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ABSTRACT

The theory of matroids or combinatorial geometries originated in linear algebra and graph
theory, and has deep connections with many other areas, including field theory, matching
theory, submodular optimization, Lie combinatorics, and total positivity. Matroids capture
the combinatorial essence that these different settings share.

In recent years, the (classical, polyhedral, algebraic, and tropical) geometric roots of the
field have grown much deeper, bearing new fruits. We survey some recent successes, stem-
ming from three geometric models of a matroid: the matroid polytope, the Bergman fan,
and the conormal fan.
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1. INTRODUCTION

There are natural notions of independence in linear algebra, graph theory, field
theory, matching theory, routing theory, rigidity theory, model theory, and many other areas.
When one seeks to understand the pleasing similarities between these different contexts,
one is led to the powerful theory of matroids or combinatorial geometries. These intriguing,
multifaceted objects turn out to also play a fundamental role in Lie combinatorics, tropical
geometry, total positivity, and other settings.

The geometric approach to matroid theory has recently led to the solution of long-
standing questions, and to the discovery of deep, fascinating interactions between combina-
torics, algebra, and geometry. This survey is a selection of some recent achievements of the
theory.

Section 2 reviews basic definitions, and Section 3 discusses key invariants of a
matroid, like the characteristic and Tutte polynomials, and the finite field method to compute
them. Section 4 focuses on the matroid polytope, starting from its parallel origins in combi-
natorial optimization and in the geometry of the Grassmannian. We discuss its connections
to root systems, generalized permutahedra, the theory of matroid subdivisions and valuative
invariants, and the role played by Hopf algebraic methods in these developments. Section 5
concerns the Bergman fan of a matroid. We discuss its central role in tropical geometry,
its Hodge-theoretic properties, their role in the log-concavity of matroid f -vectors, and the
theory of Chern—Schwartz—MacPherson cycles of matroids. Section 6 discusses the conor-
mal fan of a matroid, its Hodge-theoretic properties, their role in the log-concavity of matroid
h-vectors, and a Lagrangian geometric interpretation of CSM cycles. It also discusses two
polytopes that play an important role in this theory and have elegant combinatorial prop-
erties: the bipermutahedron and harmonic polytope. Finally, Section 7 offers some closing
remarks.

2. MATROIDS

Matroids were defined independently in the 1930s by Nakasawa [83] and Whitney
[113]. We choose one of many equivalent definitions. A matroid M = (E, J) consists of a
finite set £ and a collection J of subsets of E, called the independent sets, such that

1) @ e J.
(I2) IfJ eJand I C J then I € 4.
(I3) If I,J € J and |I| < |J| then there exists j € J — [ suchthat [ U j € d.

A matroid where every set of size at most 2 is independent is called a simple matroid or a
combinatorial geometry.

Thanks to (I2), it is enough to list the collection B of maximal independent sets;
these are called the bases of M. By (I3), they have the same size r = r (M), which we call
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the rank of M. Our running example will be the matroid with
E = abcde, B = {abc,abd,abe,acd,ace}, 2.1)

omitting brackets for easier readability. Throughout the paper we letn = |E| and r = r(M).
The two most important motivating examples are graphical and linear matroids.
Figure 1 shows how (2.1) is a member of both families.

Graphical matroids. Let E be the set of edges of a graph G and J be the collection of
forests of G, that is, the subsets of E containing no cycle.

Linear or realizable matroids. Let [F be a field.

(a) (Vector configurations) Let E be a finite set of vectors in a vector space over [,
and let d be the collection of linearly independent subsets of E.

(b) (Subspaces) Let V = F ¥ be a finite-dimensional vector space and U C V be
a subspace. Let J be the collection of subsets / € E such that U intersects
the coordinate subspace V; = {ve V : v; = 0fori € I} transversally, that is,
dim(U NV;) =dimU —|I|.

The latter two constructions are equivalent: for a matrix A, the matroid of the set of
columns of A equals the matroid of the rowspace of A.

FIGURE 1
The matroid (2.1) with bases B = {abc,abd,abe,acd,ace} is linear and graphical.

Matroids arise naturally in many important settings, e.g., the study of algebraic
dependences in a field extension, the combinatorics of root systems of semisimple Lie alge-
bras, the perfect matchings in a bipartite graph, the nonintersecting paths in a directed graph,
and total positivity of matrices, to name a few [8,87]. Many of the matroids in natural appli-
cations are linear, but most matroids are not realizable over any field [84], and including them
leads to a much more powerful and robust theory of matroids and their geometry.

There are several natural operations on matroids. For S € E, the restriction M |S
(or deletion M\(E — S)) and the contraction M /S are matroids on the ground sets S and
E — §, respectively, with independent sets

JIS:={ICS:Ied},
J/S:={I CE-S:I1UlIg¢ed}

for any maximal independent subset /s of S; the latter is independent of the choice of Ig.
When M is a linear matroid in a vector space V', M |S and M/ S are the linear matroids on the
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ground sets S and £ — S that M determines on the vector spaces span(.S) and V/ span(S),
respectively. If § € T, we write

MIS,T] := (M|T)/S.

The direct sum My & M, of My = (Eq,d1) and My = (E3, Jp) with E; N Ey =0
is the matroid on E; U E; with independent sets d; & d, = {[; U I : I} € d1, I € 4,}.
Every matroid decomposes uniquely as a direct sum of its connected components.

Finally, the matroid M+ dual or orthogonal to M is the matroid on E with bases

Bt :={E—-B:Be38)

Remarkably, this simple notion simultaneously generalizes orthogonal complements and
dual graphs. If M is the matroid of a subspace U € V' of an inner product space, then
M+ is the matroid of its orthogonal complement U+ C V. If M is the matroid for a planar
graph G, drawn on the plane without edge intersections, then M+ is the matroid for the dual
graph G, whose vertices and edges correspond to the faces and edges of G, respectively,
as shown in Figure 2.

FIGURE 2
The dual matroid B = {bd, be, cd, ce, de} is realized by the graph dual to Figure 1(b).

An element a is a loop of M if {a} is dependent. A coloop of M is aloop of M.

3. ENUMERATIVE INVARIANTS

Two matroids My = (E1, d1) and M, = (E,, d,) are isomorphic if there is a rela-
beling bijection ¢ : E; — E; that maps {1 to d,. A matroid invariant is a function f on
matroids such that f(My) = f(M,) whenever My and M, are isomorphic. In 1964, Rota
introduced the first foundational example [91], which we now define.

The characteristic polynomial. We define the rank function r : 2% — 7 of a matroid M
by
r(A) := largest size of an independent subset of A4,
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for A € E. When M is the matroid of a vector configuration A, r(A) = dimspan(A). The
characteristic polynomial of a loopless matroid M is

(@) = (=1)g .
ACE
For the example in (2.1), we have yar(¢) = > — 4g? + 5q — 2. The characteristic
polynomial of a matroid is one of its most fundamental invariants. For graphical and linear
matroids, it has the following interpretations [38,86,115].

1. Graphs. If M is the matroid of a connected graph G, then g yas (q) is the chromatic poly-
nomial of G; it counts the proper colorings of the vertices of G with ¢ given colors, where
no two neighboring vertices have the same color.

2. Hyperplane arrangements. Suppose M is the matroid of a set of nonzero vectors vy, ..., U,
spanning F¢ . Consider the arrangement 4 of hyperplanes H; = {x € F? : v; - x = 0} for
1 <i <n,and its complement V(A) =F? \ (H; U---U H,). Depending on the underlying
field, yas (g) stores different information about V' (4):

(a) (F = R) The complement V() consists of (—1)? yar(—1) regions.

(b) (F = C) The Betti numbers of the complement V(+4) are the coeflicients of
=)y (=1/q).

(c) (F =TF,) The complement V' (+A) consists of xas(g) points. For a significantly
stronger result on the £-adic étale cohomology of the arrangement, see [36].

Two related invariants that arise in several contexts are the Mobius and beta invariants
w(M) = ypu(0) and B(M) = (—1)’_1)(}”(1), where y},(x) is the derivative of ys(x).
If |[E| > 2 then B(M) = B(M ™).

The independence and broken circuit complex and their f - and &-vectors. Let < be
a linear order on E. A circuit is a minimal dependent set. A broken circuit is a set of the
form C — {min C} where C is a circuit. An nbc set is a subset of E not containing a broken
circuit.

We consider two simplicial complexes associated to a matroid M : the independence
complex and broken circuit complex:

J(M) := {independent sets of M}, BE€ (M) := {nbc sets of M }.

The f-vector of a simplicial complex A of dimension d — 1 counts the number
Jfr(A) of faces of A of size k for each 0 < k < d. The h-vector of M stores this information
more compactly; it is given by

d d
> filg—DTF =" g
k=0 k=0
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The simplicial complexes 4 (M) and BE€ (M) are (r — 1)-dimensional. For the example
in (2.1),

fdM)) =(1,5.9,5), f(BE(M))=(1,4,52).

h(4(M)) = (1,2,2,0), h(BE(M)) = (1,1,0,0).
Topologically, d (M) and B€ (M) are wedges of (ML) and B(M) spheres of dimension

r — 1, respectively [29]. Up to alternating signs, the coefficients of yas(q) and yar(q + 1)
give the f-vector and h-vector of BE (M).

The Tutte polynomial. The invariant that appears most often in geometric, algebraic, and
enumerative questions related to matroids is the Tutte polynomial [1e8]:

T (x.p) =Y (x— 1) 7@y — plA=r, 3.0)
ACM

For the example in (2.1), we have Ty (x, y) = x3 + x2y + x2 + xy? + xy.
The ubiquity of this polynomial is explained by the following universality property.
If a function f : Matroids — T satisfies a deletion—contraction of the following form:

af(M\e) + bf(M/e) if e is neither a loop nor a coloop,
JM) =13 f(M\e) f(L) if e = L is aloop, 3.2)
f(M/e)f(C) if e = C is a coloop,
then it is an evaluation of the Tutte polynomial, namely /(M) = a”~"b" Ty (@ u (aL)
The Tutte polynomial also behaves very nicely under duality; we have Ty,1 (x,y) = Tapr (3, X).

Many natural enumerative, algebraic, geometric, and topological quantities in
numerous settings satisfy deletion—contraction recurrences, and hence are given by the Tutte
polynomial; see [8, SECTION 7.7] and [1e] for examples. In particular,

(@) = (1) Tu(1—¢,0), (M) =Tyu(1,0), BM)=[x"y°]Ta(x,y),

where the last equality holds for | E| > 2, and

AN =Ty (1 +x. 1), ) [(BE(M))x" =Ty (1+ x.0).
D hi(AM))x"T = Tar(x. 1), Y hi(BE(M))x" = Ty (x.0).

In particular, though B€ (M) depends delicately on the order <, its f- and h-vector do
not.

3.1. Computing Tutte polynomials: the finite field method

Given how many quantities are given by the Tutte polynomial, it should not be a
surprise that computing Tutte polynomials is extremely difficult (#P-complete [111]) for gen-
eral matroids. Nevertheless, we introduced a finite field method [6,7], building on [24,38], that
has been effective for computing Tas (x, y) in some special cases of interest. This method
is similar in spirit to Weil’s philosophy [11e] of learning about a complex projective variety
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X(C) defined by integer polynomials from its reductions X (IF,) to various finite fields Fy;
in that setting we lose access to the complex geometry but we gain the ability to count.

To compute the Tutte polynomial of M with this method, we need a linear realization
of M as a set of vectors in Q¢ ; most examples of interest have one. For any power ¢ of a large
enough prime number, this gives a linear realization of M in ]Fg ; let A4 be the corresponding
hyperplane arrangement. One then needs to count the points in IF g according to the number
of hyperplanes of 4, that they lie on. If one is able to do this for enough values of ¢, one
can obtain the Tutte polynomial Tz (x, y) from that enumeration.

Theorem 1 (Finite field method, [7]1). Let M be a matroid of rank r realized by a set of
vectors in Q2. Let g be a power of a large enough prime and Aq be the induced hyperplane
arrangement in ]Fg. Then

Z th(ﬁ) — qd_r(l _ l)rTM (1 + %’I)’

d
pely

where h(p) is the number of hyperplanes of #, containing p.

An equivalent result in the context of coding theory was obtained earlier by Greene
[6e]. This finite field method is successful for root systems, arguably the most important
vector configurations. The Tutte polynomial of the four families of classical root systems

Ay ={ei—ej i<}
B(C)f.={ei tej:i < jIU{(Qe},
D ={ei+te;:i <j}CR",
where {ey,...,e,} is the standard basis of R”, are given by the coefficient of Z” in the series
Ty = F(Z,Y)X,
Tpicy = FRZ, V)X V2F(yZ,v?),
Tp = FZ,Y)XD2F(z, v?),
where F(a, B) = 50 a”ﬂ(g) /n! is the deformed exponential function [7]. Formulas for
the exceptional root systems and the complex reflection groups are given in [45,59] and [89].

The characteristic polynomial is particularly elegant: if T (g) is the set of positive
roots of a semisimple Lie algebra g and ey, ..., e, are its exponents, then

Xo+@)(q) = (g —e1)---(q —en).

This is one of several examples where a characteristic polynomial surprisingly factors into
linear factors; [94] outlines three conceptual explanations for this phenomenon.

The arithmetic Tutte polynomial M4(x, y) of a vector configuration A in a lattice
also keeps track of arithmetic properties of A. This polynomial is related to the lattice point
enumeration of zonotopes [39,103], to complements of toric arrangements [44,49,81], and to
Dahmen—Micchelli and De Concini—Procesi—Vergne modules [4e, 46]. There is also a finite
field method for computing M4 (x, y) [14,33] that can be used successfully for root systems,
and describes the volume and Ehrhart theory of Coxeter permutahedra [11,14, 45].

4516 F. ARDILA



4. GEOMETRIC MODEL 1: MATROID POLYTOPES

A crucial insight on the geometry of matroids came from two seemingly unrelated
places: combinatorial optimization and algebraic geometry. From both points of view, it is
natural to model a matroid in terms of the following polytope.

Definition 2 ([48]). The matroid polytope of a matroid M on E is
Py :=conv{ep : Bisabasisof M} C RE,

where {e; : i € E}is the standard basis of RZ and e = ep, + - +ep for B={by,....b}.

Figure 3 shows this polytope for the example in (2.1). It is a three-dimensional poly-
tope in R?.

11010

10110

moo

10101

FIGURE 3
The matroid polytope for the matroid in (2.1). The vertices correspond to the bases.

4.1. Algebraic geometry

The intimate relation between matroids and the geometry of the Grassmannian is
well studied and mutually beneficial to both fields. Let us describe it briefly.

Instead of studying the r-dimensional subspaces of C” one at a time, it is often
useful to study them all at once. They can be conveniently organized into the Grassmannian
Gr(r, n); each point of Gr(r, n) represents an r-subspace of C”.

A choice of a coordinate system on C” gives rise to the Pliicker embedding

Gr(r,n) & cpO)-1,
Vi (det(AB) : B is an r-subset of [n])

defined as follows. For an r-subspace V C C”, choose an r x n matrix A with
V' = rowspan(A). For each r-subset B of [n], let pp(V') := det(Ap) be the determinant
of the r x r submatrix Ap of A whose columns are given by the subset B. Different choices
of A lead to the same Pliicker vector p(V') in projective space C P()~1. The map p provides
a realization of the Grassmannian as a smooth projective variety.

Let C* = C \ {0}. The torus T = (C*)"/C* acts on the Grassmannian Gr(r, n) by
stretching the n coordinate axes of C”, modulo simultaneous stretching. Symplectic geom-
etry then gives a moment map  : Gr(r,n) — R”, which in this setting is given by
w(V) = 2B |det(AB)|2iB7

> | det(4p)|
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where B ranges over the r-subsets of [1].

Now consider the orbit T - V of the r-subspace V' € Gr(r, n) as the torus T acts on
it, and the toric variety Xy := T - V. Gelfand, Goresky, MacPherson, and Serganova [58]
proved that the moment map takes this toric variety to the matroid polytope of M(V),

w(T V) = Ppyy). 4.1)

Thus matroid polytopes arise naturally in this algebro-geometric setting as well.
As a sample application, the degree of the closure of a torus orbit in the Grassman-
nian Xy = T -V c CP®~1 is then given by the volume of the matroid polytope P (v).
Ardila, Benedetti, and Doker [12] used this to find a purely combinatorial formula for it.
The projective coordinate ring of the toric variety Xy is isomorphic to the subal-
gebra of the polynomial ring C[t, : e € E] generated by the monomials g = [[,cp #» for
the bases B of M(V'). White [1e4,112] conjectured that its defining toric ideal is generated

by quadratic binomials. For the current state-of-the-art on this conjecture, see [72].

4.2. A geometric characterization of matroids

In most contexts where polytopes arise, it is advantageous if their faces can be
described combinatorially. The vertices and edges often play an especially important role.
For example, in geometry, they control the GKM presentation of the equivariant cohomol-
ogy and K-theory of the Grassmannian [56,7e]. In optimization, they are crucial to various
algorithms for linear programming.

Matroid polytopes can be described entirely by their vertices and edges, as shown
in the following beautiful combinatorial characterization.

Theorem 3 ([58]). A collection B of subsets of E is the set of bases of a matroid if and only
if every edge of the polytope

Pg :=conviep : B € 8} c RE
is a translate of e; — ej for some i, j in E.

Therefore, one could define a matroid to be a lattice subpolytope of the cube [0, 1]”
that only uses these vectors as edges. Even if one is led to this family of polytopes through
the geometry of subspaces as in (4.1), one finds that nonlinear matroids are equally natural
from the polytopal point of view. Matroid theory provides the correct level of generality.

Positively oriented matroids. Oriented matroids are an abstraction of linear algebra over R,
abstracting linear dependence relations and their sign patterns. Positively oriented matroids
are those where every basis is positively oriented. Their matroid polytopes are precisely the
polytopes whose edges are translates of e; — e; and whose facet directions are e; — e; for
i,j € E, where ¢; := e1 + -+ + e;. Ardila, Rincén, and Williams [22] used this charac-
terization to prove da Silva’s 1987 conjecture [42] that every positively oriented matroid is
realizable.

4518 F. ARDILA



7

/

FIGURE 4
The root system A3 = {e; —ej : 1 <i,j < 4}, where e; — e; is denoted ;. Root systems play an essential role
in matroid theory, as demonstrated by Theorem 3.

Coxeter matroids. Theorem 3 shows that in matroid theory, a central role is played by one
of the most important vector configurations in mathematics, the root system for the special
linear group SL,,

Ap—1={ei —ej: 1 <i,j <n}CR",

shown in Figure 4 for n = 4. It is then natural to extend this construction to other semisim-
ple Lie groups. The resulting theory of Coxeter matroids [32], introduced by Gelfand and
Serganova, starts with a generalization of (4.1) and includes many other interesting results,
but Borovik, Gelfand, and White’s 2002 assessment still applies today:

“the focal point of the theory: the relations between Coxeter matroids and the
geometry of flag varieties [...] will need a few more years to settle in a definite
form.” [32]

The enumerative combinatorics of Coxeter matroids, and its potential applications outside
of matroid theory, are ripe for further exploration as well.

4.3. Combinatorial optimization and generalized permutahedra

Matroid theory also benefits from its close connection to submodular optimization,
as discovered by Edmonds [48] in 1970. This connection begins with a simple, but funda-
mental, observation: Matroids are precisely the simplicial complexes for which the greedy
algorithm finds the facets of minimum weight, as we now explain.

For any weight function w : E — R on the elements of a matroid M = (E, d), let
the weight of a basis B be w(B) = ) ;.5 w(b). Then the bases of minimum weight of M
are exactly those that can be obtained by applying the following greedy algorithm:

Start with B = 0. Then, at each step, add to B any element e ¢ B of minimum
weight w(e) such that B U e € d. Stop when B is maximal in .
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Conversely, a simplicial complex d constitutes the independent sets of a matroid if and only
if this greedy algorithm works for any weight function w.

We may rewrite this greedy property as follows [19,32]. Let $(w) 1= {0 = Sp <
S1 € - S Sk € Sk+1 = E} be the flag of subsets of £ such that w(s;) is constant for

si € 8; —Si—1and w(Sy) < w(S2 —81) <+ <w(Sg — Sg—1) < w(E — Sg). Then the
w-minimum bases of M are the bases of the w-minimum matroid

k
My, = P M[S;. Siy1l. 4.2)
i=0
It is useful to restate this geometrically as well. The bases of the matroid M are the vertices
of the matroid polytope Pps. The w-minimum bases of M are the vertices of the w-minimum
face (Py)w = {x € Py : w(x) < w(y) forall y € Py} of Ppy, and that face is itself the
matroid polytope of My, thatis, (Pp)w = Par,-

Now consider the braid fan Ag in RE cut out by the hyperplanes x; = x jfori # j
in E. This is the normal fan of the permutahedron I1 g, whose vertices are the n! permuta-
tions of [n]. The faces of 4 g are in bijection with the flags of subsets of E: the open face o
consists of those w € R such that § (w) = §. Then (4.2) shows that for any weight function
w in a fixed open face o, the matroid My, depends only on §. This means that the braid fan
A g refines the normal fan of the matroid polytope Pjy.

Generalized permutahedra and submodularity. A generalized permutahedron' is a poly-
tope P in RZ satisfying the following three equivalent conditions [48, 88]:

¢ The braid fan + g is a refinement of the normal fan of P.
» The edges of P are parallel to roots e; —¢; fori, j € E.

e P=P():={xeRE:Y"_ x; =z2(E),Y;c; xi <z(I)} fora (unique) sub-
modular function z on E: a function z : 2 — R withz(AU B) + z(AN B) <
z(A) +z(B)forA,B CE.

Allowing z : 2 — R U {oo}, we get extended generalized permutahedra. Figure 5 shows
some three-dimensional examples.

FIGURE 5
The standard 3-permutahedron and four other extended generalized permutahedra.

1 Generalized permutahedra are the translates of the base polytopes of polymatroids, of [48].
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The rank function of a matroid M is one of the prototypical examples of a submod-
ular function; the corresponding generalized permutahedron is the matroid polytope Ppy.
This explains why matroid theory informs and benefits greatly from the theory of submod-
ular optimization.

Submodular functions arise in many contexts, partly because submodularity is
equivalent to a natural diminishing returns property that we now describe. If z measures
some quantifiable benefit z(A) associated to each subset A C E, then the contraction
[z/S](e) = z(S U e) — z(S) measures the marginal return of adding e to S ¥ e. A function
z : 2 — R is submodular if and only if [z/S](e) = [z/T](e) forall S € T C E — e, that
is, if the marginal return [z/S](e) diminishes as we add elements to S ¥ e.

4.4. Matroid subdivisions

A matroid subdivision is a polyhedral subdivision & of a matroid polytope Pys
where every polytope P € J is itself a matroid polytope. Equivalently, by Theorem 3, it
is a subdivision of Py that only uses the edges of Pps. Let £ be the set of interior faces
of J; these are the polytopes in J that are not on the boundary of Pjpy. In the most important
case, M = Uy, is the uniform matroid where every d-tuple of [n] is a basis, and Py is the
hypersimplex A(d,n).

T~ O

FIGURE 6
The interior faces of a matroid subdivision of the uniform matroid U3 4.

Matroid subdivisions were first studied by Lafforgue in his 2003 work on surgery
on Grassmannians [71]. These subdivisions also arose in algebraic geometry [61, 68,71], in
tropical geometry [97], and in the theory of valuated matroids in optimization [47,82].

Lafforgue gave an intriguing application of matroid subdivisions: if a matroid poly-
tope Pps has no nontrivial matroid subdivisions, then the matroid M has (up to trivial
transformations) only finitely many realizations over a fixed field [F. This is in stark con-
trast with Mnév’s Universality Theorem, which roughly states that every singularity type
appears in the space of realizations of some oriented matroid M . This theorem was used by
Vakil to construct several families of moduli spaces with arbitrarily bad singularities [189].

The following conjecture of Speyer [97] has led to many interesting developments.

Conjecture 4. If M is a matroid on [n] of rank d, then a matroid subdivision of M has at

most (d—c)!EZ:fi_—lc))!!(c—l)! interior faces of dimensionn — ¢ for each 1 < ¢ <min{d,n —d}.
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For example, the subdivision of Figure 6 has two interior faces of dimension three
and one of dimension two, achieving equality in Conjecture 4.

4.5. Matroid valuations

Matroid valuations are ways of measuring matroids that behave well under subdi-
vision. Concretely, let Mat be the family of matroids and A be an abelian group. A function
f :Mat — A is a matroid valuation if for any matroid subdivision # of a matroid polytope
Py we have the inclusion—exclusion relation

SM)y= Y (=pfimPumdmPy p(N), 4.3)
Py epint
The volume, number of lattice points, and Ehrhart polynomial (given by Ehrp (¢) =
|tP N Z4| for t € N) are natural ways of measuring a polytope, and an Euler characteristic
computation shows that they are matroid valuations. More interestingly, matroids can also
be measured using seemingly unrelated combinatorial and algebro-geometric invariants that,
unexpectedly, also satisfy (4.3). These valuations include, among many others:

* the Tutte polynomial of a matroid [18,97],

¢ the Chern—Schwartz—MacPherson cycles of a matroid [74],
* the Kazhdan—Lusztig polynomial of a matroid [23,51],

¢ the motivic zeta function of a matroid [23, 651,

* the Speyer polynomial of a matroid [98],

¢ the volume polynomial of the Chow ring of a matroid [52].

Ardila, Fink, and Rincén [18] gave a general geometric technique to construct many val-
uations of matroids, including valuative invariants. Derksen and Fink [43] constructed the
universal valuative invariant of matroids. They used a slighly different definition of valua-
tion; the equivalence of these two definitions is proved in [18].

As a sample application of matroid valuations, we sketch Speyer’s proof of
Conjecture 4 for ¢ = 1. Since Tps(x, y) is a valuation, so is the beta invariant
B(M) = [x'y°]Ta (x, y). The deletion—contraction recursion gives f(Uy ,) = (:’lj), and
one can show that B(N) = 0 if N is not connected (or, equivalently, if Py is not full-
dimensional) and B(N) > 1 otherwise. Thus, for a matroid subdivision & of Uy ,,

(Z :?) = BWUan) = Z B(N) > (number of facets of ).

Pyer
Py facet

Similarly, Speyer [98] constructed a polynomial invariant gas () motivated by the
K-theory of the Grassmannian, and he used it to prove Conjecture 4 for matroid subdivi-
sions whose matroids are realizable over a field of characteristic 0. His proof relies on the
nonnegativity of gz (¢), which is only known for matroids realizable in characteristic 0, for
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which the coeflicients of this polynomial have a geometric interpretation. The nonnegativity
of gps(¢) for all M, which would prove Conjecture 4 in full generality, remains open.
The numerous examples of this section raise a natural question.

Question 1. Why are many natural functions of matroids also matroid valuations? How
might we find others?

One answer is given by the Derksen—Fink invariant, which is the universal matroid valuation.
However, in practice it is often not clear why a conjectural valuation is an evaluation of this
invariant. Next we offer a different answer to Question 1, coming from Hopf algebras.

4.6. Hopf algebras and valuations

In 1978, Joni and Rota [66] showed that many combinatorial families have natural
merging and breaking operations that give them the structure of a Hopf algebra, with many
useful consequences. For matroids, there is a pleasant surprise: the geometric point of view
plays a central role in the Hopf algebra, and connects it with the theory of valuations.

The Hopf algebra of matroids. Joni—Rota [66] and Schmitt [95] defined the Hopf algebra
of matroids M as the span of the set of matroids modulo isomorphism, with the product
-:M®M — M and coproduct A : M — M ® M given by:

M-N:=M&N, AM):=) (M|A)® (M/A).
ACE
A Hopf algebra has an antipode map S : M — M, which is the Hopf-theoretic analog of the

inverse map g > g~ !

in groups. Takeuchi [107] gave a general formula for the antipode of
any connected, graded Hopf algebra; it is an alternating sum with a superexponential number
of terms, that is generally not tractable. A central problem for a Hopf algebra of interest
is to use the structure of H to find an explicit, cancelation-free formula for the antipode S.
The optimal formula for the antipode of matroids was discovered by Aguiar and
Ardila [2]. The key new insight is that, although they arose in optimization and geometry,

matroid polytopes are also fundamental in the Hopf algebraic structure of matroids.

Theorem 5 ([2]). The antipode of the Hopf algebra of matroids M is
SMy= Y (=)MN

Py face of Py
Sfor any matroid M, where ¢(N) denotes the number of connected components of N.
The indicator Hopf algebra of matroids. Theorem 5 makes it very tempting to replace

each matroid M with the indicator function 17 : RZ — R given by 1p7(p) = 1if p isin
the matroid polytope Pps and 17 (p) = O otherwise. This would give the formula

S(Py) = (=1)*Mint(Py),

suggesting connections with the Euler map of McMullen’s polytope algebra [77] and with
Ehrhart reciprocity for lattice polytopes [5e].
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Ardila and Sanchez made this precise, constructing the indicator Hopf algebra of
matroids 1(M). Its component of degree n is spanned by the indicator functions of matroid
polytopes on [r]. We have

I(M)=M/ie(M) forie(M):= span{PM — Z (=1)dmPy py - P subdivides PM}.
Pyepint
The subspace ie(M) is a Hopf ideal of M, so the quotient I (M) is indeed a Hopf algebra.
Matroid valuations are precisely the functions on matroids that descend to the vector
space [ (M). The Hopf algebraic structure on I (M) then provides a straightforward, unifying
framework to discover and prove many known and new matroid valuations, including all
those discussed in Section 4.5. This offers one possible answer to Question 1.

Generalized permutahedra and universality. The constructions and theorems of this sec-
tion hold more generally for the Hopf algebras GP™) of (extended) generalized permutahe-
dra and their indicator functions. The Hopf algebras of symmetric functions, Faa di Bruno,
matroids, graphs, posets, and many others can be realized as subalgebras of GP™, with many
useful consequences. The character theory of Hopf algebras and Theorem 5 give a unified
explanation of various combinatorial reciprocity theorems: instances where the same poly-
nomial p(x) gives the number p(n) of A-structures of size n and the number |p(—n)| of
B-structures of size n for two reciprocal combinatorial families A and B. They also explain
why the coefficients of the multiplicative and compositional inverses of power series are
given by the face structure of the permutahedron and associahedron, respectively [2].
This raises another natural question:

Question 2. Why are many Hopf algebras in combinatorics related to generalized permuta-
hedra and their characters?
As a partial answer to this question, we offer two universality results.

To define GP, the key fact is that for any generalized permutahedron P C RE and
any subset S C E, the e4-maximal face of P decomposes as P4 = (P|A) x (P/A) for
generalized permutahedra P|A C R4 and P/A C RE~4. Define a product and coproduct
by

P-Q:=PxQ. AP):=) (PlA)®(P/A). 4.4)
ACE
Aguiar and Ardila [2] proved that generalized permutahedra are the maximal family of poly-
topes for which (4.4) defines a Hopf algebra. The antipode is analogous to Theorem 5 [2].

In a different, and more general direction, we have the following universality theo-
rem. A generalized polynomial character on a Hopf algebra H is a multiplicative function
from H to the ring of generalized polynomials, which can have any real numbers as expo-
nents. For example, the canonical character on GP™ is B(P) = t"F) where P lies on the
hyperplane ) ;. x; = r(P). Ardila and Sanchez [23] proved that the indicator Hopf alge-
bra (I(GP™), B) is the terminal Hopf algebra with a generalized polynomial character. Any
Hopf algebra with a generalized polynomial character factors through T1(GP™). This par-
tially explains the ubiquity of these polytopes in combinatorial Hopf algebras.

4524 F. ARDILA



These results are closely related to Derksen and Fink’s universal valuative invari-
ant for generalized permutahedra [43]. Generalizing to the setting of finite root systems,
Ardila, Castillo, Eur, and Postnikov described generalized Coxeter permutahedra [13] and
Eur, Sanchez, and Supina computed their universal valuation [53]. It would be interesting
to construct a Coxeter—Hopf-theoretic framework where generalized Coxeter permutahedra,
Coxeter matroids, and other related objects fit naturally.

5. GEOMETRIC MODEL 2: BERGMAN FANS

We now introduce a second geometric model of matroids, coming from tropical
geometry. It relies on the flats of M ; these are the subsets F' € E such that r(F Ue) >
r(F)foralle ¢ F. We say a flat F is proper if it does not have rank O or r. The lattice of
flats of M, denoted Ly, is the set of flats, partially ordered by inclusion.

When M is the matroid of a vector configuration E in a vector space V/, the flats of
M correspond to the subspaces of V' spanned by subsets of E, as illustrated in Figure 7. In
this section we assume that the matroid M has no loops.

Ardila and Klivans introduced the following polyhedral rendering of a matroid:

Definition 6 ([19]). The Bergman fan or matroid fan ¥ s of a matroid M on E is the poly-
hedral fan in RZ /(eg) consisting of the cones

og :=coneler : F € ¥}

for each flag ¥ = {F| C --- C Fj} of proper flats of M. Here er :=ep, +--- + ep, for
F={fi,.... fr}.

> bcde

FIGURE 7
Our sample matroid (2.1), its lattice of flats, and its Bergman fan, which is the cone over a wedge of |u(M)| = 2
circles.

Let us discuss the tropical geometric origin of this fan, and some of its applications.
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5.1. Tropical geometry

Tropical geometry is a powerful technique designed to answer questions in algebraic
geometry by translating them into polyhedral questions that can be approached combinato-
rially.” In one of its manifestations, tropical geometry sends a complex algebraic variety
V C (C*)" to its amoebas 4, (V'), whose limit as ¢ approaches 0 is a piecewise linear space
Trop V called the tropicalization or logarithmic limit set of V:

A (V) = {(log%(|zl|, ...,log%(|2n|)) :(z1,....zn) €V}, TropV := tlg% A (V).

For an introduction and a more precise discussion, see [3, 4,75,80]. An important early suc-
cess of the theory was Mikhalkin’s 2005 tropical computation [79] of the Gromov—Witten
invariants of CIP2, which count the plane curves of degree d and genus g passing through
3d + 1 — g general points. Since then, many new results in classical algebraic geometry
have been obtained through tropical techniques.

The tropical approach requires two steps. Firstly, one needs to recognize what fea-
tures of a geometric object V' can be recovered from its tropicalization Trop V', which only
captures part of the behavior of V' at infinity. Secondly, one needs to realize that Trop V' may
be simpler than V, but it is still usually very intricate.

Additionally, to develop a robust theory, one is led to define tropical varieties that
are not necessarily tropicalizations of algebro-geometric objects, but are equally important
tropically. Understanding their structure is the source of very interesting combinatorial prob-
lems.

An important development towards the algebraic foundations of tropical geometry
was Sturmfels’s description [185] of Trop V' in terms of the Grobner fan of its ideal 7(V):

Trop V = {w € R" : the w-initial ideal of (V') has no monomials}.
This led him to define the tropical variety of a matroid M on E to be
Trop M = {w € RE : the w-minimum matroid M, has no loops}.

If M = M(V) is the matroid of a linear subspace V' C (C*)" then Trop M = Trop V.If M
is not linear, Trop M is not the tropicalization of a variety.

Bergman [26] conjectured and Bieri and Groves [27] showed that the tropicalization
of an irreducible variety in (C*)" is pure and connected. Sturmfels [106] conjectured that
Trop M should have these same properties, even if M is not a linear matroid. Ardila and
Klivans [19] first introduced the Bergman fan with the goal of settling this conjecture.

Theorem 7. The Bergman fan ¥ pr of a matroid M is a triangulation of the tropical space
Trop M. Therefore Trop M is a cone over a wedge of |L(M )| spheres of dimension r — 2,
where (M) is the Mobius number of the matroid.

The first statement relies on the fact, explained in Section 4.3, that the matroid My,
only depends on the face of the braid fan A containing w. Intersecting Trop M with the

2 This mathematician from the tropics finds the name “tropical geometry” questionable.
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braid fan induces the triangulation X js. The second statement then follows from Bjorner’s
result [29] that the order complex of the lattice of flats of M is a wedge of spheres.

Total positivity and oriented matroids. Motivated by the theory of total positivity, Speyer
and Williams [99] introduced the positive part Trop™ V' of the tropicalization of an affine
variety V. Analogously, Ardila, Klivans, and Williams [2e] studied the positive part of
the tropical variety of an acyclic oriented matroid M, which is Trop™ M = {w € RE :
the w-minimum matroid M, is acyclic}. They showed that the LasVergnas face lattice of M
gives a triangulation of Trop™ M ; and hence [31] Trop* M is a cone over a sphere.

Furthermore, Ardila, Reiner, and Williams [21] constructed | (M )| reorientations
M? of M that decompose Trop(M) explicitly as a wedge of the corresponding spheres
Trop™ M? [21]. When M is the matroid of a root system A, each sphere Trop™ M¢ is dual
to the graph associahedron of the Dynkin diagram of A [21].

There are also very interesting connections between the positive part of the tropical
Grassmannian, matroid theory, and cluster algebras; see [114] for a survey.

5.2. A tropical characterization of matroids
A tropical fan is a subset X € R” that has the structure of a pure, integral polyhedral
fan X with weights w : {facets of X} — N satisfying the balancing condition:

Z w(0)vs/r = 0 mod span(r) for any face t of codimension 1, 5.D
facets 0 DT
where vg/, € Z" is the primitive generator of the ray o/t in Z"/Zt. Examples include
Trop V for any subvariety V' C (C*)” and Trop M for any matroid M on [n].

In analogy with the classical setting, the degree of a tropical fan X is obtained by
counting the intersection points of X with Trop V' for a generic linear subspace V' of codi-
mension dim X, with certain multiplicities. For precise definitions, see [4,80].° Fink [55] gave
the following remarkable characterization:

Theorem 8 ([s51). The tropical fans of degree 1 in RE are precisely the tropical varieties
of the matroids on E.

Thus Bergman fans of matroids can be thought of as the tropical analogs to linear
subspaces. In fact, one could define a matroid on E to be a tropical fan of degree 1 in RZ.
Notice that, although the matroid fan Trop M only arises via tropicalization when M is a
linear matroid, one should really consider the matroid fans of nonrealizable matroids as well;
they are equally natural from the tropical point of view. Again, matroid theory provides the
correct level of generality.

Theorems 7 and 8 explain two important roles that matroids play in tropical geom-
etry. On the one hand, they offer a useful testing ground, providing hints for the kinds of
general results that may be possible, and the sorts of difficulties that one should expect. On

3 One sometimes allows bounded faces in a tropical variety; Fink works in this setting.
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the other hand, they are fundamental building blocks; for instance, in analogy with the clas-
sical definition of a manifold, a tropical manifold is an abstract tropical variety that locally
has the structure of a Bergman fan of a matroid [8e]; Figure 8 shows an example. Clarifying
the foundations of the theory of tropical manifolds is an important project; we expect it will
continue to shape and benefit from the further development of the geometry of matroids.

FIGURE 8
A tropical manifold is a tropical variety that is a matroid fan locally. (Picture: Johannes Rau)

Another interesting direction is the tropical geometry of Coxeter matroids and
homogenous spaces; for some initial efforts, see [25,34,98]. As the next section will illustrate,
this could have interesting enumerative applications.

5.3. The Chow ring, combinatorial Hodge theory, and log-concavity
We say that a sequence ag, ay, ..., a, of nonnegative integers is:

e unimodalifap <ay <---<am—1 <am > am+1>+-->a, forsome0 <m <r,
e log-concave if aj_1a;4+1 < al.2 foralll <i <r—1,and

e flawless if a; < as—; forall 1 <i < % where s is the largest index with a; # 0.

Many sequences in combinatorics have these properties, but proving them often requires
a fundamentally new construction or connection to algebra or geometry, and gives rise to
unforeseen structural results about the objects of interest.

In 1970, Rota [92] first raised such questions in the context of matroid theory, and
suggested the Alexandrov—Fenchel inequalities in convex geometry as a possible approach.
In the early 1980s, Stanley [101,1082] systematically used the hard Lefschetz theorem and the
representation theory of Lie algebras to prove similar combinatorial inequalities. In recent
years, building on these techniques, a combinatorial Hodge theory of matroids has led to the
solution of several long-standing open problems in matroid theory.

The Chow ring of the Bergman fan Xy is

A*(Zpy) := R|xp : F proper flat of M|/ (Ips + Jur).
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where

Ing o= (XpXF, i F1 C Fyand Fy 2 Fy),  Jy = <pr —Y xp:ije E>
Fai F>j

The work of Brion [35] implies that A*(Xj) is isomorphic to the Chow ring of the toric
variety associated to X »s. The work of Billera [28] implies that A* (X /) is also isomorphic to
the algebra of continuous piecewise polynomial functions on X7, modulo the restrictions of
global linear functions to 7. When studying this ring, it is often useful to keep in mind both
its algebraic presentation and its interpretation in terms of piecewise polynomial functions.

When M is linear over C, Feichtner and Yuzvinsky [54] proved that A*(Xpy) is the
Chow ring of De Concini and Procesi’s wonderful compactification of the complement of
a hyperplane arrangement. Surprisingly, for any matroid M, the Chow ring A*(Xs) has
many of the properties of the cohomology ring of a smooth projective variety.

We say a fan X is Lefschetz if its Chow ring A*(X) satisfies Poincaré duality, the
hard Lefschetz theorem, and the Hodge—Riemann relations, and the star of any face in X
also has these properties. For a precise definition, see [16]. Huh [62], Huh and Katz [64], and
Adiprasito, Huh, and Katz [1] developed the first steps in the Hodge theory of matroids:

Theorem 9 ([1]). The Bergman fan of a matroid is Lefschetz.

The inspiration for this theorem is geometric, coming from the Grothendieck stan-
dard conjectures on algebraic cycles. The statement and proof are combinatorial.

Instead of giving a complete definition of Lefschetz fans here, we focus on a com-
paratively small but powerful consequence. The Chow ring A*(Xjy) is graded of degree
r — 1, and there is an isomorphism deg : A”~! — R characterized by the property that
deg(Fy -+ Fr—1) = 1 for any complete flag F; < --- & F,_; of proper flats.

Consider the ample cone K(Xp) C A'(Zp) given by the piecewise linear func-
tions on the Bergman fan 3j, that are strictly convex around every cone. In Brion’s pre-
sentation, K(Zpr) = {3 f gy ¢FxF forc¢ : 28 — R strictly submodular}. The Hodge-
Riemann relations imply that for any ample classes L1, ..., Ly,_3,a,b € K(Zjy), if we write
L=1Ly- Ly,

deg(La?) deg(Lb?) < deg(Lab)?. (5.2)

By continuity, this property also holds for nef classes, i.e., classes in the closure K (Zp7).
Combining these ingredients, Adiprasito, Huh, and Katz [1] considered the elements
a::ai=ZxF, ﬁIZﬁiZZxF
F3i F#i
of the Chow ring A*(237), which are independent of i and lie in the nef cone K(Zp7). An
algebraic combinatorial computation in A*(Xps) shows that

(5.3)

deg(ak,Br_l_k) = (=11 (coefﬁcient of ¢* in XM—(q))

q—1

As k varies, this sequence of degrees is log-concave by (5.2). In turn, by elementary argu-
ments [36, 67, 73], this implies the following theorems, which were conjectured by Rota,
Heron, Mason, and Welsh in the 1970s and 1980s.
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Theorem 10 ([1]). For any matroid M, the following sequences, defined in Section 3, are
unimodal, log-concave, and flawless:

e the f-vector f(d(M)) of the independence complex of M, and
e the f-vector f(BE(M)) of the broken circuit complex of M.

The latter is the sequence of absolute values of the coefficients of yas(q).

5.4. Chern-Schwartz—MacPherson cycles of matroids

Chern—Schwartz—MacPherson (CSM) cycles generalize the Chern class of a tan-
gent bundle to the setting of possibly singular or noncompact complex algebraic varieties.
When A is a complex hyperplane arrangement, Lépez de Medrano, Rincén, and Shaw [74]
computed the CSM class of the complement CZ \ # of + in its wonderful compactification
W in terms of the matroid M = M(A).

A k-dimensional Minkowski weight on a fan X is a choice of weights w (o) for each
k-dimensional face o of X satisfying the balancing condition (5.1) for every
(k — 1)-dimensional face t of . We write MW (X) for the additive group of k-dimensional
Minkowski weights and MW (X) = P MW, (X). This is dual to the Chow ring of X in
the following sense. Fulton and Sturmfels [57] showed that MW (£) = Hom(4¥(X), R).
The product in A(X) then gives MW (X) the structure of an A(X)-module, and MW (X) =~
Hom(A(X), R) as modules. For details, see, for example, [16, SECTION 3.1].

The kth CSM cycle of a matroid M is the k-skeleton of the Bergman fan ¥, with
weights

k
w(og):= (=) *[[B(M[Fi. Fis1]) forF ={0=FyCF C---CFCFry1 CE}.
i=0

where (M [F;, F;+1]) is the beta invariant of the minor M [F;, F; 1] [74]. For any matroid,
the fan above satisfies the balancing condition (5.1), giving a Minkowski weight.

When M is the matroid of a complex hyperplane arrangement +, the (geometric)
CSM class of the wonderful compactification Wy is given by the (combinatorial) CSM
cycles of M. The above construction makes sense for arbitrary matroids, and further, it
defines the CSM cycles of tropical manifolds.

As shown in [5,74], the tropical degrees of the CSM cycles of a matroid M are the
entries of the /-vector of the broken circuit complex of M :

deg(csmg (M) = coefficient of ¢¥ in yar(q + 1). (5.4)

6. GEOMETRIC MODEL 3: CONORMAL FANS

Motivated by Lagrangian geometry, Ardila, Denham, and Huh [16] introduced a third
polyhedral model that enriches the geometry of matroids and leads to stronger inequalities
for matroid invariants. In this section we assume that the matroid M has no loops or coloops.
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A biflag (¥,8) of M consists of flags F = {F; C---C F;}and § = {G; 2 --- 2 Gy} of
nonempty flats of M and M L, respectively, such that

! I
N(FE VG =E | JENG)#E.

i=1 i=1

All maximal biflags have length n — 2.

Definition 11 ([16]). The conormal fan ¥y 31 of a matroid M is the polyhedral fan in
RE /(eg) x RE /(i) consisting of the cones

o5 g :=cone{er, +fg, : 1 <i <[} foreachbiflag (¥,9).
Here {e; : i € E}and {f; : i € E} are the standard bases for two copies of RZ .

This is a simplicial fan whose support is the product Trop M x Trop M *.

6.1. The conormal Chow ring and combinatorial Hodge theory
A biflat (F, G) of M is a biflag of length 1. It consists of flats F, G # @ of M, ML,
respectively, not both equal to E, such that F U G = E. Consider the polynomial ring with a
variable xr g for each biflat (F, G). Foraset (¥, §) of distinct biflats (Fy, G1),.. ., (F1,G;)
write X¢ ¢ = XF,,G, ***XF,,G,- Fori € E, let
vii= ) XFG. V=) XrG, 8= ) XFG-
Fi G>i FNGsi
F#E G#E

The Chow ring of the conormal fan of M is

A"y mr) =Rlxrel/Uymt + Inumt).

where Ips p1 = (x5, : (¥,9) isnotabiflag), Jys pr1 = (vi —yj. ¥ —vyj:i,j € E). The
elements y 1= y;,y’ := y/,and § := §; of A'(Zy ps+) are independent of i.
Ardila, Denham, and Huh [16] showed the conormal analog of Theorem 9.

Theorem 12 ([16]). The conormal fan of a matroid is Lefschetz.

Since [Xp pr1| = Trop M x Trop M+ = |Z| x |Zy,1| and the product of Lef-
schetz fans is Lefschetz, the key step in the proof of Theorem 12 is the general result that the
Lefschetz property of a simplicial fan ¥ depends only on the support | X|:

Theorem 13 ([16]). If two simplicial fans %1 and ¥, have the same support |%1| = | 23],
then X, is Lefschetz if and only if ¥, is Lefschetz.

This Chow ring A* (X ps1) has degree n — 2, and there is a unique isomorphism
deg : A"2 — R characterized by the property that deg(xg g) = 1 for any maximal biflag
(¥,9) of M. The log-concavity inequality (5.2) holds in the ample cone K(Xy 37 ) of the
conormal fan, and hence in the nef cone K (X ML) as well.
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6.2. Lagrangian interpretation of CSM classes

We return to the Chern—Schwartz—MacPherson classes of Section 5.4. Schwartz’s
and MacPherson’s constructions [76,96] of csm for a complex algebraic variety X are rather
subtle. Sabbah [93] later observed that CSM classes can be interpreted more simply as “shad-
ows” of the characteristic cycles in the cotangent bundle 7* X .

Similarly, the CSM cycles of a matroid M are combinatorially intricate fans sup-
ported on the Bergman fan Xj,. We prove that they are “shadows” of much simpler cycles
of the conormal fan X, 1. There is a natural projection map 7 : Xps a1 — X Which
gives a pushforward map 7« : MW (27 pr1) — MWy (). We have:

Theorem 14 ([16]). If M has no loops and no coloops, we have
esmp(M) = (=) Fm (8" F N 1yp 1) forO<k <r,

where 1ps pr1 is the top-dimensional constant Minkowski weight 1 on the conormal fan.

6.3. Unimodality, log-concavity, and flawlessness
Applying the projection formula to Theorem 14 and (5.4), we then express the
h-vector of the broken circuit complex of M in the intersection theory of the conormal fan

deg(y*s" %=1y = (—1) ¥ (coefficient of g% in yp(q + 1)). 6.1)

We give an alternative proof of this identity that does not rely on CSM classes in [15], through
a careful study of the Lagrangian combinatorics of matroids.

The classes y and & are nef, so the log-concavity inequalities (5.2) apply to the
sequence of degrees in (6.1). This implies the following strengthening of Theorem 10, parts
of which were originally conjectured by Brylawski, Dawson, and Colbourn in the early 1980s
[36,37,41] and left open in Huh’s 2018 ICM paper [63].

Theorem 15 ([16]). For any matroid M, the following sequences, defined in Section 3, are
unimodal, log-concave, and flawless:

e the h-vector h(d(M)) of the independence complex of M, and
e the h-vector h(BE€ ~(M)) of the broken circuit complex of M.

The most difficult part of Theorem 15 is the log-concavity of h(BE€(M)) (6.1).
The remaining parts follow from it by elementary arguments.

In 1977, Stanley [1ee] conjectured that h(d(M)) is the f-vector of a pure multi-
complex: a set of monomials such that if m" € X and m|m’ then m € X, and the maximal
monomials in X have the same degree. This conjecture has been proved in rather different
ways for various families of matroids, e.g., [78,85], but remains wide open in general.

6.4. Lagrangian combinatorics, bipermutahedra, and harmonic polytopes

A subtle technical issue in the proofs of Theorems 10 and 15 leads to some com-
binatorial constructions of independent interest. For a Lefschetz fan X, the log-concavity
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inequalities (5.2) hold inside the open cone K(X), corresponding to piecewise linear func-
tions on X that are strictly convex around every cone. In light of (5.3) and (6.1), we wish to
apply these inequalities to the classes a, 8 in A'(Zys) and y,§ in A1(Z Mm,mL), which are
weakly convex locally, that is, they lie in the closed cone K (X). Continuity will guarantee
that the log-concavity inequalities in K(X) will still hold in the closure K (X) if the open
cone K(X) is nonempty. This is not a trivial condition.

A complete polyhedral fan ¥ is projective if it is the normal fan ¥ = N (P) of a
polytope P; each such polytope produces a strictly convex piecewise linear function on the
fan, namely, w — max,ep w(p). Under this correspondence, we can think of K(X) as the
space of polytopes whose normal fan is . An incomplete fan X is quasiprojective if it is a
subfan of a projective fan N (P); this guarantees that K(X) # @ as well.

By construction, the Bergman fan ¥, of every matroid M on E is a subfan of the
braid arrangement X g ; this is the normal fan of the permutahedron ITg, which is simple.
This guarantees K(Xys) # @, as required in the proof of Theorem 10. Similarly, we had to
construct a simple polytope, called the bipermutahedron I1 g g, whose normal fan contains
the conormal fan X, 5,1 of any matroid M on E. This guarantees K(Xys ps1) # 0, as
required in the proof of Theorem 15. Let us briefly discuss this polytope.

The harmonic polytope. A bisubset of E, denoted S|T C E, consists of subsets S, T # @
of E, not both equal to E, with S U T = E. Ardila and Escobar [17] studied the harmonic
polytope HE g, given by

erzzyeZW‘f‘la

eeE eeFE
SIS+ 1) + |T|(IT| + 1
sz+2ytz| ST+ D) + ITIAT] + )+1forS|T|:E.
2
sES teT

It has 3" — 3 facets and (n!)%(1 + % + et %) vertices. Its volume is a weighted sum of
the degrees of the toric varieties associated to all connected bipartite graphs with n edges.

The harmonic polytope is the minimal polytope whose normal fan contains all
conormal fans as subfans: every such polytope contains Hg g as a Minkowski summand.
Thus the harmonic polytope arises very naturally in this setting, but it has the disadvantage
of not being simple, which makes it difficult to work with its Chow ring.

The bipermutahedron. The bipermutahedron TIg g C RE x RE is given by

erz Zyez(),

ecE e€[n]
D x4+ Y v =—=(S|+[S=TN(T|+|T = S|) for S|T C E.
seS teT

It was constructed by Ardila, Denham, and Huh [16] and further studied in [9]. This is the
most elegant simple polytope that we know which has the harmonic polytope as a Minkowski
summand, so its normal fan contains all matroid conormal fans. Its normal fan is simplicial,
so we can use Brion and Billera’s descriptions of its Chow ring. Finally, it has an elegant
combinatorial structure that allows us to prove Theorem 14 and (6.1) in [16].
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The bipermutahedron also has 3" — 3 facets, and it has (2n)!/2" vertices corre-
sponding to the bipermutations of E. It is combinatorially isomorphic to a unimodular
triangulation of the product of n unit triangles, and Ehrhart theory then gives a simple
formula for its s-vector. In analogy with the permutahedron, this /-vector counts the biper-
mutations according to their number of descents, and it is also log-concave [9].

7. GEOMETRY AND GEOMETRIES: THE FUTURE

We have centered our discussion on three related geometric models of a combi-
natorial geometry and their consequences within and outside of matroid theory. There are
certainly many other such models—some already known, some yet to be discovered. What
these constructions share is their deep connection with or analogy to natural geometric con-
structions associated to vector configurations or subspaces of a vector space. This situation
reminds us of a 50-year old prophetic remark of Bose, relayed by Kelly and Rota:

“We combinatorialists have much to gain from the study of algebraic geometry,
if not by its applications to our field, at least by the analogies between the two
subjects.” [69]

The recurring theme of developing discrete versions of geometric techniques is not born from
a wish to avoid algebraic geometry; quite the opposite. Our goal is to develop the necessary
tools to solve combinatorial and geometric problems when the current algebro-geometric
technology is not sufficient. The applications of this program are not only combinatorial. As
Gelfand, Goresky, MacPherson, and Serganova wrote in 1987,

“We believe that combinatorial methods will play an increasing role in the future
of geometry and topology.” [58]

Today, these predictions ring true more than ever.
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