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Abstract

Chow rings of toric varieties, which originate in intersection theory, feature
a rich combinatorial structure of independent interest. We survey four different
ways of computing in these rings, due to Billera, Brion, Fulton–Sturmfels, and
Allermann–Rau. We illustrate the beauty and power of these methods by giving
four proofs of Huh and Huh–Katz’s formula μk(M) = deg

M
(³r−k´k) for the

coefficients of the reduced characteristic polynomial of a matroid M as the mixed
intersection numbers of the hyperplane and reciprocal hyperplane classes ³ and
´ in the Chow ring of M. Each of these proofs sheds light on a different aspect
of matroid combinatorics, and provides a framework for further developments in
the intersection theory of matroids.

Our presentation is combinatorial, and does not assume previous knowledge
of toric varieties, Chow rings, or intersection theory. This survey was prepared for
the Clay Lecture to be delivered at the 2024 British Combinatorics Conference.

1 Introduction

Our starting point is the chromatic polynomial χG(t) of a graph G = (V,E). For
a positive integer q,

χG(q) := number of proper vertex-colorings of G with q colors,

where a coloring is proper if no two neighboring vertices have the same color. For
example, the chromatic polynomial of the graph below is χG(q) = q(q − 1)2(q − 2).
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Figure 1: A graph G with χG(q) = q4 − 4q3 + 5q2 − 2q. and μ0 = 1, μ1 = 3, μ2 = 2.

More generally, the characteristic polynomial χM(t) of a matroid M = (E, r) is

χM(q) :=
∑

A⊆E

(−1)|A|qr−r(A). (1.1)

It is one of the most important invariants of a matroid; it is introduced in detail
in Section 3 and [4, Sections 6, 7]. The characteristic polynomial generalizes the
chromatic polynomial in the sense that if M(G) is the cycle matroid of a graph G
that has c connected components, then χG(q) = qcχM(G)(q). This polynomial is a
multiple of q − 1, and we define the reduced characteristic polynomial of M to be

χM(q) :=
χM(q)

q − 1
= μ0qr − μ1qr−1 + · · ·+ (−1)rμrq0
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2 Federico Ardila–Mantilla

where r + 1 is the rank of M. In the example above, χM(q) = q2 − 3q + 2.
It is not too difficult to prove recursively that the numbers μ0, μ1, . . . , μr are

non-negative. A combinatorialist then asks: Do they count something? An algebraic
combinatorialist then asks: Do they have an algebraic, geometric, or topological
interpretation? Such questions often give rise to a deeper understanding of the
objects under study. In this case, and in numerous others, they lead to proofs of
long-standing conjectures for which no purely combinatorial proof is known.

1.1 Theme

Our recurring theme will be Huh [31] and Huh-Katz [34]’s remarkable interpreta-
tion of μ0, . . . , μr. Beautiful in its own right, their Theorem 1.1 also lies at the heart
of the celebrated proof of the conjecture that this sequence is log-concave [1].

Let M be a matroid of rank r + 1 on a set E with n + 1 elements. The Chow
ring A(M) is the Z-algebra generated by variables xF for each non-empty proper flat,
with relations

xFxG = 0 for any flats F,G such that F � G and F � G,∑

F�i

xF =
∑

F�j

xF for any elements i, j ∈ E.

One can show that the Chow ring is graded A(M) = A0(M)⊕ · · · ⊕Ar(M), and that
there is a canonical isomorphism degM : Ar(M)

∼
−→ R called the degree map [1].

Consider the following two elements of A1(M), which we call the hyperplane and
reciprocal hyperplane classes:

³ = ³i =
∑

i∈F

xF , ´ = ´i =
∑

i/∈F

xF .

One readily verifies that they do not depend on i.

Theorem 1.1 Let M be a matroid of rank r+1. Let ³, ´ be the hyperplane
and reciprocal hyperplane classes in the Chow ring A(M). Then

degM(³r−k´k) = μk(M) for 0 f k f r.

The Chow ring A(M) has remarkable Hodge-theoretic properties [1] surveyed in
[33, 5, 13, 25]. In particular, A(M) satisfies the Hodge–Riemann relations , which give

degM(�1�2�3 · · · �d)
2 g degM(�1�1�3 · · · �d) degM(�2�2�3 · · · �d),

for any �1, �2, . . . , �d in a certain cone K(M) ⊆ A1(M) whose closure contains ³ and
´. In light of Theorem 1.1, this proves the following inequalities conjectured by Rota
[46], Heron [30], and Welsh [50] in the 1970s:

(μk)2 g μk+1μk−1 for 1 f k f r − 1.

This survey focuses on the combinatorial aspects of this program:

Question 1.2 How does one discover and prove combinatorially interesting formulas
in Chow rings like Theorem 1.1?
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Intersection Theory of Matroids 3

This question fits within the framework of intersection theory of toric varieties,
in ways that can be understood combinatorially. The Chow ring A(XΣ) of a toric
variety XΣ corresponding to a rational polyhedral fan Σ is a beautifully rich object
that can be understood from several different points of view. We will present four,
due to Billera, Brion, Fulton–Sturmfels, and Allermann–Rau [16, 18, 28, 3]. Each of
these points of view gives us a different ways to compute in a Chow ring, and teaches
us different things about the objects at hand. This machinery is relevant to Theorem
1.1 because the Chow ring of a matroid M equals the Chow ring of the toric variety
XΣM

and is closely related to the permutahedral toric variety XΣE
, where ΣE and

ΣM are the matroid fan of M and the braid fan of E, discussed in detail in Sections
2.0 and 3.0.

Our presentation will be combinatorial, and will not assume previous knowledge
of toric varieties, Chow rings, or intersection theory. A familiarity with the basics of
enumerative matroid theory will be helpful; see for example [4, 17, 44].

This survey is organized as follows. In Section 2 we discuss the general intersection
theory of simplicial rational fans Σ and toric varieties XΣ, giving four different
combinatorial points of view on the Chow ring A(Σ) = A(XΣ). We pay special
attention to the Chow ring of the braid fan ΣE for a finite set E. In Section 3
we discuss some basic aspects of the intersection theory of matroids. The general
theory gives us four different ways to think about the Chow ring of a matroid M.
We illustrate each one of these approaches by using it to give a different proof of
Theorem 1.1.

2 Intersection Theory of Toric Varieties: A Case Study

Intersection theory studies how subvarieties of an algebraic variety X intersect.
For example, Bezout’s theorem tells us that two generic plane curves of degrees
m and n intersect at mn points. We want a robust theory that will keep track of
multiplicities correctly, and where the answer to such intersection questions does
not change under rational equivalence. The Chow ring A(X) provides an algebraic
framework to carry out such computations. Because this ring encodes the answers to
very subtle questions, it is generally an unwieldy object.

The situation is much better behaved when X = XΣ is the toric variety associated
to a simplicial rational fan Σ. In this case, the Chow ring A(XΣ) can be described
entirely in terms of the fan Σ in several ways. This leads to algebraic, geometric,
and combinatorial methods for computing in A(XΣ), and to combinatorial results of
independent interest. Those methods and results are the subjects of this survey.

Let NZ
∼= Zn be a lattice and N = R ⊗ NZ

∼= Rn the corresponding real vector
space. A rational cone {λ1 v1+ · · ·+λk vk : λ1, . . . , λk g 0} is a cone in N generated
by finitely many lattice vectors v1, . . . ,vk ∈ NZ; it is strongly convex if it contains
no lines. A rational fan Σ in N is a set of strongly convex rational cones that are
glued along common faces; that is, any face of a cone in Σ is a cone in Σ, and the
intersection of any two cones in Σ is a cone in Σ. We say a fan Σ is simplicial if every
d-dimensional cone is generated by d vectors, unimodular if those d vectors always
form a basis for NZ, and complete if the union of the cones in Σ is all of N. We say
Σ is pure if all maximal cones have the same dimension, and write Σ(d) for the set
of d-dimensional cones. A rational fan Σ in N determines a toric variety X = XΣ;

https://doi.org/10.1017/9781009490559.002 Published online by Cambridge University Press
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for details see [20, 27].

The goal of this section is to explain the following theorem. After explaining each
of its parts, we use it to compute explicitly the Chow ring of the two-dimensional
braid fan.

Theorem 2.1 Let Σ be a complete simplicial rational fan in N = R ⊗ NZ. The
following rings are isomorphic:

1. The quotient A(Σ) = S(Σ)/(I(Σ) + J(Σ)) where

S(Σ) = Q[xρ : ρ is a ray of Σ]/(I(Σ) + J(Σ)),

I(Σ) = 〈xρ1 · · ·xρk : ρ1, . . . , ρk do not generate a cone of Σ〉,

J(Σ) = 〈
∑

ρ ray of Σ

�(eρ)xρ : � is a linear function on N〉.

2. The ring PP(Σ)/〈N∨〉 of piecewise polynomial functions on Σ modulo the ideal
generated by the space N∨ of (global) linear functions on N .

3. The ring MW(Σ) of Minkowski weights on Σ under stable intersection.

4. The ring MW(Σ) of Minkowski weights on Σ under tropical intersection.

5. The cohomology ring of the toric variety X(Σ).

6. The Chow ring of the toric variety X(Σ).

When Σ is unimodular, these isomorphisms also hold over Z.

2.0 The Braid Fan

For a finite set E, we let {ei : i ∈ E} be the standard basis of RE , and we write

eS :=
∑

s∈S

es for S ⊆ E.

The fans considered in this paper will live in NE := RE /R eE . The image of
eS ∈ RE in this quotient will also be denoted eS ∈ NE . We will often consider
E = [0, n] := {0, 1, . . . , n}.

Definition 2.2 Let E be a finite set. The braid fan ΣE in NE := RE /R eE has

• rays: eS for the nonempty proper subsets ∅ � S � E

• cones: σS = cone(eS1 , . . . , eSk
) for the flags S = (∅ � S1 � · · · � Sk � E)

The braid fan is the decomposition of NE determined by the braid arrangement in
NE , which consists of the hyperplanes ti = tj for i, j ∈ E. If |E| = n+1, the braid fan
ΣE is n-dimensional, and has a facet σS = σπ = {t ∈ NE : ts0 g ts1 g · · · g tsn} for
each complete flag S = (∅ � {s0} � · · · � {s0, s1, . . . , sn−1} � E), or equivalently,
each bijection π : [0, n] → E given by π(i) = si. Slightly abusing terminology, we
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will call π a permutation of E and write π = s0 . . . , sn. It follows that the braid fan
is complete, simplicial, and unimodular.

Figure 2 shows the braid fan ΣE for E = [0, 2] = {0, 1, 2}. It is the complete fan
in NE cut out by the braid arrangement consisting of the lines t0 = t1, t1 = t2, and
t2 = t0 in NE .

t2 > t0 > t1

t1 > t0 > t2

t0 > t2 > t1t2 > t1 > t0

t0 > t1 > t2t1 > t2 > t0

e02 = (1, 0, 1)

e01 = (1, 1, 0)

(0, 0, 1) = e2

(0, 1, 0) = e1

e0 = (1, 0, 0)(0, 1, 1) = e12

Figure 2: The braid fan Σ[0,2].

We will return to this picture many times in what follows; the reader may wish to
keep it within reach. We will call its toric variety and Chow ring the permutahedral
variety and the permutahedral Chow ring .

2.1 The Chow Ring as a Quotient of a Polynomial Ring

For the remainder of Section 2, Σ will be a simplicial rational fan in N = R⊗NZ.

The Chow Ring The Chow ring of Σ is the graded algebra

A(Σ) := S(Σ)/(I(Σ) + J(Σ)),

where

S(Σ) = Z[xρ : ρ is a ray of Σ]/(I(Σ) + J(Σ)),

I(Σ) = 〈xρ1 · · ·xρk : ρ1, . . . , ρk do not generate a cone of Σ〉,

J(Σ) = 〈
∑

ρ ray of Σ

�(eρ)xρ : � is a linear function on N〉.

The ideal I(Σ) is called the Stanley-Reisner ideal of Σ and S(Σ)/I(Σ) is called its
Stanley-Reisner ring . In J(Σ), it is sufficient to let � range over a basis of the space
N∨ of linear functions on N.

Example 2.3 (The Chow ring A(Σ[0,2]).) Let us compute the Chow ring of the
braid fan ΣE for E = [0, 2]. We have

S(ΣE) = R[x0, x1, x2, x01, x02, x12]

I(ΣE) = 〈xixj : i 
= j〉+ 〈xixjk : i, j, k distinct〉+ 〈xijxjk : i, j, k distinct〉

J(ΣE) = 〈(x0 + x02)− (x1 + x12), (x0 + x01)− (x2 + x12)〉
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6 Federico Ardila–Mantilla

where we use t0 − t1 and t0 − t2 as a basis for N∨ in the description of J(ΣE).
We claim that A = A(ΣE) has degree 2 and

A0 = Z{1} ∼= Z1, A1 = Z{x0, x1, x2, x12} ∼= Z4, A2 = Z{x0x01} ∼= Z .

The description of A0 is clear. The description of A1 follows from the two linear
relations in J(ΣE) that express x01 and x02 in terms of the four chosen generators.
To compute A2, notice that

x20 = x0(x2 + x12 − x01) = −x0x01, x201 = x01(x2 + x12 − x0) = −x0x01,

and similarly for the squares of the other terms xixij . This implies that

−x20 = −x21 = −x22 = −x201 = −x202 = −x212 = xixij for all i 
= j. (2.1)

Thus A2 is indeed generated by x0x01, and we have an isomorphism

deg : A2 � Z, deg(xixij) = 1 for all facets σi⊂ij of Σ[0,2].

Any monomial of degree 3 can be reduced via (2.1) to a square free monomial of
degree 3, which is in I(ΣE) and hence vanishes in A(ΣE).

Computing Degrees When Σ is complete, the Chow ring A(Σ) is graded of degree
n, and there is a canonical degree map deg : An(Σ) � Z. If Σ is unimodular, this
map is characterized by the property that the degree of any facet monomial is 1:
deg(xÃ) = 1 for any facet σ, where xÃ =

∏
ρ ray xρ. Any f ∈ An(Σ) can be expressed

as a linear combination of facet monomials [1, Prop. 5.5], and this expression gives
the degree of f .

The Hyperplane and Reciprocal Hyperplane Classes We will pay special attention
to two special elements ³, ´ in the degree one piece A1(ΣE) of the permutahedral
Chow ring:

³ := ³i =
∑

i∈S

xS , ´ := ´i =
∑

i/∈S

xS , for i ∈ E.

We invite the reader to check that these do not depend on the choice of i ∈ E.

Example 2.4 (The degree of ³´ in A(Σ[0,2]).) For E = [0, 2] we have

³ = ³0 = x0 + x01 + x02 ´ = ´0 = x1 + x2 + x12
= ³1 = x1 + x01 + x12 = ´1 = x0 + x2 + x02
= ³2 = x2 + x02 + x12 = ´2 = x0 + x1 + x01.

Let us compute the intersection degree of ³ and ´. Using the relations in the Chow
ring, we can write

³´ = ³0´0 = (x0 + x01 + x02)(x1 + x2 + x12) = x1x01 + x2x02.

This implies that
deg(³´) = 2.

Note that a different choice of representatives, such as ³0´1, leads to a more compli-
cated computation.
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2.2 The Chow Ring in Terms of Piecewise Polynomials

The Chow Ring A piecewise polynomial on Σ is a continuous function on N whose
restriction to each cone in Σ agrees with a polynomial function. Let PP(Σ) be the
ring of piecewise polynomials on Σ, with pointwise addition and multiplication. Let
〈N∨〉 be the ideal of PP(Σ) generated by the set N∨ of (global) linear functions on
N. Thanks to work of Billera [16], the Chow ring of Σ can be described as:

A(Σ) ∼= PP(Σ)/〈N∨〉.

The Dictionary Billera [16] constructed an isomorphism from the Stanley-Reisner
ring S(Σ)/I(Σ) to the algebra PP(Σ) of continuous piecewise polynomial functions
on Σ, by identifying the variable xρ with the piecewise linear Courant function on Σ
determined by the condition

xρ(eρ′) =

{
1, if ρ is equal to ρ′,

0, if ρ is not equal to ρ′,
for each ray ρ of Σ.

Conversely, this isomorphism identifies a piecewise linear function � ∈ PP(Σ) on Σ
with the linear form

� =
∑

ρ ray

�(eρ)xρ,

and allows us to regard the elements of A(Σ) as equivalence classes of piecewise
polynomial functions on Σ, modulo the linear functions on Σ.

Example 2.5 (The ring A(Σ[0,2])) Let us carry out this computation for the braid
arrangement Σ[0,2], referring to Figure 2. The Courant functions representing the
ray variables x0, x1, x2, x01, x02, x12 of the previous section are the following, where
tij := ti − tj :

0

0

t020

t010

x0

0

t10

00

0t12

x1

t20

0

0t21

00

x2

0

t02

00

t120

x01

t01

0

t210

00

x02

0

0

0t10

0t20

x12

Figure 3: The Courant functions x0, x1, x2, x01, x02, x12 on Σ[0,2]. Each function xS
equals 1 on the marked primitive ray eS and 0 on the others.

As we saw in the previous section, A0 is generated by the constant function 1,
A1 is generated by x0, x1, x2, x01, and A2 is generated by

x0x01 =

0

0

00

t01t120

e01

e0.

This expression for the generator x0x01 is supported on the chamber cone{e0, e01} =
{t ∈ NE : t0 > t1 > t2}. Its unique non-zero polynomial t01t12 is the product of the
linear forms t0 − t1 and t1 − t2 defining the inequalities of the chamber.

https://doi.org/10.1017/9781009490559.002 Published online by Cambridge University Press



8 Federico Ardila–Mantilla

It is instructive to double check that two adjacent chambers (and hence any two
chambers) give the same generator of A2. The neighbor chamber cone{e0, e02} =
{t ∈ NE : t0 > t2 > t1} separated by the wall t12 = 0, gives generator x0x02. Their
difference is

x0x01 − x0x02 =

0

0

−t02t210

t01t120
= t12 ·

0

0

t020

t010
= 0

since it is the product of the linear function t12 of the wall separating them and a
piecewise polynomial function: we have t01 = 0 on e01, t01 = t02 on e0, and t02 = 0
on e02. This generalizes to any two neighbor chambers in any braid fan, and further,
in any simplicial rational fan.

Computing Degrees There is a very elegant way to compute the degree of an
element f ∈ An(Σ) given by a piecewise polynomial f = (fÃ : σ ∈ Σ(n)). To
describe it, we first associate a rational function to each facet σ of Σ. If σ is simplicial
and unimodular, it is generated by n inequalities f1(x) g 0, . . . , fn(x) g 0, where
{f1, . . . , fn} is the basis dual to the rays generating σ. This determines a rational
function eÃ := 1/(f1 · · · fn) in Sym±(N∨). In general, we can triangulate σ into
simplicial unimodular cones σ1, . . . , σn and define eÃ := eÃ1 + · · ·+ eÃn , which turns
out to be independent of the triangulation [19]. We then have

deg(f) =
∑

Ã∈Σ(n)

eÃfÃ.

It is pleasant and not a priori obvious that this is always a constant, after significant
cancellation. It is not so difficult to prove it, though, by verifying that the above
formula gives deg(xÃ) = 1 for every facet monomial and 0 for every other square-free
monomial.

The Hyperplane and Reciprocal Hyperplane Classes The elements ³ and ´ of
the permutahedral Chow ring can be described by the following piecewise linear
functions, for any i ∈ E:

³ = ³i = max(ti − tj : j ∈ E), ´ = ´i = max(tj − ti : j ∈ E).

For any i 
= i′ the function ³i − ³i′ = ti − ti′ is linear, and hence in N∨, so ³ is well-
defined.1 To verify the formula for ³i, notice that the value of max(ti − tj : j ∈ E)
on eS is 1 if i ∈ S and 0 if i /∈ S. A similar argument works for ´.

Example 2.6 (The degree of ³´ in A(Σ[0,2]).) The special element ³ ∈ A(ΣE)
is given by the expressions ³0 = x0 + x01 + x02, ³1 = x1 + x01 + x12, and ³2 =
x2 + x02 + x12, which give:

1It is tempting but incorrect to think that ti is linear so we can write α = max(−tj : j ∈ E): in
fact ti is not even a well defined function on the ambient space N = R[0,2] /R e[0,2].
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³ =

t01

t02

t010

t020
=

0

t12

0t10

t12t10
=

t21

0

t21t20

0t20
.

These look different, but they are equal modulo global linear functions on N : the first
two differ by t01 and the latter two differ by t12. Similarly, there are three natural
piecewise linear representatives for ´, namely ´0, ´1, ´2. Let’s compute the degree of
³´ in two ways, referring to Figure 2 again. Since

³0´0 =

t01

t02

t010

t020

t20

t10

0t20

0t10
=

t01t20

t02t10

00

00
, ³1´0 =

0

t10t12

0t10t20

0t210
,

we have that deg(³´) equals

t02t10
t02t10

+
t01t20
t01t20

= 2 and
t10t12
t02t10

+
t210

t12t20
+

t10t20
t21t10

= 2,

where the first computation is immediate and the second involves a fun cancellation.

2.3 The Chow Ring in Terms of Minkowski Weights

The Chow Ring A k-dimensional Minkowski weight on Σ is a real-valued function
ω on the set Σ(k) of k-dimensional cones that satisfies the balancing condition: For
every (k − 1)-dimensional cone τ in Σ,

∑

Ä⊂Ã

ω(σ)eÃ/Ä = 0 in the quotient space N / span(τ),

where eÃ/Ä is the primitive generator of the ray (σ + span(τ))/ span(τ). We say that
w is positive if w(σ) is positive for every σ in Σ(k). We write MWk(Σ) for the space
of k-dimensional Minkowski weights on Σ, and set MW(Σ) =

⊕
k≥0MWk(Σ).

The product in MW(Σ) is given by the following fan displacement rule. If X1

and X2 are Minkowski weights of codimension k and � on Σ, then their product is
defined to be the stable intersection

X1 ·X2 := lim
ε→0

X1 · (X2 + εv)

for any vector v ∈ N such that X1 and X2+ εv intersect transversally for sufficiently
small ε > 0. The facets of X1 ·X2 are the (k + �)–codimensional intersections of a
facet of X1 and a facet of X2. The weight of a facet τ of X1 ·X2 is

w(τ) =
∑

Ã1,Ã2

w(σ1)w(σ2)[Z
n : LZ(σ1) + LZ(σ2)],

summing over the facets σ1 and σ2 of X1 and X2 respectively such that τ = σ1 ∩ σ2
and σ1 ∩ (σ2 + εv) 
= 0 for small ε > 0. It is non-trivial that the construction above
is independent of the choice of a (generic) vector v, and that it is also a Minkowski
weight, that is, it satisfies the balancing condition [28, 35].
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When Σ is complete, Fulton and Sturmfels [28] proved that

A(Σ) ∼= MW(Σ)

so understanding the Chow ring of Σ is equivalent to understanding Minkowski
weights on Σ and their stable intersections.

The Dictionary For Σ complete, Katz and Payne [37] described the canonical2 map
from PP(Σ) to MW(Σ) that descends to an isomorphism Ak(Σ) ∼= MWn−k(Σ). We
focus on a different description for a special case: when f ∈ PP1(Σ) is a piecewise
linear function that is convex, that is, f((x+y)/2) f (f(x)+f(y))/2 for all x,y ∈ N.
In this case, f can be written as a tropical polynomial ; that is, the maximum of a
finite number of linear functions:

f(x) = max{v1(x), . . . ,vm(x)} for v1, . . . ,vm ∈ N∨ .

The corner locus , where this function is not linear, is the tropical hypersurface:

trop f = {x ∈ N : max
1≤i≤m

{vi(x)} is achieved at least twice}.

This is the (n − 1)-skeleton of the normal fan of the Newton polytope Newt(f) =
conv(v1, . . . ,vm). It turns into a balanced fan with a natural choice of weights:
for each facet F of trop f the weight w(F ) = �(F∨) equals the lattice length of
the corresponding edge of Newt(f). This balanced fan is the Minkowski weight in
MWn−1(Σ) corresponding to f . For details, see [40, 41, 43].

Example 2.7 (The Chow ring A(Σ[0,2])).) Let Σ = Σ[0, 2]. For k = 0 the balancing
condition is vacuous and a Minkowski weight is a choice of a weight on the origin.
For k = 1, we need to put a weight on each of the six rays so that the weighted sum
of the rays is 0. The four choices of weight below generate all others. For k = 2 we
need weights on each maximal cone of Σ. Each ray τ is in two cones σ1 and σ2 which
satisfy eÃ1/Ä = − eÃ2/Ä , so the balancing condition says that w(σ1) = w(σ2), and
hence all weights are equal. Thus MW(Σ) is spanned by the following Minkowski
weights:

1

1

1

1

1

11

1

11
1

1

11

11

Computing Degrees One can use the fan displacement rule to compute the degree
of a product: X1 ·X2 = limε→0X1 · (X2 + εv), where v ∈ N is any vector such that
X1 and X2 + εv intersect transversally for sufficiently small ε > 0. This requires one
to understand how these fans intersect by solving systems of linear equations and
inequalities. Sometimes a clever choice of v – for example one whose coordinates
increase very quickly – can simplify the computations.

2This is canonical in the sense that PP(Σ) ∼= AT (XΣ) and MW(Σ) ∼= A(XΣ) are isomorphic to
the equivariant and the ordinary Chow cohomology rings of the toric variety XΣ, respectively, and
there is a canonical map AT (XΣ) → A(XΣ).
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The Hyperplane and Reciprocal Hyperplane Classes In ΣE = Σ[0,n], the Minkowski
weights of ³ = ³i = max(ti − tj : j ∈ E) and ´ = ´i = max(tj − ti : j ∈ E) are the
(n− 1)-skeleta of the normal fans of Newt(³i) = ei−∆E and Newt(´i) = ∆E − ei
where ∆E = conv(e0, . . . , en) is the standard simplex. Explicitly, the facets of ³ and
´ are:

³ : {σi0⊂i0i1⊂···⊂i0i1...in−2 : i0i1 . . . in−1in permutation of E}

´ : {σi0i1⊂···⊂i0i1...in−1⊂i0i1...in−1 : i0i1 . . . in−1in permutation of E}

with unit weights on all facets. The supports of these fans are

|³| = {t ∈ NE : min
i∈E

ti is achieved at least twice}

|´| = {t ∈ NE : max
i∈E

ti is achieved at least twice}.

Notice that mini∈E ti is not a well defined function on NE = RE /R eE , but whether
or not this minimum is achieved at least twice is well defined; similarly for ´.

Example 2.8 (The degree of ³´ in A(Σ[0,2]).) In A(Σ[0,2]), we can draw the
Minkowski weights of ³ and ´ using the description obtained above. Alterna-
tively, we can look at the expressions for ³ and ´ as piecewise linear functions in
Section 2.2 and draw their corner loci, where the functions are not locally linear.

³ = ´ =

Using these Minkowski weights, we compute the degree of ³´ in A(Σ[0,2]) in two
ways:

³ ∩ (´ + ε1v1) = ³ ∩ (´ + ε2v2) =

In each case the index of intersection is 1, so deg(³´) = 2.

2.4 The Chow Ring in Terms of Tropical Intersection

The Chow Ring When Σ is complete, there is an alternative description of the
product in the Chow ring that combines piecewise polynomials and Minkowski
weights [3, 36, 42, 45]. Let w ∈ MWk(Σ) be a Minkowski weight on Σ, and f ∈ A1(Σ)
be a piecewise linear function (modulo global linear functions) on Σ, regarded as a
codimension 1 Minkowski weight. The Minkowski weight f ·w ∈ MWk−1(Σ) is given
by

f · w (τ) :=
∑

σ∈Σ(k)

Ã⊃Ä

f(w(σ) eÃ/Ä )− f

»
¼¼½

∑

σ∈Σ(k)

Ã⊃Ä

w(σ) eÃ/Ä

¾
¿¿À (2.2)
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12 Federico Ardila–Mantilla

for each (k − 1)-cone τ of Σ. In tropical geometry, the Minkowski weight f · w is
known as the divisor divw(f). Intuitively, it measures the non-linearity of f on w.
In particular, if w is linear on f locally around τ , then the divisor equals 0 at τ .

The Dictionary Underlying this description is an isomorphism

MW(Σ) � Hom(A(Σ),R)

given by the maps

MWk(Σ) � Hom(Ak(Σ),R)

w �−→ (xÃ �→ w(σ)/mult(σ) for each k-face σ)

for any simplicial Σ [1, 7]. This isomorphism gives MW(Σ) the structure of a graded
A(Σ)-module. 3 When Σ is complete, we can compute a product w1w2 by regarding
w1 ∈ MWn−n1(Σ) as the image of f1 ∈ An1(Σ) under the isomorphism of Section
2.3, and letting it act on w2 ∈ MWn−n2 to obtain w1w2 = f1 · w2 ∈ MWn−n1−n2 .

Computing Degrees Since A is generated in degree 1, we can iterate (2.2) to
compute the product of any two Minkowski weights. In particular, this gives a method
for computing deg(w1 · · ·wk) for any wi ∈ MWn−ni

(Σ) with n1 + · · ·+ nk = n.

The Hyperplane and Reciprocal Hyperplane Classes From the description of ³ and
´ as Minkowski weights in MWn−1(ΣE) ∼= Hom(An−1(ΣE),R), we get representations
of ³ and ´ in Hom(An−1(ΣE),R) as

³(xF ) =

{
1 if F = {i0 ⊂ i0i1 ⊂ · · · ⊂ i0i1 . . . in−2}

0 otherwise,

´(xF ) =

{
1 if F = {i0i1 ⊂ · · · ⊂ i0i1 . . . in−2 ⊂ i0i1 . . . in−2in−1}

0 otherwise.

We invite the reader to check that these are precisely the results of multiplying xF
by ³, ´ ∈ A1(ΣE), as described in Section 2.1.

Example 2.9 (The degree of ³´ in Σ[0,2].) Let’s regard ³ as a piecewise linear
function and ´ as a Minkowski weight:

³0 =

t01

t02

t010

t020
= mini(t0 − ti) ∈ A1(Σ), ´ = e12 ∈ MW1(Σ).

e02

e01

Then ³ · ´ is a 0-dimensional Minkowski weight, whose weight at the origin • is

(³ · ´)(•) = ³(e12) + ³(e01) + ³(e02)− ³(e12+ e01+ e02)

= 1 + 1 + 0− 0 = 2,

so the degree of ³´ is 2.
3The map · : A(Σ)×MW(Σ) → MW(Σ) is sometimes called the cap product ∩.
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2.5 Morphisms

A morphism from a fan Σ in N = R ⊗ NZ to a fan Σ′ in N′ = R ⊗ N′
Z is an

integral linear map from N to N′ such that the image of any cone in Σ is a subset
of a cone in Σ′. In the context of toric geometry, a morphism from Σ to Σ′ can be
identified with a toric morphism from the toric variety of Σ to the toric variety of Σ′

[20, Chapter 3].

Let f : Σ → Σ′ be a morphism of simplicial fans. The pullback of functions defines
the pullback homomorphism between the Chow rings

f∗ : A(Σ′) −→ A(Σ),

whose dual is the pushforward homomorphism of Minkowski weights

f∗ : MW(Σ) −→ MW(Σ′).

Since f∗ is a homomorphism of graded rings, f∗ is a homomorphism of graded
modules. In other words, the pullback and the pushforward homomorphisms satisfy
the projection formula

η ∩ f∗w = f∗(f
∗η ∩ w).

for any η ∈ A(Σ′) and w ∈ MW(Σ).

2.6 Geometry: The Cohomology and Chow Ring of a Toric Variety

The Chow Ring When Σ is complete and simplicial, the ring A(Σ) is both the
cohomology ring and the Chow ring of the toric variety XΣ [19, 20, 26]4:

H•(XΣ,Q) ∼= A(XΣ) ∼= A(Σ)

This isomorphism also holds over Z when Σ is unimodular [21].

The Dictionary Under this isomorphism, the class of the torus orbit closure of a
cone σ in Σ is identified with mult(σ)xÃ, where xÃ is the monomial

∏
ρ⊆Ã xρ and

mult(σ) is the index of the sublattice (
∑

ρ⊆Ã Z eρ) in the lattice NZ ∩(
∑

ρ⊆Ã R eρ).
All the fans appearing in this paper will be unimodular, so mult(σ) = 1 for every σ
in Σ.

Computing Degrees In the Chow ring of a general algebraic variety, computing
degrees is a rich and subtle problem for which intersection theory provides a powerful
toolkit; see for example [27]. In the special case of toric varieties, the previous
sections provide several useful methods.

The Hyperplane and Reciprocal Hyperplane Classes The braid fan ΣE refines the
normal fans ∆E and −∆E of the standard and inverted simplices conv{ei : i ∈ E}
and conv{− ei : i ∈ E}. This gives morphisms of toric varieties π1 : XΣE

→ X∆E
∼=

PE and π2 : XΣE
→ X−∆E

∼= PE , where the two copies of PE are related to each

4In [19], Brion identifies A(Σ) with the Chow group of XΣ with real coefficients. For the existence
of the ring structure and the pullback, see [49].
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14 Federico Ardila–Mantilla

other by the Cremona transformation PE
��� PE given by (zi)i∈E �→ (z′i)i∈E where

z′i = z−1
i . The classes

³i = π∗
1(zi = 0), ´i = π∗

2(z
′
i = 0)

in the Chow ring A(XΣE
) are the pullbacks of the hyperplane classes zi = 0 and

z′i = 0 in the respective copies of A(PE).

Example 2.10 (The degree of ³´ in Σ[0,2].) Let’s compute the degree of ³´ from
first principles. Away from the coordinate subspaces, we need to compute the number
of intersections of a generic hyperplane ³ and a generic reciprocal hyperplane ´:

z0 = az1 + bz2,
1

z0
=

c

z1
+

d

z2
.

Setting z = z1/z2, this system is equivalent to the equation adz2+(ac+bd)z+bc = 0,
which has two solutions for generic a, b, c, d. Therefore deg(³´) = 2.

3 Intersection Theory of Matroids: Four Approaches

3.0 Matroids, Characteristic Polynomials, and Matroid Fans

Let us introduce some basic definitions on matroids, and discuss three combi-
natorial ways to compute the coefficients μ0, . . . , μr of the reduced characteristic
polynomial of M.

A matroid M = (E, r) consists of a finite set E and a function r : 2E → Z, called
the rank function such that
(R1) 0 f r(A) f |A| for all A ⊆ E,

(R2) r(A) f r(B) for all A ⊆ B ⊆ E, and

(R3) r(A) + r(B) g r(A ∪B) + r(A ∩B) for all A,B ⊆ E.

A motivating example is the matroid of a vector configuration E ⊂ Fd, whose
rank function is given by

r(A) = dim(span A) for A ⊆ E.

Such a matroid is said to be linear over F.

The Lattice of Flats A flat of M is a subset F ⊆ E such that r(F ∪ e) >
r(F ) for all e /∈ F. We say a flat F is proper if it does not have rank 0 or r. The
lattice of flats LM is the set of flats, partially ordered by inclusion. Its minimum and
maximum element are called 0̂ and 1̂, and its least upper bound and greatest lower
bound maps are denoted ' and (. When M is the matroid of a vector configuration
E in a vector space V , the flats of M correspond to the subspaces of V spanned by
subsets of E, as illustrated in Figure 4.

The Möbius function of LM is the function μ : LM → Z defined by

∑

G≤F

μ(G) =

{
1 if F = 0̂,

0 otherwise.
(3.1)
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Figure 4: A vector configuration, its lattice of flats, and its matroid fan.

The Möbius number of M is μ(M) := μ(1̂). The characteristic polynomial, which was
defined in terms of the rank function in Section 1, can be expressed in terms of the
Möbius function:

χM(q) =
∑

F∈LM

μ(F )qr(M)−r(F ). (3.2)

Whitney’s theorem gives the alternative expression in (1.1).

Matroid Constructions and Three Properties of μk Let e be an element of E. The
deletion M \e and contraction M /e are the matroids on E − e with rank functions

rM \e(A) = rM(A) and rM /e(A) = rM(A ∪ e)− rM(e) for A ⊆ E − e.

If M is the matroid of a vector configuration E ⊆ Fd then M \e and M/e are the
matroids of the vector configuration E − e ⊆ Fd and its image E − e in the quotient
vector space Fd /F e. It follows from the definition in Section 1 that the characteristic
polynomial satisfies the deletion-contraction recurrence χM(q) = χM \e(q)− χM /e(q),
which gives

μk(M) = μk−1(M /e) + μk(M \e) for 0 f k f r. (3.3)

The truncation TrM is the rank r matroid obtained from M by omitting the
flats of rank r. If M is the matroid of a vector configuration E ⊆ Fd over a field
of characteristic 0, then TrM is the matroid of the projection of E onto a generic
hyperplane H of Fd. It follows from (3.2) that the first r − 1 coefficients of χM(q)
and χTrM(q) match; a simple calculation then gives

μk(M) = (−1)kμ(Trr+1−k
M) for 0 f k f r. (3.4)

Let’s label each edge from F to G in the Hasse diagram of LM with the element
min<(G − F ). The Jordan-Hölder sequence π(m) of a maximal chain m from 0̂
to 1̂ is the sequence of labels from the bottom to the top. Its descent set records
the positions where this sequence decreases: D(m) = {i ∈ [r] : π(m)i > π(m)i+1}.
Stanley proved [17, Theorem 2.7] that the number of maximal chains m whose
Jordan-Hölder sequence π(m) has descent set D(m) = S equals the Möbius number
(−1)|S|+1μ((LM)S) of the rank-selected subposet (LM)S = {F ∈ LM : r(F ) ∈ S}. In
particular, if S = [k] then (LM)[k] is the lattice of flats of Trr+1−k

M. Therefore

μk(M) = # of maximal chains m in LM with descent set D(m) = [k]. (3.5)

This edge labeling is important in the study of the topology of LM; see [17].
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16 Federico Ardila–Mantilla

Matroid Fans Sturmfels [48] and Ardila and Klivans [9] introduced the matroid
fan or Bergman fan of a matroid:

Definition 3.1 [9] Let M be a matroid on ground set E. The matroid fan or
Bergman fan ΣM in NE = RE /R eE has

• rays: eF for the proper flats ∅ � F � E, and

• cones: σF = cone(eF1 , . . . , eFk
) for the flags F = (∅ � F1 � · · · � Fk � E).

If M has rank r+ 1, the braid fan ΣM is a pure r-dimensional subfan of the braid
fan ΣE . Notice that ΣE is the matroid fan for the Boolean matroid where r(A) = |A|
for all A ⊆ E.

Proposition 3.2 The matroid fan is balanced with unit weights.

Proof Consider any (r − 1)-face of the braid fan; we can write it as τ = σF for
F = (∅ � F1 � · · ·Fi−1 � Fi+1 � · · · � Fr � E) where r(Fj) = j for all j. The
facets of ΣE containing τ are those of the form σ = σF ∪F for the rank i flats F with
Fi−1 � F � Fi+1. These correspond to the lines F − Fi−1 of the rank 2 matroid
M[Fi−1, Fi+1] = (M\(E − Fi+1))/Fi, whose union is its ground set Fi+1 − Fi−1.
Therefore

∑

Ä⊂Ã

w(σ) eÃ/Ä =
∑

Fi−1�F�Fi+1

eF−Fi−1 = eFi+1−Fi−1 = 0 in N / span τ.

as desired. �

It follows that we can regard ΣM, with unit weights, as a Minkowski weight 1M
on the matroid fan ΣM or on the permutahedral fan ΣE .

The Chow ring A(M) of M is the Chow ring A(ΣM) of its matroid fan, as defined
in Section 2.1. Even though ΣM is not complete, A(M) also has a degree map [1]:

degM : Ar(M) → Z

η �→ η · 1M.

The Theme The inclusion i : ΣM → ΣE of the matroid fan in the braid fan is a
morphism of fans. As explained in Section 2.5, this gives pullback and pushforward
homomorphisms

i∗ : A(ΣE) −→ A(ΣM), i∗ : MW(ΣM) −→ MW(ΣE)

satisfying the projection formula η · i∗w = i∗(i
∗η · w).

The classes ³E and ´E of the braid Chow ring A(ΣE) described in Section 2 pull
back to the hyperplane and reciprocal hyperplane classes

³M := i∗(³E), ´M := i∗(´E)

of the matroid Chow ring A(ΣM). Also, the top-dimensional constant Minkowski
weight 1M on the matroid fan ΣM pushes forward to the Minkowski weight i∗(1M) =
ΣM on the braid fan ΣE . The projection formula then gives

degM(³r−k
M

´k
M
) = degE(ΣM · ³r−k

E ´k
E).
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where degM : Ar(ΣM)
∼
−→ R and degE : An(ΣE)

∼
−→ R are the degree map of ΣM and

ΣE , respectively. Now we restate our main theme:

Theorem 1.1 Let M be a matroid of rank r+1. Let ³, ´ be the hyperplane
and reciprocal hyperplane classes in the Chow ring A(M). Then

degM(³r−k´k) = μk(M) for 0 f k f r.

and devote the rest of the paper to four variations on its proof.

3.1 The Chow Ring as a Quotient of a Polynomial Ring

Let M be a loopless matroid of rank r + 1 on a set E with n+ 1 elements. The
Chow ring A(M) is the Z-algebra generated by variables xF for each non-empty
proper flat and relations

xFxG = 0 for flats F,G such that F � G and F � G,∑

F�i

xF =
∑

F�j

xF for elements i, j ∈ E.

The Chow ring is graded A(M) = A0(M) ⊕ · · · ⊕ Ar(M), and the isomorphism
degM : Ar(M) → Z is characterized by its value on square-free monomials:

deg(xF1 · · ·xFk
) =

{
1 if F1, . . . , Fk form a flag,

0 otherwise.
for F1, . . . , Fk distinct.

In this presentation, the hyperplane and reciprocal hyperplane classes ³M and ´M
are given by:

³ = ³i =
∑

i∈F

xF , ´ = ´i =
∑

i/∈F

xF .

As before, that they do not depend on i.
Our goal is to compute the degree of ³r−k´k in the Chow ring A(M). To do so,

we seek to express ³r−k´k as a sum of square-free monomials, each of which have
degree one. One fundamental feature of this computation, which is simultaneously a
challenge and an advantage, is that there are many ways to carry it out. We are free
to choose any one of the E different expressions for ³ and ´ to compute. To have
control over the computation, we require some structure amidst that freedom. Let
us prescribe a precise way of carrying out these computations, in terms of a fixed
linear order < on the ground set E of M.

Definition 3.3 Let F = {∅ � F1 � · · · � Fk � E} be a flag of flats of M.
• The lexicographic expansion of xF ³ is the expression

xF ³ = xF ³e =
∑

F⊃Fk∪e

xFxF ,

where e = min<(E − Fk) is the <-smallest element of E that is not in Fk. Note
that since e ∈ F and e /∈ Fk, the new flat F in each term must be the maximal flat
in the new flag F ∪F .
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• The lexicographic expansion of xF ´ is the expression

xF ´ = xF ´e =
∑

F⊂F1−e

xFxF ,

where e = min< F1 is the <-smallest element of E that is in F1. Note that since
e /∈ F and e ∈ F1, the new flat F must be the minimal flat in the new flag F ∪ F .

• The lexicographic expansion of xF ´t is obtained recursively by multiplying each
monomial in the lexicographic expansion of xF ´t−1 by ´, again using the lexico-
graphic expansion.

• The lexicographic expansion of xF ³s´t is obtained recursively by multiplying
each monomial in the lexicographic expansion of xF ³s−1´t by ³, again using the
lexicographic expansion.

By construction, these lexicographic expansions are sums of non-zero square-free
monomials in A(M). We invite the reader to compute the lexicographic expansions
of ³2, ³´, and ´2 for the matroid in Figure 4. We now describe the outcome of this
computation in general.

A flag F = {∅ � F1 � · · · � Fk � E} gives rise to a word

m(F) = m1m2 . . .mk+1 where mi = min
<

(Fi − Fi−1)

and a descent set

D(F) = {i ∈ [k] : mi > mi+1}.

Lemma 3.4 The lexicographic expansion of ³s´t is

³s´t =
∑

F : | F |=s+t,D(F)=[t]

xF .

Proof In the terms xF∪F of the lexicographic expansion of xF´, the condition
F ⊂ F1 − e is equivalent to minF > min(F1 − F ) = e, that is, to an initial descent
in the word of F ∪ F .

In the terms xF ∪F of the lexicographic expansion of xF³, the condition F ⊃ Fk∪e
is equivalent to min(F −Fk) = e > min(E−F ), that is, to a final ascent in the word
of F ∪F .

Since the lexicographic expansion in question is computed recursively in the order
1, ´, ´2, . . . , ´t, ³´t, ³2´t, . . . , ³s´t, its terms correspond to the flags of length s+ t
whose words have t initial descents and s final ascents. �

Proof 1 of Theorem 1.1: The flags of length (r − k) + k whose words have k
initial descents and r−k final ascents correspond to the maximal chains in the lattice
LM whose Jordan-Hölder sequence has descent set [k]. As we discussed in Section
3.0, there are μk such flags. �

This first proof of Theorem 1.1 is based on [1]. For an alternative deletion-
contraction proof motivated by the intersection theory of moduli spaces of curves,
see [22].
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3.2 The Chow Ring in Terms of Piecewise Polynomials

For a permutation σ : [0, n] → E, let BÃ be the lexicographically smallest basis
of M with respect to the order σ. It can be constructed greedily, by sequentially
adding each of σ(0), σ(1), . . . , σ(n) as long as it is independent from the previously
added elements.

The following piecewise polynomial functions are representatives for the classes
of ΣM, ³, and ´ in PP(ΣE)/N

∨. For any fixed element f ∈ E,

[³]Ã = tf − tÃ(n), [´]Ã = tÃ(0) − tf , [ΣM]Ã = (− t)E−Bσ
:=

∏

i/∈Bσ

(tf − ti), (3.6)

for each permutation σ of E: The first two equalities were shown in Section 2.2; for
the third, see [11, Lemma 4.3] and [14, Theorem 7.6]. Therefore, as explained in
Section 2.2,

degE(³
r−k´kΣM) =

∑

Ã∈SE

(tÃ(0) − tf )
k(tf − tÃ(n))

r−k
∏

i/∈Bσ
(tf − ti)

(tÃ(0) − tÃ(1))(tÃ(1) − tÃ(2)) · · · (tÃ(n−1) − tÃ(n))

and we need to prove that this rational function equals the constant μk(M).
Let us write tÃ := (tÃ(0) − tÃ(1))(tÃ(1) − tÃ(2)) · · · (tÃ(n−1) − tÃ(n)) for each bijec-

tion σ : [0, n] → E, written in “one-line notation” as the word σ(0) . . . σ(n). Also
recall that tij := ti− tj . Finally write [mk(M)] := [³r−k´kΣM] regarded as a piecewise
polynomial function on ΣE , so that

degE(³
r−k´kΣM) =

∑

Ã∈SE

[mk(M)]Ã
tÃ

.

Proof 2 of Theorem 1.1: We will prove that this sum equals μk(M) by showing
that it satisfies a deletion-contraction recurrence. Let e be an element that is neither
a loop nor a coloop.5 Each permutation of E can be written uniquely in the form
τ i = τ(0) . . . τ(i − 1) e τ(i) . . . τ(n − 1) for a permutation τ = τ(0) . . . τ(n − 1) of
E − e and an index 0 f i f n. For each permutation τ of E − e, there is an element
j ∈ E − e such that

BÄ (M /e) =: BÄ , BÄ (M \e) = BÄ ∪ τ(j).

Then we have

BÄ i(M) =

{
BÄ ∪ e if i f j,

BÄ ∪ τ(j) if i > j.

Now we use this to compute the parts of a piecewise polynomial function rep-
resenting [mk(M)] := [³r−k´kΣM] recursively. We use the equations in (3.6) which
are valid for any f ∈ E; we will choose f = e.6 Notice that [´]Ä0 = 0, [³]Än = 0, and
[ΣM ]Ä i = 0 for i > j since f = e and e /∈ BÄ i . Therefore

[mk(M)]Ä i =

{
(tÄ(0)e)

k(teÄ(n−1))
r−k(− t)E−B−e for i = 1, . . . , j,

0 for i = 0, j + 1, . . . , n− 1, n.

5A similar analysis, which we omit, will hold when e is a loop or a coloop.
6One can prove the recurrence without making this choice, but that requires additional ideas.
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Let us sum the contributions from permutations τ0, . . . , τn to deg[mk(M)]:

n∑

i=0

[mk(M)]Ä i

tÄ i

=
(tÄ(0)e)

k(teÄ(n−1))
r−k(− t)E−B−e

tÄ

[
j∑

i=1

tÄ

tÄ i

]

=
(tÄ(0)e)

k(teÄ(n−1))
r−k(− t)E−B−e

tÄ
·

[
1

tÄ(0)e
+

1

teÄ(j)

]

=
(tÄ(0)e)

k−1(teÄ(n−1))
r−k(− t)(E−e)−B

tÄ
+

(tÄ(0)e)
k(teÄ(n−1))

r−k(− t)(E−e)−B−Ä(j)

tÄ

=
[mk−1(M /e)]Ä

tÄ
+

[mk(M \e)]Ä
tÄ

,

using the fact that the sum of
tÄ

tÄ i
=

tÄ(i−1)Ä(i)

(tÄ(i−1)e)(teÄ(i))
=

1

tÄ(i−1)e
−

1

tÄ(i)e
telescopes.

Summing this equality over all τ ∈ SE−e, we obtain

degE(mk(M)) = degE(mk−1(M /e)) + degE(mk(M \e))

= μk−1(M /e) + μk(M \e)

= μk(M)

as desired. �

For a similar recursive proof of a much more general statement, see [14].

3.3 The Chow Ring in Terms of Minkowski Weights

Let us now compute the degree of ³r−k´kΣM stable intersection of the respective
Minkowski weights. We have already described the matroid fan ΣM. The tropical
fans of ³r−k and ´k are the subfans of ΣE with unit weights and support ΣE,r−k

and −ΣE,k where

ΣE,i = {x ∈ NE : the smallest i+ 1 coordinates of x are equal}.

For each S ⊆ E we consider the cone of NE where the S coordinates are minimal:

ΣE,S = {x ∈ NE : xs f xt for all s ∈ S, t ∈ E}.

The relative interiors are pairwise disjoint, and ΣE,i =
⋃

|I|=i+1

ΣE,I for 1 f i f n.

Proof 3 of Theorem 1.1: Let a and b be generic vectors with a decreasing and b

increasing, so a0 > a1 > · · · > an and b0 < b1 < · · · < bn We need to find the points
in the intersection ΣM ∩ (a+ΣE,r−k) ∩ (b−ΣE,k). Let us compute the points

x ∈ σF ∩ (a+ΣE,I) ∩ (b−ΣE,J), for | F | = r, |I| = r − k + 1, |J | = k + 1.
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Let the flag F induce the ordered set partition S = S1| · · · |Sr+1 of E with parts
Si = Fi − Fi−1 for 1 f i f r + 1.

Since the codimensions of these cones add up to (n−r)+(r−k)+k = n = dimNE

and a and b are generic, for this intersection to be nonempty, the sets I and J
cannot share a pair of elements with each other or with any Sh. Therefore the parts
S1, . . . , Sr+1 split into three types:

(I) r − k parts containing exactly one element of I and none of J ,

(J) k parts containing no element of I and exactly one of J ,

(IJ) one part containing exactly one element of I and one element of J .

We claim that in any part of S, the minimum element is the one belonging to I
or J . To show the claim, assume i ∈ I is in a block S � i of S. Since x−a ∈ ΣE,I ,
(x − a)i f (x − a)s for all s ∈ S, so ai = max{as : s ∈ S}. Since a is decreasing,
i = min{s : s ∈ S}. An analogous argument shows that any j ∈ J is the smallest in
its block S � j. In particular, the minimum element m of the part of type (IJ) is the
element belonging to I and J .

Now let us choose the representatives of a,b,x ∈ NE = RE /R eE that make
am = bm = xm = 0. Since x−a ∈ ΣE,I and x−b ∈ −ΣE,J , the smallest coordinates
of x−a and the largest coordinates of x−b, both achieved at m ∈ I ∩ J , equal 0.
It follows that

xs =

⎧
⎪«
⎪¬

xi = ai for s, i ∈ S of type (I)

xj = bj for s, j ∈ S of type (J)

xm = 0 for s,m ∈ S of type (IJ),

and ae f xe f be for all e ∈ E.

We claim that m = 0. If m > 0, since a is decreasing and b is decreasing, we
would have

0 = am < a0 f b0 < bm = 0.

This implies that

an < · · · < a1 < a0 = 0 = b0 < b1 < · · · < bn.

Since x ∈ σF , the parts S of type (I), where xs = ai for some i ∈ I − 0, must come
after the part of type (IJ) in S. Analogously, the parts S of type (II) must come
before the part of type (IJ) in S.

We conclude that the parts S1, . . . , Sk are of type (J), Sk+1 is of type (IJ), and
Sk+2, . . . , Sr+1 are of type (I). Their respective minimum elements j1, . . . , jk ∈ J ,
0 ∈ I ∩ J , ik+2, . . . , ir+1 have decreasing x coordinates, which means that j1 . . . jk0
is decreasing and 0ik+2 . . . ir+1 is increasing. Thus F is a maximal chain whose
Jordan-Hölder sequence has descent set [k]. As we saw in Section 3.2, there are
μk(M) such chains.

Rereading the proof, the reader will see that the point x computed above does
provide an intersection point of our tropical fans; it is not difficult to verify that it
has index 1. This completes the proof that the intersection degree is μk(M). �
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3.4 The Chow Ring in Terms of Tropical Intersection

Let 1 f r1 f r2 f r. The (r1, r2)–truncation of M is the Minkowski weight
ΣM,[r1,r2] on the braid fan ΣE whose weight on the cone σF corresponding to a flag
F = {∅ � Fr1 � Fr1+1 � · · · � Fr2 � E} is

w(σF ) =

{
|μ(Fr1)| if each Fi is a flat of rank i in M, or

0 otherwise.

Proposition 3.5 [32, 34] Let M be a matroid of rank r+1. For 1 f r1 < r2 f r+1,

³ · ΣM,[r1,r2] = ΣM,[r1,r2−1], ´ · ΣM,[r1,r2] = ΣM,[r1+1,r2].

For 1 f k f r,

deg(³ · ΣM,[k,k]) = μk−1, deg(´ · ΣM,[k,k]) = μk.

In particular, each (r1, r2)-truncation ΣM,[r1,r2] is a balanced fan.

Proof Let us prove the statements for ³; the proofs for ´ are similar and can be
found in [32]. To show that ³ · ΣM,[r1,r2] = ΣM,[r1,r2−1], we show that the Minkowski
weight ³ ·ΣM,[r1,r2] has the correct value on each cone of ΣM,[r1,r2−1], and has weight
0 on every other cone.

First, consider a cone σG in ΣM,[r1,r2−1] with G = {Gr1 � · · · � Gr2−1}, and let
F1, . . . , Fm be the rank r2 flats of M compatible with G; that is, the flats covering
Gr2−1 = G in the lattice LM. They correspond to the rank 1 flats F1−G, . . . , Fm−G
of M[G,E] = M /G, which partition its ground set E −G, so

eF1 + · · ·+ eFm = (m− 1) eG+ eE = (m− 1) eG in NE .

The full-dimensional cones of ΣM,[r1,r2] containing σG are σG ∪Fi
for 1 f i f m, all

with weight |μ(Gr1)|. Let us choose an element e ∈ G 7 and compute the weight of
the divisor ³ · ΣM,[r1,r2] on this cone σG , using ³ = ³e:

³ · ΣM,[r1,r2](σG) :=
∑

F⊃G

w(σF )³(eF /G)− ³

(
∑

F⊃G

w(σF ) eF /G

)

= |μ(Gr1)|

»
½

m∑

j=1

³(eFj
)− ³

»
½

m∑

j=1

eFj

¾
À
¾
À

= |μ(Gr1)| (m− ³ ((m− 1) eG))

= |μ(Gr1)|,

noting that e ∈ G ⊂ Fj imply ³(eG) = ³(eFj
) = 1 for all j.

Now consider a cone σG of ΣM,[r1,r2] that is not in ΣM,[r1,r2−1]; let the flats in
G = {Gr1 � · · · � Gs−1 � Gs+1 � · · · � Gr2} have ranks r1, . . . , ŝ, . . . , r2 where
s 
= r2. Let F1, . . . , Fm be the flats of rank s that are compatible with M. Now let us

7One will obtain the same answer using α = αf for any other f ∈ E, but choosing e ∈ G simplifies
the computation.
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choose an element e /∈ Gs+1 (and hence e /∈ Fj for all j), and perform the following
computation with ³ = ³e

³ · ΣM,[r1,r2](σG) =
∑

F⊃G

w(σF )³(eF /G)− ³

(
∑

F⊃G

w(σF ) eF /G

)

=

»
½

m∑

j=1

w(σG ∪Fj
)³(eFj

)− ³

»
½

m∑

j=1

w(σG ∪Fj
) eFj

¾
À
¾
À

= 0

because none of the eFj
s involve the e-th coordinate, so ³ takes a value of 0 on every

term in this sum.

Finally, we compute ³ · ΣM,[k,k], which is supported on the origin •. Summing
over the flats G of rank k in M, we compute with ³ = ³e for any e ∈ E:

³ · ΣM,[k,k](•) =
∑

G

w(eG)³(eG/•)− ³

(
∑

G

w(eG) eG/•

)

=
∑

G

|μ(G)|³(eG)− ³

(
∑

G

|μ(G)| eG

)

=
∑

G�e

|μ(G)|

= |μ(Trr+1−k
M)| = μk,

because the balancing condition for ΣM,[k,k] gives
∑

G |μ(G)| eG = 0 in NE , and the
last step follows from Weisner’s theorem:

For any lattice L and any element x 
= 1̂,
∑

x∈L :x∨e=1̂

μ(x) = 0.

applied to the lattice of flats of Trr+1−k
M and the atom e. �

Proof 4 of Theorem 1.1: We use Proposition 3.5 to compute the degree of
³r−k´k · ΣM = ³r−k´k · ΣM [1,r]. For k 
= r we have

deg(³ · ³r−k−1´k · ΣM [1,r]) = deg(³ · ΣM [k+1,k+1]) = μk

and for k 
= 1 we have

deg(´ · ³r−k´k−1 · ΣM [1,r]) = deg(´ · ΣM [k,k]) = μk

as desired. �

This final proof of Theorem 1.1 is based on [32, 34].
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4 Further Developments

We close with a small selection of recent results that highlight a few additional
directions and techniques in the intersection theory of matroids. They all involve
one of the most important functions of a matroid: the Tutte polynomial

TM(x, y) =
∑

A⊆E

(x− 1)r−r(A)(y − 1)|A|−r(A).

This is a very powerful invariant, because every matroid invariant that satisfies a
deletion-contraction recurrence – for instance, the characteristic polynomial – can be
expressed in terms of the TM(x, y). Some of the results also involve the beta invariant
´(M), which is the coefficient of x1y0 and of x0y1 in TM(x, y).

Our goal here is to give a brief description of the key combinatorial aspects of
these constructions, but each one of them has an elegant geometric origin. To fully
understand the motivation, as well as the relevant definitions, we invite the reader
to consult the relevant references.

Matroid Fans and Symmetrized Minkowski Weights Berget, Spink, and Tseng [15]
defined the one-window symmetrized Minkowski weights Φr,k on the permutahedral
variety, and proved that

deg[ΣM · Φr,k] = coeff. of qk in TM(1, q)

for 0 f k f n− r. They computed these degrees by finding the stable intersection of
the corresponding Minkowski weights, as described in Section 2.3. They introduced
the combinatorial framework of “sliding sets” to describe the relevant intersection
points.

Chern-Schwartz-MacPherson Cycles of a Matroid López de Medrano, Rincón, and
Shaw [39] defined the k-th Chern-Schwartz-MacPherson (CSM) cycle of a matroid
M to be the k-skeleton of the matroid fan ΣM with weights

w(σF ) := (−1)r−k
k∏

i=0

´(M[Fi, Fi+1]), F = {∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ Fk+1 = E}

where ´(M[Fi, Fi+1]) is the beta invariant of the minor M[Fi, Fi+1] [39]. They proved
that this is a Minkowski weight on ΣE , with degree

degE(csmk(M) · ³k) = coefficient of qk in χM(q + 1). (4.1)

for 0 f k f r.
They gave a deletion-contraction proof, in the context of Minkowski weights.

This required describing the CSM cycles of M in terms of the CSM cycles of the
deletion M \e and the contraction M /e for an element e that is not a loop or coloop,
using the relevant pushforward and pullback maps.

Ashraf and Backman [12] gave an alternative proof of (4.1) using stable inter-
sections of Minkowski weights, relying on the Gioan-Las Vergnas refined activities
expansion of the Tutte polynomial [29].
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The Conormal Fan of a Matroid Ardila, Denham, and Huh [7, 6] introduced the
conormal fan Σ

M,M⊥ of a matroid M. Its analysis required them to go beyond the
permutahedral fan, introducing the bipermutahedral fan ΣE,E .

The conormal fan Σ
M,M⊥ has support |Σ

M,M⊥ | = |ΣM|×|Σ
M

⊥ | in NE ×NE , where

M
⊥ is the dual matroid. It is a subfan of the bipermutahedral fan ΣE,E , whose Chow

ring contains elements ³, ´ ∈ A1(ΣE,E), such that

degE,E [ΣM,M⊥ · ³k´n−1−k] = (−1)r−kcoeff. of qk in χM(q + 1) (4.2)

for 0 f k f r.
They gave two proofs of (4.2), based on Brion’s presentation of the Chow ring as

in Section 2.1. One describes the lexicographic expansion of ³k´n−1−k in the Chow
ring of Σ

M,M⊥ in terms of the combinatorics of biflats and biflags [6], relying on work
of LasVergnas on basis activities [38]. The other one shows that the combinatorially
intricate CSM cycles of ΣM are “shadows” of simpler cycles of Σ

M,M⊥ under the
pushforward map of Minkowski weights:

csmk(M) = (−1)r−kπ∗(´
n−k−1 · 1

M,M⊥)

for 0 f k f r, where 1
M,M⊥ is the top-dimensional constant Minkowski weight on

Σ
M,M⊥ [7]. The projection formula then shows that (4.1) implies (4.2).

Matroid Valuations in Intersection Theory The matroid polytope of a matroid M

is
PM = conv{eB : B is a basis of M} ⊂ RE .

A matroid valuation is a function Φ from the set of matroids on E to an additive
abelian group such that for any subdivision of a matroid polytope PM into matroid
polytopes PM1 , . . . , PMk

we have the inclusion-exclusion relation

Φ(M) =

k∑

i=1

(−1)dimPM−dimPMiΦ(Mi). (4.3)

This property seems restrictive but is surprisingly common [8, 10, 23]. For example,
H(M) =

∑
Ã∈SE

(σ, rM({σ(1)}), rM({σ(1), σ(2)}), . . . , rM({σ(1), . . . , σ(n)}) is valua-
tive [8], and a very broad range of matroid valuations can be built from it. Notice
that H(M) determines M entirely.

This framework is relevant and useful in the intersection theory of matroids. For
example, the Bergman fan ΣM is a matroid valuation, when regarded as a Minkowski
weight on ΣE [39, Theorem 4.5] or as the piecewise polynomial (3.6) on ΣE [8,
Theorem 5.4], [14, Proposition 5.6]. More generally, the CSM cycles of a matroid are
also valuative [39]. The multivariate volume polynomial of M, which is equivalent to
the Chow ring A(M), is also valuative [24].

The case of matroid invariants, which satisfy f(M1) = f(M2) when M1
∼= M2, is

best understood. Examples include the characteristic and Tutte polynomials and the
beta invariant. Derksen and Fink described the universal valuative matroid invariant
G(M) =

∑
Ã∈SE

(rM({σ(1)}), rM({σ(1), σ(2)}), . . . , rM({σ(1), . . . , σ(n)}); this is the
symmetrization of H(M) above. They also showed that any valuative matroid
invariant f is determined by its value on Schubert matroids.
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This gives a powerful way to prove an equation f(M) = g(M) for all matroids M:
1. Prove that f and g are both valuative (e.g. using the techniques of [8, 10, 23]).
2. Prove that f(M) = g(M) for all Schubert matroids M (e.g. by a combinatorial
argument that uses the structure of Schubert matroids, or by a geometric argument
that works for realizable matroids, which include Schubert matroids).

Tautological Matroid Classes Berget, Eur, Spink, and Tseng defined the tautological
Chern classes ci(S

∨
M
), ci(QM) ∈ Ai(ΣE) in the permutahedral variety. They gave a

valuative proof of the identity

degE [cr(S
∨
M
)cn−r(QM)] = ´(M) (4.4)

in the spirit of the previous section. Once one understands the relevant definitions,
the valuativity of both sides of (4.4) follows directly from the discussion there. They
then proved (4.4) algebro-geometrically for all matroids realizable over C – which
includes Schubert matroids – relying on earlier work of Speyer [47].

More generally, they showed that the intersections of the tautological Chern
classes with powers of the classes ³ and ´ give the following reparameterization of
the Tutte polynomial:

∑
degE [³

i´jck(S
∨
M
)cl(QM)]xiyjzkwl =

(y + z)r+1(x+ w)n−r

x+ y
TM

(
x+ y

y + z
,
x+ y

x+ w

)
,

summing over all indices with i+ j + k + l = n. They used the framework of Section
2.2, analyzing how the piecewise polynomials representing ³i´jck(S

∨
M
)cl(QM) behave

under deletion-contraction. Our proof in Section 3.2 was inspired by theirs.

Tropical Critical Points of Affine Matroids The affine Bergman fan Σ̂M is the
Bergman fan ΣM with an added lineality space R eE in RE . An affine matroid (M, e)
consts of a matroid M and a chosen element e ∈ E. The Bergman fan of (M, e) is
Σ̂(M,e) = {x ∈ RE−e : (0,x) ∈ Σ̂M}. Ardila, Eur, and Penaguião gave two proofs of
the following formula conjectured by Sturmfels [2]:

deg[Σ̂(M,e) · (−Σ̂(M/e)⊥)] = ´(M). (4.5)

Their first proof described the stable intersection of the fans Σ̂(M,e) and −Σ̂(M/e)⊥

explicitly, by developing the framework of arboreal pairs of set partitions and con-
necting to Ziegler’s ´nbc bases of ordered matroids [51]. Their second proof wrote
down piecewise polynomials representing the left-hand sides of (4.4) and (4.5), and
showed that their difference is a multiple of a linear function, and hence equal to 0
in the Chow ring of ΣE . Thus (4.4) implies (4.5).
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