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Abstract

For a connected reductive group G over a nonarchimedean local field F of positive characteristic, Genestier-

Lafforgue and Fargues-Scholze have attached a semisimple parameter Lýý (ÿ) to each irreducible representation ÿ.

Our first result shows that the Genestier-Lafforgue parameter of a tempered ÿ can be uniquely refined to a tempered

L-parameter L(ÿ), thus giving the unique local Langlands correspondence which is compatible with the Genestier-

Lafforgue construction. Our second result establishes ramification properties of Lýý (ÿ) for unramified G and

supercuspidal ÿ constructed by induction from an open compact (modulo center) subgroup. If Lýý (ÿ) is pure in an

appropriate sense, we show that Lýý (ÿ) is ramified (unless G is a torus). If the inducing subgroup is sufficiently

small in a precise sense, we show Lýý (ÿ) is wildly ramified. The proofs are via global arguments, involving the

construction of Poincaré series with strict control on ramification when the base curve is P1 and a simple application

of Deligne’s Weil II.
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1. Introduction

Let G be a connected reductive group over a nonarchimedean local field F and let ÿ be an irreducible

smooth representation of ÿ (ý). The local Langlands conjecture (LLC) posits that to such a ÿ can be

attached an L-parameter

L(ÿ) : ÿÿý → ÿÿ (ÿ),

which is an admissible homomorphism from the Weil-Deligne groupÿÿý = ÿý ×ÿÿ2 (ÿ) with values

in the Langlands L-group ÿÿ over an appropriate algebraically closed field C of characteristic 0. In

what follows, we take ÿ = Qℓ with ℓ different from char(ý). One condition of being admissible is that

L(ÿ) should be semisimple, in the sense that if L(ÿ) (ÿÿý ) ∩ ÿ̂ (ÿ) (where ÿ̂ (ÿ) is the Langlands

dual group of G) is contained in a parabolic subgroup ÿ ⊂ ÿ̂ (ÿ), then it is contained in a Levi subgroup

of P. Such L-parameters can also be described in the language of semisimple Weil-Deligne parameters

(ÿ, ý), as we recall in §3.

However, when F is of positive characteristic p, Genestier and Lafforgue [GLa] have defined a

semisimple Weil parameter1

Lýý (ÿ) : ÿý → ÿÿ (ÿ).

This semisimple parameter Lýý (ÿ) should be related to L(ÿ) via

Lýý (ÿ) (ý) = L(ÿ)

(

ý,

(

|ý |1/2

|ý |−1/2

))

. (1.1)

A natural question is then as follows: can the semisimple parameter Lýý (ÿ) of Genestier-Lafforgue be

enriched to give the true L-parameter L(ÿ)?

1Fargues and Scholze [FS] subsequently defined such a parameter, and Li Huerta has proved that the two parametrizations are
equivalent; see the comment after Conjecture 11.7.
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By the properties of the Genestier-Lafforgue construction (recalled in §2), it suffices to address this

question for (essentially) discrete series representations. For such a ÿ, one desiderata of the LLC is

that L(ÿ) should be irreducible (or elliptic) – its image is contained in no proper parabolic P, and in

particular is essentially tempered (or equivalently pure). It is not hard to see (cf. Lemma 3.5) that for

any semisimple parameter Lýý (ÿ), there is at most one essentially tempered L-parameter that could give

rise to it via (1.1). The first result of this paper is the following theorem:

Theorem 1.2. Let G be a connected reductive group over a local function field F of positive character-

istic p. Let ÿ be an irreducible discrete series representation of ÿ (ý). Then there exists a (necessarily

unique) essentially tempered L-parameter L(ÿ) whose associated semisimple parameter (via (1.1)) is

the Genestier-Lafforgue parameter Lýý (ÿ).

In particular, for a discrete series ÿ, we have a unique candidate L(ÿ) for its L-parameter. As a

consequence, we have the following:

Corollary 1.3. There is a well-defined

L : T (ÿ (ý)) −→ {essentially tempered L-parameters}

refining the construction of Genestier-Lafforgue, where T (ÿ (ý)) is the set of equivalence classes of

irreducible essentially tempered representations of ÿ (ý).

Unfortunately, we are not quite able to show that the image of a discrete series representation under

L is irreducible (or elliptic).

Assume now that G is an unramified reductive group. Our second result concerns the ramification

property of the semisimple parameter Lýý (ÿ) of a supercuspidal representation ÿ. If the Frobenius

eigenvalues of Lýý (ÿ) are pure in an appropriate sense, then the LLC asserts that Lýý (ÿ) itself is, in

fact, irreducible. In particular, unless G is a torus, one expects that Lýý (ÿ) is ramified. More precisely,

we show the following:

Theorem 1.4. Suppose F is the nonarchimedean local field ý ((ý)), where ý = Fÿ is a finite field of order

ÿ = ýÿ > 5 for some prime p. Let G be an unramified connected reductive group over F which is not a

torus. Assume that ÿ is an irreducible supercuspidal representation of ÿ (ý) of the form

ÿ
∼

−→ c − Ind
ÿ (ý )

ý ÿ

for some (irreducible) smooth representation ÿ of a compact open (modulo center) subgroup U with

coefficients in Qℓ .

(i) Suppose that Lýý (ÿ) is pure: if Frobý ∈ ÿý is any Frobenius element, then the eigenvalues

of Lýý (ÿ) (Frobý ) are all Weil q-numbers of the same weight (in which case we say that ÿ is a pure

supercuspidal representation). Then Lýý (ÿ) = L(ÿ) is ramified: it is nontrivial on the inertia subgroup

ýý ⊂ ÿý .

(ii) Suppose that U is sufficiently small. Then Lýý (ÿ) (and hence L(ÿ)) is wildly ramified: it is

nontrivial on the wild inertia subgroup of ÿý .

Let us make a few remarks:

◦ Conjecturally, every ÿ is compactly induced in the above sense. This property was recently proved

by Fintzen to be true as long as p does not divide the order of the Weyl group of G [Fi]. Moreover,

when p is odd and G is a classical group – that is, a unitary, symplectic, or special orthogonal group

– Shaun Stevens proved in [St] that every supercuspidal representation is compactly induced. These

cases can eventually be treated by comparison to GL(n), but the necessary methods, especially those

involving the trace formula, are not yet available.

◦ It would be good to produce some examples of supercuspidal representations whose Genestier-

Lafforgue parameter Lýý (ÿ) is pure. This does not seem so simple to do. The Kloosterman
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representations used in §3.3 in the proof of Theorem 1.2 have irreducible parameters and are there-

fore pure. In §9, we describe a strategy to produce more examples of depth 0 generic supercuspidal

representations.

◦ The precise definition of ‘sufficiently small’ in (ii) above is given at the beginning of §8.

As an immediate application of Theorem 1.4, we have the following corollary:

Theorem 1.5. Let ý = ý ((ý)) and let ÿ be an irreducible representation of ÿ (ý), with G unramified

reductive over F. Suppose the Genestier-Lafforgue parameter Lýý (ÿ) is pure and unramified. Suppose

every supercuspidal representation of every Levi factor of ÿ (ý) contains an ý-type. This is true in

particular in the following cases:

◦ p does not divide the order of the Weyl group of G [Fi];

◦ p is odd and G is an unramified classical group (unitary, symplectic, or special orthogonal) [St].

Then ÿ is an irreducible constituent of an unramified principal series representation of ÿ (ý).

When ÿ = GL(ÿ), our three theorems are part of the local Langlands correspondence (LLC) proved

by Laumon, Rapoport and Stuhler [LRS93]. When G is a split classical group, the results were proved in

most cases by Ganapathy and Varma by comparison with Arthur’s LLC over p-adic fields, via the method

of close local fields [GV, A13]. Thus, the novelty of this paper is that, like the Genestier-Lafforgue result,

Theorems 1.2 and 1.4 are valid uniformly for all (unramified) reductive groups, including exceptional

groups.

Of course, Theorem 1.4(i) is a much weaker statement than the expected local Langlands correspon-

dence, which not only asserts that Lýý (ÿ) is irreducible when ÿ is pure but gives a complete description

of the L-packet of representations with the given local parameter. However, all proofs of the local

Langlands correspondence for GL(ÿ) begin with the observation that a supercuspidal representation ÿ

of GL(ÿ, ý) is not incorrigible [H19] – that it becomes a constituent of a principal series representa-

tion after a finite series of base changes corresponding to cyclic extensions ýÿ+1/ýÿ , ÿ = 0, . . . , ÿ, where

ý0 = ý. Since one can choose the ýÿ so that the Galois parameter restricted to ÿýÿ+1
is unramified, this

is obvious if we know that

(1) no supercuspidal representation of any Levi factor of GL(ÿ, ý) other than GL(1)ÿ has an unramified

parameter, and

(2) the parametrization is compatible with cyclic stable base change.

In the proofs of the LLC in [LRS93, HT01, He00], point (1) is proved by reference to Henniart’s

numerical local correspondence [He88], whereas point (2) is proved by a global method. In Scholze’s

proof of the LLC for GL(ÿ) [Sch13], point (1) is proved by a geometric argument using a study of

nearby cycles in an integral model of the Lubin-Tate local moduli space.

Starting with point (1), the LLC is deduced by a study of the fibers of (stable) base change for cyclic

extensions of p-adic fields. This is ultimately a consequence of deep properties – the ‘advanced theory’

– of the Arthur-Selberg trace formula that are established by Arthur and Clozel in [AC]. For GL(ÿ)

over a number field, the trace formula and its twisted analogue are automatically stable, but there is as

yet no stable trace formula for general groups over function fields. If and when a stable trace formula

is developed in this generality, it is likely that Theorem 1.4(i) will provide the starting point for an

inductive proof of the LLC, at least for pure supercuspidal representations.

The proofs of both Theorems 1.2 and 1.4 proceed via global-to-local arguments and thus involve

globalizing a given supercuspidal (or discrete series) representation. For a supercuspidal representation,

this globalization is achieved by an adaptation of the method of [GLo] which involves a delicate

construction of Poincaré series with precise control on ramification. Let us elaborate on the proof of

Theorem 1.4(i) as an example.

Take the base curve to be ý = P1 and let K denote the global function field ý (ý ) = ý (ý). By

the method of Poincaré series used in [GLo], we construct a cuspidal automorphic representation Π of

ÿ (Aÿ ) that is unramified outside the set of places of K corresponding to the setý (ý) of k-rational points
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of Y. At the points ÿ = 0 and ÿ = ∞, we arrange for the local components of Π to be tamely ramified,

with Π
ý− (ý)
∞ ≠ 0 and Π

ý + (ý)
0

≠ 0; here ý− and ý+ denote opposite Iwahori subgroups of ÿ (ý ( 1
ý )) and

ÿ (ý (ý)), respectively, and ý−(ý) ⊂ ý− and ý+(ý) ⊂ ý+ are the corresponding maximal pro-p subgroups.

At the other rational points v, we assume Πÿ to be isomorphic to the fixed supercuspidal ÿ in the context

of Theorem 1.4(i). Moreover, we assume Π0 contains a sufficiently regular character ÿ of the Iwahori

subgroup ý+. V. Lafforgue has attached to such a Π a local system L(Π) over ý \ P1 (ý). Supposing

that Lýý (Π) is pure and unramified, it follows by Deligne [De80] that L(Π) extends to a local system

over Gÿ. Provided ÿ > 5, we can then choose ÿ to obtain a contradiction.

We conclude the introduction with a brief summary of the sections that follow. After recalling

the results of V. Lafforgue and Genestier-Lafforgue in §2, and basic properties about Weil-Deligne

parameters in §3, we complete the proof of Theorem 1.2 at the end of §3. We then lay the groundwork

for the proof of Theorem 1.4(i). In §4, we establish some preparatory results about local systems

on open subsets of P1, and in §5, we prove a useful result (Lemma 5.1) about parahoric subgroups

of unramified groups. In §6, we construct some open compact subgroups of ÿ (Aÿ ) via building

theoretic considerations and use these for the construction of appropriate Poincaré series. Using this

Poincaré series construction and our earlier results about local systems on P1, we prove Theorem

1.4(i) in §7. The proof of Theorem 1.4(ii) is given in §8: this requires yet another Poincaré series

construction. We then highlight some natural questions suggested by our results in §9. An example is

whether one can show that a generic supercuspidal representation is pure. We show this for certain

generic supercuspidal representations of depth 0. In §10, we explain the implications of our results for

incorrigible representations and prove a weak version of the local Langlands correspondance forÿÿ(ÿ):

all supercuspidal representations of ÿÿ(ÿ, ý) are either pure with ramified Galois parameters or have

wildly ramified parameters. The purpose of this is to provide a sufficently general template that has the

potential of being extended to general G. Finally, in §11, we propose the obvious conjecture linking

the Fargues-Scholze parametrization of representations of groups over p-adic fields to the Genestier-

Lafforgue parametrization, by means of the Deligne-Kazhdan method of close local fields.

2. Global and local Langlands-Lafforgue parameters

We begin by reviewing the global results of V. Lafforgue and the local results of Genestier-Lafforgue.

2.1. The global results of V. Lafforgue

Let Y be a smooth projective curve over k and ÿ = ý (ý ) be its global function field. Let G be a connected

reductive algebraic group over K. Let ÿ̂ be the Langlands dual group of G with coefficients in Qℓ and

let ÿÿ = ÿ̂ � ÿÿý (ÿýÿý/ÿ) be the Langlands L-group of G (in the Galois form).

Let A0(ÿ) = A0(ÿ,ý ) denote the set of cuspidal automorphic representations of G with central

character of finite order. We let Gýý (ÿ) denote the set of equivalence classes of compatible families of

semisimple ℓ-adic homomorphisms, for ℓ ≠ ý:

ÿℓ : ÿÿý (ÿýÿý/ÿ) → ÿÿ.

The term semisimple is understood to mean that if ÿℓ (ÿÿý (ÿ
ýÿý/ÿ)) ∩ ÿ̂ is contained in a parabolic

subgroup ÿ ⊂ ÿ̂, then it is contained in a Levi subgroup of P.

If ÿ : ÿ → Gÿ is an algebraic character, with Gÿ here designating the split 1-dimensional torus

over K, the theory of L-groups provides a dual character ÿ̂ : Gÿ → ÿ̂ ⊂ ÿÿ. If Z is the center of

G, and if ý : Gÿ → ý ⊂ ÿ is a homomorphism, then the theory of L-groups provides an algebraic

character ÿý : ÿÿ → Gÿ.

We state Lafforgue’s theorem for general reductive groups over general global function fields, but we

will mainly be applying it to ÿ = ý (P1). In what follows, a representation of G over a local field F is
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‘unramified’ if it contains a vector invariant under a hyperspecial maximal compact subgroup, in which

case the group itself is assumed to be unramified over F.

Theorem 2.1. Let K be any global function field and G a connected reductive algebraic group over K.

(i) [Laf18][Théorème 0.1] There is a map

L : A0(ÿ) → Gýý (ÿ)

with the following property: if v is a place of K and Π ∈ A0(ÿ) is a cuspidal automorphic representation

such that Πÿ is unramified, then L(Π) is unramified at v, and Lýý (Π) |ÿÿÿ
is the Satake parameter of

Πÿ .2

(ii) Suppose ÿ : ÿ → Gÿ is an algebraic character and

ÿ : A×
ÿ /ÿ

× → Qℓ
×
= ÿÿ(1,Qℓ)

is a continuous character of finite order. For any Π ∈ G0 (ÿ), let Π ⊗ ÿ ◦ ÿ denote the twist of Π by the

character ÿ ◦ ÿ of ÿ (A). Then

L(Π ⊗ ÿ ◦ ÿ) = L(Π) · ÿ̂ ◦ ÿ̂,

where ÿ̂ is as above and where ÿ̂ : ÿÿý (ÿýÿý/ÿ)ÿÿ → ÿÿ(1,Qℓ) is the character corresponding to

ÿ by class field theory.

(iii) [GLa][Théorème 0.1] Let v be a place of K and let ý = ÿÿ . Then the semisimplification of the

restriction of L(Π) toÿÿÿ depends only on F and the local component Πÿ of Π, which is an irreducible

admissible representation of ÿ (ý), and not on the rest of the automorphic representation Π, nor on

the global field K. We denote this parameter Lýý (Πÿ ).

2.2. The local results of Genestier-Lafforgue

Now let F be a nonarchimedean local field of characteristic p, so that ý
∼

−→ ý ′((ý)) for some finite

extension ý ′ of Fý . Let A(ÿ, ý) denote the set of equivalence classes of irreducible admissible rep-

resentations of ÿ (ý) and let Gýý (ÿ, ý) denote the set of equivalence classes of semisimple ℓ-adic

homomorphisms

ÿ : ÿý → ÿÿ.

By (iii) above, we thus obtain a (semisimple) parametrization of A(ÿ, ý):

Lýý : A(ÿ, ý) → Gýý (ÿ, ý). (2.2)

Of course, the theorem quoted above only constructs Lýý (ÿ) when ÿ can be realized as the local

component Πÿ of a global cuspidal automorphic representation Π, but the statement of Théorème 0.1 of

[GLa] includes the extension to a (semisimple) parametrization of all members ofA(ÿ, ý). Theorem 2.1

continues:

Theorem 2.3 ([GLa],Théorème 0.1). (iv) The local parametrization Lýý is compatible with parabolic

induction in the following sense: Let ÿ ⊂ ÿ be an F-rational parabolic subgroup with Levi factor M

and let ÿ ∈ A(ý, ý). If ÿ ∈ A(ÿ, ý) is an irreducible constituent of ýÿý
ÿ (ý )

ÿ (ý )
ÿ (normalized induction)

2Here and below we will mainly refer to the restriction of a global Galois parameter to the local Weil group, rather than
to the local Galois group, because the unramified Langlands correspondence relates spherical representations to unramified
homomorphisms of the local Weil group to the L-group. But the difference is inessential.
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and ÿý : ÿý → ÿÿ is the inclusion of the L-group of M as a Levi factor of a parabolic subgroup in

the L-group of G, then

Lýý (ÿ) = ÿý ◦ Lýý (ÿ).

(v) In particular, suppose G is quasi-split over F with Borel subgroup B, ÿ ⊂ ý is a maximal torus,

ý ⊂ ÿ (ý) is an Iwahori subgroup, and ý (ý) ⊂ ý is its maximal pro-p subgroup. Suppose ÿý (ý) ≠ 0.

Then Lýý (ÿ) takes values in the L-group of T.

(vi) The local and global parametrizations L and Lýý are compatible with homomorphisms

Υ : ÿ1 → ÿ2

of reductive groups where the image of Υ is a normal subgroup, in the following sense. Let
ÿΥ : ÿÿ2 → ÿÿ1 be the homomorphism of L-groups corresponding to Υ. Then for any cuspidal

automorphic (resp. admissible irreducible) representation ÿ of ÿ2 over K (resp. over F),

L(ÿ ◦ Υ) = ÿΥ ◦ L(ÿ)

(resp.

Lýý (ÿ ◦ Υ) = ÿΥ ◦ Lýý (ÿ).

This applies in particular if Υ is an isogeny of semisimple groups.

Proof. In the situation of (v), the condition ÿý (ý) ≠ 0 implies that ÿ contains an eigenvector for I

and thus is a constituent of a principal series representation. The assertion (v) then follows from (iv).

Assertion (vi) in the local setting is the last assertion of [GLa, Théorème 0.1]; in the global setting, it is

[Laf18, Proposition 12.5]. �

Corollary 2.4. Let Π ∈ A0(ÿ) and suppose |ÿ | ⊂ ý is the largest closed subset such that Πÿ is

unramified for ÿ ∉ |ÿ |.

(i) The parametrization of Theorem 2.1 defines a symmetric monoidal functor from the category

ýÿý(ÿÿ) of finite-dimensional algebraic representations of ÿÿ to the category of completely reducible

local systems on ý \ |ÿ |: to any ÿ : ÿÿ → ÿÿ(ý), one attaches the N-dimensional local system

attached to the representation

V (Π, ÿ) := ÿ ◦ L(Π)

of ÿ1 (ý \ |ÿ |) (any base point).

(ii) Similarly, let ÿ ∈ A(ÿ, ý). The local parametrization Lýý of (2.2) defines a symmetric monoidal

functor from the category ýÿý(ÿÿ) of finite-dimensional algebraic representations of ÿÿ to the category

of completely reducible representations of ÿý :

ÿ ↦→ Lýý (ÿ, ÿ) := ÿ ◦ Lýý (ÿ).

(iii) Suppose Π has the property that V (Π, ÿ) is abelian and semisimple for some faithful represen-

tation ÿ. Then the image of L(Π), intersected with ÿ̂, lies in a maximal torus of ÿ̂.

Proof. The first two assertions express the standard characterization of ÿ̂-local systems as symmetric

monoidal functors (see, for example, the discussion on p. 52 of [Si]); the third assertion is obvious. �

We conclude this section with the following definition.

Definition 2.5. With notation as in Theorem 2.3, let ÿ ∈ A(ÿ, ý). We say ÿ is pure if, for some

(equivalently, for all) faithful representations ÿ : ÿÿ → ÿÿ(ý), Lýý (ÿ, ÿ) has the property that, for
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any Frobenius element ýÿýÿý ∈ ÿý , the eigenvalues of Lýý (ÿ, ÿ) (ýÿýÿ) are all Weil q-numbers of

the same weight.

3. Pure Weil-Deligne parameters

This section is devoted to the proof of Theorem 1.2. We shall begin with some background material on

tempered L–parameters or their equivalent incarnation as pure Weil-Deligne parameters.

3.1. Tempered parameters and pure Weil-Deligne parameters

Let F be a nonarchimedean local field.

Definition 3.1. A Weil-Deligne parameter for F with values in ÿÿ (ÿ) is a pair (ÿ, ý), where

ÿ : ÿý → ÿÿ (ÿ) is a continuous homomorphism (for the discrete topology on C) and ý ∈ ÿÿÿ(ÿ̂) (ÿ)

is a nilpotent element such that (ýý ◦ ÿ, ý) is a homomorphism from the Weil-Deligne group of F to

ýÿý (ÿÿÿ(ÿ̂)) (ÿ).

Without loss of generality, we may assume ÿ = C. There is a simple recipe for converting a

Weil-Deligne parameter (ÿ, ý) for F with values in ÿÿ (C) to an L-parameter

ÿ = ÿÿ,ý : ÿý × ÿÿ(2,C) → ÿÿ (C),

which is algebraic in the second factor, and vice versa. This recipe (and the proof that it gives an

equivalence between the two notions) is given in [GR, §2.1 and Prop. 2.2].

We define a couple of properties of Weil-Deligne parameters.

Definition 3.2. The Weil-Deligne parameter (ÿ, ý) is tempered if the restriction of ÿÿ,ý toÿý ×ÿý (2)

has bounded image after projection to ÿ̂ (C). The parameter (ÿ, ý) is essentially tempered if its image

in ÿ̂ÿý is bounded.

Definition 3.3.

(a) The Weil-Deligne representation (ÿ, ý) with values in ÿÿ(ý) is pure if there is a complex

number t such that

(i) The eigenvalues of ÿý (ýÿýÿý ) := ÿ(ýÿýÿý )ÿ
ý are all q-numbers of integer weight.

(ii) The subspaceÿÿý ⊂ ý of eigenvectors for ÿý (ýÿýÿý ) with eigenvalues of weight f ÿ is invariant

under (ÿ, ý);

(iii) Letting ýÿÿý = ÿÿý/ÿÿ−1ý , there is an integer w such that, for all ÿ g 0, the map

ý : ýÿý+ÿý → ýÿý−ÿý

is an isomorphism.

The integer w in (iii) is then called the weight of (ÿ, ý) (twisted by t).

(b) Let G be a connected reductive group over F. The Weil-Deligne parameter (ÿ, ý) with values in
ÿÿ (C) is pure if (ÿ ◦ ÿ, ý) is pure of some weight for some (equivalently every) faithful representation

ÿ of ÿÿ.

In particular, if ý = 0, then the Weil-Deligne parameter (ÿ, ý) is pure if and only if the Weil group

parameter ÿ is pure (in the usual sense) of some weight (up to twist by a power of the norm). We

distinguish the two notions of purity by referring to ‘pure Weil-Deligne parameters’ and ‘pure Weil

parameters’, or ‘pure semisimple parameters’, respectively. In [TY], pure Weil parameters are called

strictly pure.
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Remark 3.4. The local parameters Lýý (ÿ) attached by Genestier and Lafforgue are ℓ-adic. In order to

define what it means for them to be pure (as Weil or Weil-Deligne parameters), one usually chooses

an isomorphism ÿ : Qℓ
∼

−→ C (or more sensibly, an isomorphism between the algebraic closures of Q

in the two fields) and declares them to be ÿ-pure if they are pure in the above sense after composing

with ÿ. For this purpose, one would want to replace the complex number t in Definition 3.3 by an ℓ-adic

number. In practice, the parameters that arise in the automorphic theory are ÿ-pure for every ÿ.

The following facts are well known and in any case are easy to verify.

Lemma 3.5.

(a) The Weil-Deligne parameter (ÿ, ý) is pure if and only if ÿÿ,ý is essentially tempered.

(b) Let ÿ : ÿý → ÿÿ (ÿ) be a semisimple parameter. There is at most one way (up to equivalence)

to complete ÿ to a pure Weil-Deligne parameter (ÿ, ý). If it exists, we call it the pure completion of ÿ.

Equivalently, there is at most one essentially tempered L-parameter ÿ whose associated semisimple

parameter (via (1.1)) is ÿ.

Proof. Both conditions in (a) are checked by composition with a faithful representation ÿ of ÿÿ. This

reduces the verification of (a) to the case of ÿÿ(ÿ), which is verified in [TY, Lemma 1.4(3)]. Part (b)

for ÿÿ(ÿ) is [TY, Lemma 1.4(4)]. For general groups G, one can cite the argument on p. 10 of [A84];

Arthur is there classifying Arthur parameters, rather than Weil-Deligne parameters, of real groups, but

the proof of uniqueness is the same. More precisely, suppose ÿ can be completed to a pure Weil-Deligne

parameter (ÿ, ý), and let ÿÿ,ý : ÿý × ÿÿ(2) be as above. Let ÿ be the restriction of ÿÿ,ý to the

ÿý factor. Since the image of ÿ is bounded and consists only of semisimple elements, its centralizer

ÿÿ ⊂ ÿÿ is reductive. We need to show that the restriction of ÿÿ,ý to ÿÿ(2), whose image lies in ÿÿ ,

is unique up to ÿÿ-conjugacy, but this is exactly what Arthur shows in his situation. �

3.2. An application of the purity of the monodromy weight filtration

The parametrization of Genestier-Lafforgue only attaches a semisimple parameter Lýý (ÿ) to a local

representation ÿ. But when ÿ is realized as a local component of a cuspidal automorphic representation

Π of G over some global function field K – say ÿ = Πý for some place x of K – then the restriction

L(Π)ý to the decomposition group Γý at x need not be semisimple. We let

LΠ (ÿ) = (Lýý (ÿ), ýΠ)

denote the Weil-Deligne parameter associated to the Galois parameter L(Π)ý .

The following result of Sawin and Templier generalizes Deligne’s theorem on the purity of the

monodromy weight filtration to G-local systems:

Lemma 3.6. [ST, Lemma 11.4] Let X be a smooth projective curve over a finite field k, with function

field ÿ = ý (ÿ) and let ÿ : ÿÿý (ÿýÿý/ÿ) → ÿÿ (ÿ) be an irreducible homomorphism (with image

not contained in a proper parabolic subgroup, where a parabolic subgroup is defined in the ‘dynamic’

way [CGP, Definition 2.2.1] as, for any homomorphism ÿ : Gÿ → ÿÿ, the subgroup of ý ∈ ÿÿ such

that limý→0 ÿ(ý)ýÿ(ý)
−1 exists). Let z be any place of K and let (ÿýýÿ , ýÿ) be the Weil-Deligne parameter

associated to the restriction ÿÿ of ÿ to a decomposition group at z. Then (ÿýýÿ , ýÿ) is a pure Weil-Deligne

parameter.

Proof. We explain how to deduce this from [ST, Lemma 11.4] since this result is not explicitly stated

there. Under the irreducibility hypothesis, [ST, Lemma 11.4] states that the composition of ÿ with any

representation of ÿÿ (ÿ) is pure of some weight w as a local system on an open subset of X. (The

mixedness property assumed in [ST] is a consequence of [Laf02].) It then follows from [De80, Theorem

1.8.4] that the i’th associated graded of the monodromy filtration of the composition of ÿÿ with the

same representation is pure of weight ý + ÿ. In particular, all the Frobenius eigenvalues are q-numbers,

and the sum of eigenspaces of Frobenius associated to eigenvalues of size f ÿ
ý+ÿ

2 is the ith member of
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the monodromy filtration. Part (iii) of the definition of pure Weil-Deligne parameter then follows from

the defining property [De80, Proposition 1.6.13]. �

Remark 3.7. The lemma is stated in [ST] when G is split semisimple, but the proof is valid for any

reductive G, since it is easy to see that the limit limý→∞ ÿ(ý)ýÿ(ý)−1 exists if and only if g preserves the

filtration into weight spaces of ÿ on a faithful representation.

Corollary 3.8. Let ÿ be an irreducible admissible representation of ÿ (ý). Suppose

◦ X is a smooth projective curve over a finite field k

◦ z is a place of the function field ÿ = ý (ÿ) such that ÿÿ
∼

−→ ý.

◦ there is a cuspidal automorphic representation Π of ÿÿ , with Πÿ
∼

−→ ÿ, such that the global

parameter L(Π) is irreducible.

Then the Weil-Deligne parameter LΠ (ÿ) is pure. Moreover, it is the unique pure completion of the

semisimple parameter Lýý (ÿ).

Not every semisimple parameter admits a completion to a pure Weil-Deligne parameter. Corollary 3.8

asserts that Lýý (ÿ) does admit a pure completion provided ÿ can be realized as a local component of a

cuspidal automorphic representation whose global parameter is irreducible in the indicated sense.

3.3. Proof of Theorem 1.2

We are now ready to prove Theorem 1.2. In view of Corollary 3.8, it suffices to construct cuspidal

globalizations of any essentially discrete series representation ÿ whose global parameter is irreducible.

The following proposition achieves this when ÿ is supercuspidal.

Proposition 3.9. Let G be a reductive group over F. Let ÿ be a supercuspidal representation of ÿ (ý).

Let X be a smooth projective curve over a finite field k and let z be a place of the function field ÿ = ý (ÿ)

such that ÿÿ
∼

−→ ý. Then there exist infinitely many cuspidal automorphic representations Π of ÿÿ ,

such that

◦ Πÿ
∼

−→ ÿ;

◦ the global parameter L(Π) is irreducible.

In particular, the semisimple parameter Lýý (ÿ) admits a completion to a pure Weil-Deligne parameter

that is realized as the specialization at z of the global parameter L(Π), for any such Π.

Proof. We shall use the results of [GLo] to produce the desired globalizations. Let ý ≠ ÿ be any other

place of K such that ÿ (ÿý) is a split reductive group. There are infinitely many such x – just take any x

that splits completely in a finite cover of X over which G splits. Thus, it suffices to show

(i) There is a supercuspidal representation ÿ′ of ÿ (ÿý) such that Lýý (ÿ′) is irreducible, and

(ii) There is an automorphic representation Π of ÿÿ with Πý
∼

−→ ÿ′ and Πÿ
∼

−→ ÿ, and with Πÿ

tamely ramified for all ÿ ≠ ý, ÿ.

Once (i) is given, the existence of Π as in (ii) is proved in [GLo] by a Poincaré series construction. It

thus remains to produce a supercuspidal representation ÿ′ as in (i).

We let ý ′ = ý (ý) denote the residue field at x and construct the Kloosterman sheaf Klÿ̂ (ÿ, ÿ) of

[HNY] over P1
ý′ . Let ÿ′ be the local component at ∞ of the corresponding automorphic representation

ÿ(ÿ, ÿ). Theorem 2 of [HNY] implies that the restriction to the inertia group at ∞ of the local

monodromy representation of Klÿ̂ (ÿ, ÿ) is irreducible. The statement in [HNY] includes slightly

restrictive hypotheses on the prime p for non-simply laced groups, but these hypotheses have since been

removed by Xu and Zhu in [XZ, Corollary 4.5.8, Remark 4.5.10], under the hypothesis that ÿ (ÿý)

is split, which we are assuming. However, it follows from construction that Klÿ̂ (ÿ, ÿ) is the global

parameter attached by [Laf18] to ÿ(ÿ, ÿ). More precisely, [HNY, XZ] computes the local monodromy
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of Klÿ̂ (ÿ, ÿ) at unramified places and identifies it with that obtained from the Satake parameters of

ÿ(ÿ, ÿ). (The construction of ÿ(ÿ, ÿ) is made explicit in [Y16] but its existence is implicit in [HNY].)

It then follows that Lýý (ÿ′) is irreducible, as desired. �

Remark 3.10. The paper [HNY] was written before [Laf18], but the ÿÿ-valued parameters attached

to the automorphic representations constructed in [HNY] coincide at all unramified places with those

obtained by Lafforgue, because both are given by the Satake correspondence. It follows by Chebotarev

density that the semisimple ℓ-adic local systems obtained by composing the ÿÿ-valued parameters of

[HNY] and [Laf18] with any representation of ÿÿ are identical. In particular, the irreducibility property

proved by [HNY, XZ] implies that Lafforgue’s Lýý (ÿ′), composed with the adjoint representation, is

irreducible.

For essentially discrete series but not supercuspidal representations, we have a weaker globalization

result which is nonetheless sufficient for our applications.

Proposition 3.11. Assume the notation and hypotheses of Proposition 3.9 but let ÿ be an essentially

discrete series representation. Then there exists a cuspidal automorphic representation Π of ÿÿ such

that

◦ Lýý (Πÿ) = Lýý (ÿ);

◦ the global parameter L(Π) is irreducible.

In particular, the semisimple parameter Lýý (ÿ) admits a completion to a pure Weil-Deligne parameter

L(ÿ) that is realized as the specialization at z of the global parameter L(Π), for any such Π.

Proof. Let ÿÿ be a pseudo-coefficient of ÿ, whose properties are recalled in [GLo, §8.1]. In [GLo, §8.2],

a version of the simple trace formula was formulated as a working hypothesis. Applying Lemma A.1 in

the appendix by R. Beuzart-Plessis, it follows as in the proof of [GLo, Proposition 8.2] that there is a

cuspidal Π with Πý
∼

−→ ÿ′ (with ÿ′ as in Proposition 3.9) for some place x and ÿÿ (Πÿ) ( ÿÿ) ≠ 0. This

implies (by [GLo, Lemma 8.1]) that Πÿ has the same cuspidal support as ÿ, and therefore that

Lýý (Πÿ) = Lýý (ÿ)

since the semisimple Genestier-Lafforgue parameter is compatible with parabolic induction. Now we do

not know, nor care, whether Πÿ is isomorphic to the discrete series ÿ or not. Since Lýý (Πý) = Lýý (ÿ′)

is irreducible, so is the global parameter L(Π), and we have produced the desired Π. �

Using Corollary 3.8, Proposition 3.9 and Proposition 3.11, the proof of Theorem 1.2 is now complete.

We note that the idea behind Corollary 3.8 and Proposition 3.9 was already applied in the case of

classical groups in the proof of [GLo, Proposition 7.3]. Instead of using the Kloosterman representations

of [HNY] to establish irreducibility, [GLo] used depth zero supercuspidal representations, but introduced

a hypothesis because the irreducibility of the corresponding L-parameter has not (yet) been established

for local fields of positive characteristic.

Corollary 3.12. Under the hypotheses of Theorem 1.2, suppose G is semisimple. Then the composition

of the adjoint representation of ÿÿ with the Weil-Deligne parameter L(ÿ) of ÿ is pure of weight 0.

Proof. It follows from Proposition 3.11 that ýý ◦ L(ÿ) is a pure Weil-Deligne representation of some

weight w. But since G, and therefore ÿ̂, is semisimple, the determinant of ýý ◦L(ÿ) is pure of weight 0.

It follows that w must equal 0. �

Remark 3.13. The proof actually shows that L(ÿ) is ÿ-pure, in the sense of Remark 3.4, for every ÿ.

4. Local systems on open subsets of P1

The rest of the paper is devoted to establishing more refined properties of the semisimple parameter

Lýý (ÿ) of a supercuspidal representation ÿ and, in particular, proving Theorem 1.4. For this, we shall
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need to appeal to a global argument which necessitates the construction of appropriate globalizations of

supercuspidal representations by Poincaré series. Unlike the previous section, these globalizations will

have to be constructed over the function field of P1, so that we may appeal to special properties of local

systems on open subsets of P1. In this section, we shall discuss the requisite results about local systems

on open subsets of P1.

4.1. Purity

Let ý = Fÿ be a finite field of characteristic p. Let ý, ÿ ⊂ P1 (ý) be disjoint finite subsets, let |ý | and

|ÿ | be the corresponding reduced subschemes of P1 (ý) and let ý = P1
ý \ |ÿ | ∪ |ý |, viewed as a scheme

over ÿýÿý(ý). Let L be a finite extension of Qℓ and consider a local system V over Y with coefficients

in L (a lisse ℓ-adic sheaf). Picking a point y of Y (the generic point, for example), and letting V denote

the finite-dimensional vector space Vÿ over L, we can identify V with a representation

ÿ : ÿ1 (ý, ÿ) → ýÿý (ý).

Let ýÿ = ý (ý )ÿ be the completion of ý (ý ) at the point ÿ ∈ ý . The monodromy of V at z is the restriction

of ÿ (up to conjugation) to a homomorphism

ÿÿ : ÿÿý (ý
ýÿý
ÿ /ýÿ) → ýÿý (ý). (4.1)

Let ýÿ ⊂ ÿÿý (ý
ýÿý
ÿ /ýÿ) denote the inertia group and let ýÿýÿÿ ∈ ÿÿý (ý

ýÿý
ÿ /ýÿ) denote any geometric

Frobenius element (i.e., any lift to an automorphism of ý
ýÿý
ÿ of the automorphism ý ↦→ ý

1
ÿ of ý̄).

If Γ is a topological group and ÿ : Γ → ýÿý (ý) is a continuous homomorphism, we let ÿýý denote

its semisimplification – the sum of its Jordan-Hölder constituents.

Theorem 4.2 ([De80], Corollary 1.7.6). Suppose that Z is not empty and, for all ÿ ∈ ý , the following

conditions are satisfied:

◦ ÿýýÿ is unramified;

◦ the Frobenius eigenvalues ÿÿ (ýÿýÿÿ) are all Weil q-numbers of the same weight.

Then V extends to a local system over P1
ý \ |ÿ |.

Proof. In fact, Deligne’s result only requires the Frobenius eigenvalues to have the same weight for a

single complex embedding; under this condition, ÿÿ (ýÿ) is a finite group. But we have assumed that ÿýýÿ
is unramified; thus, ÿÿ (ýÿ) is unipotent. It follows that ÿÿ (ýÿ) must be trivial. �

Corollary 4.3. Under the hypotheses of Theorem 4.2, suppose ÿ = {0,∞} and V is a semisimple local

system on Y with associated monodromy representation

ÿ : ÿ1 (P
1 \ |ÿ |, ÿ) → ýÿý (ý).

Suppose moreover that

(a) the local monodromy representation of V at 0 and ∞ is tame,

(b) the semisimplification of the local monodromy representation at 0 or ∞ is abelian and Frobenius-

semisimple.

Then, possibly after replacing L by a finite extension ÿ ′, V breaks up as the sum of 1-dimensional local

systems.

Proof. Theorem 4.2 implies that V extends to a tame local system, also called V , over Gÿ. By [Laf02],

Corollary VII.8, V can be written as a (finite) direct sum

V =
⊕
ÿ

Vÿ ⊗ ÿ,

https://doi.org/10.1017/fmp.2024.10 Published online by Cambridge University Press



Forum of Mathematics, Pi 13

where each Vÿ is a mixed local system and ÿ is the pullback to P1 \ |ÿ | of a rank 1 ℓ-adic local system

over ÿýÿý(ý) – in other words, a continuous ℓ-adic character of ÿÿý ( ý̄/ý). We thus reduce to the case

where V is a mixed ℓ-adic local system, and since V is assumed semisimple, we may assume V to be

irreducible.

Then the purity hypothesis at the points z in the nonempty set Z implies that V is itself pure. Since

the tame fundamental group of Gÿ,ý̄ is just
∏

ý′≠ý Zý′ (1), it follows from the purity that the image J

under ÿ of the geometric fundamental group of Gÿ is finite and necessarily abelian.

Now one knows that the image of the tame inertia group ý0 at 0 in the tame fundamental group ofGÿ,ý
is equal to the tame fundamental group of Gÿ,ý̄ (i.e., the tame geometric fundamental group of Gÿ,ý ).

The same is true for the tame inertia group at ∞. Hence, the hypothesis (b) on the local monodromy at

0 or ∞ implies that the conjugation action of ÿÿý ( ý̄/ý) on J is trivial, and thus, the image under ÿ of

the arithmetic fundamental group ÿ1 (P
1 \ |ÿ |, ÿ) is also abelian; moreover, the image of ÿÿý ( ý̄/ý) is

semisimple by hypothesis. This completes the proof. �

4.2. Kummer theory

Let ÿ = ý (P1) = ý (ÿ) be the global function field of P1 and let ÿ ′ denote the union of all abelian

extensions of K of degree dividing ÿ − 1, which is the order of the group of roots of unity in K.

Homomorphisms

ÿ : ÿÿý (ÿ ′/ÿ) → Qℓ
×

are classified by Kummer theory:

ÿ : ÿ×/(ÿ×)ÿ−1 ∼
−→ ÿ (ÿ) := ÿýÿ(ÿÿý (ÿ ′/ÿ),Qℓ

×
). (4.4)

Let ÿÿ ⊂ ÿ×/(ÿ×)ÿ−1 be the subgroup generated by ý× and the parameter T and let ÿÿ = ÿ(ÿÿ ). We

also consider Kummer theory for the constant field k:

ÿý : ý×
∼

−→ ÿ (ý) := ÿýÿ(ÿÿý (ý ′/ý),Qℓ
×
), (4.5)

where ý ′ is the cyclic extension of k of order ÿÿ−1. For ÿ ∈ ý×, ÿ ∈ ÿÿý (ý ′/ý), let us write

ÿÿ := ÿý (ÿ) (ÿ).

Any ÿ ∈ ý× defines a closed point ÿ ∈ Gÿ,ý ; let Γÿ ⊂ ÿÿý (ÿ ′/ÿ) denote its decomposition group and

ýÿ its inertia group. An element ÿ ∈ ÿÿ is unramified at such a point z and thus defines a homomorphism

ÿ (ÿ) : Γÿ/ýÿ
∼

−→ ÿÿý (ý ′/ý) → Qℓ
×
.

For ÿ = 1, . . . , ÿ − 1, we let ÿÿ = ÿ(ÿÿ). Then we have the following reciprocity law:

Lemma 4.6. For ÿ ∈ Gÿ(ý) and ÿ = 1, . . . , ÿ − 1, we have

(ÿÿ)
(ÿ) = ÿý (ÿÿ).

Proof. Let ÿÿ denote the completion of K at z, Oÿ its integer ring, ýÿ its residue field, which the

inclusion of k in K canonically identifies with k. The image of the element ÿ ∈ Oÿ in ýÿ is identified

with the element ÿ ∈ ý×, so the residue field of the unramified extensionOÿ [ÿ
1/(ÿ−1) ] is just ý (ÿ1/(ÿ−1) ).

Both sides of the identity are defined by taking an element of the Galois group, observing that it acts

on ÿ1/(ÿ−1) = ÿ1/(ÿ−1) by multiplication by a (ÿ − 1)st root of unity and then composing with a fixed

embedding of the (ÿ−1)st roots of unity intoQℓ
×
. The only difference is that (ÿÿ)

(ÿ) is calculated by first

considering the action of the Galois group of K, restricting to the decomposition group, and observing
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that it factors through the Galois group of the residue field, while ÿý (ÿÿ) is calculated by considering

the action of the Galois group of the residue field directly, but these agree since the homomorphism

from the decomposition group to the Galois group of the residue field is defined to be compatible with

the action on elements of the residue field. �

Lemma 4.7. Let L be a rank one local system on Gÿ,ý and ÿ ∈ ý×. Then

tr(Frobÿ ,L) = tr(Frob1,L) tr(ÿ−1
ÿ ,L),

where ÿÿ is the element of the inertia group ý0 which acts by multiplication by z on the (ÿ − 1)st root

of T.

Proof. We give two proofs of the lemma.

(i) (Class field theory) It suffices to show that Frobÿ = Frob1 ·ÿ
−1
ÿ in the abelianization of the tame

fundamental group of Gÿ. Class field theory gives an isomorphism between this abelianization and the

profinite completion of

ÿ×\A×
ÿ /

������
∏
ÿ∈ |P1

ý
|

ÿ∉{0,∞|

O×
ÿÿ

×
∏

ÿ∈{0,∞}

ýÿÿ ,1


�����
,

where ýÿÿ ,1 denotes the units of Oÿÿ that are congruent to 1 modulo the maximal ideal. Moreover,

◦ Frobÿ corresponds to the idèle which is a uniformizer at z and the identity at all other places,

◦ Frob1 corresponds to the idèle which is a uniformizer at 1 and the identity at all other places, and

◦ ÿÿ corresponds to the idele which is z at 0 and the identity at all other places.

So it suffices to check that the first idèle class is the product of the other two idèle classes. This can be

checked by multiplying by ÿ −ÿ
ÿ −1

∈ ÿ×, which is a uniformizer at z, the inverse of a uniformizer at 1, and

z at 0.

(ii) (Kummer theory) We can construct a one-dimensional representation of ÿÿý (ý/ý) on which

Frobÿ acts by multiplication by tr(Frob1,L). On tensoring L with the inverse representation, we reduce

to the case where Frob1 acts trivially on L. Since the tame fundamental group of Gÿ is generated

by the geometric tame fundamental group and Frobenius, the image of the Galois group acting on L

must equal the image of the geometric tame fundamental group. The action of the geometric tame

fundamental group on L must be by a Frobÿ-invariant character, which means it factors through the

Frobÿ-coinvariant of the abelianization of the tame geometric fundamental group, which is Z/(ÿ − 1).

So the action of the geometric fundamental group is by a character of order ÿ−1. The result now follows

from Lemma 4.6. �

5. Unramified Reductive Groups

We continue to assume that ÿ = ý (P1), with ý = Fÿ . In this section, we establish some structural

results for an unramified connected reductive group G over K. In particular, we establish a useful result

(Lemma 5.1) which gives congruence conditions on the matrix entries of a parahoric subgroup of G (at

a place of K) under a faithful algebraic representation. This parahoric entry inequality will be crucially

used in the next few sections.

5.1. Unramified groups

By definition, a connected reductive group over K is unramified if it is quasi-split and split by an

unramified extension of K. Such a G can, in fact, be defined over the finite field k. Hence, we assume that
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G is defined over k, with Z the identity component of its center and ý = ÿ · ý a fixed Borel k-subgroup.

Let ÿ ⊂ ÿ be the maximal k-split subtorus in T, so that S is a maximal split torus of G over k.

Let

ÿ : ÿ → Aut(ý)

be a faithful algebraic representation of G defined over k and let ÿ1, . . . , ÿÿ be a basis of V on which S

acts diagonally via the eigencharacter ÿÿ ∈ ÿ∗(ÿ) on ÿÿ .

By base change, we obtain from the above the analogous objects over any k-algebra. In particular,

we have

◦ ÿÿ ⊂ ýÿ = ÿÿ · ýÿ ⊂ ÿÿ over ÿ = ý (P1) = ý (ý); to simplify notation, we shall suppress the

subscript K. Note that S is still a maximal K-split torus in G.

◦ At each place y of K, with associated local completion ÿÿ and ring of integers Oÿ ⊂ ÿÿ , we have the

Oÿ-group schemes

ÿÿ ⊂ ýÿ = ÿÿ · ýÿ ⊂ ÿÿ .

Note, however, that ÿÿ need no longer be a maximal ÿÿ-spit torus inÿÿ; we let ýÿ ⊃ ÿÿ be a maximal

split torus over Oÿ . For ÿ ∈ P1 (ý), we have ýÿ = ÿÿ .

◦ At each place y of K, ÿ (Oÿ) is a hyperspecial maximal compact subgroup of ÿ (ÿÿ). One has the

reduction-mod-p map

ÿ (Oÿ) −→ ÿ (ýÿ),

where ýÿ is the residue field ofÿÿ . The preimage of ý(ýÿ) ⊂ ÿ (ýÿ) inÿ (Oÿ) is an Iwahori subgroup

ýÿ of ÿ (ÿÿ). Its pro-p radical ý (ý) is the preimage of the unipotent radical ý (ýÿ) of ý(ýÿ).

◦ For each place y of K, we have a faithful algebraic representation ÿÿ : ÿÿ → Aut(ýÿ). If ÿ ∈ P1 (ý),

then the basis {ÿÿ} is a basis of eigenvectors for the maximal ÿÿ-split torus ÿÿ = ýÿ .

5.2. Buildings

For each place y of K, consider the (extended) Bruhat-Tits building B(ÿÿ) which contains the apartment

A(ýÿ) associated to the maximal ÿÿ-split torus ýÿ . The hyperspecial maximal compact subgroup

ÿ (Oÿ) determines a basepoint in A(ýÿ), giving an identification

A(ýÿ)
∼

−→ ÿ∗(ýÿ) ⊗ R,

withÿ (Oÿ) the stabilizer of the origin 0 ∈ ÿ∗(ýÿ). For places ÿ ∉ P1 (ý), we shall only need to consider

this basepoint 0 and its stabilizer ÿ (Oÿ).

Now consider only those ÿ ∈ P1 (ý), so that ýÿ = ÿÿ . In this case, one has a natural identification of

the apartment A(ýÿ) with ÿ∗(ÿ) ⊗ R. In particular, the apartments A(ýÿ) are naturally identified with

each other as y varies in P1 (ý).

5.3. Parahoric entry inequality

In this section, we prove a technical lemma on the matrix entries of elements of parahoric subgroups of

G over the local field ÿÿ = ý ((ý)) (for ÿ ∈ P1 (ý)) that will be useful for us later on.

Lemma 5.1. Fix a local field ý = ý ((ý)) (which we may think of as ÿÿ for ÿ ∈ P1 (ý)) and let

◦ G be an unramified semisimple group (as introduced above), with maximal F-split torus S contained

in a Borel subgroup ý = ÿý , all defined over k;
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◦ c be a point in the apartment of S in the Bruhat-Tits building B(ÿ) with associated parahoric

subgroup ÿý;

◦ ÿ : ÿ → Aut(ý) be a faithful algebraic representation of G defined over k, with S-eigenbasis

ÿ1, . . . , ÿÿ with associated eigencharacters ÿÿ ∈ ÿ∗ (ÿ) on ÿÿ .

Then for any ý ∈ ÿý ⊂ ÿ (ý), we have

ÿ(ÿÿ ÿ (ý)) g ý · (ÿÿ − ÿ ÿ ), (5.2)

where ÿ : ý → Z is the normalized valuation on F and ÿÿ ÿ (ý) denotes the (ÿ, ÿ)-th entry of the matrix

of ÿ(ý) relative to the basis {ÿÿ}.

More generally, if g lies in the Moy-Prasad subgroup ÿý,ÿ+ for some ÿ g 0, then we have

ÿ(ÿÿ ÿ (ý) − ÿÿ ÿ ) > ý · (ÿÿ − ÿ ÿ ) + ÿ. (5.3)

Proof. We give the proof in the ÿý case and then describe the modifications necessary for ÿý,ÿ+.

If (5.2) holds for ý1 and ý2, then it holds for ý1ý2, so that it suffices to verify (5.2) for a set of

generators of the parahoric ÿý . The parahoric ÿý is generated by the subgroups ýÿ for those affine

functions ÿ on the apartment of S such that

ÿ(ý) g 0.

Here, ÿ is an affine function of the form ÿ(ý) = ÿ · ý − ý for a root ÿ ∈ ÿ∗ (ÿ) and a real number s. If

ýÿ ⊂ ÿ is the (restricted) root group associated to b, then one has an isomorphism over k:

ÿÿ : ýÿ
∼

−→Resýÿ/ýGÿ,

where ýÿ is the field of definition of the root b and Gÿ is the additive group, and the subgroup ýÿ can

be described as

ýÿ = {ÿ ∈ ýÿ (ý) : ÿ(ÿÿ (ÿ)) g ý},

where v is the unique extension of v to ýÿ .

To obtain (5.2), it suffices to check that the following two statements hold for ý ∈ ýÿ:

(a) If ÿÿ ÿ (ý) ≠ 0, then ÿÿ − ÿ ÿ = ÿÿ for some ÿ g 0;

(b) ÿÿ ÿ (ý) is a homogeneous polynomial function on ýÿ defined over k of degree n.

Indeed, if (a) and (b) hold, then we have, for ý ∈ ýÿ

ÿ(ÿÿ ÿ (ý)) g ÿý g ÿý + ÿÿ(ý) = ÿÿ · ý = (ÿÿ − ÿ ÿ ) · ý,

as desired.

To prove (a) and (b), we use lifting to characteristic 0. The group G (which is defined over k) has a

lift from the field k to the Witt vectors ÿ (ý), unique up to not-necessarily-unique isomorphism. Since

irreducible algebraic representations of G are classified by Galois orbits of highest weights, and the

Galois action for k and ÿ (ý) are the same, we may lift the representation V from the field k to its ring

of Witt vectors ÿ (ý). Both properties in (a) and (b) are preserved by reduction mod p and thus may be

checked over the fraction field ofÿ (ý), whereýÿ is obtained by exponentiating the root subspace of b.

In characteristic 0, both (a) and (b) follow readily from the representation theory of ÿÿ2.

We now indicate the modifications needed for the statement for ÿý,ÿ+ . The inequality (5.3) is also

stable under matrix multiplication since ÿ g 0. Because the subgroups ÿý,ÿ+ are generated by ýÿ for

those ÿ with ÿ(ý) > ÿ and the subgroups ÿÿ
ÿÿ for the maximal torus T containing S, for ÿ > ÿ , it suffices

to verify (5.3) for these subgroups. Here, a is an (absolute) simple root of T (over ý), with associated
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root subgroup ÿÿ2 (over ý), ÿÿ is the 1-dimensional torus (over ý) which is the image of the coroot

ÿ∨ : Gÿ → ÿÿ ⊂ ÿ

and

ÿÿ
ÿÿ = {ÿ∨(ý) ∈ ÿÿ (ýÿÿ ) ∩ ÿ (ý) : ÿ(ý − 1) g ÿ}.

We begin with the elements of ýÿ as above. That the elements of such ýÿ satisfy (5.3) follow from

(a) and (b) above and the additional fact that ÿÿ ÿ is the constant function 1 onýÿ if ÿ = 0. Indeed, these

imply that

ÿ(ÿÿ ÿ (ý)) g ÿý g ÿý + ÿÿ(ý) + ÿÿ = ÿÿ · ý + ÿÿ > (ÿÿ − ÿ ÿ ) · ý + ÿ

if ÿ > 0 and ÿ(ÿÿ ÿ (ý) − 1) = ∞ if ÿ = 0.

Hence, it remains to show that elements ý ∈ ÿÿ
ÿÿ satisfy (5.3). Because T is the centralizer of S in G,

we see that

ý ∈ ÿÿ
ÿÿ and ÿÿ ≠ ÿ ÿ =⇒ ÿÿ ÿ (ý) = 0.

Thus, it suffices to show

ÿ(ÿÿ ÿ (ý) − ÿÿ ÿ ) g ÿ > ÿ if ÿÿ = ÿ ÿ .

Now the action of the elements ý ∈ ÿÿ and therefore the matrix entries ÿÿ ÿ (restricted to ÿÿ) are given

by polynomial functions on Gÿ over ý , which are equal to ÿÿ ÿ at the identity element 1. Thus, the

difference between ÿÿ ÿ (ý) and ÿÿ ÿ has valuation at least n for ý ∈ ÿÿ
ÿÿ , as desired. �

6. Open compact subgroups of ÿ (Aÿ )

After the preparatory local lemma above, we return to the global setting of §5.1 where G is an unramified

semisimple group over ÿ = ý (ý). We will thus use the notation of §5.1 and §5.2. Our goal is to construct

some open compact subgroups of ÿ (Aÿ ) with desirable properties.

With ý = ý ((ý)), letý∗ ⊂ ÿ (ý) be a fixed maximal compact subgroup. We choose an open compact

subgroup of ÿ (Aý (ý) ) of the form ý =
∏

ý ýý , where x runs over the places of K, with the following

properties.

(a) At every ÿ ∈ Gÿ (ý) ⊂ P
1(ý), ýÿ equals the fixed ý∗, with respect to a chosen isomorphism

ÿ (ÿÿ)
∼

−→ ÿ (ý);

(b) For ý ∉ |P1 (ý) |, ýý is the hyperspecial maximal compact subgroup ÿ (Oý);

(c) The subgroups ý0 and ý∞ are parahoric subgroups that remain to be chosen.

Proposition 6.1. Let G be unramified and simply-connected. The subgroups ý0 and ý∞ can be chosen

in such a way that

ÿ (ÿ) ∩ý = ÿ (ý).

Proof. Let Λ = ÿ∗(ÿ) be the cocharacter lattice of S. We have remarked that for ÿ ∈ P1 (ý), we have a

natural identification of Λ ⊗ R as an apartment in the Bruhat-Tits building of ÿÿ . Let ý ∈ Λ ⊗ R be the

fixed point of ý∗ ⊂ ÿ (ý) � ÿ (ÿÿ); because G is simply-connected, ý∗ is the parahoric subgroup ÿý .

For ÿ ∉ P1 (ý), we also have a natural inclusion Λ ⊗ R ↩→ A(ýÿ). Choose ÿ, ÿ ∈ Λ ⊗ R such that

ÿ + ÿ + (ÿ − 1)ý = 0
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and such that a is sufficiently generic in the sense that ÿ · ÿ is not an integer for all v in a finite set of

nonzero elements of ÿ∗(ÿ) to be chosen later.

For a place v of K, define ÿ (ÿ) by

⎧⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

ÿ (0) = ÿ,

ÿ (∞) = ÿ

ÿ (ÿ) = ý for ÿ ∈ Gÿ (ý),

ÿ (ý) = 0, for ý ∉ |P1 (ý) |.

Under this definition, we take ýÿ to be the parahoric subgroup ÿ ÿ (ÿ) associated to ÿ (ÿ).

We are now ready to prove that ÿ (ÿ) ∩ ý = ÿ (ý). To do this, we use the faithful algebraic

representation (ÿ,ý) fixed in §5.1, equipped with a basis ÿ1, . . . , ÿÿ, where ÿÿ is an eigenvector of S

with eigencharacter ÿÿ ∈ ÿ∗ (ÿ). Applying Lemma 5.1, we see that for ý ∈ ý ∩ ÿ (ÿ) with ÿÿ ÿ (ý) ≠ 0

(for a fixed pair (ÿ, ÿ)), we have

0 =
∑
ÿ

ÿ(ÿÿ ÿ (ý)) g
∑
ÿ

ÿ (ÿ) · (ÿÿ − ÿ ÿ ) = 0 · (ÿÿ − ÿ ÿ ) = 0.

Because both sides are 0, the inequality is sharp, so

ÿ(ÿÿ ÿ (ý)) = ÿ (ÿ) · (ÿÿ − ÿ ÿ )

for all v. This implies that ÿ (ÿ) · (ÿÿ −ÿ ÿ ) is an integer, and, in particular, that ÿ · (ÿÿ −ÿ ÿ ) is an integer.

However, for our genericity assumption on a, we may assume that ÿ · (ÿÿ − ÿ ÿ ) is not an integer for any

pair (ÿ, ÿ) for which ÿÿ ≠ ÿ ÿ .

We conclude that, for ý ∈ ý, ÿÿ ÿ (ý) = 0 unless ÿÿ = ÿ ÿ . In other words, ÿ(ý) commutes with ÿ(ÿ),

and thus, ý ∈ ÿ (ÿ). Furthermore, for a pair (ÿ, ÿ) with ÿÿ ÿ (ý) ≠ 0, we have

ÿ(ÿÿ ÿ (ý)) = ÿ (ÿ) · (ÿÿ − ÿ ÿ ) = ÿ (ÿ) · 0 = 0

for all v. This shows that ÿÿ ÿ (ý) ∈ ý , and so ý ∈ ÿ (ý). We have thus shown that ý ∩ ÿ (ÿ) = ÿ (ý), as

desired. �

The following is then obvious.

Corollary 6.2. Under the hypotheses of Proposition 6.1, one can choose Iwahori subgroups ý0 ⊂ ý0

and ý∞ ⊂ ý∞ such that, if ý∞(ý) ⊂ ý∞ is the maximal pro-p subgroup, then

ÿ (ÿ) ∩
∏
ý≠0,∞

ýý × ý∞ (ý) × ý0 = {1}.

Remark 6.3. Suppose ýÿ = ÿ (Oÿ) for ÿ ∈ Gÿ(ý). Then in Proposition 6.1, we can take ý0 = ý+ and

ý∞ = ý− to be respectively the upper and lower Iwahori subgroups; by this, we mean thatý0 (resp.ý∞)

is the Iwahori subgroup corresponding to the positive (resp. negative) root system corresponding to our

fixed Borel subgroup B. Then

ÿ (ÿ) ∩ý ⊂ ÿ (ÿ) ∩
∏
ý

ÿ (Oý).

The right-hand side is the group of global maps from P1
ý to the affine group ÿý . Any such map must be

constant because P1 is projective and thus must belong to ÿ (ý) because it is defined over k. Thus,

ÿ (ÿ) ∩ý = (ý0 ×ý∞) ∩ ÿ (ý) = ÿ (ý).

The open compact subgroups of ÿ (Aÿ ) built in this section will be used in the next section to

constuct some Poincaré series.
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7. Proof of Theorem 1.4(i)

This section is devoted to the proof of Theorem 1.4(i). In fact, we prove the following slightly stronger

statement.

Theorem 7.1. Suppose F is the nonarchimedean local field ý ((ý)), where ý = Fÿ is a finite field of order

ÿ = ýÿ for some prime p. Let G be an unramified connected reductive group over F which is not a torus.

Assume ÿ > 5 and ÿ is an irreducible supercuspidal representation of ÿ (ý) that can be obtained as

the induction of a representation of a compact open (modulo center) subgroup ý ⊂ ÿ (ý):

ÿ
∼

−→ c − Ind
ÿ (ý )

ý ÿ

for some (irreducible) smooth representation ÿ of U with coefficients in Qℓ .

Then we have

Lýý (ÿ) is pure =⇒ ÿ ◦ Lýý (ÿ) = ÿ ◦ L(ÿ) is ramified,

where ÿ : ÿÿ −→ ÿÿ/ý (ÿ̂) is the natural projection map.

Because ÿÿ/ý (ÿ̂) is the L-group of the simply-connected cover ÿýý of the derived group ÿýÿÿ

of G, Theorem 2.3(vi) implies (by applying it to the natural maps ÿýý → ÿýÿÿ → ÿ) that it suffices to

prove the above theorem under the additional hypothesis that G is k-simple and simply-connected.

7.1. Purity and ramification

We shall prove Theorem 1.4(i) by a global argument. Hence, we assume the setup and notation from

§5.1. In particular, ÿ = ý (P1) = ý (ý) and G is an unramified simply connected simple group over k.

Before stating the theorem below, we choose a special character of T. The adjoint representation of

ÿ̂ splits as a sum of irreducible representations, each corresponding to a simple factor, up to isogeny, of

ÿý . The groupÿý acts on these irreducible representations. Let ÿ1, . . . , ÿÿ be an orbit of this action. Let

ÿ̂ÿ be the highest weight of ÿÿ , a coroot of G, and let ÿÿ be the corresponding root of G. Let ÿ ∈ ÿ∗ (ÿ)

be given by ÿ =
∑ÿ
ÿ=1 ÿÿ . Then since the action ofÿÿ permutes the ÿÿs, it permutes the ÿ̂ÿs, and thus the

ÿÿs, so ÿ is ÿý -invariant.

The following theorem is the key step in proving Theorem 1.4(i).

Theorem 7.2. Let ý = ý ((ý)) with ý = Fÿ and ÿ > 5, and let ÿ be a supercuspidal representation

of ÿ (ý) (with G unramified over k). Let ÿ = ý (P1) and suppose there exists a cuspidal automorphic

representation Π of ÿ (Aÿ ), with the following properties:

(a) At every ÿ ∈ Gÿ(ý) ⊂ P
1 (ý), Πÿ

∼
−→ ÿ.

(b) The representation Π∞ has a vector invariant under the pro-p Iwahori subgroup ý∞(ý) in

Corollary 6.2.

(c) The representation Π0 is a constituent of a principal series ýÿý
ÿ (ý )

ý (ý )
ÿ, where ÿ is a tame (i.e.,

depth 0) character of ÿ (ý), whose restriction ÿý to the subgroup ÿ (ý) ⊂ ÿ (ý) arises in the

following way:

ÿý : ÿ (ý)
ÿ

−−−−−−→ ý×
ÿ

−−−−−−→ Q
×

ℓ

where ÿ is a faithful character of ý×.

(d) The local components Πÿ of Π for all ÿ ∉ P1 (ý) are ÿ (Oÿ)-unramified.

Then

Lýý (ÿ) is pure =⇒ Lýý (ÿ) is ramified.
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Proof. Assume Lýý (ÿ) is unramified; we shall derive a contradiction.

Applying Lafforgue, let

L(Π) : Gal(ÿýÿý/ÿ) −→ ÿÿ = ÿ̂ �ÿý

be the global Galois representation associated to Π as in Theorem 2.1. By property (d), L(Π)ý is

unramified for all places x of P1 outside of P1 (ý). However, by property (b) and (c), it follows by

Theorem 2.3 (iv) that L(Π)ýý
0

and L(Π)ýý∞ are tamely ramified. For ÿ ∈ Gÿ (ý), with decomposition

group Γÿ ⊂ ÿ1 (P
1 \ |P1 (ý) |), it follows by property (a) and Theorem 2.1(iii) that

L(Π)ýýÿ
∼

−→ Lýý (ÿ). (7.3)

By our hypothesis, L(Π)ýýÿ is thus unramified for all ÿ ∈ Gÿ (ý) = ý×.

We shall now examine in greater detail the restriction of L(Π) to the local decomposition group Γ0

at 0 ∈ ý . By property (c) and Theorem 2.3 (iv), one has

L(Π)ýý0 : Γ0 = Gal(ýýÿý/ý) −→ ÿÿ −→ ÿÿ,

where the first map is the L-parameter of the character ÿ of ÿ (ý). By the discussion in [DR, §4.3], one

has

Hom(ÿ (ý),Q
×

ý ) � HomFrob (ýý , ÿ̂) � HomFrob (ý
×
ÿ , ÿ̂),

where ýÿ = Fÿÿ is the splitting field of T over k, ýý is the tame inertia group of Γ0 and HomFrob stands

for Frobenius-equivariant homomorphisms. Hence, the restriction of L(Π)ýý
0

to the inertia group (which

factors to the tame inertia group) determines and is determined by the restriction ÿý of ÿ to ÿ (ý). The

special form of ÿý given in property (c) and the fact that ÿ is fixed by Frob thus imply that the restriction

of L(Π)ýý
0

to ýý factors as

L(Π)ýý
0
|ýý : ýý −−−−−−→ ý×

ÿ
−−−−−−→ Q

×

ý

ÿ
−−−−−−→ ÿ̂ −−−−−−→ ÿÿ. (7.4)

Let ý = ⊗ÿ
ÿ=1

ÿÿ be the representation of ÿÿ = ÿ̂ �ÿý where ÿ̂ acts on each ÿÿ and ÿÿ permutes the

factors. The composite ý ◦ L(Π)ýý gives rise to a (semisimple) local system V (Π, ý) on P1 \ |P1 (ý) |

over k. However, since L(Π)ýýÿ is unramified, the purity of Lýý (ÿ) and Theorem 4.2 then imply that

V (Π, ý) extends to a local system on Gÿ over k.

The representation V is obtained as a tensor product of the representations ÿÿ of ÿ̂, which do not

extend to representations of ÿ̂ �ÿý , but do extend to representations of ÿ̂ �ÿýÿ for ýÿ the degree n

extension, since the stabilizer of ÿÿ in the action ofÿý on irreducible factors of the adjoint representation

of ÿ̂ is ÿýÿ . Thus, we similarly have that the composite ÿÿ ◦ L(Π)ýý |Gal(ÿ ýÿý/ýÿ (ý)) gives rise to a

(semisimple) local system V (Π, ÿÿ) on P1 \ |P1 (ý) | over ýÿ, which extends to a local system on Gÿ
over ýÿ.

The above discussion shows that the local system V (Π, ÿÿ) on Gÿ over ýÿ satisfies the hypotheses of

Corollary 4.3. In particular,

(a) the local monodromy representations at 0 and ∞ are tamely ramified;

(b) the local monodromy representation at 0 has abelian image.

Corollary 4.3 thus implies thatV (Π, ÿÿ) breaks up as the sum of rank 1 local systemsL1, . . . ,Lý over ýÿ.

https://doi.org/10.1017/fmp.2024.10 Published online by Cambridge University Press



Forum of Mathematics, Pi 21

Applying Lemma 4.7 to the Lÿ’s, and a standard formula for the trace on a tensor product represen-

tation of an operator that permutes the tensor factors, one sees that for each ÿ ∈ Gÿ(ý),

tr(Frobÿ ,V (Π, ý)) = tr(Frobÿÿ ,V (Π, ÿ1)) =

ý∑
ÿ=1

tr(Frobÿÿ ,L ÿ ) =

ý∑
ÿ=1

tr(Frobÿ1 ,L ÿ ) · tr(ÿ−ÿ
ÿ ,L ÿ ).

(7.5)

Here, it is crucial that we consider the tensor induction instead of the usual induction because the trace of

Frobÿ on the usual induction would be identically zero as soon as ÿ > 1, and so studying this trace would

not be helpful. We take ÿ = 1 without loss of generality because tr(Frobÿÿ ,V (Π, ÿÿ)) is independent of i.

Let us now evaluate tr(ÿÿ ,L ÿ ). By (7.4), and observing that the eigenvalues of ÿ̂ on ÿ1 are the roots

of (ÿ̂, ÿ̂) contained in the simple factor corresponding to ÿ1, we see that

tr(ÿÿ ,L ÿ ) = ÿ(ÿ) 〈ÿ,ÿ ÿ 〉, (7.6)

where ÿ ÿ is either a root of ÿ̂ (or equivalently a coroot of G) contained in ÿ1 or the zero element in ÿ∗ (ÿ̂).

Now note that

(a) ÿ is a character of order ÿ − 1 of ý×;

(b) the function

ÿ ↦→ tr(Frobÿ ,V (Π, ý))

is a constant function of z, since the local representation at each ÿ ∈ Gÿ(ý) is just Lýý (ÿ).

By orthogonality of characters (of ý×) and (7.5), we thus have

0 =
∑
ÿ∈ý×

ÿ(ÿ)−2 · tr(Frobÿ ,V (Π, ý))

=
∑
ÿ∈ý×

ÿ(ÿ)−2 ·

ý∑
ÿ=1

tr(Frobÿ1 ,L ÿ ) · ÿ(ÿ)
〈ÿ,ÿ ÿ 〉

=

ý∑
ÿ=1

tr(Frobÿ1 ,L ÿ ) ·
∑
ÿ∈ý×

ÿ(ÿ)−2 · ÿ(ÿ) 〈ÿ,ÿ ÿ 〉

= (ÿ − 1) ·
∑
ÿ:

〈ÿ,ÿ ÿ 〉≡2 mod (ÿ−1)

tr(Frobÿ1 ,L ÿ ). (7.7)

Furthermore, we have

〈ÿ, ÿ ÿ〉 = 〈

ÿ∑
ÿ=1

ÿÿ , ÿ ÿ〉 =

ÿ∑
ÿ=1

〈ÿÿ , ÿ ÿ〉 = 〈ÿ1, ÿ ÿ〉

since for ÿ ≠ 1, ÿÿ is a root of a different simple factor from ÿ ÿ and thus is orthogonal to ÿ ÿ .

Now one of the ÿ ÿ ’s is the highest weight ÿ∨
1

of ÿ1, for which one has 〈ÿ, ÿ∨
1
〉 = 〈ÿ1, ÿ

∨
1
〉 = 2. For

all other ÿ ÿ , one has

−2 f 〈ÿ, ÿ ÿ〉 < 2.

Hence, since 〈ÿ, ÿ ÿ〉 ∈ Z, we have

〈ÿ, ÿ ÿ〉 ∈ {−2,−1, 0, 1}.
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Since we have assumed ÿ > 5, this implies that there is only one term appearing in the sum in (7.7) –

namely, the term corresponding to the highest root ÿ∨
1

of ÿ̂. Hence, we deduce the desired contradiction

(ÿ − 1) · tr(Frobÿ1 ,L ÿ ) = 0,

which is impossible as L ÿ is a one-dimensional representation.

We have thus completed the proof of Theorem 7.2. �

7.2. Poincare series I

We continue with the proof of Theorem 1.4(i), under the hypothesis that G is semisimple and simply-

connected. Let ý = ý ((ý)) and let ÿ be a supercuspidal representation of ÿ (ý). We say ÿ contains an

ý-type if there is an open compact subgroupý∗ ⊂ ÿ (ý) and an irreducible representation ÿ ofý∗ such

that

ÿ
∼

−→ ý − ýÿý
ÿ (ý )

ý ∗ ÿ. (7.8)

Theorem 7.9. Let ÿ = ý (P1). Let ý = ý ((ý)) and let ÿ be a supercuspidal representation of ÿ (ý).

Suppose

ÿ contains an ý − type (ý∗, ÿ). (7.10)

Then there exists a cuspidal automorphic representation Π of ÿ (ÿ) satisfying the conditions (a)–(d) of

Theorem 7.2.

Proof. The construction follows the method of [GLo]. Hypothesis (7.10) implies that ÿ has a matrix

coefficient ÿ∗ with support in ý∗, with the property that ÿ∗(1) = 1. Using this ý∗, let ý =
∏

ý ýý ⊂

ÿ (Aÿ ) be the open compact subgroup constructed in Proposition 6.1. Define a function ÿ =
∏

ý ÿý :

ÿ (Aÿ ) → C as follows:

(a) At every ÿ ∈ Gÿ (ý) ⊂ P
1(ý), ÿÿ = ÿ∗;

(b) ÿ∞ is the characteristic function of the group ý∞ (ý) of Corollary 6.2;

(c) ÿ0 is the character ÿý : ý0/ý0(ý) � ÿ (ý) → C×, where ÿý is as in the proof of Theorem 7.2;

(d) For ý ∉ |P1 (ý) |, ÿý is the characteristic function of the hyperspecial maximal compact subgroup

ÿ (Oý);

Now define the Poincaré series ÿÿ : ÿ (ÿ)\ÿ (Aÿ ) → C:

ÿÿ (ý) =
∑

ÿ∈ÿ (ÿ )

ÿ(ÿ · ý).

The sum converges absolutely, as in [GLo]. It follows from Corollary 6.2 that

ÿÿ (1) =
∏

ÿ∈Gÿ (ý)

ÿ∗(1) = 1.

In particular, ÿÿ ≠ 0. The spectral decomposition of ÿÿ yields the desired cuspidal automorphic

representation Π. �

Corollary 7.11. Let G be an unramified reductive group over a nonarchimedean local field F of

characteristic p, with constant field k of order ÿ > 5. Suppose that G is not a torus and p does not divide

the order of the Weyl group of G. Then if ÿ is pure, ÿ ◦Lýý (ÿ) is ramified (where ÿ : ÿÿ → ÿÿ/ý (ÿ̂)).

In particular, Theorem 1.4(i) holds.
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Proof. As mentioned at the beginning of the section, we may assume G is simply-connected. Thanks

to the results of [Fi], the supercuspidal representation ÿ of ÿ (ý) contains an ý-type by our hypothesis

on p. The claim now follows immediately from Theorems 7.2 and 7.9. �

Theorem 7.12. Let ý = ý ((ý)) and let ÿ be an irreducible representation of ÿ (ý), with G unramified

reductive over F. Suppose the Genestier-Lafforgue parameter Lýý (ÿ) is pure and unramified. Suppose

every supercuspidal representation of every Levi factor of ÿ (ý) contains an ý-type. This is true in

particular in the following cases:

◦ p does not divide the order of the Weyl group of G [Fi];

◦ p is odd and G is an unramified classical group (unitary, symplectic or special orthogonal) [St].

Then ÿ is an irreducible constituent of an unramified principal series representation of ÿ (ý).

Proof. In any case, ÿ is an irreducible constituent of a representation of the form ýÿý
ÿ (ý )

ÿ (ý )
ÿ for some

parabolic subgroup ÿ(ý) = ÿ(ý) · ý (ý) ⊂ ÿ (ý), where ÿ(ý) is a Levi subgroup of ÿ(ý), ý (ý)

its unipotent radical, and ÿ is a supercuspidal representation of ÿ(ý). Since the Genestier-Lafforgue

parametrization is compatible with parabolic induction by Theorem 2.3, it follows that Lýý (ÿ) is

unramified. Since ÿ is supercuspidal, it follows from Theorems 7.9 and 7.2 (or more simply Corollary

7.11) that L must be a torus and ÿ an unramified character of ÿ(ý). �

8. Proof of Theorem 1.4(ii): wild ramification

The goal of this section is to prove Theorem 1.4(ii). For the convenience of the reader, we restate the

result here:

Theorem 8.1. Let G be an unramified reductive group over a local field ý = ý ((ý)) of equal character-

istic p, and J an open subgroup of a parahoric subgroup ÿÿ. Let ÿ be a representation of J such that

ÿ = c-Ind
ÿ (ý )

ý ÿ is irreducible.

If J is sufficiently small and |ý | = ÿ > 5, then ÿ ◦ Lýý (ÿ) (and hence, ÿ ◦ L(ÿ)) is wildly ramified

(where ÿ : ÿÿ → ÿÿ/ý (ÿ̂)).

8.1. Sufficiently small subgroups

Let us first give the precise definition of being ‘sufficiently small’, recalling that G is defined over k.

Definition 8.2. (i) A finite subgroup H of ÿ (ý) is sufficiently small if there is a Borel k-subgroup B of

G such that ý(ý) ∩ ÿ is trivial.

(ii) For a parahoric subgroup ÿÿ of ÿ (ý), we say ý ⊆ ÿÿ is sufficiently small if its projection to the

reductive group ÿÿ/ÿÿ,0+ is sufficiently small.

For example, the maximal unipotent subgroup of a Borel subgroup is a sufficiently small subgroup

of ÿ (ý) (by the Bruhat decomposition), and ÿÿ,0+ is a sufficiently small subgroup of ÿ (ý).

8.2. An open compact subgroup of ÿ (Aÿ )

As for Theorem 1.4(i), we may and shall assume that G is simply-connected when proving Theorem

8.1. The proof will be via a global argument. Hence, we will be working over ÿ = ý (P1) and make use

of the notation of §5.1. We will need to construct appropriate globalizations of ÿ by Poincaré series,

and the purpose of this section is to construct appropriate open compact subgroups of ÿ (Aÿ ).

Recall from §5.2 that for ÿ ∈ P1 (ý), the apartments A(ÿÿ) in the buildings B(ÿÿ) can be naturally

identified with ÿ∗ (ÿ) ⊗ R and hence with each other. Without loss of generality, we may assume that

the parahoric subgroup ÿÿ in Theorem 8.1 is associated to a point ÿ ∈ A(ÿ0) = ÿ∗(ÿ) ⊗ R. Let b be a

small perturbation of the point −ÿ in A(ÿ∞). Specifically, we choose b so that ÿ + ÿ is a small rational

https://doi.org/10.1017/fmp.2024.10 Published online by Cambridge University Press



24 W. T. Gan et al.

multiple of a cocharacter which lies in the interior of the positive Weyl chamber of ÿ∗(ÿ) ⊗ R. Because

ÿ + ÿ does not lie on the walls of the Weyl chamber, b does not lie on any wall of the apartment that also

contains −ÿ, and because ÿ + ÿ is small, b does not lie on any wall of the apartment that does not contain

−ÿ. So b lies in the interior of a Weyl alcove and thus gives rise to an Iwahori subgroup ÿÿ ⊂ ÿ (ÿ∞).

For each place v of K, set

ÿ (ÿ) =

⎧⎪⎪⎪«
⎪⎪⎪¬
ÿ, if ÿ = 0;

ÿ, if ÿ = ∞;

0, for all other ÿ.

Let

ÿ =
∏
ÿ

ÿ ÿ (ÿ) ⊂ ÿ (Aÿ )

be the associated compact open subgroup of ÿ (Aÿ ) and write ÿÿ = ÿ ÿ (ÿ) , so that for ÿ ∉ {0,∞}, ÿÿ

is the standard hyperspecial maximal compact subgroup ÿ (Oÿ ).

We now note the following:

Lemma 8.3. The natural map

ÿ ∩ ÿ (ÿ) → ÿ0 → ÿÿ → ÿÿ/ÿÿ,0+

is injective with image contained in a Borel subgroup of ÿÿ/ÿÿ,0+.

Proof. Let ÿ : Gÿ → ÿ be a cocharacter which is a negative multiple of ÿ + ÿ. (This exists because ÿ + ÿ

is a small rational multiple of a cocharacter, and we may multiply by any negative integer that cancels the

denominator of that rational to obtain a cocharacter.) The image of ÿ in ÿÿ/ÿÿ,0+ continues to define

a cocharacter of the maximal split torus of ÿÿ/ÿÿ,0+. Since ÿ lies in the interior of a Weyl chamber, it

defines a Borel subgroup ýÿ over k (under the ‘dynamical’ definition of parabolic subgroups). We shall

show that the image of ÿ ∩ ÿ (ÿ) in ÿÿ/ÿÿ,0+ belongs to ýÿ. For this, we need to show that for any

ý ∈ ÿ ∩ ÿ (ÿ),

ÿ(ý) · ý · ÿ(ý)−1 remains bounded as ý → 0.

To verify this, we shall apply Lemma 5.1 to the faithful algebraic representation ÿ : ÿ → Aut(ý) of

G over k that was fixed in §5.1. Recall that V is equipped with a k-basis ÿ1, . . . , ÿÿ of V, where ÿÿ is

an eigenvector of S with eigencharacter ÿÿ . For any ý ∈ ÿ ∩ ÿ (ÿ) and (ÿ, ÿ) such that ÿÿ ÿ (ý) ≠ 0, we

deduce by the product formula, Lemma 5.1, and the definition of ÿ (ÿ), that

0 =
∑
ÿ

ÿ(ÿÿ ÿ (ý)) g
∑
ÿ

� ÿ (ÿ) · (ÿÿ − ÿ ÿ )� = �ÿ · (ÿÿ − ÿ ÿ )� + �ÿ · (ÿÿ − ÿ ÿ )� . (8.4)

Now since b is a small perturbation of −ÿ, (8.4) can only be satisfied if ÿ · (ÿÿ − ÿ ÿ ) is an integer and

ÿ · (ÿÿ −ÿ ÿ ) f −ÿ · (ÿÿ −ÿ ÿ ). Indeed, b is a small perturbation of −ÿ, so we may assume that ÿ · (ÿÿ −ÿ ÿ )

is arbitrarily close to −ÿ · (ÿÿ − ÿ ÿ ). In particular, if ÿ · (ÿÿ − ÿ ÿ ) lies in the interval (ÿ, ÿ + 1) for

some integer n, then ÿ · (ÿÿ − ÿ ÿ ) lies in the interval (−ÿ − 1,−ÿ), and so the sum of their ceilings is

ÿ + 1 + (−ÿ) = 1 > 0.

With ÿ chosen as in the beginning of the proof, we thus deduce that for ý ∈ ÿ ∩ ÿ (ÿ) such that

ÿÿ ÿ (ý) ≠ 0, we have (ÿ + ÿ) · (ÿÿ − ÿ ÿ ) f 0, and thus,

ÿ · (ÿÿ − ÿ ÿ ) g 0.
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It follows that ÿ(ý)ýÿ(ý)−1 is bounded as ý → 0, since all the nonvanishing coordinates ÿÿ ÿ of g are

eigenvectors under the conjugation action by ÿ(ý) with eigenvalue a positive power of t. This implies

that the image of g in ÿÿ/ÿÿ,0+ lies in the Borel subgroup ýÿ, as desired.

It remains to show that if ý ∈ ÿ∩ÿ (ÿ) has trivial image inÿÿ/ÿÿ,0+, then g is the identity element.

If ÿÿ ÿ (ý) ≠ 0, then because ÿ · (ÿÿ − ÿ ÿ ) is an integer and ÿ · (ÿÿ − ÿ ÿ ) f −ÿ · (ÿÿ − ÿ ÿ ), the right side

of (8.4) is 0. So every inequality is sharp; that is,

ÿ0(ÿÿ ÿ (ý)) = ÿ · (ÿÿ − ÿ ÿ ).

However, by Lemma 5.1(ii), if ý ∈ ÿÿ,0+, then

ÿ0 (ÿÿ ÿ (ý)) − ÿÿ ÿ ) > ÿ · (ÿÿ − ÿ ÿ ).

Thus, if ÿ ≠ ÿ , we obtain a contradiction from the assumption ÿÿ ÿ (ý) ≠ 0. Hence, ÿÿ ÿ (ý) = 0 for ÿ ≠ ÿ .

However, if ÿ = ÿ , then ÿÿ ÿ (ý) ∈ Oÿ for every place of K, and thus lies in k, but since ÿ0 (ÿÿÿ (ý) −1) > 0,

we see that ÿÿÿ (ý) = 1. Thus, if ý ∈ ÿ0,ÿ+, then ÿ(ý) is the identity, so that g is the identity since ÿ is

faithful. �

8.3. Poincaré series II

Using the above lemma, we will construct two different Poincaré series for G which are unramified

outside {0,∞} and whose local representation at 0 is ÿ, but with different local representations at ∞.

Let ýÿ be a Borel subgroup of ÿÿ/ÿÿ,0+ containing the image of ÿ ∩ ÿ (ÿ). Let H be the image

of J in ÿÿ/ÿÿ,0+. Since we are assuming that J is sufficiently small, there exists g in ÿÿ/ÿÿ,0+ with

ý ∩ ýýÿý
−1 trivial. By conjugating J by a lift of g, we may assume ý = 1. Set

ÿ ′ = ý ×
∏
ÿ≠0

ÿÿ ⊂ ÿ ⊂ ÿ (Aÿ ).

Then the previous lemma implies that natural map ÿ ′ ∩ ÿ (ÿ) → ÿÿ/ÿÿ,0+ is injective with image

contained in ÿ ∩ ý = {1}. Hence, ÿ ′ ∩ ÿ (ÿ) is trivial.

Recall that ÿÿ ⊂ ÿ (ÿ∞) is an Iwahori subgroup, so that the quotient ÿÿ/ÿÿ,0+ is a torus of rank

ÿ g dim ÿ and hence has at least (ÿ − 1)ÿ points. It thus has a nontrivial character ÿ because ÿ > 2.

We can view ÿ and ÿ ⊗ ÿ as representations of ÿ ′ by projection onto the components at 0 and ∞. Now

apply the Poincaré series construction to obtain

◦ an automorphic function ÿ1 created from a matrix coefficient of ÿ,

◦ an automorphic function ÿ2 created from a matrix coefficient of ÿ ⊗ ÿ.

These Poincaré series are nonzero because ÿ ′ ∩ ÿ (ÿ) is trivial, so that the sum defining the series has

only one nonzero term. From the spectral expansion of ÿ1 and ÿ2, we obtain two cuspidal automorphic

representations Π1 and Π2 which are unramified outside {0,∞} and such that

◦ at 0, the local components of Π1 and Π2 are both isomorphic to ÿ;

◦ at ∞, Π1,∞ has nonzero Iwahori-fixed vectors, whereas Π2,∞ does not. Indeed, both these represen-

tations are subquotients of principal series representations induced from characters of ÿ (ÿ) whose

restrictions to ÿ (ý) are 1 and ÿ, respectively.

8.4. Proof of Theorem 8.1

We can now conclude the proof of Theorem 8.1. Consider the global parameters L(Π1) and L(Π2)

associated to Π1 and Π2 above. These are both unramified outside {0,∞}. Moreover,

L(Π1)
ýý
0 � L(Π2)

ýý
0 , but L(Π1)

ýý
∞ � L(Π2)

ýý
∞ .
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Indeed, at ∞, the associated local Genestier-Lafforgue parameters are tame, and their restrictions to the

tame inertia group at ∞ correspond under class field theory to 1 and ÿ ≠ 1 (up to semisimplification).

Now suppose, for the sake of contradiction, that the local Genestier-Lafforgue parameter of ÿ is tame.

Thus, L(Π1) and L(Π2) factor through the tame fundamental group of Gÿ,ý . In the tame fundamental

group of Gÿ,ý , the inertia subgroups at 0 and ∞ are the same subgroup, both being equal to the tame

geometric fundamental group. Since L(Π1) and L(Π2) are isomorphic when restricted to the tame

inertia group at 0 and semisimplified, they must also be isomorphic when restricted to the tame inertia

group at ∞ and semisimplified. This contradicts what we showed above: that L(Π1) is trivial while

L(Π2) is nontrivial when restricted to the tame inertia group at ∞ and semisimplified. This gives the

desired contradiction and completes the proof of Theorem 8.1.

8.5. A special case

When the group J is contained in the principal congruence subgroup of a hyperspecial maximal compact,

there is a shorter argument, though it requires the purity of Lýý (ÿ) as a hypothesis and appeals to

Theorem 7.2.

Proposition 8.5. Under the hypotheses of Proposition 8.1, suppose ÿÿ is a hyperspecial maximal

compact and J is contained in its principal congruence subgroup ÿÿ,0+. Let ÿ be a pure supercuspidal

representation of ÿ (ÿ) compactly induced from an irreducible representation ÿ of J. Then Lýý (ÿ) is

wildly ramified.

Proof. We construct a Poincaré series as in Theorem 7.9 using a function ÿ which at ∞ is a matrix

coefficient of ÿ and is a characteristic function of the standard hyperspecial maximal compact ýÿ =

ÿ (Oÿ ) at all other places v. Now the support of ÿ∞ is contained in J, and ý × ⊗ÿ≠∞ýÿ ∩ ÿ (ÿ) = {1}.

Thus, the Poincaré series ÿÿ does not vanish at 1, and the space of cusp forms it generates contains

a cuspidal automorphic representation Π that is unramified except at ∞. So L(Π) is a parameter with

values in ÿÿ that is unramified away from ∞. However, by Theorem 7.2, Lýý (ÿ) is ramified. Since a

tamely ramified local system on A1 is unramified, it follows that the ramification at ∞ must be wild. �

9. Questions

In this section, we raise a number of natural questions which are suggested by our results.

9.1. Positive depth representations

In the context of Theorem 8.1, for a given reductive group G over a local field F, one may ask for a better

understanding (or even a classification) of all supercuspidal representations satisfying the condition of

Theorem 8.1 (i.e., that can be induced from a sufficiently small open compact (modulo center) subgroup

J). In particular, one may ask if they can be understood in the framework of J. K. Yu’s construction of

supercuspidal representations. For example, one might hope that if the smallest twisted Levi subgroup

in the twisted Levi sequence in a Yu datum is a torus, then the resulting supercuspidal representation

should satisfy the condition of Theorem 8.1 or a slightly modified version of it.

9.2. Examples of pure supercuspidals

Theorem 1.4(i) has the serious condition that ÿ is a pure supercuspidal representation. It will be good

to have some examples of pure supercuspidal representations in addition to the ones used in §3.3. For

example, the desiderata of the LLC suggests that if ÿ is a generic supercuspidal representation of a

quasi-split G, then ÿ is pure. In the rest of this section, we show this for certain generic supercuspidal

representations of depth 0, conditionally on the independence of ℓ result assumed in [DL].
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9.3. Poincaré series III

We begin by giving yet another construction of Poincaré series. Let us work in the context of §5.1 again,

so that G is an unramified semisimple group over k.

Proposition 9.1. Let ÿ be a depth 0 generic supercuspidal representation of ÿ (ý) (with ý = ý ((ý))) of

the form

ÿ
∼

−→ ý − ýÿý
ÿ (ý )

ÿ (Oý )
ÿ,

where ÿ is a generic cuspidal representation of the finite reductive group ÿ (ý). There is a globally

generic representation Π of G such that

◦ Π0 � ÿ and Π∞ � ÿ∨;

◦ for all other places v of ÿ = ý (ý), Πÿ is ÿ (Oÿ )-unramified.

Proof. Since ÿ is a generic representation of ÿ (ý), one can find a generic character

ÿ : ý (ý) −→ C×

such that the (ý (ý), ÿ)-eigenspace of ÿ is nonzero, in which case it is 1-dimensional. Let us fix a

nonzero vector w such that

ÿ(ÿ) · ý = ÿ(ÿ) · ý for all ÿ ∈ ý (ý). (9.2)

Fixing a ÿ (ý)-invariant inner product 〈−,−〉 on ÿ, we may assume that 〈ý, ý〉 = 1.

Now we may consider the function on ÿ (ÿ0) defined by

ÿ0(ý) =

{
〈ÿ(ý) · ý, ý〉, if ý ∈ ÿ (O0);

0, if ý ∉ ÿ (O0).

This is a matrix coefficient of ÿ, which is built out of a matrix coefficient of ÿ supported on ÿ (O0).

Likewise, we define a function on ÿ (ÿ∞) by

ÿ∞(ý) =

{
〈ý, ÿ(ý) · ý〉, if ý ∈ ÿ (O∞);

0, if ý ∉ ÿ (O∞),

which is a matrix coefficient of ÿ � ÿ∨. Define a locally constant compactly supported function

ÿ =
∏

ÿ ÿÿ on ÿ (Aÿ ) by requiring that ÿ0 and ÿ∞ are as defined above and ÿÿ is the characteristic

function of ÿ (Oÿ ) for all other v. Then consider the Poincaré series

ÿ ÿ (ý) =
∑

ÿ∈ÿ (ÿ )

ÿ (ÿý).

Because of the support conditions on f, one has

ÿ ÿ (1) =
∑

ÿ∈ÿ (ý)

ÿ0(ÿ) · ÿ∞ (ÿ) =
∑

ÿ∈ÿ (ý)

|〈ÿ(ÿ) · ý, ý〉|2.

This sum is certainly nonzero, so that ÿ ÿ is nonzero.

To see if ÿ ÿ is globally generic, let us first construct an appropriate automorphic generic character

« =
∏
ÿ

«ÿ : ý (ÿ)\ý (Aÿ ) −→ C
×.
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Note that one has

ý (ý)\ý (ÿ̂)
∼

−→ ý (ÿ)\ý (Aÿ ),

where ÿ̂ =
∏

ÿ Oÿ . We define « by requiring that

◦ «ÿ = 1 on ý (Oÿ ) for all ÿ ≠ 0 or ∞,

◦ the restriction of «0 to ý (O0) is obtained as

«0 : ý (O0) −−−−−−→ ý (ý)
ÿ

−−−−−−→ C×,

◦ likewise, the restriction of «∞ to ý (O∞) is obtained as

«∞ : ý (O∞) −−−−−−→ ý (ý)
ÿ−1

−−−−−−→ C×.

Hence, for ÿ ∈ ý (ÿ̂), one has

«(ÿ) = ÿ(ÿ0) · ÿ(ÿ∞),

so that « is indeed trivial on the diagonally embedded ý (ý) ↩→ ý (ÿ̂).

We can now compute the (ý,«)-Whittaker-Fourier coefficient of ÿ ÿ :

∫
ý (ÿ )\ý (Aÿ )

«(ÿ) · ÿ ÿ (ÿ) ýÿ

=

∫
ý (ý)\ý (Ô)

«(ÿ) ·
∑

ÿ∈ÿ (ÿ )

ÿ (ÿÿ) ýÿ.

For ÿ ∈ ý (ÿ̂),

ÿÿ ∈ supp( ÿ ) =⇒ ÿ ∈ ÿ (ÿ̂) ∩ ÿ (ÿ) = ÿ (ý).

Moreover, with ÿ ∈ ý (ÿ̂), one deduces by (9.2) that

ÿ (ÿÿ) = 〈ÿ(ÿ · ÿ0) · ý, ý〉 · 〈ý, ÿ(ÿ · ÿ∞) · ý〉 = ÿ(ÿ0) · ÿ(ÿ∞) · |〈ÿ(ÿ)ý, ý〉|2.

Hence, one has ∫
ý (ÿ )\ý (Aÿ )

«(ÿ) · ÿ ÿ (ÿ) ýÿ

=

∫
ý (ý)\ý (Ô)

ÿ(ÿ0) · ÿ(ÿ∞) ·
∑

ÿ∈ÿ (ý)

ÿ(ÿ0) · ÿ(ÿ∞) · |〈ÿ(ÿ)ý, ý〉|2 ýÿ.

=Vol(ý (ý)\ý (ÿ̂)) ·
∑

ÿ∈ÿ (ý)

|〈ÿ(ÿ)ý, ý〉|2,

which is nonzero. Thus, ÿ ÿ is (ý,«)-generic. �

9.4. Purity of generic depth zero representations

Now we can sketch our strategy for showing that a depth 0 generic supercuspidal representation is pure.

We use the following:
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Expected Theorem 9.3 (Dat-Lanard). Let ÿ ∈ A(ÿ, ý) be a depth 0 supercuspidal representation of

ÿ (ý) (in the sense of [DR]). Then the semisimple parameter Lýý (ÿ) is (at most) tamely ramified.

Dat and Lanard prove this in [DL], conditionally on the independence of ℓ of the ℓ-adic parameter

Lýý (ÿ).3

Using this, we can now show the following:

Theorem 9.4. Assume that G is semisimple over k and ý = char(ý) is a good prime for G. Then for any

depth 0 generic supercuspidal representation of ÿ (ý), the associated semisimple parameter Lýý (ÿ) is

pure.

Proof. Consider the global Lafforgue parameter L(Π) associated to the globally generic cuspidal

representation Π of Proposition 9.1. Since Π is unramified outside 0 and ∞, it gives rise to a semisimple

local system L(Π, ýý) on Gÿ/ý , where ýý is the adjoint representation of ÿÿ. Expected Theorem 9.3

implies that L(Π, ýý) is tamely ramified. It follows that, for a finite extension ý ′/ý of the constant field,

the restriction L(Π, ýý)ý′ of L(Π, ýý)ýý to Gÿ/ý
′ is a sum of 1-dimensional tamely ramified ℓ-adic

local systems:

L(Π, ýý)ý′
∼

−→ ⊕ ÿÿ ,

where each ÿÿ is pure of weight ýÿ . Let ¬ be the set of weights ýÿ that occur.

Now suppose Lýý (ÿ) is not pure. Since ÿ belongs to the discrete series, G is semisimple and p is

good for G, it follows from Theorem 1.2 and Corollary 3.12 that the weights that occur in L(ÿ)ýý are

integral and two of them differ by at least 2.

Thus, there are two weights ýÿ and ý ÿ in ¬ with |ýÿ −ý ÿ | g 2. This would imply that for ÿ ∈ Gÿ(ý),

the Satake parameter of the unramified representation Πÿ also has at least two weights that differ by at

least 2. But Πÿ is unitary and generic because Π is cuspidal and globally generic. The existence of two

distinct integral weights that differ by at least 2 is then ruled out by the main theorem of [CH]. �

10. Base change and incorrigible representations

As we mentioned in the introduction, though our ramification result in Theorem 1.4 may seem rather

weak, it could, in fact, serve as a starting point, in conjunction with the global input of automorphic base

change, in the (long) journey towards establishing the local Langlands correspondence for a general

reductive group G over local function fields. In this section, we would like to elaborate on this.

10.1. Tempered base change

Let ý = ý ((ý)) for a finite field k and let G be a connected reductive group over E. For any finite

separable field extension F of E, let T (ÿ, ý) ⊂ A(ÿ, ý) denote the set of irreducible tempered

(admissible) representations of ÿ (ý) with coefficients in C and let ÿ(T (ÿ, ý)) be the set of nonempty

subsets of T (ÿ, ý). We write Lýý
ý for the semisimple Langlands parametrization of (2.2) for A(ÿ, ý),

with a subscript to indicate the base field.

Definition 10.1. Say G admits tempered base change if, for every pair ý ⊂ ý ′ of finite extensions of E,

with ý ′/ý a cyclic extension of prime order, there is a map

ýÿý ′/ý : T (ÿ, ý) → ÿ(T (ÿ, ý ′))

so that for any ÿ ∈ T (ÿ, ý) and any ÿ′ ∈ ýÿý ′/ý (ÿ),

Lýý
ý ′ (ÿ

′) = Lýý
ý (ÿ) |ÿý′ . (10.2)

3In the most recent version of their paper (April 2024), the authors refer to an announcement that Scholze has proved this
independence.
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We may naturally regard ýÿý ′/ý as a map from ÿ(T (ÿ, ý)) to ÿ(T (ÿ, ý ′)). Of course, it is

expected that every G admits tempered base change and that the set ýÿ (ÿ) is characterized intrinsically

inside A(ÿ, ý) in terms of ÿ by relations of distribution characters. It is also assumed that ýÿ (ÿ) is

always a finite set, but we do not make that assumption. There is a brief discussion of the existence of

tempered base change at the end of this section.

Definition 10.3. Suppose G admits tempered base change. The supercuspidal representation ÿ of ÿ (ý)

is incorrigible if for any sequence

ý = ý0 ⊂ ý1 ⊂ · · · ⊂ ýÿ (10.4)

of extensions, where ýÿ/ýÿ−1 is cyclic of prime order for all ÿ g 1, the set

ýÿýÿ /ý (ÿ) := ýÿýÿ /ýÿ−1
(ýÿýÿ−1/ýÿ−2

. . . (ýÿý1/ý (ÿ) . . . ))

contains a supercuspidal member.

Proposition 10.5. Assume G admits tempered base change and ý � |ÿ |. Then for any extension ý/ý , no

pure supercuspidal representation of ÿ (ý) is incorrigible. More generally, suppose G has the property

that, for every Levi subgroup ÿ(ý) of ÿ (ý), every supercuspidal representation of ÿ(ý) contains an

ý-type. Then no pure supercuspidal representation of ÿ (ý) is incorrigible.

Proof. Let ÿ be a pure supercuspidal representation of ÿ (ý). The image of the inertia group under

Lýý
ý (ÿ) is finite, so there is a sequence of cyclic extensions of prime order, as in (10.4), such that, if ÿÿ

is any member of ýÿýÿ /ý (ÿ), we have

Lýý
ýÿ
(ÿÿ ) = Lýý

ý (ÿ) |ÿýÿ

is unramified. It then follows from Corollary 7.12 that ÿÿ is a constituent of an unramified principal

series representation. In particular, no member of ýÿýÿ /ý (ÿ) can be supercuspidal. �

10.2. Existence of tempered base change

Suppose for the moment that F is a p-adic field. A procedure for defining cyclic base change can be

constructed using the methods of [Lab99]. Suppose first that ÿ is supercuspidal with central character

of finite order. Then there is

(i) A totally real number field K with a local place w such that ÿý
∼

−→ ý;

(ii) A totally real cyclic extension ÿ ′/ÿ with ÿ ′
ý = ÿ ′ ⊗ÿ ý

∼
−→ ý ′,

(iii) A connected reductive group G over K, with G (ÿý )
∼

−→ ÿ (ý) and

(iv) G (ÿÿ) compact modulo center for all archimedean places ÿ of K,

(v) And an automorphic representation Π such that Πý
∼

−→ ÿ and

(vi) Πÿÿ isomorphic to a Steinberg representation at any chosen finite set of places ÿÿ .

Then it is proved in [Lab99], using the stable twisted trace formula, that there is a nonempty collection

{Π′} of automorphic representations of Gÿ ′ such that, at every place u at which Π and ÿ ′/ÿ are

unramified, Π′
ÿ is the unramified base change of Πÿ . We can then define ýÿ (ÿ) to be the collection of

Π′
ý for all such ÿ, ÿ ′,G,Π. The stable twisted characters of such collections of Π′

ý are related to the

stable character of ÿ, but in the absence of a canonical notion of L-packet, we omit the precise statement.

When Labesse defined his construction in [Lab99], the stabilization of the trace formula had not yet

been established in either the twisted or the untwisted setting. Arthur reduced the stabilization to the

fundamental lemma in a series of papers shortly thereafter, and a few years later, the main step in the

proof of the fundamental lemma was completed by Ngô. The stabilization of the twisted trace formula is

contained in [MW]; see also [CHLN] for references for the untwisted case. Labesse needed hypothesis

(vi) in the above list in order to work with a simplified version of the trace formula. In principle, (vi) is no
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longer necessary, but the necessary consequences of the full stabilized trace formula have not yet been

established (see [CHLN, §CHL.IV.B] for an example of the kind of work required). Thus for practical

purposes, the construction in [Lab99] still provides the most complete definition of local supercuspidal

base change in general.

Since we are only looking for semisimple Langlands parameters, we can reduce a general tempered ÿ

to the supercuspidal case by means of parabolic induction. Unfortunately, although Fargues and Scholze

have defined a semisimple parametrization of all irreducible admissible representations of ÿ (ý), when

F is a p-adic field, there is no way to relate the parameter attached to ÿ to that attached to the elements

of the set ýÿ (ÿ) defined by Labesse’s construction, unless we know how to attach Galois parameters

to the globalizations Π as in (v). If we could do that, then the relation between the parameters of Πÿ

and Π′
ÿ at unramified places would suffice, by Chebotarev density, to establish the relation (10.2) at the

place of interest. This reasoning has, in fact, been applied for most classical groups, and for ÿ2, but it

is not available in general.

Now suppose ý = ý ((ý)) as above. We can certainly globalize ÿ as in the number field case, and

then [Laf18] supplies the necessary global parametrization that is missing in the setting of number

fields. However, the stable twisted trace formula is lacking for function fields, so for most G, tempered

base change is not (yet) available. It should nevertheless be (relatively) straightforward, although time-

consuming, for specialists to prove the necessary statements, starting with the construction of the non-

invariant trace formula by Labesse and Lemaire [LL], when p is large relative to the group G.

10.3. Base change of large prime degree and fields of small order

Let ÿ be a supercuspidal representation as in Theorems 7.1 and 7.2. Those theorems are stated under

the hypothesis ÿ = |ý | > 5, which concerns the size of the residue field k rather than the characteristic.

Theorem 7.2 of [BFHKT] asserts that there is a constant ý(ÿ) such that, if ÿ > ý(ÿ), and ý ′/ý is

cyclic of prime degree m, then there exists a base change ÿ′ of ÿ to ý ′, in the sense that the Lýý (ÿ′)

is the restriction of Lýý (ÿ) to the Weil group of ý ′. In particular, we may assume ý ′ = ý ′((ý)) is an

unramified extension, where [ý ′ : ý] = ÿ and therefore |ý ′ | = ÿÿ. In particular, the hypotheses on q are

satisfied for ÿ′. Write ÿÿ instead of ÿ′. Then Lýý (ÿ) is unramified if and only if Lýý (ÿÿ) is unramified.

We thus have the following alternative:

(i) For some ÿ g sup(3, ý(ÿ)), ÿÿ is supercuspidal, and then the results of Theorems 7.1 and 7.2

remain valid for ÿ, without any hypothesis on q;

(ii) Or else, for all ÿ g sup(3, ý(ÿ)), ÿÿ is not supercuspidal.

Although the second alternative is clearly absurd, we do not see how to exclude it by available means.

At least for the toral supercuspidals considered by Chan and Oi, the results of [BFHKT, §8] show that

ÿÿ remains supercuspidal for almost all prime m. However, we have not proved that their parameters

are pure.

The above alternatives do seem to provide a route to proving that a given pure supercuspidal ÿ is

not incorrigible, even when |ý | f 5. If we are in the first alternative, then the residue field satisfies the

hypotheses of Theorems 7.1 and 7.2. We can then define what it means for ÿ to be incorrigible if we

have access to cyclic base change of all prime degrees – not just those guaranteed by [BFHKT] – and

argue as in the previous sections. Under the second (absurd) alternative, we have already reduced the

supercuspidality by base change, and we can then argue by induction on the size of the cuspidal support.

Too much attention should not be given to these remarks, however. The restriction on |ý | is only

relevant when the residue characteristic is 2, 3 or 5. These are the primes that tend to divide the order

of Weyl groups. So it would be unnatural to try to formulate unconditional results based on these

observations.

10.4. The case of ÿÿ(ÿ)

We again assume F is a local field of positive characteristic. We shall illustrate the strategy discussed

above for ÿ = ÿÿ(ÿ). It has been proved by Henniart and Lemaire in [HeLe] that ÿ = ÿÿ(ÿ) admits
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tempered base change; they even prove that ýÿý ′/ý (ÿ) is a singleton for any ÿ. Moreover, every

supercuspidal representation of every Levi subgroup of ÿ (ý) contains an ý-type [BK]. Thus, the above

discussion applies. Before drawing the relevant conclusion, we make the following observation.

The following lemma may be derived from the work of Bushnell and Kutzko.

Lemma 10.6. Let ÿ be a supercuspidal representation of ÿÿ(ÿ, ý) for F a local field. One of the

following is true:

(a) There exists a principal hereditary order ý ⊂ ýÿ (ý), a field ý ⊂ ýÿ (ý) which is an extension

of F of degree > 1, such that ý× normalizes ý, and, writing ý for the centralizer of E in ý and ÿ for the

maximal ideal of ý, a representation Λ of ý× · (ý×∩ (ý+ÿ)) such that ÿ is the induced representation

of Λ.

(b) There exists a representation Λ of ý×ÿÿÿ (Oý ) such that ÿ is the induced representation of Λ.

Proof. By [BK, Theorem 8.4.1], there exists a simple type (ý, ÿ) in G such that ÿ | ý contains ÿ. The

definition [BK, Definition 5.5.10] of simple type splits into two cases, (a) and (b).

The case (b) will be easier to handle – so much so that it is not even necessary to give the definition

of this case. Instead, we note that in this case, by [BK, Theorem 8.4.1(iii)], there exists a representation

Λ of ý×U(ý), where U(ý) is the unit group of a hereditary order ý, such that ÿ = Ind(Λ). Because

ý is a hereditary order, U(ý) is a compact open subgroup of ÿÿ(ÿ, ý) and thus, up to conjugation, is

contained in the maximal compact ÿÿÿ (Oý ), By first inducing Λ from ý×U(ý) to ý×ÿÿÿ (Oý ), we

obtain case (b) above.

Now we turn to case (a). Let A be the algebra of ÿ × ÿ matrices over F. In this case, ý is a principal

Oý -order in A and [ý, ÿ, 0, ÿ] is a simple stratum. Let us unpack this definition. The order ý is a

compact open Oý -subalgebra of A. We write ÿ for the Jacobson radical of ý. We let ÿ be an element

of A and take n to be a positive integer. We define ý = ý [ÿ], ý the centralizer of E in ý, and ÿ the

maximal ideal of ý. We set [BK, Definitions 1.4.3 and 1.4.5]

ý0 (ÿ,ý) = max{ý ∈ Z | {ý ∈ ý | ÿý − ýÿ ∈ ÿý } ⊄ ý +ÿ}.

Then the assumption that [ý, ÿ, 0, ÿ] is a simple stratum means that ý is hereditary, ý× normalizes

ý, ÿý (ÿ) = −ÿ, and 0 < −ý0 (ÿ,ý) [BK, Definition 1.5.5].

In this context, [BK, Definition 3.1.8] defines an algebra ý(ÿ) by an inductive procedure. For us, the

only relevant feature of this definition is that it is contained iný+ÿ [
ÿ+1

2
] where ÿ = −ý0 (ÿ,ý) > 0 ([BK,

3.1.6]), and thus, ý ⊆ ý +ÿ. We can next define [BK, (3.1.14)] a group ý (ÿ,ý) as the intersection of

ý with the group of units U0 (ý) = ý×.

We can finally state the conclusion of [BK, Theorem 8.4.1(ii)] in this case, which is that there is

a representation Λ of ý×ý (ÿ,ý) such that ÿ = Ind(Λ). We will use only this structure and will not

concern ourselves with the exact construction of Λ. If ý = ý, then, because ý (ÿ,ý) is contained in a

maximal compact subgroup, we are again in case (b), so we may assume ý ≠ ý.

Since ý (ÿ,ý) is contained iný×∩ (ý+ÿ), we can induce Λ from ý×ý (ÿ,ý) to ý× · (ý×∩ (ý+ÿ)),

and we are in case (a) above. �

Lemma 10.7. If ÿ satisfies case (b) of Lemma 10.6, then ÿ is pure and ramified.

Proof. The determinants of elements of ÿÿÿ (Oý ) must have zero valuation, and because ý× consists

of scalars, the determinants of its elements must have valuation divisible by n. It follows that, if ÿ is the

character of ÿÿ(ÿ, ý) defined by ÿ(ý) = ÿ
2ÿÿ
ÿ ÿ (det(ý)) , then

ÿ ⊗ ÿ = Ind(Λ) ⊗ ÿ = Ind(Λ ⊗ ÿ) = Ind(Λ) = ÿ.

By [GLa, Remarque 0.2], it follows that the Genestier-Lafforgue parameter ÿÿ is stable under tensor-

product with the one-dimensional unramified representation ofÿý sending Frobenius to ÿ2ÿÿ/ÿ. Let a be

a matrix representing that isomorphism. Then ÿÿ (Frobÿ) ◦ ÿ = ÿ2ÿÿ/ÿÿ ◦ ÿÿ (Frobÿ), so a is conjugate
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to ÿ2ÿÿ/ÿÿ. Thus, the set of eigenvalues of a is stable under multiplication by ÿ2ÿÿ/ÿ, so a has n distinct

eigenvalues, and thus, a has a one-dimensional eigenspace. This one-dimensional eigenspace is a one-

dimensional representation ÿ of the subgroup ofÿý corresponding to the degree n unramified extension

ýÿ of F, which, because Frobenius permutes the eigenspaces, gives an isomorphism Ind
ÿý

ÿýÿ
ÿ � ÿÿ .

Since ÿ is a one-dimensional representation, it is automatically pure of some weight (possibly non-

integral), so ÿÿ is pure. By Theorem 1.4(i), ÿÿ is ramified. �

We now assume given ÿ in case (a) of Lemma 10.6, and prepare for the construction of a Poincairé

series by choosing compact subgroups at each place.

It follows from an elementary calculation or [BK, p. 76 and p. 183] that a principal hereditary order

ý, after choosing a basis, can be put into the following form: We choose a divisor e of n, and then we take

all ÿ × ÿ matrices decomposed into ÿ/ÿ × ÿ/ÿ blocks of size ÿ × ÿ, where all the blocks on the diagonal

and above have entries in the ring of integers Oý , and all the the blocks below the diagonal have entries

in the maximal ideal of Oý . We fix for the remainder of this argument a basis where ý has this form.

We can choose a finite field Fÿ such that ý � Fÿ ((ý)) and fix such an isomorphism. This identifies F

with the local field Fÿ (ý)0 of P1
Fÿ

at 0. We now define subgroupsýý of ÿÿÿ (Fÿ (ý)ý) for each place x of

Fÿ (ý). For ý ≠ 0,∞, we take ýý to be the standard maximal compact subgroup. We take ý∞ to consist

of block-diagonal matrices in ÿÿÿ (Fÿ ((ý
−1))) where all the blocks on the diagonal and below are in

ýÿ (Fÿ [[ý
−1]]), all the blocks above the diagonal are in ýÿ (ý

−1Fÿ [[ý
−1]]), and all the diagonal blocks,

modulo ý−1 are in ÿ/ÿ fixed Borel subgroups of ÿÿÿ, to be chosen in Lemma 10.8. We take ý0 to be

ý× (ÿ,ý).

Let ÿ = ÿÿÿ (Fÿ (ý)) ∩
∏

ý ýý .

Lemma 10.8. For a suitable choice of Borel subgroups, the group S is contained in a maximal torus T

of ÿÿÿ (Fÿ), and furthermore, the n-dimensional vector space, when viewed as a representation of S, is

a sum of ÿ/ý characters each repeated k times for some ý > 1 a divisor of n.

Proof. First observe that the valuation of the determinant of any element of ýý for any ý ≠ 0 is 0. It

follows that for ý ∈ ÿ, det ý has valuation 0 at every place away from 0 and thus by the product formula

has valuation 0 at 0 as well. The valuation of the determinant of every element of ý× is 0, so g must be

the product of an element of ý× ∩ (ý +ÿ) with a unit ÿ ∈ ý×. Now every unit of ý× is contained in

ý× by [BK, Proposition 1.2.1(i)]. Because ÿ ∈ ý× and thus u commutes with ÿ, we have ÿ ∈ ý. Thus,

ý ∈ ÿ · (ý× ∩ (ý +ÿ)) = ý× ∩ (ý +ÿ).

In particular, g, at 0, is contained iný. Together with our assumptions at other places, we conclude that

every matrix entry of g is integral at each place of Fÿ (ý) and hence, in fact, lies in Fÿ , so ý ∈ ÿÿÿ (Fÿ).

Furthermore, by the integrality conditions at 0, we see that every ÿ × ÿ block of g below the diagonal

vanishes, and by the integrality conditions at ∞, every ÿ × ÿ block of g above the diagonal vanishes. So

g is a block-diagonal matrix (i.e., ý ∈ (ÿÿÿ (Fÿ))
ÿ/ÿ). Furthermore, each of the diagonal matrices must

be contained in some fixed Borel, to be chosen later.

We now use the fact that ý/ý is a nontrivial extension. Thus, it either ramifies or contains an

extension of the residue field.

We handle the case when E is ramified first. In this case, E contains an element x whose determinant

does not have valuation divisible by n, and thus the action of x on ý must permute the ÿ/ÿ diagonal

blocks. The action on the blocks divides them into ÿ/(ÿý) orbits of size k for some ý > 1 dividing ÿ/ÿ.

Because elements of ý commute with E, and thus in particular with x, their value mod ýý on one block

in the orbit determines their value on every other block in the orbit. So, mod ÿ, the elements of ý lie in

ýÿ (Fÿ)
ÿ/(ÿý) , and the units of ý lie in ÿÿÿ (Fÿ)

ÿ/(ÿý) . To define ý∞, we choose ÿ/ÿ Borel subgroups

of ÿÿÿ (Fÿ) such that, in each orbit, at least one of the Borel subgroups is sent by x to a Borel in general

position with respect to the next Borel in the orbit. It follows that each element of ÿ ⊂ ÿÿÿ (Fÿ)
ÿ/(ÿý)

lies in the intersection of two Borels in general position and thus lies in the maximal torus, which
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is contained in a maximal torus of ÿÿÿ. Furthermore, the n-dimensional representation of S is the

restriction of the n-dimensional representation of ÿÿÿ (Fÿ)
ÿ/(ÿý) , which is the sum of ÿ/(ÿý) standard

representations, each repeated k times, so as a representation of S, it is the sum of ÿ/ý characters, each

repeated k times, as desired.

We handle the case when E contains a residue field extension Fÿý next. In this case, E contains an

element x which generates the residue field extension. Because x is a unit, x lies in ý. Restricting to each

of the ÿ/ÿ diagonal blocks and modding out by ýý , the element x satisfies the characteristic polynomial

of a generator of Fÿý and thus generates a subfield isomorphic to Fÿý . Thus, the centralizer of x in each

block is isomorphic to ÿÿÿ/ý (Fÿý ), and every unit in ý + ÿ, restricted to each diagonal block and

reduced modulo ýý , must lie in this ÿÿÿ/ý (Fÿý ).

We choose a Borel as follows: Fix a Fÿý -basis of the e-dimensional vector space ÿ1, . . . , ÿÿ/ý , and

then extend the sequence

ÿ1, . . . , ÿÿ/ý , ýÿÿ/ý , ýÿÿ/ý−1, . . . , ýÿ1

arbitrarily to anFÿ-basis of this space. For each block, choose a Borel consisting of linear transformations

which are upper-triangular with respect to this basis, and use these to define ý∞. Then every ý ∈ ÿ,

restricted to this block, will lie in the intersection of ÿÿÿ/ý (Fÿý ) with this Borel. Hence, g will be

upper-triangular with respect to the Fÿý -basis ÿ1, . . . , ÿý and upper-triangular with respect to the Fÿý -

basis ýÿÿ/ý , ýÿÿ/ý−1, . . . , ýÿ1, and thus Fÿý -diagonal with respect to the basis ÿ1, . . . , ÿý . Furthermore,

g must act on ÿ1, . . . , ÿý by multiplication by elements of Fÿ , since otherwise it would not preserve the

Fÿ-subspace generated by ÿ1, . . . , ÿý . So, in fact, g is contained in the diagonal of ÿÿÿ/ý (Fÿ) inside

ÿÿÿ/ý (Fÿý ) insideÿÿÿ (Fÿ). Passing fromÿÿÿ/ý (Fÿ) toÿÿÿ (Fÿ) in this way sends the maximal torus

to a subset of the maximal torus, as desired, and expresses the e-dimensional standard representation of

ÿÿÿ as a sum of k copies of the ÿ/ý-dimensional standard representation of ÿÿÿ/ý . Hence, the sum of

k copies of ÿ/ý characters of S, as desired. �

Note that ý∞ is an Iwahori subgroup of ÿÿÿ (Fÿ ((ý
−1))) and thus surjects onto ((Fÿ)

×)ÿ.

Lemma 10.9. If ÿ > 2, any (one-dimensional) character of S may be extended to a nontrivial character

of ý∞.

Furthermore, if ÿ > 3, any character of S may be extended to two characters, ÿÿ, ÿÿ , both pulled

back from ((Fÿ)
×)ÿ, where ÿÿ is trivial on at least one copy of F×ÿ and ÿÿ is trivial on no copies of F×ÿ .

Proof. For each case, note that the subgroup ý∞ is an Iwahori subgroup of ÿÿÿ (Fÿ ((ý
−1))), so its

quotient by its maximal pro-p subgroup is ((Fÿ)
×)ÿ. Since S is a subgroup of the maximal torus of

ÿÿÿ (Fÿ) by Lemma 10.8, its order is prime to p, and so the quotient of ý∞ by its maximal pro-p

subgroup is faithful. Thus, ÿÿ is a character of the image of S inside ((Fÿ)
×)ÿ.

For the first case, it suffices to extend ÿ−1
ÿ to a nontrivial character of (F×ÿ)

ÿ and inflate to ý∞. We

can do this unless ÿÿ is trivial and ÿ = ((Fÿ)
×)ÿ, which contradicts our claim that the characters of S

are repeated unless F×ÿ is trivial, which implies ÿ = 2.

For the second case, if ÿ > 3, note that since the standard representation of S is the sum of ÿ/ý

characters repeated k times, the image of S inside (F×ÿ)
ÿ is contained in (F×ÿ)

ÿ/ý , repeated k times. It

follows that when we extend ÿ−1
ÿ to a character ÿ of (F×ÿ)

ÿ, which can be viewed as a tuple of n characters

ÿ1, . . . , ÿÿ of Fÿ , we can choose any tuple of characters as long as the product of k characters in each

of ÿ/ý orbits takes some fixed value depending on the orbit. So we can certainly choose ý − 1 of the

characters in each orbit to be trivial, and the last one to take the fixed value, to produce ÿÿ. To produce

ÿÿ , we choose ý − 2 of the characters in each orbit to be an arbitrary nontrivial character. The product

of the two remaining characters is then determined. Since ÿ > 3, there are more than two characters,

and so we can choose the next character to be a character which is neither trivial nor the determined

product. It follows that the last character is nontrivial, so ÿÿ indeed contains no trivial characters. �
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We are now ready to construct our Poincaré series. Since S is a finite abelian group, ÿ restricted to

ÿ ⊂ ý×ý (ÿ,ý) is a sum of one-dimensional characters. Let ÿÿ be one of these.

Proposition 10.10. Assume the residue field of F has more than 2 elements. Then every supercuspidal

representation of ÿÿ(ÿ, ý) is ramified. Moreover, if the residue field of F has more than 3 elements,

then every supercuspidal representation of ÿÿ(ÿ, ý) is either ramified and pure or wildly ramified.

Proof. Let ý = Fÿ ((ý)). Fix a supercuspidal rerpesentation ÿ. We apply Lemma 10.6. In case (b), ÿ is

pure and ramified by Lemma 10.7, so we may reduce to case (a), where we will prove that ÿ is ramified

if ÿ > 2 and wildly ramified if ÿ > 3.

To do this, we construct a Poincaré series, using all the notation above. Since S is a finite abelian

group, ÿ restricted to ÿ ⊂ ý×ý (ÿ,ý) is a sum of one-dimensional characters. Let ÿÿ be one of these.

We extend ÿ−1
ÿ to a nontrivial character ÿ of ý∞ using Lemma 10.9. We take the representation ÿ ⊗ ÿ

of
∏

ý ýý , which is trivial by construction on ÿ = ÿÿÿ (ý) ∩
∏

ý ýý . Using a matrix coefficient of

this representation, we can construct a Poincaré series. After decomposing into Hecke eigenforms, this

series generates an automorphic representation Π which is unramified outside of 0 and ∞, of type

Ind(ÿ) = ÿ at 0, and whose local factor at ∞ contains a vector that transforms according to ÿ underý∞.

By Lafforgue, associated to this representation is a global parameter ÿΠ which matches ÿÿ at 0, and is

unramified away from 0 and ∞.

Furthermore, at ∞, the local factor of Π is contained in a parabolic induction from the Borel of

a tamely ramified character of the maximal torus, which, restricted to the Fÿ-points of the maximal

torus, is ÿ. Thus, by the compatibility of Genestier-Lafforgue with parabolic induction and the local

Langlands correspondence for ÿÿ1, the Genestier-Lafforgue parameter at ∞ is a sum of n tamely

ramified characters whose restriction to the inertia group is trivial if and only if the restriction of ÿ to

the corresponding copy of F×ÿ is trivial. Thus, the restriction of the global parameter ÿΠ to ∞ is tamely

ramified and is unipotent if and only if ÿ is trivial.

If ÿ is unramified, then ÿΠ is unramified away from 0 and ∞ and has at worst unipotent ramification

at 0. Because ÿΠ is unramified away from 0 and ∞ and tamely ramified at 0 and ∞, the restrictions of

ÿΠ to the inertia groups at 0 and ∞ are isomorphic, which contradicts the fact that ÿΠ is unipotent at 0

and ÿΠ is non-unipotent at ∞. So, in fact, ÿÿ is ramified.

If ÿ > 3 and ÿ is tamely ramified, then we apply the second case of Lemma 10.9 to produce two

characters, ÿÿ and ÿÿ , and follow the same procedure above to produce two globalizations Πÿ,Πÿ .

Again, ÿΠÿ , ÿΠÿ are tame at 0 and ∞, so the restrictions of ÿΠÿ to the inertia subgroup at ∞ is

isomorphic to its restriction to the inertia subgroup at 0 and thus isomorphic, up to semisimplification,

to ÿÿ . The same is true for ÿΠÿ , so ÿΠÿ and ÿΠÿ are isomorphic up to semisimplification. However,

the semisimplification of ÿΠÿ is a sum of one-dimensional characters, at least one trivial, whereas

the semisimplification of ÿΠÿ is a sum of one-dimesional characters, all nontrivial, so they cannot be

isomorphic. This is a contradiction; hence, ÿ is wildly ramified in this case. �

Corollary 10.11. Let ÿ be a supercuspidal representation ofÿÿ(ÿ, ý). Then there is a sequence of cyclic

extensions as in (10.4) such that ýÿýÿ /ý (ÿ) is an irreducible constituent of an unramified principal

series representation.

Proof. By 7.12 and induction, we know that we can find a sequence of cyclic extensions as in (10.4)

such that ýÿýÿ /ý (ÿ) is an irreducible constituent of a principal series representation whose parameter is

unramified. By Proposition 10.10, such a principal series must be a parabolic induction from the Borel,

as a supercuspidal on any Levi except the maximal torus would have a ramified Langlands parameter.

By the local Langlands conjecture for ÿÿ1, it must be an induction of an unramified representation of

the maximal torus (i.e., an unramified principal series). �

Corollary 10.11 is the key point in (almost) every proof of the local Langlands correspondence

for ÿÿ(ÿ). It was already mentioned in the introduction that in [LRS93, HT01, He00], this result is

obtained as a consequence of Henniart’s numerical correspondence, whereas in [Sch13], it is proved by
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a geometric argument involving nearby cycles in the local model. Starting with Corollary 10.11, one

obtains the full local correspondence by an inductive study of the fibers of local base change.

Here, we obtain Corollary 10.11 by a completely different argument, based on the geometric con-

siderations of [Laf18], the global base change of [HeLe] and the existence of types for supercuspidal

representations [BK]. It is questionable whether this argument is genuinely new because the existence

of the global parametrization in [Laf18], combined with the converse theorem as in [Laf02], already

suffices to prove the local as well as the global correspondence. However, the reasoning used here can

be applied to any G for which global base change and the existence of types is known.

11. Applications to groups over p-adic fields

In this final section, we speculate on how our results in positive characteristic could have impact on

analogous questions in characteristic zero local fields, via the principle of close local fields.

Let ý = ý ((ý)) be a local field of characteristic p as before and let ý♯ be a p-adic field. We write

Oý ,Oý ♯ for their integer rings, and ÿý , ÿý ♯ for the corresponding maximal ideals.

Definition 11.1. Let n be a positive integer. We say that F and ý♯ are ÿ-close if

Oý/ÿ
ÿ
ý

∼
−→ Oý ♯/ÿ

ÿ
ý ♯

as rings.

We write ý? for either F or ý♯. Let G be a connected reductive group over ý?. The depth of a

parameter ÿ ∈ Gýý (ÿ, ý) is defined to be the maximum n such that ÿ is trivial on the subgroup ýÿ
ý ? of

the inertia group ýý ? , where we are using the upper numbering. Let Gýý,ÿ (ÿ, ý) ⊂ Gýý (ÿ, ý) denote

the subset of parameters of depth at most n.

Theorem 11.2 (Deligne). If F and ý♯ are n-close, then there is a natural bijection

Gýý,ÿ (ÿ, ý) � Gýý,ÿ (ÿ, ý♯). (11.3)

Assume now that G is split and let ýÿ (ý
?) ⊂ ÿ (Oý ? ) denote the n-th Iwahori filtration subgroup, as

defined in [G, §3]; thus, ý = ý0 is the usual Iwahori subgroup, and ýÿ is the kernel of the reduction map

I(Oý ? ) → I(Oý ?/ÿÿ
ý ? ). Let ÿ (ÿ (ý?), ýÿ) denote the Hecke algebra of ýÿ (ý

?)-biinvariant functions

on ÿ (ý?) with coefficients in the algebraically closed field C. Let Aÿ (ÿ, ý?) ⊂ A(ÿ, ý) denote

the subset of equivalence classes of irreducible admissible representations generated by vectors fixed

under ýÿ (ý
?). Any ÿ ∈ Aÿ (ÿ, ý?) is then determined up to isomorphism by the representation of

ÿ (ÿ (ý?), ýÿ) on its invariant subspace ÿýÿ (ý
?) . The following is Ganapathy’s refinement of a theorem

of Kazhdan:

Theorem 11.4 (Ganapathy-Kazhdan, [G]). If ý♯ and F are n-close, then there is a natural isomorphism

ÿ (ÿ (ý), ýÿ)
∼

−→ ÿ (ÿ (ý♯), ýÿ) (11.5)

of finitely-generated C-algebras. Moreover, there is a bijection

Aÿ (ÿ, ý) � Aÿ (ÿ, ý♯) (11.6)

with the property that, if ÿ ∈ Aÿ (ÿ, ý) corresponds to ÿ♯ ∈ Aÿ (ÿ, ý♯), then the invariant subspaces

ÿýÿ (ý ) and ÿ♯,ýÿ (ý
♯) are isomorphic as modules with respect to the isomorphism (11.5).

In view of these results, it would be unnatural not to make the following conjecture:
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Conjecture 11.7. For any positive integer n, the following diagram commutes:

Aÿ (ÿ/ý)
ÿÿÿÿýýÿÿÿ−ÿÿ ÿ ÿ ýÿýÿÿ
−−−−−−−−−−−−−−−−−−−−→ Gýý,ÿ (ÿ/ý)

(11.6)
⏐⏐� ⏐⏐� (11.3)

Aÿ (ÿ/ý♯) −−−−−−−−−−−−−−−→
ýÿÿýÿÿý−ÿýℎýýÿÿ

Gýý,ÿ (ÿ/ý♯).

Here, the top line is the parametrization of Genestier and Lafforgue (Theorem 2.1 (iii)), while

the bottom line is the parametrization defined by Fargues and Scholze in [FS] for groups over p-

adic fields. Fargues and Scholze have also constructed a semisimple parametrization for groups over

local fields of positive characteristic. Li Huerta has shown in [LH23] that this latter parametrization is

compatible with Lafforgue’s global parametrization and therefore coincides with the Genestier-Lafforgue

parametrization. Thus, Conjecture 11.7 also asserts that the two Fargues-Scholze parametrizations are

compatible with the Deligne-Kazhdan correspondence.

The following corollary is an immediate consequence of the conjecture and the results of the previous

sections.

Corollary 11.8. Let ý♯ be a finite extension of Qý with residue field k of characteristic p. Let ÿ g 0

and assume there is a local field F of characteristic p such that ý♯ and F are n-close. Let G be a split

semisimple group over F. Suppose |ý | > 5 and p does not divide the order of the Weyl group of G.

Finally, suppose Conjecture 11.7 holds for the p-adic field ý♯.

Let ÿ be a supercuspidal representation of ÿ (ý♯). Suppose the semisimple Fargues-Scholze param-

eter Lýý (ÿ) attached to ÿ is pure. Then Lýý (ÿ) is ramified.

More generally, let ÿ be any pure irreducible representation of ÿ (ý♯) with unramified Fargues-

Scholze parameter. Thenÿ is an irreducible constituent of an unramified principal series representation.

Since every p-adic field has a local field F of characteristic p that is 0-close to ý♯, we have the

following special case of Corollary 11.8

Corollary 11.9. Let ý♯ be a finite extension of Qý with residue field k of characteristic p. Let G be a

split semisimple group over F. Suppose |ý | > 5 and p does not divide the order of the Weyl group of G.

Finally, suppose Conjecture 11.7 holds for the p-adic field ý♯. Then any pure depth zero supercuspidal

representation of ÿ (ý♯) has ramified Fargues-Scholze parameter.

One can hope to derive consequences of Conjecture 11.7 for general supercuspidal representations

of a general p-adic field ý♯, replacing ý♯ by a Galois extension ý ′ with an n-close F for any n. This is

the strategy followed by Henniart in his proof of the numerical local correspondence for p-adic fields

in [He88]; the Galois extension ý ′ in his construction was obtained by applying the results of [AC] on

cyclic base change. For general groups over p-adic fields, one can define a version of local cyclic base

change using the global methods of [Lab99], as explained in §10.2. In order to apply this to prove results

about purity, we need to know the answers to the following questions:

Question 11.10. Does the Fargues-Scholze parametrization commute with cyclic base change, as de-

scribed in §10.2?

Question 11.11. Let ý ′/ý♯ be a cyclic extension of prime order. Suppose ÿ ∈ Aÿ (ÿ/ý♯), and ÿ′

belongs to the base change of ÿ to ÿ (ý ′). Is ÿ′ ∈ Aÿ (ÿ/ý ′)?

A. Globalization of discrete series, by Raphaël Beuzart-Plessis

Let X be a smooth proper algebraic curve X over Fÿ , with function fieldÿ = Fÿ (ÿ). Let G be a connected

reductive group over K and let ý0 be the neutral component of its center. Recall that for ÿ ∈ |ÿ | and

ÿÿ a discrete series of ÿ (ÿÿ ) a pseudo-coefficient of ÿÿ is a function ÿÿÿ ∈ ÿ∞
ý (ÿ (ÿÿ )/ý

0(ÿÿ ), ÿ
−1
ÿ ),
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where ÿÿ denotes the restriction of the central character of ÿÿ to ý0 (ÿÿ ), such that for every tempered

irreducible representation ÿ′ÿ of ÿ (ÿÿ ) on which ý0 (ÿÿ ) acts through the character ÿÿ , we have

Trace ÿ′ÿ (ÿÿÿ ) =

{
1 if ÿ′ÿ � ÿÿ ;

0 if ÿ′ÿ � ÿÿ .

The existence of pseudo-coefficients can be deduced from the Trace Paley-Wiener theorem [BDK].

Moreover, it follows from Langlands classification that if ÿ′ÿ is an arbitrary smooth irreducible repre-

sentation of ÿ (ÿÿ ), on which ý0 (ÿÿ ) acts through the character ÿÿ , if Trace ÿ′ÿ (ÿÿÿ ) ≠ 0, then ÿ′ÿ has

the same cuspidal support as ÿÿ .

Let ÿ : ý0 (ÿ)\ý0(Aÿ ) → C× be a continuous character.

Let T be the universal Cartan of G (i.e., the torus quotient of a Borel subgroup in any quasi-split

inner form of G). Let ÿÿÿÿ ⊂ |ÿ | be the finite subset of places where G or ÿ is ramified and choose for

every ÿ ∈ |ÿ | \ ÿÿÿÿ a hyperspecial maximal compact subgroup ýÿ ⊂ ÿ (ÿÿ ) such that ýÿ = ÿ (Oÿ )

for almost all v. By the Satake isomorphism, (ýÿ -)unramified irreducible representations of ÿ (ÿÿ ) are

parametrized by ÿ̂ÿ//ÿÿ , where ÿ̂ÿ denotes the complex torus of unramified characters of ÿ (ÿÿ ) and

ÿÿ = ýýÿÿÿ (ÿÿ ) (ÿ)/ÿ (ÿÿ ) the Weyl group. We denote by (ÿ̂ÿ//ÿÿ )ÿÿ the subvariety of unramified

characters ÿ ∈ ÿ̂ÿ such that ÿ |ý 0 (ÿÿ )
= ÿÿ .

The purpose of this appendix is to prove the following lemma.

Lemma A.1. Let ÿ, ÿ′ ⊂ |ÿ | be disjoint subsets of places of X with ÿ′∩ÿÿÿÿ = ∅. For each ÿ ∈ ÿ, let ÿÿ
be a discrete series representation whose central character restricted to ý0 (ÿÿ ) equals ÿÿ , with at least

one ÿ0 ∈ ÿ such that ÿÿ0
is supercuspidal. Also, for ÿ ∈ ÿ′, let ÿÿ ⊂ (ÿ̂ÿ//ÿÿ )ÿÿ be a proper closed

subset for the Zariski topology. Then there exists a (necessarily cuspidal) automorphic representation

Π �
⊗′

ý∈ |ÿ | Πý of ÿ (Aÿ ), on which ý0 (A) acts through the character ÿ, such that

(i) For all ÿ ∈ ÿ, Πÿ has nonzero trace against a pseudo-coefficient for ÿÿ (in particular, Πÿ and ÿÿ
have the same cuspidal support),

(ii) For all ÿ ∈ ÿ′, Πÿ is an unramified representation with Satake parameter in (ÿ̂ÿ//ÿÿ )ÿÿ \ ÿÿ .

Proof. This follows from an application of the Deligne-Kazhdan simple trace formula [DKV, §A.1

p.41]. More precisely, we consider test functions ÿ = ⊗ÿ ÿÿ ∈ ÿ∞
ý (ÿ (Aÿ )/ý

0(Aÿ ), ÿ
−1) satisfying

(i) For each ÿ ∈ ÿ, ÿÿ = ÿÿÿ is a pseudo-coefficient of ÿÿ . Moreover, for ÿ = ÿ0 we assume, as we

may, that ÿÿ0
is a matrix coefficient of ÿ∨ÿ0

;

(ii) For each ÿ ∈ ÿ′, ÿÿ (ý) =
∫
ý 0 (ÿÿ )

ÿ ′ÿ (ÿ
−1ý)ÿÿ (ÿ)ýÿ, where ÿ ′ÿ ∈ H(ÿ (ÿÿ ), ýÿ ) is a ýÿ -spherical

function whose Satake transform (a regular function on ÿ̂ÿ//ÿÿ ) vanishes identically on ÿÿ but

not on (ÿ̂ÿ//ÿÿ )ÿÿ ;

(iii) For almost all v, ÿÿ equals the function ÿ 0
ÿ which coincides with ÿý ↦→ ÿÿ (ÿ)

−1 on ý0 (ÿÿ )ýÿ and

is zero outside;

(iv) For all ÿ ∈ ÿ (ÿ), if the ÿ (Aÿ )-conjugacy class of ÿ intersects the support of f, then ÿ is regular

elliptic.

Then the Deligne-Kazhdan simple trace formula can be applied to f yielding the following identity:

∑
Π

Trace Π( ÿ ) =
∑
ÿ

ÿ(ÿ)−1ÿýý (ÿ ÿ (ÿ)ý
0(Aÿ )\ÿ ÿ (Aÿ ))ÿ ÿ ( ÿ ), (A.2)

where the left sum runs over cuspidal automorphic representations Π of ÿ (Aÿ ) with central character

ÿ, the right sum runs over elliptic regular conjugacy classes in ÿ (ÿ)/ý0(ÿ), ÿ ÿ (resp. ÿ+
ÿ) denotes

https://doi.org/10.1017/fmp.2024.10 Published online by Cambridge University Press



Forum of Mathematics, Pi 39

the centralizer of ÿ (resp. ý0ÿ) in G, ÿ(ÿ) = [ÿ+
ÿ (ÿ) : ÿ ÿ (ÿ)] and

ÿ ÿ ( ÿ ) =
∏
ÿ

∫
ÿÿ (ÿÿ )\ÿ (ÿÿ )

ÿÿ (ý
−1
ÿ ÿýÿ )ýýÿ

︸�����������������������������������︷︷�����������������������������������︸
=:ÿÿ ( ÿÿ )

stands for the orbital integral of f at ÿ. Moreover, both sums are finite.

The choice of the test functions ÿÿ for ÿ ∈ ÿ ∪ ÿ′ implies that the only nonzero contributions to

the left-hand side of (A.2) come from cuspidal representations satisfying the conclusion of the lemma.

Thus, it suffices to see that f can be arranged so that the right-hand side of (A.2) is nonzero. For this,

we need an auxiliary lemma.

Lemma A.3. We can find local test functions ÿÿ , for ÿ ∈ ÿ ∪ ÿ′, satisfying conditions (i) and (ii) above

as well as a regular elliptic element ÿ ∈ ÿ (ÿ) such that ÿ+
ÿ = ÿ ÿ andÿ ÿ ( ÿÿ ) ≠ 0 for every ÿ ∈ ÿ∪ ÿ′.

Proof. If weak approximation holds for the inclusion ÿ (ÿ) ↩→
∏

ÿ ∈ÿ∪ÿ′ ÿ (ÿÿ ), then the argument is

pretty standard. More precisely, we can choose any set of test functions ( ÿÿ )ÿ ∈ÿ∪ÿ′ satisfying (i) and (ii).

Indeed, by definition of the Satake transform, for every ÿ ∈ ÿ′, the hyperbolic regular orbital integrals of

ÿÿ are not identically zero (where by hyperbolic regular orbital integral we mean one that is associated

to a regular element in the maximal torus of a Borel subgroup), whereas by [BP], for each ÿ ∈ ÿ, the

elliptic regular orbital integrals of ÿÿ are not identically zero. From this, weak approximation and the

local constancy of regular semisimple orbital integrals, we deduce the existence of ÿ ∈ ÿ (ÿ) that is

elliptic regular in ÿ (ÿÿ ) for every ÿ ∈ ÿ (hence, in particular, ÿ is regular elliptic in ÿ (ÿ) since ÿ ≠ ∅)

and such thatÿ ÿ ( ÿÿ ) ≠ 0 for every ÿ ∈ ÿ∪ÿ′. Moreover, we can also certainly arrange to haveÿ+
ÿ = ÿ ÿ

as the subset of regular semisimple elements ÿÿ ∈ ÿ (ÿÿ ) satisfying ÿ+
ÿÿ

= ÿ ÿÿ is open and dense.

To deal with the general case (that is including the case where weak approximation fails), we introduce

the closure ÿ (ÿ) of ÿ (ÿ) in ÿ (ÿÿ∪ÿ′) =
∏

ÿ ∈ÿ∪ÿ′ ÿ (ÿÿ ). According to the argument at the beginning

of [PR, Proof of Proposition 7.9 p.419] (which is valid regardless of the characteristic of the global

field), ÿ (ÿ) is an open subgroup of finite index in ÿ (ÿÿ∪ÿ′). Let ÿ ∈ ÿ ∪ ÿ′ and let ÿÿ be a normal

open subgroup of finite index of ÿ (ÿÿ ) contained in ÿ (ÿ) ∩ ÿ (ÿÿ ). Then we just need to check the

existence of a test function ÿÿ satisfying condition (i) or (ii) above (according to whether ÿ ∈ ÿ or ÿ ∈ ÿ′)

and a regular semisimple element ÿ ∈ ÿÿ such that ÿ ÿ ( ÿÿ ) ≠ 0. First we consider the case ÿ ∈ ÿ′.

Then the image of ÿÿ ∩ ÿ (ÿÿ ) in ÿ (ÿÿ )/ÿ (Oÿ ) is a subgroup of finite index corresponding to a finite

quotient ÿ̂ ′
ÿ of ÿ̂ÿ . Then we look for a regular function on ÿ̂ÿ//ÿÿ vanishing identically on ÿÿ but not

on (ÿ̂ÿ//ÿÿ )ÿÿ and whose push forward to ÿ̂ ′
ÿ via the projection ÿ̂ÿ → ÿ̂ ′

ÿ is nonzero. Such a function

is readily seen to exist. Consider now the case ÿ ∈ ÿ and let ÿÿ be a pseudo-coefficient of ÿÿ . By [BP],

it suffices to show that the restriction of the Harish-Chandra character Θÿÿ of ÿÿ to the subset ÿÿ,ÿýý−ÿý

of elliptic regular semisimple relements in ÿÿ is nonzero. For ÿ a finite dimensional representation of

ÿ (ÿÿ )/ÿÿ , ÿÿ ⊗ ÿ is a direct sum of discrete series with Harish-Chandra character Θÿÿ ⊗ÿ = ΘÿÿΘÿ

where Θÿ denotes the usual character of ÿ. Then if Θÿÿ |ÿÿ,ÿýý−ÿý= 0, the restriction of
∑

ÿ
1

dim ÿΘÿÿ ⊗ÿ

to the elliptic regular semisimple locus of ÿ (ÿÿ ) would be zero, and this would contradict the elliptic

orthogonality relations of [BP] on Harish-Chandra characters of discrete series. �

Let ( ÿÿ )ÿ ∈ÿ∪ÿ′ and ÿ ∈ ÿ (ÿ) as in the above lemma. Then we choose the functions ÿÿ ∈

ÿ∞
ý (ÿ (ÿÿ )/ý

0(ÿÿ ), ÿ
−1
ÿ ) for ÿ ∉ ÿ ∪ ÿ′ such that ÿ ÿ ( ÿÿ ) ≠ 0 for all v and ÿÿ = ÿ 0

ÿ for almost

all v (this is certainly possible thanks to the condition ÿ+
ÿ = ÿ ÿ). Then the set of semisimple conjugacy

classes of ÿ (ÿ) whose ÿ (Aÿ )-conjugacy classes meet the support of f is finite. Hence, up to shrinking

the support of ÿÿ at some auxiliary place ÿ ∉ ÿ ∪ ÿ′, we may assume that this set only consists in the

orbit of ÿ. The function f then satisfies condition (iii) above and the right-hand side of the trace formula

(A.2) is reduced to the term corresponding to ÿ. As ÿ ÿ ( ÿ ) ≠ 0 by construction, this implies that the

left-hand side does not vanish either, and we are done. �
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