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Abstract—Posterior matching uses variable-length encoding of
the message controlled by noiseless feedback of the received
symbols to achieve high rates for short average blocklengths.
Traditionally, the feedback of a received symbol occurs before
the next symbol is transmitted. The transmitter optimizes the next
symbol transmission with full knowledge of every past received
symbol.

To move posterior matching closer to practical communication,
this paper seeks to constrain how often feedback can be sent
back to the transmitter. We focus on reducing the frequency of
the feedback while still maintaining the high rates that posterior
matching achieves with feedback after every symbol. As it turns
out, the frequency of the feedback can be reduced significantly
with no noticeable reduction in rate.

Index Terms—Posterior matching, binary symmetric channel,
noiseless feedback, random coding, sparse-feedback.

I. INTRODUCTION

Consider the problem of communicating a K-bit message
Θ over a binary symmetric channel (BSC) with a noiseless
feedback channel as depicted in Fig. 1. At each transmission
time t = 1, 2, . . . , τ the encoder sends binary symbols Xt

through the BSC. The decoder receives symbols Yt that are
noisy versions of Xt where Pr(Yt = 1 | Xt = 0) = Pr(Yt =
0 | Xt = 1) = p. The receiver may choose to send the
symbols Yt to the transmitter immediately, or allow a few
symbols to accumulate, sending all the accumulated symbols
in a packet. The receiver needs to produce an estimate Θ̂ of
Θ using the symbols Y1, Y2, . . . , Yτ , and the process ends at
the stopping time τ when the receiver is sufficiently confident
of the estimate Θ̂. The goal is to produce the estimate Θ̂
with a low error probability Pr(Θ̂ ̸= Θ) bounded by a small
threshold and with the smallest possible average number of
transmissions and average number of feedback transmission
instances.

A. Background

Shannon [1] showed that feedback cannot increase the
capacity of discrete memoryless channels (DMC). However,
when combined with variable-length coding, Burnashev [2]
showed that feedback can help increase the decay rate of the
frame error rate (FER) as a function of blocklength. Horstein
[3] developed one of the earliest schemes for the BSC with
noiseless feedback that used sequential transmission and works
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Fig. 1. System diagram of a BSC with full, noiseless feedback. At sparse
times t = s1, s2, . . . , sη transmit a block size Dl

well in the short blocklength regime. Shayevitz and Feder
[4] later introduced a capacity achieving family of feedback
schemes not limited to the BSC, which they called “posterior
matching,” and showed that it includes Horstein’s scheme. Li
and El-Gamal [5] proposed a fixed length “posterior match-
ing” scheme that works well for block-lengths over a few
thousand bits. A notable variable length “posterior matching”
scheme for a general discrete memoryless channel (DMC) with
feedback was proposed by Naghshvar et. al. [6] and used a
sub-martingale analysis to prove that it achieves the channel
capacity. Other “posterior matching” schemes include [7]–
[12], and more variable length schemes achieving Burnashev’s
optimal error exponent can be found in [13]–[17].

All previous schemes are sequential schemes where every
feedback symbol Yt is made available to the transmitter before
the next symbol Xt+1 is encoded. In this paper we study the
case where the receiver is allowed wait for a few transmis-
sions before sending the accumulated feedback symbols in
a single packet. In the meantime, the encoder encodes the
next transmissions using only the feedback symbols received
in previous feedback packets. Thus, the transmitter can also
send those symbols in a single forward transmission packet.
We target the short block regime and allow variable feedback
transmission intervals.

B. Contributions

In our precursor journal paper [18], we introduced a new
analysis for sequential transmission that simplified encoding
and decoding and improved the rate bound over previous
results. The contributions of the current paper include the
following:

• Show that the same rate bound from [18] is achievable
with packet transmissions instead of sending feedback
after every symbol.

• Introduce new encoding constraints that are less restric-
tive and better suited for block transmissions.

• Provide the “look-ahead” encoding algorithm that en-
forces the new encoding constraints for a few transmis-
sions in advance, to allow the transmission of of a packet
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of symbols, and still guarantees a performance above the
lower bound designed for sequential transmission.

• Provide simulation results that show the achievable feed-
back sparsity, with an average rate that exceeds the lower
bounds developed in [18] for sequential transmissions.

The rest of the paper proceeds as follows. Sec. II describes
the sparse feedback times system model, introduces the com-
munication problem and describes the communication scheme
by Naghshvar et. al. [6] on which our methods are based.
Sec. III describes performance bounds for the non-sparse,
sequential, feedback model and the encoder that achieves the
bound from our previous journal paper [18], which we use
to benchmark the sparse communication performance. Sec.
IV introduces a new encoding constraint that guarantees the
bounds in [18] for sequential feedback but allows sparseness
in the feedback times, under certain conditions. Sec. IV-B
introduces the “look-ahead algorithm” that implements sparse
feedback times by encoding several symbols in advance, with
the guarantee that the constraints in Sec. IV-A will be met
for each transmission. Sec. V shows the performance of the
“look-ahead algorithm” in rate, sparsity and complexity from
simulations. Sec. VI concludes the paper.

Throughout the paper we denote random variables (RVs)
with upper case letter and instances with lower case letters.
We consider discrete times with time indexed by t = 1, 2, . . . .
Sequences of random variables Xi, Xi+1, . . . , Xj will be
denoted by Xj

i , possibly dropping the sub index i if i = 1.

II. POSTERIOR MATCHING SYSTEM MODEL

The system model in Fig. 1 consists of a source that samples
a message Θ ∈ Ω from a distribution U(Ω); an encoder that
generates the symbols Xt at each time t; a discrete mem-
oryless channel that transforms the transmitted symbols Xt

into received symbols Yt according to the channel transition
function; a noiseless feedback channel; and a decoder that
uses the channel symbols Yt to produce an estimate Θ̂ of the
transmitted message Θ.

A. Sparse Feedback Times Problem

The sparse feedback times model allows the receiver to wait
a few time indexes between feedback transmission. The re-
ceived symbols accumulated between feedback transmissions
are then sent in a single packet. The time between feedback
transmissions could be variable, just like the block size. Let the
feedback transmissions times be at times t = s1, s2, . . . , sη ,
with s0 = 0 and sη = τ . Then, at every time t = sl+1 the
receiver will send the feedback transmissions corresponding to
times sl+1, sl+2, . . . , sl+1, in a block of size Dl = sl+1−sl,
shown by the block Y sl+Dl

sl+1
in Fig. 1.

The sparse feedback times communication problem consists
of designing a variable length coding scheme to transmit a K-
bit message using the smallest expected number of channel
bits τ and the smallest number of feedback transmissions η
that guarantees a frame error rate FER bounded by a small
threshold ϵ. We note that the expectations E [τ ] and E[η] cannot
be minimized at the same time. To see this, note that the
minimum of E[η] is zero, which is achieved by any fixed

length, forward error correction scheme that guarantees the
FER bound. However, as shown by Burnashev [2] feedback
and variable rate coding lower the error exponent, which
achieves a target FER with a smaller E[τ ]. To formulate
the communication problem we need to choose the trade-off
between E[τ ] and E[η].

There are many ways to formulate the problem to account
for the trade-off. One way could be with Lagrange multipliers,
where we minimize E[τ ] + λE[η], for some value of λ that
could represent the channel access cost, in transmission bits.
However, even minimizing E[τ ] is an integer programming
problem whose solution is not yet known to the best of our
knowledge. Our approach consists of designing a scheme that
aims to minimize E[η] while attaining the expected block-
length E[τ ] that satisfies the bound from [18]. Suppose the
bound on E[τ ] is τB , then we can formulate the problem as
follows:

minimize E[η] (1)

subject to: E[τ ] ≤ τB , Pr(θ̂ ̸=θ) ≤ ϵ (2)
Sparsity Constraint: X

sl+1

sl+1 = F(θ,ysl
1 ) . (3)

The sparsity constraint restricts the encoder to encode symbols
Xsl+2, Xsl+3, . . . , Xsl+1

without using the feedback symbols
Ysl+1, Ysl+2, . . . , Ysl+1−1 not yet re-transmitted by the de-
coder. Our approach consists of finding an encoding function
that guarantees that constraints (2) and (3) are satisfied and
seeks to maximize sparsity in the feedback transmission times.

B. Communication Scheme by by Naghshvar et. al.

We propose a communication scheme and encoding algo-
rithm that is based on the single phase transmission scheme
proposed by Naghshvar et. al. [6], and combines features of the
binary and the non-binary symbols. Both encoder and decoder
use the channel symbol sequence up to t: Yt = Y1, Y2, . . . , Yt

to compute posterior probabilities ρi(y
t) and log likelihood

ratio Ui(t) for each possible input message i:

ρi(y
t) ≜ P (θ = i | Y t = yt), ∀i ∈ {0, 1}K (4)

Ui(t) = Ui(Y
t) ≜ log2

(
ρi(Y

t)

1−ρi(Y t)

)
. (5)

To encode the symbol Xt+1 the encoder partitions the message
space Ω into “bins”, one for each possible input symbol, using
a deterministic method known to the decoder. The encoder
then transmits the symbol of the bin containing the transmitted
message θ. The process terminates once a posterior crosses the
threshold 1− ϵ and the message with this posterior is selected
as the estimate. The choice of deterministic partitioning de-
termines the scheme’s performance and thus is at the core of
the scheme.

In the case of the BSC the encoder by Naghshvar et. al. [6],
needs to construct 2 sets, S0 and S1, at each time t. To con-
struct the sets, Naghshvar et. al. [6] proposed a deterministic
algorithm, refer to as the “small enough difference” encoder
(SED) in [19], because it satisfies the following constraint:

0 ≤
∑
i∈S0

ρi(y
t)−

∑
i∈S1

ρi(y
t) < min

i∈S0

ρi(y
t) . (6)
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Naghshvar et. al. [6] proved that the SED encoder achieves the
channel capacity using extrinsic Jensen-Shannon divergence.

III. ACHIEVABLE RATE FOR SEQUENTIAL TRANSMISSION

We now describe the best rate lower bound that, to our
knowledge, has been developed for sequential transmission
over the BSC with noiseless feedback and a simple encoder
that achieves it, from our previous work in [18]. Let ϵ be the
requirement on Pr(Θ̂ ̸= Θ) and let the block-length be given
by the stopping time τ defined by:

τ = min
t∈N

{∃i ∈ Ω : ρi(y
t) ≥ 1− ϵ} . (7)

Let the rate be K/E[τ ], then a rate lower bound is given by an
upper bound on upper bounds on expected block-length E[τ ].
The bound on E[τ ] from [18] is given in terms of the channel
capacity C and the constants C1 and C2 from [19]:

C ≜ 1 + p log2(p) + (1− p) log2(1− p) (8)

C2 ≜ log2

(
1− p

p

)
(9)

C1 ≜ (1− p) log2

(
1− p

p

)
+ p log2

(
p

1− p

)
. (10)

We proposed the “small enough absolute difference” (SEAD)
encoding rule, a relaxed version of the SED encoder:

−min
i∈S0

ρi(y
t) <

∑
i∈S0

ρi(y
t)−

∑
i∈S1

ρi(y
t) ≤ min

i∈S0

ρi(y
t) , (11)

and showed that it suffices to guarantee that for all yt and for
some a > 0 the following inequalities hold:

E[Ui(t+ 1)− Ui(t)|Ft, θ = j] ≥ a (12)
Ui(t+ 1)− Ui(t) ≤ C2 (13)
E[Uθ(t+ 1)− Uθ(t)|Y t = yt] ≥ C . (14)

If the following singleton constraint is satisfied:

Ui(t) ≥ 0 =⇒ S0 = {i} or S1 = {i} , (15)

we showed in [18] that the following inequalities also hold:

Ui(t) ≥ 0 =⇒ E[Ui(t+ 1)− Ui(t)|Ft, θ = j] = C1 (16)
Ui(t) ≥ 0 =⇒ | Ui(t+ 1)− Ui(t) | = C2 . (17)

In [18] we used a two phase analysis, that divided the
transmissions into a communication phase consisting of the
times t where Uθ(t) ≤ 0 with total time T ≜

∑τ
t=1 1Uθ(t)<0,

and a confirmation phase with time τ − T . We constructed a
bound τcom on E[T ] from inequalities (12) to (14) and a bound
τconf on E[τ − T ], with inequalities (16) and (17), given by:

τcom ≤ log2(M−1)

C
+

C2

C
+ 2−C2

C2

C

1− ϵ
1−ϵ2

−C2

1− 2−C2
(18)

τconf ≤ C2

C1

(⌈
log2(

1−ϵ
ϵ )

C2

⌉
−2−C2

1− ϵ
1−ϵ2

−C2

1− 2−C2

)
. (19)

Since τ = (τ −T )+T , we can construct a bound τB on E[τ ]
using (18) and (19). However, bound (18) is loose because
of the terms with C2

C that derive from inequalities (13) and
(14). In [18] the bound was tighten by constructing a strictly

degraded process U ′
i(t) that replaced C2 in (13) with log2(2q)

q ,
where q = 1 − p. The time T ′ of the degraded process was
lower bounded by that of the original process, that is T ≤ T ′.
Replacing C2 with log2(2q)

q in (13) yields an upper bound τ ′com
on E[T ′] that applies to both Ui(t) and U ′

i(t), given by:

τ ′com ≤ log2(M−1)
C

+
log2(2q)

qC

(
1+2−C2

1− ϵ
1−ϵ2

−C2

1− 2−C2

)
(20)

We showed in [18] that. when the source samples Θ uniformly
from Ω = {0, 1}K , systematic transmissions guarantee that
all the constraints are satisfied. At time t = K the posteriors
produced by systematic transmissions form a binomial distri-
bution B{0, 1}K , which we used in [18] compute a bound
τBcom on E[T ′] when Θ ∼ B{0, 1}K . Let ρhK = phqK−h, then
τBcom is given by:

τBcom ≤
K∑

h=0

 log2
(

1−ρh
K

ρh
K

)
C

+
log2(2q)

qC

(K
i

)
ρhK1(ρh

K<0.5)

+
log2(2q)

qC
2−C2

1− ϵ
1−ϵ2

−C2

1− 2−C2
. (21)

In [18], we used τ = K + (T − K) + (τ − T ) to obtain a
tighter bound τB on E[τ ] when Θ is sampled from a uniform
distribution on {0, 1}K , the bound is given by:

E[τ ] ≤ τB = K + τBcom + τconf (22)

Bound (22) adds K systematic transmissions to the bound
τBcom on T ′ for binomial input and the bound τconf on E[τ−T ].

IV. SPARSE FEEDBACK TIMES SCHEME

We now show that it is possible to satisfy the constraints
equations (12) to (14) and (16), (17) to achieve an expected
stopping time E[τ ] upper bounded by τB in (22) with some
sparsity in the feedback times, i.e. where the feedback is
only updated at times s1, s2, . . . and not after every trans-
mission. Thus, the transmitter is restricted to encode symbols
Xsl+1, Xsl+2, . . . , Xsl+1

using only the feedback sequence
up to time sl, given by Y sl

1 . We will exploit systematic
transmissions to make the first feedback time s1 equal to K.

After the systematic transmissions we will use the non-
binary version of the scheme proposed by Naghshvar et al.
[6], where the number of “bins” to partition the message set Ω
is the number of symbols in the channel alphabet. We consider
the block of Dl bits transmitted from time t = sl to t = sl+1

a single symbol out of an alphabet of 2Dl symbols, and
partitions Ω into 2Dl “bins.” The symbol Xsl+Dl

sl
transmitted

at time sl will be the Dl-bit label assigned to the bin that
contains the transmitted message θ, which could just be the
index of the bin. The binary partitions at each transmission j
from time t = sl to t = sl + Dl will be given by assigning
to S0 the “bins” whose label has a 0 at the j-th entry to S1

“bins” whose label has 1 at the j-th entry. Using this scheme,
the problem reduces to finding, at each time sl, the largest
block size Dl for which we can guarantee that all constraints
are met at every time t = sl + 1, sl + 2, . . . , sl +Dl.
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A. The “Weighted Median Absolute Difference” Rule

We now introduce the “Weighted Median Absolute Dif-
ference” rule, a partitioning rule that further relaxes the
tolerance in the difference of sums (11), sufficient to guarantee
constraints (12) to (14). At each time t let P0, P1 and ∆ be:

∆ ≜
∑
i∈S0

ρi(y
t)−

∑
i∈S1

ρi(y
t) (23)

P0 ≜ Pr(θ ∈ S0 | Y t = yt) =
∑
i∈S0

ρi(y
t) =

1 +∆

2
(24)

P1 ≜ Pr(θ ∈ S1 | Y t = yt) =
∑
i∈S1

ρi(y
t) =

1−∆

2
(25)

Note that P0 + P1 = 1, and thus P0 = 1+∆
2 and P1 = 1−∆

2 .
Let {o1, . . . , oM} be an ordering of the vector of posteriors
such that ρo1(t) ≥ ρo2(t) ≥ · · · ≥ ρoM (t), and let m be the
index of the “median” posterior defined by:

m−1∑
i=1

ρoi(y
t) <

1

2
≤

m∑
i=1

ρoi(y
t) . (26)

The “Weighted Median Absolute Difference” rule is given by:

∆2 ≤ 2

5
ρom(yt) (27)

Rule (27) offers two significant advantages over SEAD and
SED: the first is a larger tolerance on ∆, for most times sl,
since

√
2
5ρom(yt) is often much larger than ρom(yt). The

second advantage is that the bound on ∆ does not depend
on which items are in S0, which allows to allocate items to
S0 and S1 to tune ∆ without affecting the tolerance, unlike
SED and SEAD in (6), (11) where changes in the partitioning
cause changes in the tolerance.

To guarantee the bound τB on E[τ ] in equation (22) we only
need to prove that rule (27) suffices to satisfy constraint (14)
and enforce the singleton constraint (15). In [18] we showed
that constraint (13) is satisfied by any non-empty S0 and S1,
and that |∆| ≤ 1/3 suffices to guarantee constraint (12), which
can be trivially extended to the any value allowed by rule (27).
The proof consists of lower bounding the left side of (14) by
a function of only ∆ and ρom(yt) and then showing that (14)
holds for any ∆ that satisfies (27).

A detailed proof can be found in [20]. We now provide the
steps needed in the proof.

1) Use the definition to expand E[Uθ(t+1)−Uθ(t)|Y t=yt]:∑
i∈Ω

ρi(y
t)E[Ui(t+1)−Ui(t)|Y t=yt, θ= i] (28)

2) Write Ui(t) and Ui(t+1) in terms of ρi(yt) and ρi(y
t+1).

3) Write ρi(y
t+1) in terms of ρi(yt), p,∆ using eq. 120 and

121 from [18].
4) Extract a term C from the sum using eq. 122 to 124 in

[18]. From here the problem reduces to showing that the
remaining terms combine to a non-negative value.

5) Apply Jensen’s inequality over p, q to obtain a lower
bound on the sum and write it as two sums over S0 and
S1, eq: 125 and 126 in [18].

6) Write each sum over S0 and S1 as two sums that separate
items i with ρi(y

t) ≥ ρom(yt) and let R be the fraction
of such items in S0.

7) Remove the dependencies on i and ρi(y
t), by replacing

the arguments of the log2(·) with lower bounds in terms
of ∆ and ρom(yt).

8) Define the right sum in (26) as 1+δ
2 and express the

weights in the four sums in terms of ∆, δ and R using
eq. (24), (25) and (26).

9) Use Jensen’s inequality over the four weights to lower
bound E[Uθ(t + 1) − Uθ(t)|Y t = yt] by an expression
of the form C − log2(1−f(∆, δ, R, ρom(yt))).

10) Now it remains only to show that f(∆, δ, R, ρom(yt)) <
0. Use the worst case scenario R and δ to upper bound
f(∆, δ, R, ρom(yt)) by a function g(| ∆ |, ρom(yt)).

11) Finally show that if |∆| ≤
√

2
5ρom(yt) then

g(| ∆ |, ρom(yt)) < 0 for every 0 ≤ ρom(yt) ≤ 1.

B. The “look-ahead” Algorithm

Now we introduce the “look-ahead” algorithm, a method
to design, based only on Y sl

1 , the partitions for the next few
transmissions sl+1, sl+2, . . . , sl+Dl for some Dl. The “look-
ahead” algorithm needs to guarantee that constraint (27) is
satisfied at each t= sl+1, sl+2, . . . , sl+Dl, for the already
received sequence ysl and for each future possible extension
sub-sequence Y sl+j

sl+1 , j = 1, 2, . . . , Dl − 1. We now identify
the key challenges for the “look-ahead” algorithm and the
steps that we take to overcome these challenges.

First we note that at any time t = sl, only a few Dl

values might be feasible, thus, we need to find one such
value before designing the partitions. We know from the non-
sparse case that Dl = 1 is always feasible and know how
to construct two partitions, say using Naghshvar’s algorithm
[6] or the thresholding algorithm 6 in [18] Sec. VII. Second,
the algorithm must always converge to a solution in a finite
number of steps, which we desire to be reasonably small.
For this reason, we will execute a single attempt for a
given Dl, and upon failure, reduce Dl by one before trying
again. This procedure could fall back to the non-sparse case
where Dl = 1. Third, if we fix S0 and S1 for next times
t = sl + 1, sl + 2, . . . sl + Dl − 1, then each future ρom(yt)
and ∆ is a random function of Ysl+1, Ysl+2, . . . , Ysl+Dl−1, the
future received symbols. The “look-ahead” algorithm needs to
guarantee that the pair ρom(yt) and ∆ satisfies constraint (27)
at the current time sl any any future time up to sl +Dl − 1.

To overcome these challenges, the “look-ahead” algorithm
proceeds as follows: let the 2Dl “bins” at time t = sl, be
Ek, k = 0, 1, . . . , 2Dl − 1 and define “bin” posteriors PEk

, δk,
and δmax by:

PEk
≜
∑
i∈Ek

ρi(y
sl), δk≜PEk

−2−Dl, δmax≜max
k

{|δk|}, (29)

where 2−Dl is the target posterior for each bin. To overcome
the uncertainty on ρom(yt) and guarantee that constraint (27)
on ∆ is satisfied at future time t = sl + 1, sl + 2, . . . , sl +
Dl−1 the algorithm finds a lower bound ρmin

om (yt) on ρom(yt)
that is used to compute an upper bound ∆max on ∆ for each
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Fig. 2. Feedback sparseness vs. message size K of the “look-ahead”
algorithm. The curves show average feedback packet size E[Dl] vs. K for
channels with capacity C = 0.50 and C = 0.75. The dashed line −−∆ is
the overall E[Dl], the dotted line · ·♢ excludes the systematic block D1 = K
and the solid line −◦ is the performance for only non-systematic transmissions
where ρi(y

t) < 0.5 ∀i ∈ Ω, the target region of the “look-ahead” algorithm.

future time up to Dl − 1. The algorithm then uses ∆max to
determine δmax the largest difference δk between the posterior
PEk

and the target 2−Dl . Note that at each time sl + j, j =
0, 1, . . . , Dl − 1 each set Sx, x ∈ {0, 1} collects the half of
“bins” whose label has x at entry j, Then, ∆ at time sl + j
is given by:

|∆| = |
∑

Ek∈S0

δk −
∑

Ek∈S1

δk| ≤ 2Dlδmax (30)

Since ρom(yt+1) depend on ∆ at time t, we use an initial
∆′

max to compute ρmin
om (yt), and then compute bounds ∆max

on ∆ and δmax on each δk, t = sl, sl+1, . . . , sl+Dl−1 via:

∆max≜min{∆′
max,

√
2

5
ρmin
om (yt)}, δmax≜∆max2

−Dl (31)

We now explain how to compute ρmin
om (yt). Let xDl

1 (k) be the
label of bin Ek, and let Zk ≜

∑j
l=1 Y

sl+j
sl+1 ⊕ xDl

1 (k). At each
time t = sl+j the posterior ρi(yt) for i ∈ Ek will be:

ρi(y
sl+j)=

Pr(Y sl+j
sl+1=ysl+jsl+1

|Y sl =ysl ,θ= i)ρi(y
sl)∑2Dl−1

k=0 Pr(Y sl+j
sl+1=ysl+jsl+1

|Y sl =ysl ,θ∈Ek)PEk

≥ 2jqj−zkpzkρi(y
sl)

1+∆min
≥ 2jqj−zkpzkρi(y

sl)

1+∆′
min

, (32)

where (32) follows since {Y sl =ysl} determines the partitions
Ek, k = 0, 1, . . . , 2Dl − 1 and {θ ∈ Ek} sets Xsl+j

sl+1 = xj
1(k).

A bound ρmin
om (yt) could just be the smallest item on any

collection C ⊂ Ω such that
∑

i∈C ρi(y
t) ≥ 1/2. However, we

want the largest possible lower bound ρmin
om (yt), thus, we find

a collection C using the items with largest posterior from only
the “bins” Uk with larger qj−zkpzk . We cannot control which
bins those will be, but we do know that at time t = sl + j
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Fig. 3. Rate vs message size K for the look-ahead algorithm over two
channels with capacities C = 0.50 and C = 0.75, horizontal solid blue
lines. The “look-ahead algorithm” performance are the brown solid lines −•.
The green solid lines −• are the non-sparse algorithm from [18]. The orange
dashed curves are the lower bounds K/E[τ ] for systematic transmission in
(19) and the yellow dashed line iss are the lower bound of (20) for uniform
input distribution.

each value of zk will be shared by 2Dl−j
(
j
zk

)
“bins”. Thus

we choose h, a maximum zk and find a value γ such that:

γ2−Dl

h∑
zk

2Dl−j

(
j

zk

)
2jqzkpj−zk ≥ 1

2
(1 + ∆′

max) . (33)

Now suppose that the posteriors in each bin Ek are ordered
such that ρoki (y

sl) is the i-th largest posterior in Ek, and let
ρokγ (y

sl) be the value of the posterior ρokn(y
sl) such that:

n−1∑
i=1

ρoki (y
sl) < γ2−Dl ≤

n∑
i=1

ρoki (y
sl) . (34)

Then, a candidate bound ρmin
om (yt) on ρom(yt) at time t = sl+j

is given by the smallest value of ρokγ (y
sl), with the worst

coefficient qj−hph, given by:

ρmin
om (ysl+j) ≜ 2j−hph min

k=0,1,...,2Dl−1
{ρokγ (y

sl)} (35)

Finally, we wish to make the smallest ρokγ (y
sl) as large as pos-

sible to obtain the largest possible bound ρmin
om (ysl+j). For this,

the “look-ahead” algorithm distributes largest items ρi(y
sl)

across all “bins” until each crosses the γ2−Dl threshold.

V. SIMULATION RESULTS

We implemented the ”look-ahead” algorithm and obtained
performance results to demonstrate how “sparse” the feedback
times can be while maintaining a rate above the bounds for
the non-sparse case. We show sparsity by the expected size
Dl of the “blocks” transmitted at each time sl l = 1, 2, . . . , η.
The “sparsity” performance of the “look-ahead” algorithm is
provided in Fig. 2 as a function of message size K for two
channels with capacity 0.50 and 0.75. The solid line −◦ shows
the performance of the “look-ahead” in the communication
phase, the target region where each ρi(y

t) < 0.5 where 2Dl
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Fig. 4. Run-time complexity of the “look-ahead” algorithm vs. K, in average
time per 1000 symbols for channels with capacity C = 0.50 and C = 0.75.

“bins” with Dl > 1 could be constructed and still satisfy con-
straint (27). For reference we show the overall E[Dl] including
the systematic block D1 = K and the average E[Dl | i ≥ 2]
that includes the times where ∃i ∈ Ω ρi(y

t) ≥ 0.5. Fig. 3
shows the rate performance of the “look-ahead” algorithm for
the same simulations of Fig. 2, and the bounds (20) and (22)
that validate the claim that the rate performance is above the
bounds. The rate performance of the non-sparse algorithm in
[18] is provided for reference, which is no better than that of
the “look-ahead” algorithm. The simulations show that as K
grows we can increase the sparsity, in the target region, up to
an average E[Dl] of 5 to 6 bits per block.

The run-time complexity of the “look-ahead” algorithm
as a function of channel crossover probability p for K =
16, 32, 64, 96 is shown in Fig. 4. The complexity curves of
the algorithm increases very rapidly with p and with K. To
the right the curves seem to taper down, but this is probably
artifact introduced by a cap on the largest Dl, which we set
at Dl ≤ 12 because of hardware memory restrictions.

VI. CONCLUSION

This work explores how the frequency of feedback trans-
missions affects achievable rate when noiseless feedback of
received symbols is used for posterior-matching communi-
cation. Although previous works usually assume that each
received symbol is fed back before the next transmission,
this work shows that the frequency of the feedback can be
significantly reduced with no noticeable loss in achievable rate.
No feedback is required until after the initial transmission of
systematic bits. After that, careful partitioning allows multiple
symbols to be transmitted before feedback is required for a
new partitioning step.
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