 5.3 gives the conclusion. �

Lemma 5.11. Let M be a finite flat Z�-module and γ a Z�-linear endomorphism of M . If (M ⊗Z�

M)∆γ is torsion-free, then Mγ is torsion-free. (Here ∆γ refers to the diagonal action of γ on the
tensor product.)

Proof. Suppose m ∈ M represents a non-zero �k-torsion element of Mγ . Then m ⊗ m ∈
M ⊗Z�

M represents an �2k-torsion element of (M ⊗Z�
M)∆γ . Furthermore, its image under
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(M ⊗Z�
M)∆γ � Mγ ⊗Z�

M∆γ is non-zero, so this shows that (M ⊗Z�
M)∆γ has a non-zero

torsion element. �

Hence it suffices to show that for all sufficiently large �, the cokernel of (σ̃�(tv) − 1)i ⊗
(σ̃�(tv) − 1)i is torsion-free for all i. The point of casting the problem this way is that this
tensor product of Galois representations appears in the cohomology of shtukas, and through this
we will be able to transform the question into a purely geometric one.

Let n = dim g. Laurent Lafforgue constructed a proper Deligne–Mumford stack

ShtN → (X − N) × (X − N)

(our ShtN refers to what is called in [Laf02] Chtn,P≤P
N

′

/aZ for sufficiently large
Harder–Narasimhan polygon P , and appropriate a corresponding to the central character of
Π) such that (because σ� is irreducible) Ξ � (σ� ⊗ σ�) occurs, for some3 Hecke module Ξ,
as a Hecke–Galois stable summand of pH0(ShtN , IC(E)) [Laf02, Theorem VI.27], where the
latter refers to the zeroth perverse cohomology of the geometric generic fiber of ShtN →
(X − N) × (X − N).

Corollary 5.12. For any v ∈ |X|, for all but finitely many �, there exists N disjoint from v
such that σ̃� ⊗OE

σ̃� occurs as a Hecke stable4 summand of pH0(ShtN , IC(OE)) where ShtN →
(X − N) × (X − N) is a proper morphism of schemes.

Proof. Fixing the Harder–Narasimhan polygon p, for all sufficiently large N [Var04,
Proposition 2.16] implies that the Deligne–Mumford stack ShtN is represented by a
scheme.

Since σ� is irreducible, the σ�-isotypic part of pH0(ShtN , IC(Q�)) occurs as a summand of the
finite-dimensional subspace H∗

ess(Q�) ⊂
pH0(ShtN , IC(Q�)), where the ‘essential part’ is defined

by the condition that its Hecke eigenvalues are cuspidal.
The Hecke operators act on H∗

ess(Q�), and the subalgebra of End(H∗
ess(Q�)) generated by

them forms a finite Q�-algebra, so we may choose a finite number of Hecke operators T1, . . . , Tk

that form a generating set. Each of these finitely many operators on H∗
N,ess satisfies a character-

istic polynomial which is defined over a number field, hence for all sufficiently large � all their
eigenvalues lie in Z�. Since the projection to eigenspaces is given by universal polynomials in the
eigenvalues, these projection operators are then defined over Z� for all sufficiently large �, giving
a decomposition which then further descends to OE . �

For ShtN as in Corollary 5.12, by Grothendieck’s quasi-unipotence theorem we may choose
tv to act unipotently on all of H0((ShtN )Ks

v
, IC(Z�)). It then suffices to show that for almost all

�, the cokernel of (tv − 1)i is torsion-free on H0(ShtN , IC(Z�)) for all i. We will prove a much
more general statement, for any smooth proper variety over Kv.

5.2.2 Monodromy weight filtrations for torsion intersection cohomology. Let Z be a proper
variety over a characteristic-p local field F . Then we have an action of Gal(F s/F ) on its
(geometric) intersection cohomology H∗(ZF s , ICZ(Z�)).

3 Explicitly, Ξ is the U(N) invariants on the cuspidal automorphic representation corresponding to σ� via
L. Lafforgue’s global Langlands correspondence for GLn.
4 The Hecke algebra does not act on all of pH0(ShtN , IC(E)) or pH0(ShtN , IC(OE)). There are Hecke cor-
respondences on ShtN defined by normalization, which act on these cohomology groups, but not in a way
satisfying the relations of the Hecke algebra. However, Lafforgue shows that on the ‘essential’ summand
H∗

ess(Q�) ⊂
pH0(ShtN , IC(Q�)), the Hecke operators satisfy the relations of the Hecke algebra. This is all that

matters for us.
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There is an open subgroup J ⊂ IF such that its action is unipotent. Take t ∈ J such that its
projection to the �-part of tame inertia is non-trivial for all but finitely many � �= p.

Proposition 5.13. For almost all � �= p, the cokernel of (t − 1)i : H∗(ZF s , ICZ(Z�)) →
H∗(ZF s , ICZ(Z�)) is torsion-free for all i.

In the special case where Z is smooth and proper, this is a result of Ito [Ito21], which
ultimately relies on the weight-monodromy conjecture. Our proof will reduce to the smooth and
proper case using the following proposition.

Proposition 5.14. Let f : Y → Z be an alteration of varieties over a field L, with Y smooth
over L. Then for all sufficiently large �, Rf∗Z� has ICZ(Z�) as a direct summand.

Proof of Proposition 5.13 assuming Proposition 5.14. According to de Jong [deJ96], we may find
an alteration f : Y → Z with Y being smooth and proper. The cokernels in question are then
direct summands of the analogous cokernels for Y , which by [Ito21, combination of Lemma 3.7,
Proposition 3.9, and Theorem 3.6] are torsion-free for all sufficiently large �. �

Remark 5.15. Our Proposition 5.14 also implies a torsion version of the weight-monodromy
conjecture for the intersection cohomology of a proper variety Z with F�-coefficients, generalizing
the case of smooth and proper Z treated in [Ito21].

The proof of Proposition 5.14 will be given at the end of this section. If we were considering
Q�-coefficients instead, we would be able to deduce the analogous statement from the decompo-
sition theorem (although it is not an entirely trivial deduction when F is not separably closed,
since the splitting of the decomposition theorem over F s is not canonical, and does not descend
to F in general). For varieties over C, the statement with Z�-coefficients would follow for all
sufficiently large � from the Q�-coefficient version plus the existence of a Z-structure on Rf∗Z�

and IC(Z�). However, Proposition 5.14 in the stated generality seemed out of reach until we
learned of the recent theorem of Cadoret and Zheng, which gives a version of the decomposition
theorem with Z�-coefficients for all sufficiently large �.

Theorem 5.16 (Cadoret and Zheng [CZ]). Let f : Y → Z be a proper surjection of finite
type schemes over a field L, with Y is smooth over L. Then for all sufficiently large �, we
have

Rf∗Z�
∼=

⊕

i

pHi(Rf∗Z�)[−i],

with each pHi(Rf∗Z�) being torsion-free as a perverse sheaf.
Furthermore, if L is separably closed, then for all sufficiently large �, each

pHi(Rf∗Z�) is isomorphic to a direct sum of intersection complexes of semisimple local
systems.

5.2.3 Perverse sheaves. We would like to apply Theorem 5.16 to the situation of
Proposition 5.14. A subtlety is that because the splitting provided by the decomposition
theorem over Ls is not canonical, it does not in general descend to L. We must therefore pay
careful attention to rationality issues. We will use a trick that we learned from Hansen’s blog5

(and which is credited there to Bhargav Bhatt, although we were later informed by Cadoret
and Zheng that the argument essentially appears already around [BBD82, § 5.3.11]) in order to
deduce the necessary results.

5 Available at https://totallydisconnected.wordpress.com/2020/08/26/a-trick-and-the-decomposition-theorem/
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Definition 5.17. Let F be a perverse sheaf on a variety Z. Let j : U ↪→ Z be the inclusion of
the maximal (dense) open variety on which F is a (shifted) local system. We define the generic
part of F to be the perverse sheaf Fgen := j!∗j

∗F .

We make no claim that there is a non-trivial map between F and Fgen in general. However,
we shall prove that in certain situations of interest, Fgen can be realized as a direct summand
of F .

Proposition 5.18. Let F be a perverse sheaf on a variety Z over L. Suppose that F|ZLs is
isomorphic to a direct sum of IC sheaves. Then Fgen is a direct summand of F .

Proof. Let j : U → Z be as in Definition 5.17 and B be the closed complement of U . The hypoth-
esis implies that F|ZLs is isomorphic to Fgen

ZLs
⊕ E where E is a direct sum of IC sheaves supported

on BLs .
Consider the maps α : (pj!)j

∗F → F and β : F → (pj∗)j
∗F .

Let G := Im(α) ⊆ F . Then we have a tautological map G � Fgen. Since (pj!j
∗F)Ls has no

proper quotients supported on BLs [Ach21, Exercise 3.1.6], the composition GLs → F|ZLs → E
vanishes, so that GLs ↪→ Fgen|Ls . This implies that the given map G → Fgen is an isomorphism,
which gives an injection Fgen ∼= G ↪→ F . A dual argument shows that for G′ := Im(β), we have a
surjection F � G′ ∼= Fgen. We then check after base change to Ls that the composition Fgen ↪→
F � Fgen is the identity map. �

Corollary 5.19. Let f : Y → Z be a proper map of L-varieties, with Y smooth over L. Then
for all sufficiently large �, pH0(Rf∗ ICY (Z�))

gen is a direct summand of Rf∗ ICY (Z�).

Proof. By Theorem 5.16, the hypothesis of Proposition 5.18 holds, so that pH0(Rf∗ ICY (Z�))
gen

is a direct summand of pH0(Rf∗ ICY (Z�)). Applying Theorem 5.16 again, pH0(Rf∗ ICY (Z�)) is
a direct summand of Rf∗ ICY (Z�). �

Proof of Proposition 5.14. By the definition of alteration, there is an open dense subset U ⊂ Z
over which the map f |U is finite flat. By shrinking U further if necessary, we may assume that U is
contained in the smooth locus of Z, so that ICZ(Z�) is the intermediate extension of ICZ(Z�)|U ∼=

Z�[dimU ]. Over U , the composition Z� → f∗Z�
Tr
−→ Z� is multiplication by deg f |U , hence as long

as � > deg f |U it realizes the constant sheaf (Z�)U as a direct summand of f∗((Z�)f−1(U)) ∼=
(Rf∗Z�)|U . Since restriction to open subsets is perverse t-exact, this says that ICU (Z�) is a
summand of pH0(Rf∗ ICY (Z�))|U , and then applying intermediate extension shows that ICZ(Z�)
is a direct summand of pH0(Rf∗ ICY (Z�))

gen. We then conclude using Corollary 5.19. �

6. Global cyclic base change

6.1 Automorphic Galois representations

Let R = F� or Eλ. In [Fen24, § 2], the abstract excursion algebra Exc(ΓK , ĜR) is defined. This
is an algebra over R such that the set of characters χ : Exc(ΓK , ĜR) → R is in bijection
with semisimple (not necessarily continuous) representations σ ∈ H1(ΓK , Ĝ(R)). In [Xue20a,
Xue20b], Cong Xue extends Lafforgue’s methods to define an action of Exc(ΓK , ĜR) on
C∞

c (G(K) \ G(AK), R), preserving the cuspidal subspace. The same statement holds replacing
ΓK by ΓK,N and G(K) \ G(AK) by G(K) \ G(AK)/U(N). The algebra B(U(N), R) considered

earlier in § 4.2 is the image of Exc(ΓK,N , ĜR) in EndR(Ccusp(U(N), R)).

Following [Fen24, Definition 5.5], we say that a Galois representation σ : ΓK → Ĝ(R) is auto-
morphic if the corresponding maximal ideal mσ appears in the support of the Exc(ΓK , ĜR)-action
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on Cc(U(N), R) for some N . A priori this does not imply that σ is related to a cusp form, but
the following lemma shows that this is necessarily the case if σ is absolutely irreducible.

Lemma 6.1. Let σ : ΓK,S → Ĝ(R) be an absolutely irreducible Galois representation which,

moreover, is automorphic. Let mσ the corresponding maximal ideal of Exc(ΓK , ĜR). If σ is
irreducible, then mσ appears in the support of the Exc(ΓK , ĜR)-action on Ccusp(U(N), R) for
some N , and for this N there is an eigenvector f ∈ Ccusp(U(N), R) on which B acts through the
character B/mσ.

Proof. By [Xue20b, Proposition 7.6.2] and [Xue20a, § 6.2], for a parabolic subgroup P ⊂ G with
Levi M , the constant term map

CTP
G : Cc(G(K) \ G(AK), R) → Cc(M(K) \ M(AK), R)

intertwines the action of Exc(ΓK , ĜR) on the source with the action of Exc(ΓK , M̂R) on the tar-

get, with respect to M̂(R) ↪→ Ĝ(R). Therefore, all Galois representations attached by Lafforgue’s

construction to the image of CTP
G factor through M̂(R). Hence if σ does not factor through such

a parabolic, and Cc(G, R)mÃ �= 0, then we must have Ccusp(G, R)mÃ �= 0.
For the last statement, we note that since Ccusp(G, R) = lim

−→N
Ccusp(U, R), we have

(Ccusp(U, R))mÃ �= 0 for some U . Since Ccusp(U, R) is a finite-dimensional vector space over R,

it is the direct sum of its generalized eigenspaces for the Exc(ΓK , ĜR)-action, and the assump-
tion implies that the character Exc(ΓK , ĜR) → Exc(ΓK , ĜR)/mσ appears among the systems of
eigenvalues. �

6.2 Mod � base change

We suppose � is odd and is a good prime for the reductive group G. Explicitly, this means that
we require p > 2 if Ĝ has simple factors of type A, B, C or D; p > 3 if Ĝ has simple factors of
type G2, F4, E6, E7; and p > 5 if Ĝ has simple factors of type E8. Let K ′/K be a cyclic extension
of function fields of degree �.

Theorem 6.2 [Fen24, Theorem 1.6]. With notation as above, let σ : ΓK → Ĝ(F�) be an
automorphic Galois representation. Then the restriction σ|ΓK′ is automorphic for GK′ .

6.3 Existence of almost all cyclic base changes in characteristic 0

Theorem 6.3. Let Π be a cuspidal automorphic representation of G(AK) defined over a number
field E.6 Suppose the Mumford–Tate group of Π is Ĝ, as in Definition 4.3. For a place λ of E,
let σΠ,λ be Lafforgue’s parameter attached to Π (as noted in Remark 4.2, the hypothesis implies
that ρ

Π,λ
is a singleton, so that σΠ,λ exists).

Then there is an integer c(Π), depending only on Π, such that for any prime � satisfying
� > c(Π), and any cyclic extension K ′/K of degree �, there is an automorphic representation Π′

of G(AK′) attached to the L-parameter σΠ,λ|Gal((K′)s/K′).

Proof. Let σΠ,λ denote the reduction of σΠ,λ modulo λ; let kλ denote the residue field
of λ. Our hypothesis on the Mumford–Tate group of Π, together with the main theorem
of [BGP19], implies that the image of σΠ,λ(ΓK(ζ�)) contains Ĝ(kλ)+ for all λ of sufficiently
large characteristic. It then follows from Lemma 3.8 that there is a constant b1(Π) such
that for � > b1(Π) the image of σΠ,λ(ΓK′(ζ�)) is abundant, and that σΠ,λ is also absolutely
irreducible.

6 We emphasize again that every cuspidal automorphic representation of G(AK) admits a model over the number
field, so this is not a restriction.
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Now, it follows from Theorem 5.1 that there is a constant b2(Π) such that for all
� > b2(Π), the restriction of σΠ,λ to ΓK′ satisfies condition (v) of Theorem 4.6. Taking
c(Π) := max(b1(Π), b2(Π)), we may then invoke Theorem 6.2 and Lemma 6.1 to apply
Theorem 4.6. The freeneess guarantees the existence of an eigenform supported over a single
point on the generic fiber of Rσm ,|N |,D, and we may take Π′ to be an irreducible cuspidal
subquotient of the automorphic representation generated by it. �

7. Local cyclic base change

Now let F be a local function field. In this section we will prove a local analog of Theorem 6.3,
establishing existence of cyclic base change for irreducible smooth representations of G(F ), along
any Z/�Z-extension of F for almost all �.

7.1 The Genestier–Lafforgue correspondence

Let F be a local function field with ring of integers OF and residue characteristic � �= p. Let WF

be the Weil group of F . Let G be a reductive group over F . In [GL17, Théorèm 0.1], Genestier
and Lafforgue construct a map

{
irreducible admissible representations

π of G(F ) over Q�

}
/ ∼−→

{
semisimple L-parameters

σπ : WF → Ĝ(Q�)

}
/ ∼ .

We shall use the two properties of the correspondence π �→ σπ recalled below.

7.1.1 Local–global compatibility. For any automorphic representation Π ∼=
⊗

x∈|X| Πx of
G(AK) that is associated to the L-parameter σΠ by V. Lafforgue’s global Langlands parametriza-
tion (§ 4.2), σΠx is conjugate to the semisimplification of σ|WKx

for any σ ∈ ρ
Π

(notation as in
Remark 4.2).

7.1.2 Compatibility with parabolic induction. If P is a parabolic subgroup of G with Levi
quotient M , τ is an irreducible admissible representation of M(F ), and π is an irreducible

subquotient of Ind
G(F )
P (F ) τ (with parabolic induction formed using the unitary normalization),

then σπ is conjugate to the composition WF
σÄ−→ M̂(Q�) ↪→ Ĝ(Q�).

7.2 Existence of almost all cyclic base changes in characteristic 0

Definition 7.1. Let π be an irreducible admissible representation of G(F ) over Q�. For a
separable field extension F ′/F , we say that an irreducible admissible representation π′ of G(F ′)
over Q� is a base change lifting of π to G(F ′) if σπ′ ∼= σπ|WF ′ .

This definition is an approximation to the notion of base change for L-packets. An L-packet
for G(F ′) should be said to be a base change lifting of an L-packet for G(F ) if the corresponding
L-parameters are related by restriction on Weil groups. Since we lack a definition of L-packets for
general groups and representations, we use the fibers of the Genestier–Lafforgue correspondence
as a substitute for L-packets.

Theorem 7.2. Assume that p is good for G if G is not simply laced. Let π be an irreducible
admissible representation of G(F ) over Q. There exists a constant c(π) such that for all primes
� > c(π), for any Z/�Z-extension F ′/F there exists a base change lifting of π to G(F ′).

Remark 7.3. In [Fen24, Theorem 1.1], a version of this result was established for mod � represen-
tations, when the extension is cyclic of degree equal to the same prime �, by completely different
methods.

1985

https://doi.org/10.1112/S0010437X24007243 Published online by Cambridge University Press
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Proposition 7.4. Assume that p is good for G if G is not simply laced. Let π be an irreducible
admissible supercuspidal representation of G(F ) over Q. Then there exist a global field K and
a place v ∈ |K| with Kv

∼= F , and a cuspidal automorphic representation Π of G(AK) with
Mumford–Tate group Ĝ such that Πv

∼= π.

Proof of Theorem 7.2 assuming Proposition 7.4. First we reduce to the case where π is
supercuspidal. Indeed, any π can be realized as an irreducible subquotient of a parabolic

induction of supercuspidal representations, of the form Ind
G(F )
P (F ) τ . By § 7.1.2, the parabolic

induction from M(F ′) to G(F ′) of a base change of τ to M(F ′) will have an L-parameter of the
desired form. So it suffices to treat the supercuspidal case.

Hence we may and do assume for the rest of the argument that π is supercuspidal. Then
we may apply Proposition 7.4 to embed π as the local component at v of cuspidal automor-
phic representation Π over a global field K with Kv

∼= F . Using Remark 4.2, we can replace
Π by an isomorphic G(AK)-representation (realized differently in the space of cuspidal func-
tions on G(K)\G(AK)) to assume that Π is attached to an L-parameter σΠ. Then Theorem 6.3
applies, so let c(π) := c(Π) be as in Theorem 6.3. For any Z/�Z-extension F ′/F , we can find a
Z/�Z-extension K ′/K with a place v′ lying over v such that Kv′ ∼= F ′. By Theorem 6.3, there
exists a cuspidal automorphic representation Π′ of G(AK′) with L-parameter σΠ′ ∼= σΠ|ΓK′ .
If Π′

v′ is the local component of Π′ at v′, then the local–global compatibility of § 7.1.1 ensures
that σΠ′

v′

∼= σΠ′ |WK′
v′

, hence

σΠ′
v′

∼= σΠ′ |WK′
v′

∼= σΠ|WF ′
∼= σπ|WF ′ ,

so Π′
v′ is the desired local base change. �

Remark 7.5. Since every supercuspidal representation of G(F ) admits a model over Q, at least
after twisting by a central character (which is unnecessary for us because our G is semisimple),
Theorem 7.2 applies to all supercuspidal representations. In fact, we may present any irreducible
admissible representation in terms of parabolic inductions and twists of representations defined
over Q, and then the compatibility of the Genestier–Lafforgue correspondence with parabolic
induction and twisting would allow the formulation of a meaningful extension of Theorem 7.2 to
all irreducible admissible representations.

7.3 Globalization of supercuspidal representations

This subsection is devoted to the proof of Proposition 7.4. We will use an argument due to
Beuzart-Plessis, based on the Deligne–Kazhdan simple trace formula, to construct a globalization
Π of π with specified local components at several auxiliary places that automatically force the
image of Lafforgue’s corresponding parameter to be Zariski dense.

7.3.1 Genestier–Lafforgue parameters of simple supercuspidals. The notion of ‘simple super-
cuspidal representations’ was singled out by Gross and Reeder [GR10]. Let us recall the
definition.

Definition 7.6. Let G be a split semisimple group over a non-archimedean local field F of
residue characteristic p �= �. A simple supercuspidal representation is a representation ‘Vφ’ of
G(F ) that arises in the following way. Let B ⊂ G be a Borel subgroup, with unipotent radical U .
Let I ⊂ G(OF ) be the corresponding Iwahori subgroup, and I(1) ⊂ I its pro-unipotent radical.

For an affine generic character φ : I(1) → Q�(μp), we define Vφ := c-Ind
G(F )
I(1)×Z(G)(φ ⊗ 1).

Gross and Reeder showed that simple supercuspidal representations are irreducible and
supercuspidal. They anticipated the shape of the associated L-parameters. To explain this, let
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J ⊂ WF be the inertia subgroup. Let us call simple supercuspidal parameter a discrete7 Lang-
lands parameter σ : WF → Ĝ(Q�) such that the adjoint representation Ad ◦σ has ĝJ = 0 and
Swan conductor equal to the rank of Ĝ. We emphasize that a discrete Langlands parameter, a
fortiori a simple supercuspidal parameter, is already semisimple; this will be used when invoking
the local–global compatibility of § 7.1.1.

Proposition 7.7. Assume that p is good for G if G is not simply laced. Then the
Genestier–Lafforgue parameter of Vφ is a simple supercuspidal parameter.

Proof. The idea is to find a globalization of Vφ to a cuspidal automorphic representation on P1,
whose associated global L-parameter can be computed explicitly. A particularly convenient such
globalization was studied by Heinloth, Ngô, and Yun [HNY13] and we only need to collect the
relevant consequences of their work.

Let K = Fq(P
1) = Fq(t). Let I0 be the Iwahori subgroup of G(Fq((t))), and I(1)∞ be the

pro-unipotent radical of the Iwahori subgroup of G(Fq((1/t))). As a special case of [Yun16,
Proposition 2.7], there is a unique automorphic representation Π ∼=

⊗′
x∈|P1| Πx of G(AK) such

that:

• Πx is unramified if x �= 0,∞;
• Π0 has a vector invariant under I0;
• Π∞ has an eigenvector under I(1)∞, on which the action is given by φ.

Moreover, this Π is cuspidal and appears with multiplicity one in the automorphic spectrum,
and

dimC∞
c

(
G(K)\G(AK)/

∏

x �=0,∞

G(Ox), Q

)I0×(I(1)∞,φ)

= 1.

Since the excursion algebra acts on this one-dimensional Q�-vector space, its action is automati-
cally through a character, which determines the L-parameter σΠ associated to Π by Lafforgue’s
correspondence.

In this case, Heinloth, Ngô, and Yun construct a Hecke eigensheaf Aφ on a moduli
stack BunG(0,2) of G-bundles on P1 with level structure at 0 and ∞, whose associated

Frobenius trace function is a non-zero fφ ∈ C∞
c

(
G(K)\G(AK)/

∏
x �=0,∞ G(Ox), Q

)I0×(I(1)∞,φ)
.

They further prove that Aφ is a Hecke eigensheaf, with corresponding local system the (gen-

eralized) Kloosterman local system Kl
Ĝ
(φ) : π1(P

1 − {0,∞}, Ĝ(Q�)). By [HNY13, Theorem 2,
Corollary 2.15], letting J∞ ⊂ WK∞ be the inertia group at ∞, the local monodromy
representation Kl

Ĝ
(φ)|J∞ : J∞ → Ĝ(Q�) at ∞ is irreducible and it is the restriction to J∞

of a simple supercuspidal parameter.
By [BHKT19, Proposition 6.4], the parameter associated to fφ by Lafforgue’s correspondence

must coincide with Kl
Ĝ
(φ). By local–global compatibility, the Genestier–Lafforgue parameter of

Vφ therefore agrees upon restriction to J∞ with Kl
Ĝ
(φ)|J∞ . �

7.3.2 Globalization. The following lemma is proved by Beuzart-Plessis in the appendix
to [GHS21], using the Deligne–Kazhdan simple trace formula.

Lemma 7.8. Let π be a supercuspidal representation of G(F ) over Q. There exists
a global curve X, with function field K = Fq(X) and places v, w, w′, w′′ ∈ |X|, and

7 Recall that a parameter σ : WF → Ĝ(Q�) is called discrete if its image is not contained in a proper parabolic

subgroup of Ĝ.
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a cuspidal representation Π ∼=
⊗′

x∈|X| Πx of G(AK) such that the following statements
hold:

(i) Kv
∼= F and Πv

∼= π as G(F )-representations.
(ii) Πw is a simple supercuspidal representation of G(Kw).
(iii) Πw′ has non-zero trace against the pseudo-coefficient for the Steinberg representation given

by the Euler-Poincaré function [Lau96, Theorem 8.2.1].
(iv) Πw′′ is an unramified representation parametrized by a regular element of T̂ //W . Moreover,

the parameter can be chosen to avoid any finite union of proper subtori of T̂ .

We will need a characterization of irreducible subgroups of Ĝ containing a principal unipotent
element. The following result is probably known but we were unable to find a reference.

Lemma 7.9. Let g be a semisimple Lie algebra and h a proper semisimple subalgebra containing
a regular nilpotent element of g. Then the rank of h is strictly less than that of g.

Proof. Let E be the regular nilpotent of g which lies in h. We first claim that E is also
regular in h. We can complete E to an sl2-triple (E, H, F ) in h. The element H is regular
semisimple in g, hence in h, which implies by [Bou05, VIII. 11.4, Proposition 7] that E is regular
nilpotent in h.

Let r(g) and �(g) denote respectively the ranks of g and its length as a representation of
the three-dimensional subalgebra spanned by (E, H, F ); define r(h) and �(h) analogously. The
proposition just cited from [Bou05] implies that

r(g) = �(g); r(h) = �(h).

Thus r(g) = r(h) if and only if g and its subspace h have the same length as (E, H, F )-modules;
but this is only possible if g = h. �

Corollary 7.10. Let H denote the set of conjugacy classes of proper semisimple subgroups
of Ĝ containing a principal unipotent element, and for each H ∈ H, let T̂H ⊂ T̂ //W denote the
image of a maximal torus of H (which is independent of the choice of representative). Then the
complement of the union of the T̂H is Zariski dense in T̂ //W .

Proof. A classification of H in all types appears in [SS97, Theorem A, Theorem B] (in charac-
teristic 0, the result has been credited to earlier work of Dynkin). It is finite. On the other hand,
it follows from Lemma 7.9 that each T̂H is of codimension at least 1 in T̂ //W (this is also clear
from inspection of H). Therefore,

⋃
H∈H T̂H is a finite union of positive-codimension subvarieties

in T̂ //W . �

7.3.3 Determination of global monodromy. Let Π be as in Lemma 7.8. Let ρ
Π

be the set of
Remark 4.2 and σ ∈ ρ

Π
. We claim that σ has Zariski dense image. This will complete the proof

of Proposition 7.4.
So it only remains to prove the claim. By local–global compatibility, the semisimplification of

σ|Kx corresponds to Πx under the Genestier–Lafforgue correspondence for all x ∈ |X|. By Propo-
sition 7.7 and local–global compatibility, the semisimplification of σΠ|Kw is already absolutely
irreducible, so σΠ is absolutely irreducible. By [ST21, Lemma 11.4], for any representation V of
Ĝ the corresponding local system is V ◦ σΠ is pure of weight 0. By condition (iii) and compati-
bility of the Genestier–Lafforgue correspondence with parabolic induction, σ|WK

w′
has the same

semisimplification as the Steinberg representation. It follows as in [HNY13, § 4.3] from purity
of the weight-monodromy filtration [Del80, Theorem I.8.4] that the image of σ|Kw′ contains a
principal unipotent element.
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By [Del80, Corollaire I.3.9] and the property that V ◦ σΠ is pure of weight 0 for every V , the
neutral component of the Zariski closure of the image of σ in Ĝ is semisimple. Furthermore, we
have just seen that it does not lie in any proper parabolic subgroup, and also that it contains
a principal unipotent element. By Lemma 7.9, proper semisimple subgroups of Ĝ have smaller
rank. But this is ruled out by (iv), where the proper subtori are those in the statement of
Corollary 7.10. �

8. Cyclic base change for toral supercuspidal representations

In this section we will investigate cyclic base change more explicitly for the class of toral supercus-
pidal representations studied in [CO23]. The strategy is to first explicate cyclic base change for
the mod � reductions of these representations, using a Conjecture of Treumann-Venkatesh (estab-
lished in [Fen24] for the Genestier–Lafforgue correspondence) that ‘base change functoriality is
realized by Tate cohomology.’

The main new work is in calculating the Tate cohomology of toral supercuspidal
representations, and what facilitates this calculation is a geometric model for these represen-
tations established by Chan and Oi [CO23], as compact inductions from parahoric subgroups
of ‘generalized Deligne–Lusztig inductions’ studied by Chan and Ivanov. The generalized
Deligne–Lusztig representations are produced from the cohomology of ‘Deligne–Lusztig type
varieties’ built out of group schemes coming from the Moy–Prasad filtration, analogously to the
way in which Deligne–Lusztig varieties are built from reductive groups over finite fields. Hence our
computation naturally divides into two steps: (1) studying Tate cohomology of Deligne–Lusztig
type varieties, which we do in § 8.2; and (2) studying Tate cohomology of compact inductions,
which we do in § 8.3.

Kaletha constructs an explicit local Langlands parametrization of the toral supercuspidal
representations in [Kal19]. On the other hand, we identify base change relations among the
Genestier–Lafforgue parameters of toral supercuspidal representations. This gives some evi-
dence for consistency between the Genestier–Lafforgue correspondence [GL17] and Kaletha’s
construction of L-packets of regular supercuspidal representations.

We emphasize that in this section, F is a non-archimedean local field having residue
characteristic p, but we allow F to have characteristic 0 in all results up to Theorem 8.18.

8.1 Work of Chan and Ivanov

We briefly recall the generalized Deligne–Lusztig representations appearing in [CI21].
Let G be a reductive group over a non-archimedean local field F . Let T ↪→ G be an unramified

maximal torus and x ∈ B(G/F ) be a point of the Bruhat–Tits building of G that lies in the
apartment of T . If F ′/F is a tamely ramified extension, then we may also regard x as a point of
B(GF ′/F ′) using the identification B(G/F ) = B(GF ′/F ′)Gal(F ′/F ). Corresponding to x we have
by Bruhat–Tits theory a parahoric group scheme G/OF , whose generic fiber is G/F .

Let Fq be the residue field of F . By assumption, T splits over F̆ := W (Fq). Let U be the
unipotent radical of an F̆ -rational Borel subgroup of GF̆ containing TF̆ .

For r ∈ Z≥0, we have group schemes Gr, Tr, Ur over Fq as in [CI21, § 2.5, 2.6] corresponding
to subquotients of the Moy–Prasad filtration at x, such that

Gr(Fq) = Gx,0:r+ := Gx,0/Gx,r+, Tr(Fq) = T0:r+ := Tx,0/Tx,r+

and Ur ⊂ (Gr)Fq
.
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8.1.1 Deep level Deligne–Lusztig varieties. We recall certain schemes constructed in [CI21,
§ 3], generalizing Deligne–Lusztig varieties. Let

STr,Ur
:= {x ∈ Gr : x−1 Frq(x) ∈ Ur}.

(The variety STr,Ur
is called Xr in [CO23].) It is a separated, smooth, finite type scheme over

Fq, with an action of Gx,0:r+ × Tx,0:r+ by multiplication on the left and right, and also a free
action of Ur ∩ Fr−1

q (Ur) by right translation.
It is actually more convenient for us to work with

YTr,Ur
:= STr,Ur

/Ur ∩ Fr−1
q (Ur).

Since the natural map STr,Ur
→ YTr,Ur

is a bundle in affine spaces, the compactly sup-
ported (geometric) cohomology groups of source and target are identified, equivariantly for the
Gx,0:r+ × Tx,0:r+-action, up to Tate twist and an (even) shift of cohomological degrees, so they
will lead to the same (virtual) representations. The YTr,Ur

are called ‘deep level Deligne–Lusztig
varieties.’

Example. When r = 0, the definition of YTr,Ur
specializes to that of a classical Deligne–Lusztig

variety.

Definition 8.1 (Generalized Deligne–Lusztig induction). Let Λ ∈ {F�, Q�, k,O} be an �-adic
coefficient ring and θ : Tr(Fq) → Λ× be a character. We denote

H∗
c (YTr,Ur

; Λ)θ := H∗
c (YTr,Ur

; Λ)θ ⊗Λ[Tx,0:r+] θ,

which is a graded representation of Gx,0:r+. We define the virtual representation of Gx,0:r+x,

RGr

Tr,Ur
(θ) :=

∑

i

(−1)i[H i
c(YTr,Ur

; Λ)θ] ∈ K0(Gx,0:r+; Λ).

The version of this definition with Λ = Q� is considered in [CI21, Definition 3.4], while we will
also be interested in Λ = F�.

Remark 8.2. By inflation, we may view θ as a character of Tx,0 that is trivial on Tx,r+, and
RGr

Tr,Ur
(θ) ∈ K0(Gx,0; Λ). In practice, θ will come by restriction from a character of T (F ).

Definition 8.3. Following [CI21, § 2.10] in the case of Q�-coefficients, we say that θ : Tr(Fq) →
k× is regular if for any absolute root α and any d ≥ 1 such that Frd

q(α) = α, the restriction of

Tr(Fqd)
Nm
−−→ Tr(Fq)

θ
−→ F

×
�

to the subgroup (defined in [CI21, § 2.6]) Tα,r
r ⊂ Tr(Fqd) is non-trivial. Here Nm is the norm map

sending t �→ t · σ(t) · · ·σ�−1(t).

For a finite group Γ and a virtual representation V ∈ K0(Γ; Λ) which is a representation up
to sign, we define |V | to be the underlying representation and (−1)V to be the sign of V , so that
V = (−1)V |V |.

Lemma 8.4. Let Λ ∈ {Q�, F�}.

(i) If θ is regular, then RGr

Tr,Ur
(θ) ∈ K0(Gr(Fq); Λ) is independent of Ur.

(ii) If θ is regular and the stabilizer of θ in the Weyl group of the special fiber of G is trivial,
then ±Rθ

Tr,Ur
is a (non-virtual) representation of Gx,0:r+ and |Rθ

Tr,Ur
| is irreducible.

Proof. Both (i) and (ii) are established in [CI21] when Λ = Q�, so we shall simply explain the
reduction from this case to Λ = F�.
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(i) Any θ : Tx,0:r+ → F
×
� lifts canonically to θ̃ : Tx,0:r+ → Z

×
� ⊂ Q

×
� via the Teichmüller map.

Moreover, RGr

Tr,Ur
(θ) is the image of RGr

Tr,Ur
(θ̃), the characteristic-zero Deligne–Lusztig induction

studied in [CI21, § 3.1], under the reduction map K0(Gx,0:r+; Q�) → K0(Gx,0:r+; F�). If θ is reg-

ular then θ̃ is regular in the sense of [CI21, § 2.10], so by [CI21, Theorem 1.1(i)] RGr

Tr,Ur
(θ̃) is

independent of U .
(ii) This follows from lifting to characteristic 0 and a similar argument to that in (i), using

[CI21, Theorem 1.1(i)] for the analogous statement in characteristic 0. We note that |Rθ
Tr,Ur

| is
non-zero by [CI21, Corollary 4.3]. �

8.2 Tate cohomology of some generalized Deligne–Lusztig inductions

8.2.1 Recollections on Tate cohomology. Let σ be an order-� endomorphism of an abelian
group V . Write N := 1 + σ + · · · + σ�−1 ∈ Z[〈σ〉]. The Tate cohomology groups of V (with respect
to the σ-action) are defined as

T0(σ, V ) = T0(V ) :=
ker(1 − σ : V → V )

N · V
,

T1(σ, V ) = T1(V ) :=
ker(N : V → V )

(1 − σ) · V
.

It is sometimes convenient to extend the definition of T i(V ) 2-periodically to all i ∈ Z, so that
T i(−) = T i+2(−).

Given a short exact sequence

0 → V ′ → V → V ′′ → 0,

there is a (periodic) long exact sequence on Tate cohomology

· · · → T0(V ′) → T0(V ) → T0(V ′′) → T1(V ′) → T1(V ) → T1(V ′′) → T2(V ′) → · · · . (8.1)

In [Fen24, § 3.4], we defined the notion of Tate cohomology for a scheme Y with an admissible
action of Z/�Z ∼= 〈σ〉. Admissibility automatically holds if Y is a quasiprojective variety over a
field, and we will always be in this situation when invoking this theory, so let us assume Y is such.
Another useful description of the (compactly supported) Tate cohomology group Ti(σ, Y ; Λ) =
Ti(Y ; Λ) with coefficients in Λ is the ith cohomology of the totalization of

(8.2)

It is immediate from this definition that Ti(−) ∼= Ti+2(−), so we sometimes treat Ti as being
defined for i ∈ Z/2Z. We shall be interested in coefficients such as Λ ∈ {F�, Z�, k,O,O/�n}.

The double complex (8.2) leads to two spectral sequences abutting to T∗(Y ; F�):

• The ‘vertical then horizontal’ spectral sequence has first page

Eij
1 = Hj

c (Y ; Λ).

Its jth row is the complex computing Ti(Hj
c (Y ; Λ)), namely,

· · ·
N
−→ Hj

c (Y ; Λ)
1−σ
−−→ Hj

c (Y ; Λ)
N
−→ Hj

c (Y ; Λ)
1−σ
−−→ · · · .

Therefore, the second page is

Eij
2 = Ti(σ, Hj

c (Y ; Λ)).
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• The ‘horizontal then vertical’ spectral sequence has

Eij
2 = Hj

c (Y σ; Λ)

and, moreover, is degenerate starting from E2 [TV16, Theorem 4.4].

8.2.2 Tate cohomology of representations. Let V be a representation over k of a finite
group Γ. Suppose Z/�Z ∼= 〈σ〉 acts on Γ. Then V �→ V ◦ σ defines an action of σ on isomorphism
classes of representations of Γ over F�.

Lemma 8.5. If V is irreducible and V ∼= V ◦ σ as Γ-representations, then there is a unique
extension of the Γ-action on V to an action of Γ � 〈σ〉.

Proof. If A : V
∼
−→ V ◦ σ as Γ-representations, then Schur’s lemma implies that the composition

A� : V
∼
−→ V ◦ σ� = V is multiplication by a scalar, say λ. Then defining σ to act as λ−1/�A gives

an extension of the desired form. Schur’s lemma also implies that A is unique up to scalar, and
scaling A evidently results in the same extension. �

For a Z/�Z ∼= 〈σ〉-module V , we have defined Tate cohomology groups T0(V ) and T1(V ). If
the σ-action on V extends to an action of Γ � 〈σ〉, then T0(V ) and T1(V ) inherit an action of
the subgroup of Γ fixed by σ, which we denote ZΓ(σ).

8.2.3 Torsion in integral cohomology. We write

H i
c(YTr,Ur

; Z�) ∼= H i
c(YTr,Ur

; Z�)tf ⊕ H i
c(YTr,Ur

; Z�)tors

for the decomposition into the torsion-free and torsion summands, respectively. For a character
θ̃ : Tr(Fq) → Z

×
� , we write

H i
c(YTr,Ur

; Z�)tf,θ̃ := H i
c(YTr,Ur

; Z�)tf ⊗Z�[Tr(Fq)] θ̃.

Thus H i
c(YTr,Ur

; Z�)tf,θ̃ is a lattice in H i
c(YTr,Ur

; Q�)θ̃
.

Write θ := θ̃ ⊗
Z�

F� : Tr(Fq) → F
×
� . We consider the hypothesis that

H∗
c (YTr,Ur

; F�)θ is non-zero in only one degree. (8.3)

We will then be interested in studying Ti(σ, H∗
c (YTr,Ur

; F�)θ) as a representation of Gx,0:r+, where
σ is a Galois automorphism (see § 8.2.4 below). For regular θ, it is expected that H∗

c (YTr,Ur
; Q�)θ

is non-zero in only one degree. Therefore, if θ is regular and q is sufficiently large, then one would
expect (8.3) to hold for all large enough �, as a case of the more general expectation that for
any (finite type) variety over a separably closed field, the étale cohomology with coefficients in
Z� should be torsion-free for all sufficiently large �; however, this does not appear to be known
in general. When r = 0, in which case the YTr,Ur

are the usual Deligne–Lusztig varieties of
[DL76], this concentration of degree and torsion-freeness for non-singular θ is proved in [Bro90,
Lemma 3.5] applied to the compactification of Deligne–Lusztig varieties, which already furnishes
many interesting examples where (8.3) is known. Based on this, it seems natural to make the
following conjecture.

Conjecture 8.6. If θ is a 0-toral character in the sense of [CO23, Definition 3.7], then (8.3)
holds.

Later we will prove theorems concerning 0-toral θ under the assumption that (8.3) holds. It
would be interesting to make these unconditional by proving Conjecture 8.6. As discussed, we
already have many unconditional depth-zero examples.
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Lemma 8.7. Suppose θ : Tr(Fq) → F
×
� satisfies (8.3) and let θ̃ : Tr(Fq) → Z

×
� be the composition

of θ with the Teichmüller lift. Let i be the unique degree in which H i
c(YTr,Ur

; F�)θ is non-zero.
Then H i

c(YTr,Ur
; Z�)θ̃

is a lattice in H i
c(YTr,Ur

; Q�)θ̃
.

Proof. We must show that H i
c(YTr,Ur

; Z�)θ̃
is torsion-free. The universal coefficient

theorem implies that
(
H i

c(YTr,Ur
; Z�)θ̃

)
tors

⊗
Z�

F� injects into H i+1
c (YTr,Ur

; F�)θ = 0, so(
H i

c(YTr,Ur
; Z�)θ̃

)
tors

= 0 by Nakayama’s lemma. �

8.2.4 Base change. Recall that F� is the degree-� unramified extension of F . Let T ′ =
ResF�/F (TF�

), G′ = ResF�/F (GF�
). We may view x as a point in the apartment of T ′, in the

building of G′/F .
Given U ⊂ GF̆ , we have several possible choices for U ′ ⊂ G′

F̆
. We will make a particular

choice that is advantageous for the upcoming computation. A choice of generator σ ∈ Gal(F�/F )
induces an isomorphism

F� ⊗F F̆ ∼= F̆ × · · · × F̆︸ ︷︷ ︸
� times

=: F̆ �

sending x ⊗ y �→ (xy, σ(x)y, . . . , σ�−1(x)y). This in turn induces

G′
F̆
∼= GF̆ × · · · × GF̆ . (8.4)

The action of σ on the left-hand side transports to the cyclic permutation on the right-hand side.
We define U ′ ⊂ G′

F̆
to be the image of U × · · · × U ⊂ G�

F̆
under the isomorphism (8.4). Then

U ′ is stable under the σ-action on G′
F̆
. The resulting deep level Deligne–Lusztig variety YT′

r,U′
r

therefore carries an action of σ, such that for g ∈ G′
x,0:r+ = G′

r(Fq) and y ∈ YT′
r,U′

r
(R) (for some

ring R),

σ · (g · y) = σ(g) · σ(y)

and similarly for t ∈ T ′
x,0:r+ = T′

r(Fq). This induces a σ-action on H i
c(YT′

r,U′
r
; F�) that is compat-

ible in the same manner with the G′
r(Fq) × T′

r(Fq)-action. We will consider Tate cohomology
with respect to this action.

Recall that for a representation V/F� of a finite group Γ, the Frobenius twist of V is the
representation

V (�) := V ⊗
F�,Frob�

F�.

Now note that H i
c(YTr,Ur

; F�) has an F�-structure induced by cohomology with coefficients in

F�, and therefore has an action of Aut(F�). Let θ : Tx,0:r+ = Tr(Fq) → F
×
� be a character and

θ′ : T′
r(Fq) → F

×
� be the composition of θ with the norm map Nm: T′

r(Fq) → Tr(Fq). Applying
Frob� ∈ Aut(F�) induces an isomorphism of Gr(Fq)-representations

(
H i

c(YTr,Ur
; F�) ⊗F�[Tr(Fq)] θ

)(�) ∼
−→ H i

c(YTr,Ur
; F�) ⊗F�[Tr(Fq)] θ⊗�. (8.5)

Theorem 8.8. Let θ : Tr(Fq) → F
×
� . Assume that � � #T0(Fq).

(i) If H∗
c (YTr,Ur

; F�)θ �= 0, then Ti(σ, H i′
c (YT′

r,U′
r
; F�)θ′) �= 0 for some i ∈ {0, 1} and some i′.

(ii) Suppose that θ and θ′ both satisfy (8.3), and are non-zero in degrees j, j′, respectively. Then
for each i ∈ Z/2Z we have

Ti
(
σ, Hj′

c (YT′
r,U′

r
; F�)θ′ ⊗Z�

F�

)
∼= (Hj

c (YTr,Ur,F ; F�)θ)
(�)

as representations of Gr(Fq). In particular, the left-hand side is independent of i.
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Proof. We begin with some analysis of the relevant varieties. For a scheme Y over Fq we will
write Y for its base change to Fq.

Parallel to (8.4), the choice of generator σ ∈ Gal(Fq�/Fq) identifies

G
′
r

∼
−→ Gr × · · · × Gr =: G

�
r. (8.6)

The isomorphism (8.6) transports:

• the automorphism σ on the left-hand side to the cyclic rotation action on the right-hand
side;

• the action of Frq on the left-hand side (coming from the Fq-rational structure G′
r for G

′
r) to

the composition of the cyclic rotation with (Frq, . . . ,Frq) on the right-hand side, where each
factor of Frq comes from the Fq-rational structure Gr on Gr. Let us denote this endomorphism

of G
�
r by F := σ ◦ (Frq, . . . ,Frq).

Similar remarks apply to T′
r
∼= ResF

q�/Fq
(Tr,F

q�
).

Under (8.6), the variety YT′
r,U′

r
has the presentation

YT′
r,U′

r

∼= {(g1, . . . , g�) ∈ G
�
r : (g1, . . . , g�)

−1F (g1 . . . , g�) ∈ U�
r}/U�

r ∩ F−1U�
r.

The action of σ on YT′
r,U′

r
transports to the cyclic rotation on factors in the presentation on the

right-hand side.

Lemma 8.9. The diagonal map YTr,Ur
→ YT′

r,U′
r

identifies with the inclusion of the
σ-fixed points on YT′

r,U′
r
, equivariantly for the action of Gr(Fq) × Tr(Fq) by left and right

translation.

Proof. Immediate upon writing down the definitions. �

Corollary 8.10. For each i ∈ Z, restriction induces an isomorphism

Ti(YT′
r,U′

r
; F�) ∼= Ti(YTr,Ur

; F�)

which is equivariant with respect to the action of ZG′
r(Fq)×T′

r(Fq)(σ) = Gr(Fq) × Tr(Fq), induced
by left and right translation on YT′

r,U′
r

and YTr,Ur
.

Proof. This follows from Lemma 8.9 and the equivariant localization theorem of [Fen24,
§ 3.4.5]. �

With these preparations, we are now ready for the proofs of parts (i) and (ii) of the theorem.
Proof of (i). Restricting θ′ along Tr(Fq) ↪→ T′

r(Fq) yields θ′|Tr(Fq) = θ⊗�, so Corollary 8.10
induces an isomorphism of Gr(Fq)-representations

T∗(YT′
r,U′

r
; F�) ⊗F�[Tr(Fq)] (θ′|Tr(Fq)) ∼= T∗(YTr,Ur

; F�) ⊗F�[Tr(Fq)] θ⊗�. (8.7)

Similarly to (8.5), we have
(
T∗(YTr,Ur

; F�) ⊗F�[Tr(Fq)] θ
)(�) ∼

−→ T∗(YTr,Ur
; F�) ⊗F�[Tr(Fq)] θ⊗�.

Note that Frobenius twisting shows that H∗
c (YTr,Ur

; F�)θ �= 0 ⇐⇒ H∗
c (YTr,Ur

; F�)θ⊗� �= 0.
As explained in § 8.2.2, there are two spectral sequences abutting to Ti(YT′

r,U′
r
; F�). One

degenerates at E2 and has Eij
2 = Hj

c ((YT′
r,U′

r
)σ; F�), which by Lemma 8.9 is Gr(Fq) × Tr(Fq)-

equivariantly isomorphic to Hj
c (YTr,Ur

; F�), and the other has Eij
2 = Ti(σ, Hj

c (YT′
r,U′

r
; F�)).

Since ker(Tr(Fq) → T0(Fq)) is pro-p, the assumption that � � T0(Fq) implies that � � Tr(Fq).
Therefore, −⊗

F�[Tr(Fq)] θ implements projection to a summand. By the preceding paragraph,
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the Jordan–Hölder factors (as Gr(Fq)-representations) of Hj
c (YTr,Ur

; F�)θ⊗� are also subquotients

of some Ti(Hj′
c (YT′

r,U′
r
; F�)) ⊗F�[Tr(Fq)] θ⊗�. Therefore the proof of (i) will be concluded by the

following lemma, which allows us to ‘commute’ the formation of Tate cohomology with the
projection to an isotypic component.

Lemma 8.11. We have that

Ti(Hj′

c (YT′
r,U′

r
; F�)) ⊗F�[Tr(Fq)] θ⊗� ∼= Ti(Hj′

c (YT′
r,U′

r
; F�)θ′)

as Gr(Fq)-representations.

Proof. Since #Tr(Fq) is coprime to �, we have that

Ti(Hj′

c (YT′
r,U′

r
; F�)) ⊗F�[Tr(Fq)] θ⊗� ∼= Ti

(
Hj′

c (YT′
r,U′

r
; F�) ⊗F�[Tr(Fq)] θ⊗�

)

as Gr(Fq)-representations. Here on the right-hand side we have projected to a Tr(Fq)-isotypic
component before forming Tate cohomology, and we need to show that the same answer is
computed if we instead project to a particular T′

r(Fq)-isotypic component.
Let {ϑl} be the set of characters of T′

r(Fq) that extend θ⊗� on Tr(Fq) ⊂ T′
r(Fq), indexed so

that ϑ1 = θ′. Then

Ti
(
Hj′

c (YT′
r,U′

r
; F�) ⊗F�[Tr(Fq)] θ⊗�

)
∼= Ti

( ⊕

l

Hj′

c (YT′
r,U′

r
; F�) ⊗F�[T′

r(Fq)] ϑl

)
. (8.8)

We claim that θ′ is the only σ-equivariant extension of θ⊗� to T′
r(Fq). Indeed, any

σ-equivariant character on T′
r(Fq) factors through the norm map8 T′

r(Fq)
Nm
−−→ Tr(Fq), and the

composition Tr(Fq) ↪→ T′
r(Fq)

Nm
−−→ Tr(Fq) is raising to the �th power. Since F

×
� is �-torsion-free,

there is only one character Tr(Fq) → F
×
� that inflates to θ⊗� under raising to the �th power,

namely θ.
Therefore, σ permutes the set {ϑl : l > 1} without any fixed points, necessarily grouping

them into free orbits, and it therefore freely permutes the summands of
⊕

l>1

Hj′

c (YT′
r,U′

r
; F�) ⊗F�[T′

r(Fq)] ϑl. (8.9)

Since Tate cohomology of a free σ-module vanishes,

Ti

( ⊕

l>1

Hj′

c (YT′
r,U′

r
; F�) ⊗F�[T′

r(Fq)] ϑl

)
= 0.

Therefore, (8.8) is Gr(Fq)-equivariantly isomorphic to Ti(Hj′
c (YT′

r,U′
r
; F�)θ′). �

Proof of (ii). We consider the Tate spectral sequence, as in part (i). The additional
assumptions imply that:

• RΓc(YT′
r,U′

r
; F�)θ′ is concentrated in a single degree j′, and so is quasi-isomorphic to

Hj′
c (YT′

r,U′
r
; F�)θ′ ;

• RΓc(YTr,Ur
; F�)θ is concentrated in a single degree j, and so is quasi-isomorphic to

Hj
c (YTr,Ur

; F�)θ.

8 At the referee’s suggestion, we add justification for this assertion. Obviously any character factoring through the
norm map is σ-equivariant. Since � is assumed coprime to #Tr(Fq), raising to the �th power is an automorphism
of Tr(Fq). Thus, if θ′ is a σ-equivariant character, its factorization through the norm map can be reconstructed
by restricting to Tr(Fq) ⊂ T′

r(Fq) and then extracting �th roots.
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Corollary 8.10 then implies that

Ti
(
σ, Hj′

c (YT′
r,U′

r
; F�)

)
∼= Hj

c (YTr,Ur
; F�) (8.10)

as Gr(Fq) × Tr(Fq)-representations. Using Lemma 8.11, we find that

Ti
(
σ, Hj′

c (YT′
r,U′

r
; F�)θ′

)
∼= Ti+j′(YT′

r,U′
r
; F�) ⊗F�[Tr(Fq)] θ⊗� (8.11)

as Gr(Fq)-representations. Projecting (8.10) to the θ⊗�-isotypic component and then using (8.5)
to relate the Frobenius twist of the θ-isotypic component with the θ⊗�-isotypic component, the
proof is concluded. �

8.3 Tate cohomology of compact inductions

We study the relationship between compact induction and Tate cohomology. In this section, we
let G′/F be a reductive group and G′ = G′(F ) with an action of Z/�Z ∼= 〈σ〉, H′ ⊂ G′ a σ-invariant
open subgroup, G = (G′)σ and H = (H′)σ.

Proposition 8.12. Let π be a finite-dimensional representation of H. If G/H
∼
−→ (G′/H′)σ, then

Ti
(
c-IndG′

H′ π
)
∼= c-IndG

H(Tiπ)

as G′-representations.

Proof. A special case appears in [Ron16, Proposition 14], which already contains the main ideas
of the proof. We use Bernstein and Zelevinsky’s perspective of l-sheaves on l-spaces. There is
an equivalence of categories between G′-equivariant sheaves on G′/H′ and representations of H′,
which we denote Fπ ↔ π. Furthermore, the Tate cohomology of Fπ as a sheaf transports to the
Tate cohomology of π as a representation.

Under this equivalence and the analogous equivalence between G′-equivariant sheaves on a
point and G′-representations, the G′-representation c-IndG′

H′(π) corresponds to the G′-equivariant
sheaf pr! Fπ on pt, where pr : G′/H′ → pt, under the functor of taking global sections for
G′-equivariant sheaves on pt. By [TV16, § 3.3], the restriction map on sections induces

Ti
(
c-IndG′

H′ π
) ∼
−→ c-IndG

H(Tiπ),

which completes the proof. �

Next we work out some situations where the hypothesis of Proposition 8.12 is satisfied. We
have the long exact sequence

0 → H → G → G/H → H1(〈σ〉, H′) → · · ·

so G/H
∼
−→ (G′/H′)σ if H1(〈σ〉, H′) = 0.

Lemma 8.13. Let F�/F be the unramified Z/�Z-extension of local fields of characteristic p �= �.
Let H be a connected algebraic group over OF and H′ = H(OF�

), with the action of Gal(F�/F ) ∼=
〈σ〉 by Galois conjugation on points. Then H1(σ, H′) = 0.

Proof. Let H+ be the kernel of the reduction map H′ = H(OF�
) → H(Fq�). From the long exact

sequence of cohomology, we have the exact sequence

· · · → H1(σ, H′
+) → H1(σ, H′) → H1(σ, H(Fq�)) → · · · .

Since H′
+ is pro-p, we have H1(σ, H′

+) = 0. By Lang’s theorem, H1(σ, H(Fq�)) = 0. Therefore,
H1(σ, H′) = 0. �
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We shall be particularly interested in the case where G′ = G(F�) and H′ = Z(G′)G(F�)x,0 for
x ∈ B(G/F�) fixed by Gal(F�/F ), which guarantees that H′ is stable under Gal(F�/F ). By unram-

ified descent in Bruhat–Tits theory, G(F�)
Gal(F�/F )
x,0 = G(F )x,0, so we have G := (G′)Gal(F�/F ) =

G(F ) and H := (H′)Gal(F�/F ) = Z(G)G(F )x,0.
Let Z ⊂ G be the maximal central torus. Then ZF�

is the maximal central torus of GF�
.

Lemma 8.14. Assume that:

(i) the action of Gal(F�/F ) on the cocharacter group X∗(ZF�
) is trivial;

(ii) the component group Z(G′)/Z has order coprime to �.

Let H ′ = Z(G′)G(F�)x,0. Then H1(σ, H′) = 0.

Example. Assumption (i) is satisfied, for example, if G is split reductive, or whenever G is
(not necessarily split and) semisimple. For any given G, assumption (ii) is satisfied for all large
enough �.

Proof. Since G is assumed to be split over an unramified extension of F , Z is an unramified
torus, hence has a canonical integral model Z/OF (the ‘connected Néron model’), which has the
property that Z(OF ) is the maximal bounded subgroup of Z(F ). We have a split short exact
sequence

0 → Z(OF�
) → Z(F�) → Z(F�)/Z(OF�

) → 0

where Z(F�)/Z(OF�
) ∼= X∗(ZF�

) is torsion-free, and Z(OF�
) = Z(F�) ∩ G(F�)x,0 ⊂ G(F�)x,0.

Therefore, Z(F�)G(F�)x,0
∼= X∗(ZF�

) × G(F�)x,0 so

H1(σ, Z(F�)G(F�)x,0) ∼= H1(σ, X∗(ZF�
)) × H1(σ, G(F�)x,0).

Now, H1(σ, X∗(ZF�
)) = 0 because the assumed condition (i) implies H1(σ, X∗(ZF�

)) ∼=
Hom(〈σ〉, X∗(ZF�

)) = 0. Since G(F�)x,0 is the group of OF�
-points of a connected Bruhat–Tits

group scheme, the group H1(σ, G(F�)x,0) vanishes by Lemma 8.13. Therefore, H1(σ, Z(F�)
G(F�)x,0) = 0.

Finally, assumption (ii) implies that the index of Z(F�)G(F�)x,0 is a normal subgroup
of Z(G′)G(F�)x,0 with finite index coprime to �, so the long exact sequence implies that
H1(σ, Z(G′)G(F�)x,0) = 0. �

8.4 Toral supercuspidal representations

We will prove base change results for a class of supercuspidal representations studied by Chan and
Oi in [CO23], which should correspond (in the language of [CO23]) to 0-toral Howe-unramified
supercuspidal L-parameters.

8.4.1 Assumptions. We impose the same assumptions as in [CO23, § 7]. In particular, G is a
reductive group over F , p is odd and not bad for G, p � π1(Gder), and p � π1(Ĝder). The maximal

torus T ⊂ G is unramified elliptic, and θ̃ : T (F ) → Z
×
� is 0-toral and of depth r > 0, i.e. trivial

on Tx,r+ for some x ∈ B(G/F ). We write θ : T → k× for the reduction of θ̃ modulo � (where

we recall that k is an algebraic closure of F�). We assume that RGr

Tr,Ur
(θ̃) is non-zero, which is

automatic under a mild regularity hypothesis (see the proof of Lemma 8.4(ii)).

8.4.2 Work of Chan and Oi. The assumptions imply that RGr

Tr,Ur
(θ̃) ⊗

Z�
Q� is irre-

ducible and independent of the choice of Ur, hence we simply abbreviate it as RGr

Tr
(θ̃)

Q�
.
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Furthermore, by [CO23, Theorem 7.2] the Q�-representation c-IndG
T (F )G(F )x,0

(|RGr

Tr
(θ̃)

Q�
|) is

irreducible supercuspidal.
Given θ̃, there is defined in [CO23, Definition 4.8] a certain sign character εram[θ̃] :

T (F ) → Q
×
� . We define

π
T,θ̃·εram[θ̃]

:= c-Ind
G(F )
T (F )G(F )x,0

|RTr,Ur
(θ̃)

Q�
|.

The twisting by εram[θ̃] is for consistency with Kaletha’s indexing of regular supercuspidal repre-
sentations [Kal19]; π

T,θ̃·εram[θ̃]
is a regular supercuspidal representation by [CO23, Theorem 7.2].

In particular, it is irreducible.
Since εram[θ̃] takes values in {±1}, we may regard it also as a character valued in F

×
� by

reduction modulo �. We may define

πT,θ·εram[θ] := c-Ind
G(F )
T (F )G(F )x,0

RTr,Ur
(θ) ∈ K0(G(F ); F�).

A priori this is only a class in K0(G(F ); F�), but there are two circumstances in which we can
lift it to an honest representation, which will be denoted |πT,θ·εram[θ]|:

• If � is banal, in which case we may lift ±RTr,Ur
(θ) to a representation |RTr,Ur

(θ)|.
• If H∗

c (YTr,Ur
; E)

θ̃
concentrates in a single degree (where we recall from § 2.3 that E denotes

some sufficiently large extension of Q�, containing the values of θ̃), in which case we define

|πT,θ·εram[θ]| := c-Ind
G(F )
T (F )G(F )x,0

(H∗
c (YTr,Ur

;O)
tf,θ̃

⊗O k).

In this case |πT,θ·εram[θ]| is the mod � reduction of a Z�-lattice in π
T,θ̃·εram[θ̃]

, namely the one

induced by the lattice H∗
c (YTr,Ur

;O)
tf,θ̃

⊂ |RTr,Ur
(θ̃)|. Hence, if � is banal, then this definition

coincides with the one in the previous bullet point, so that |πT,θ·εram[θ]| is unambiguously
defined. Furthermore, if (8.3) is satisfied, then by Lemma 8.7 we have

|πT,θ·εram[θ]| ∼= c-Ind
G(F )
T (F )G(F )x,0

(H∗
c (YTr,Ur

; k)θ).

Proposition 8.15. If � is banal for G, then (under our running hypotheses) the representation
πT,θ·εram[θ] is irreducible and cuspidal.

Proof. Indeed, [CO23, Theorem 7.2] identifies π
T,θ̃·εram[θ̃]

with the compact induction of Yu’s

representation, denoted ◦τd in [CO23]. Since � is banal the mod � reduction of ◦τd is again irre-
ducible and obtained from Yu’s construction. Its compact induction is identified with πT,θ·εram[θ].
The result then follows from [Fin22, Theorem 6.1]. �

Remark 8.16. Marie-France Vignéras has indicated another proof of Proposition 8.15. Let

τ =
∣∣RGr

Tr
(θ̃)

Q�

∣∣

and let [τ ] denote the reduction mod � of any Z�-lattice in τ ; this is independent of the choice
because � is banal. Write U = T (F )G(F )x,0. Lemma 3.2 of her article [Vig01] proves a sim-
ple criterion for irreducibility of the compact induction of [τ ], which we adapt to our present
notation:

(a) End
F�[G](c-IndG

U [τ ]) = F�.

(b) Let π be any irreducible F�-representation of G. If [τ ] is contained in the restriction of π to
U then [τ ] is also a quotient of π|U .

Now (b) is automatic because � is banal and therefore prime to the pro-order of U . On the other
hand, it follows from the supercuspidality of c-IndG

U τ that for any g ∈ G \ U the restrictions of τ
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and g(τ) to the intersection U ∩ gUg−1 are disjoint. Again, since � is banal, the same holds for the
restrictions of [τ ] and g([τ ]). Point (a) then follows, and this implies irreducibility. Cuspidality is
then a consequence of [Vig96, Theorem II.2.7], because the matrix coefficients of the compactly
induced representation are compact modulo center.

8.4.3 Base change. Let G be a reductive group over F and F ′/F a Z/�Z-extension. Let π′ be
an irreducible (admissible) representation of G(F ′) over F�. Choose a generator σ of Gal(F ′/F ) ∼=
Z/�Z. Then σ acts on G(F ′) through its Galois action on E. We say that π′ is σ-fixed if π′ ∼= π′ ◦ σ
as G(F ′)-representations.

Lemma 8.17 [TV16, Proposition 6.1]. If π′ is σ-fixed, then the action of G(F ′) extends uniquely
to a G(F ′) � 〈σ〉-action.

The Tate cohomology groups of π′, with respect to the σ-action, are

T0(π′) :=
ker(1 − σ : π′ → π′)

(1 + σ + · · · + σ�−1) · π′
, T1(π′) :=

ker(1 + σ + · · · + σ�−1 : π′ → π′)

(1 − σ) · π′
.

The G(F ′)-action on π′ induces an action of G(F ) on Ti(π′).
Let π be an irreducible admissible representation of G(F ) over F�, and π′ be an irreducible

admissible representation of G(F ′) over F�. Recall that in Definition 7.1 we defined what it
means for π′ to be a base change of π. In this situation we say that π is a base change descent
of π′. Addressing [TV16, Conjecture 6.5], it was proved in [Fen24, Theorem 1.2] that if F has
characteristic p �= �, and � is odd and good for Ĝ, then any irreducible G(F )-subquotient π
of Ti(π′) base-changes to (π′)(�), the Frobenius twist of π′. The theorem below computes Tate
cohomology of mod � toral supercuspidal representations for F ′ = F� the unramified extension
of order �.

Theorem 8.18. Let G, T, θ be as in § 8.4.1. Let G′, T ′, θ′ be as in § 8.2.4. Assume that T (F�) is
elliptic.

(i) Assume that � � #T0(Fq) and G satisfies the assumptions of Lemma 8.14. If
H∗

c (YTr,Ur
, F�)θ �= 0, then there exist i ∈ {0, 1}, i′ such that

Ti
(

c-Ind
G(F�)
T (F�)G(F�)x,0

H i′

c (YT′
r,U′

r
; F�)θ′

)
�= 0.

(ii) In addition to the assumptions from (i), suppose further that θ and θ′ both satisfy (8.3).
Then we have an isomorphism of G(F )-representations for each i ∈ Z/2Z,

Ti(πT ′,θ′·εram[θ′]) ∼= π
(�)
T,θ·εram[θ].

In particular, the left-hand side is independent of i.

Proof. (i) Since T (F�) is elliptic, we have T (F�)G(F�)x,0 = Z(G(F�))G(F�)x,0. By Lemma 8.14,
we may then apply Proposition 8.12 to deduce that

Ti
(

c-Ind
G(F�)
T (F�)G(F�)x,0

H i′

c (YT′
r,U′

r
; F�)θ′

)
= c-Ind

G(F�)
T (F�)G(F�)x,0

Ti
(
H i′

c (YT′
r,U′

r
; F�)θ′

)
.

By Theorem 8.8, there exist i and i′ for which Ti(H i′
c (YT′

r,U′
r
; F�)θ′ �= 0.

(ii) Let j and j′ be the non-vanishing degrees of H∗
c (YTr,Ur

; F�)θ and H∗
c (YT′

r,U′
r
; F�)θ′ ,

respectively. By Lemma 8.7, the assumptions imply that:

• H∗
c (YT′

r,U′
r
; Z�)tf,θ̃′ ⊗Z�

F�
∼= H∗

c (YT′
r,U′

r
; F�)θ′ as representations of T (F�)G(F�)x,0, where T (F�)

acts through θ′ and G(F�)x,0 acts through inflation from G(F�)x,0:r+;
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• H∗
c (YTr,Ur

; Z�)tf,θ̃ ⊗Z�
F�

∼= H∗
c (YTr,Ur

; F�)θ as representations of T (F )G(F )x,0, where T (F )

acts through θ and G(F )x,0 acts through inflation from G(F )x,0:r+.

By Lemma 8.14, we may apply Proposition 8.12 to deduce that

Ti
(

c-Ind
G(F�)
T (F�)G(F�)x,0

Hj′

c (YT′
r,U′

r
; F�)θ′

)
∼= c-Ind

G(F )
T (F )G(F )x,0

Ti
(
Hj′

c (YT′
r,U′

r
; F�)θ′

)
(8.12)

as G(F )-representations. Next, the assumptions that θ and θ′ satisfy (8.3) allow us to apply
Theorem 8.8(ii) to deduce that

Ti
(
Hj′

c (YT′
r,U′

r
; F�)θ′

)
∼= (Hj

c (YTr,Ur
; F�)θ)

(�)

as T (F )G(F )x,0-representations. We then conclude by noting that Frobenius twist commutes
with compact induction. �

Remark 8.19. For a σ-fixed irreducible representation π′ of G(F�), it is typically not obvious
that Ti(π′) �= 0. (Thanks to [Fen24, Theorem 1.2], this would already imply that π has a base
change descent to G(F ).) We emphasize that our traction on the toral supercuspidal repre-
sentations πT,θ·εram[θ] comes from the geometric description of these representations developed
in [CI21]. Another advantage of the geometric description, which was observed in [CO23], is that
it naturally incorporates the twisting character εram[θ].

Corollary 8.20. Let assumptions be as in Theorem 8.18(i),(ii) and suppose � is odd and banal
for G. Then πT,θ·εram[θ] base-changes to πT ′,θ′·εram[θ′].

Proof. Under our assumptions, Proposition 8.15 implies that πT ′,θ′·εram[θ′] and πT,θ·εram[θ] are
irreducible and cuspidal (noting that � �= p is banal for G(F ) if and only if � is banal for G(F�),
since the residue field cardinalities of F� and of F are congruent modulo �). The claim then
follows from [Fen24, Theorem 1.2], using Theorem 8.18(ii) to calculate the Tate cohomology of
πT ′,θ′·εram[θ′]. �

Remark 8.21. One would expect compatibility between the Genestier–Lafforgue correspondence
and Kaletha’s correspondence for regular supercuspidal representations [Kal19]. No results
towards such compatibility are known at present for general groups. In fact, Kaletha’s work
has not yet been extended to function fields or to mod � representations, but Corollary 8.20
appears to be in accordance with what one would expect from such an extension. Namely, if we
instead let F be a local field of characteristic zero and residue characteristic p �= � sufficiently
large relative to G, and let θ̃ : T (F ) → Q

×
� be 0-toral, then it is computed in [CO23, § 8] that

the L-parameter of π
T,θ̃·εram[θ̃]

(according to Kaletha’s correspondence for regular supercuspidal

representations) is

WF

ϕ
θ̃−→ LT (Q�)

Lj
−→ LG(Q�) (8.13)

where ϕ
θ̃

corresponds to θ̃ under local class field theory, and Lj is determined by T ↪→ G. In
particular, this implies that π

T,θ̃·εram[θ̃]
base-changes to π

T ′,θ̃′·εram[θ̃′]
under Kaletha’s correspon-

dence for regular supercuspidal representations. One would then expect the same of the mod �
reductions and local function fields F , which suggests the statement of Corollary 8.20.

Acknowledgements

We thank Anna Cadoret, Charlotte Chan, Hélène Esnault, Kazuhiro Ito, David Hansen,
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Čes15 K. Česnavicius, Poitou–Tate without restrictions on the order, Math. Res. Lett. 22 (2015),
1621–1666.

CI21 C. Chan and A. Ivanov, Cohomological representations of parahoric subgroups, Represent.
Theory 25 (2021), 1–26.

2001

https://doi.org/10.1112/S0010437X24007243 Published online by Cambridge University Press
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