Feedback Communication Over the Binary
Symmetric Channel with Sparse Feedback Times

Amaael Antonini* Email: amaael @ucla.edu and Richard D. Wesel* Email: wesel@ucla.edu
*Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA

Abstract—Posterior matching uses variable-length encoding of
the message controlled by noiseless feedback of the received
symbols to achieve high rates for short average blocklengths.
Traditionally, the feedback of a received symbol occurs before
the next symbol is transmitted. The transmitter optimizes the next
symbol transmission with full knowledge of every past received
symbol.

To move posterior matching closer to practical communication,
this paper seeks to constrain how often feedback can be sent
back to the transmitter. We focus on reducing the frequency of
the feedback while still maintaining the high rates that posterior
matching achieves with feedback after every symbol. As it turns
out, the frequency of the feedback can be reduced significantly
with no noticeable reduction in rate.

Index Terms—Posterior matching, binary symmetric channel,
noiseless feedback, random coding, sparse-feedback.

I. INTRODUCTION

Consider the problem of communicating a K-bit message
© over a binary symmetric channel (BSC) with a noiseless
feedback channel as depicted in Fig. 1. At each transmission
time ¢ = 1,2,...,7 the encoder sends binary symbols X,
through the BSC. The decoder receives symbols Y; that are
noisy versions of X, where Pr(Y; =1| X, =0) =Pr(Y; =
0 | X¢ = 1) = p. The receiver may choose to send the
symbols Y; to the transmitter immediately, or allow a few
symbols to accumulate, sending all the accumulated symbols
in a packet. The receiver needs to produce an estimate O of
© using the symbols Y7,Y5,...,Y,, and the process ends at
the stopping time 7 when the receiver is sufficiently confident
of the estimate ©. The goal is to produce the estimate 6
with a low error probability Pr(© # ©) bounded by a small
threshold and with the smallest possible average number of
transmissions and average number of feedback transmission
instances.

A. Background

Shannon [1] showed that feedback cannot increase the
capacity of discrete memoryless channels (DMC). However,
when combined with variable-length coding, Burnashev [2]
showed that feedback can help increase the decay rate of the
frame error rate (FER) as a function of blocklength. Horstein
[3] developed one of the earliest schemes for the BSC with
noiseless feedback that used sequential transmission and works
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Fig. 1. System diagram of a BSC with full, noiseless feedback. At sparse
times t = s1, s2, ..., sy transmit a block size D;

well in the short blocklength regime. Shayevitz and Feder
[4] later introduced a capacity achieving family of feedback
schemes not limited to the BSC, which they called “posterior
matching,” and showed that it includes Horstein’s scheme. Li
and El-Gamal [5] proposed a fixed length “posterior match-
ing” scheme that works well for block-lengths over a few
thousand bits. A notable variable length “posterior matching”
scheme for a general discrete memoryless channel (DMC) with
feedback was proposed by Naghshvar et. al. [6] and used a
sub-martingale analysis to prove that it achieves the channel
capacity. Other “posterior matching” schemes include [7]-
[12], and more variable length schemes achieving Burnashev’s
optimal error exponent can be found in [13]-[17].

All previous schemes are sequential schemes where every
feedback symbol Y; is made available to the transmitter before
the next symbol X, is encoded. In this paper we study the
case where the receiver is allowed wait for a few transmis-
sions before sending the accumulated feedback symbols in
a single packet. In the meantime, the encoder encodes the
next transmissions using only the feedback symbols received
in previous feedback packets. Thus, the transmitter can also
send those symbols in a single forward transmission packet.
We target the short block regime and allow variable feedback
transmission intervals.

B. Contributions

In our precursor journal paper [18], we introduced a new
analysis for sequential transmission that simplified encoding
and decoding and improved the rate bound over previous
results. The contributions of the current paper include the
following:

o Show that the same rate bound from [18] is achievable
with packet transmissions instead of sending feedback
after every symbol.

« Introduce new encoding constraints that are less restric-
tive and better suited for block transmissions.

e Provide the “look-ahead” encoding algorithm that en-
forces the new encoding constraints for a few transmis-
sions in advance, to allow the transmission of of a packet



of symbols, and still guarantees a performance above the
lower bound designed for sequential transmission.

« Provide simulation results that show the achievable feed-
back sparsity, with an average rate that exceeds the lower
bounds developed in [18] for sequential transmissions.

The rest of the paper proceeds as follows. Sec. II describes
the sparse feedback times system model, introduces the com-
munication problem and describes the communication scheme
by Naghshvar et. al. [6] on which our methods are based.
Sec. III describes performance bounds for the non-sparse,
sequential, feedback model and the encoder that achieves the
bound from our previous journal paper [18], which we use
to benchmark the sparse communication performance. Sec.
IV introduces a new encoding constraint that guarantees the
bounds in [18] for sequential feedback but allows sparseness
in the feedback times, under certain conditions. Sec. IV-B
introduces the “look-ahead algorithm” that implements sparse
feedback times by encoding several symbols in advance, with
the guarantee that the constraints in Sec. IV-A will be met
for each transmission. Sec. V shows the performance of the
“look-ahead algorithm” in rate, sparsity and complexity from
simulations. Sec. VI concludes the paper.

Throughout the paper we denote random variables (RVs)
with upper case letter and instances with lower case letters.
We consider discrete times with time indexed by t =1,2,....
Sequences of random variables X;, X;i1,...,X; will be
denoted by X, possibly dropping the sub index 7 if i = 1.

II. POSTERIOR MATCHING SYSTEM MODEL

The system model in Fig. 1 consists of a source that samples
a message © € () from a distribution U(2); an encoder that
generates the symbols X; at each time ¢; a discrete mem-
oryless channel that transforms the transmitted symbols X,
into received symbols Y; according to the channel transition
function; a noiseless feedback channel; and a decoder that
uses the channel symbols Y; to produce an estimate © of the
transmitted message ©.

A. Sparse Feedback Times Problem

The sparse feedback times model allows the receiver to wait
a few time indexes between feedback transmission. The re-
ceived symbols accumulated between feedback transmissions
are then sent in a single packet. The time between feedback
transmissions could be variable, just like the block size. Let the
feedback transmissions times be at times ¢t = s1,82,...,5,,
with sp = 0 and s, = 7. Then, at every time ¢ = s;4 the
receiver will send the feedback transmissions corresponding to

times s;+1,8+2,...,8+1, in a block of size D; = s;4.1— s,
shown by the block Y;"i”" in Fig. 1.

The sparse feedback times communication problem consists
of designing a variable length coding scheme to transmit a K-
bit message using the smallest expected number of channel
bits 7 and the smallest number of feedback transmissions 7
that guarantees a frame error rate FER bounded by a small
threshold e. We note that the expectations E [7] and E[7] cannot
be minimized at the same time. To see this, note that the
minimum of E[n] is zero, which is achieved by any fixed

length, forward error correction scheme that guarantees the
FER bound. However, as shown by Burnashev [2] feedback
and variable rate coding lower the error exponent, which
achieves a target FER with a smaller E[r]. To formulate
the communication problem we need to choose the trade-off
between E[7] and E[n].

There are many ways to formulate the problem to account
for the trade-off. One way could be with Lagrange multipliers,
where we minimize E[7] 4+ AE[n], for some value of A that
could represent the channel access cost, in transmission bits.
However, even minimizing E[7] is an integer programming
problem whose solution is not yet known to the best of our
knowledge. Our approach consists of designing a scheme that
aims to minimize E[n] while attaining the expected block-
length E[7] that satisfies the bound from [18]. Suppose the
bound on E[7] is 75, then we can formulate the problem as
follows:

minimize E[n] (1)
subject to: E[r] <75, Pr(0£60)<e¢ (2
Sparsity Constraint: X = F,y1). ©)

The sparsity constraint restricts the encoder to encode symbols
Xsyv2, X543, ..., Xs,, without using the feedback symbols
Yo 41,Ys42,..., Y5, ,—1 not yet re-transmitted by the de-
coder. Our approach consists of finding an encoding function
that guarantees that constraints (2) and (3) are satisfied and

seeks to maximize sparsity in the feedback transmission times.

B. Communication Scheme by by Naghshvar et. al.

We propose a communication scheme and encoding algo-
rithm that is based on the single phase transmission scheme
proposed by Naghshvar et. al. [6], and combines features of the
binary and the non-binary symbols. Both encoder and decoder
use the channel symbol sequence up to t: Y! = Y1, Y5, ...,Y;
to compute posterior probabilities p;(y?) and log likelihood
ratio U;(t) for each possible input message i:

pi(yt) < P =i ‘ V= yt)’ Vie {05 1}K 4)

ty A Pi(yt)

To encode the symbol X, ; the encoder partitions the message
space € into “bins”, one for each possible input symbol, using
a deterministic method known to the decoder. The encoder
then transmits the symbol of the bin containing the transmitted
message 6. The process terminates once a posterior crosses the
threshold 1 — e and the message with this posterior is selected
as the estimate. The choice of deterministic partitioning de-
termines the scheme’s performance and thus is at the core of
the scheme.

In the case of the BSC the encoder by Naghshvar et. al. [6],
needs to construct 2 sets, Sy and Sy, at each time ¢. To con-
struct the sets, Naghshvar et. al. [6] proposed a deterministic
algorithm, refer to as the “small enough difference” encoder
(SED) in [19], because it satisfies the following constraint:

0< Y piy") =Y pily') <minpi(y'). (6
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Naghshvar et. al. [6] proved that the SED encoder achieves the
channel capacity using extrinsic Jensen-Shannon divergence.

ITII. ACHIEVABLE RATE FOR SEQUENTIAL TRANSMISSION

We now describe the best rate lower bound that, to our
knowledge, has been developed for sequential transmission
over the BSC with noiseless feedback and a simple encoder
that achieves it, from our previous work in [18]. Let € be the
requirement on Pr(© # ©) and let the block-length be given
by the stopping time 7 defined by:

= mi ] coi(y) > 1 — €l
T=min{3i € Q:pi(y’) 21—} (7)

Let the rate be K/E[7], then a rate lower bound is given by an
upper bound on upper bounds on expected block-length E[7].
The bound on E[7] from [18] is given in terms of the channel
capacity C' and the constants C; and C5 from [19]:

C =1+ plogy(p) + (1 — p)logy(1 —p) ®)

N 1-
Cy = log, (pp) )

A 1
C1 = (1 —p)log, ( (10)

—Pp p
) + plog, (1 —p) .

(>

We proposed the “small enough absolute difference” (SEAD)
encoding rule, a relaxed version of the SED encoder:

<> i) = ey
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) < minp(y'), (1)

— m1n pi(y

and showed that it suffices to guarantee that for all ¢ and for
some a > 0 the following inequalities hold:

ElUi(t+1) - Ui(t)|F,0 =j] = a (12)
Ui(t+1) = U(t) < Cy (13)
ElUp(t+1) = Up(t)[Y' =y"] > C. (14)

If the following singleton constraint is satisfied:
Ui(t) >0 = Sy ={i}or Sy ={i}, (15)

we showed in [18] that the following inequalities also hold:

Ui(t) >0 = E[Us(t +1) = Us(t)|F,0 = j] = C1 (16)
Ui(t) >0 = | Us(t + 1) = Us(¢) | =Cy. (17)

In [18] we used a two phase analysis, that divided the
transmissions into a communication phase consisting of the
times ¢ where Uy (t) < 0 with total time T2 37 | 1y, 1)<0»
and a confirmation phase with time 7 — 7'. We constructed a
bound 7., on E[T] from inequalities (12) to (14) and a bound
Teonf o0 E[7 — T, with inequalities (16) and (17), given by:

logy(M—1) Cy o Col— 7527
< =24 7 = 2_<_ -—°
Tm ST et et e T G (1%
Cs 10g2(71_€) _C 1- 1i 27
< £ _DPsr € 7| 2_ =€ A
Teonf > C]_ (’7 02 2 1—9— Cs (19)

Since 7 = (7 —T') + T, we can construct a bound 75 on E[7]
using (18) and (19). However, bound (18) is loose because
of the terms with % that derive from inequalities (13) and
(14). In [18] the bound was tighten by constructing a strictly

degraded process U] (t) that replaced C5 in (13) with %,
where ¢ = 1 — p. The time 7" of the degraded process was
lower bounded by that of the original process, that is T < T’ .
Replacing C; with 22229 i (13) yields an upper bound
on E[T"] that applies to both U;(¢) and U/(t), given by:

_ 1—-£27C2
’ <10g2(M 1)+10g2(2(J) <1+2—02 - T—e ) (20)
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We showed in [18] that. when the source samples © uniformly
from Q = {0,1}¥, systematic transmissions guarantee that
all the constraints are satisfied. At time ¢t = K the posteriors
produced by systematic transmissions form a binomial distri-
bution B{0,1}*, which we used in [18] compute a bound
75, on E[T] when © ~ B{0, 1}%. Let pf. = p"¢%~", then

com pq
7B s given by:

K %)
B Z log2( ol +10g2(2Q) (K
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In [18], we used 7 = K + (T'— K) 4+ (7 — T') to obtain a
tighter bound 75 on E[r] when © is sampled from a uniform
distribution on {0, 1}%, the bound is given by:

K+18

E[T] <71 = com + Tconf (22)

Bound (22) adds K systematic transmissions to the bound

7B on T’ for binomial input and the bound 7.,y on E[—T].

IV. SPARSE FEEDBACK TIMES SCHEME

We now show that it is possible to satisfy the constraints
equations (12) to (14) and (16), (17) to achieve an expected
stopping time E[r] upper bounded by 75 in (22) with some
sparsity in the feedback times, i.e. where the feedback is
only updated at times si,ss,... and not after every trans-
mission. Thus, the transmitter is restricted to encode symbols
Xo+1, Xg 425+, X5, using only the feedback sequence
up to time s;, given by Y. We will exploit systematic
transmissions to make the first feedback time s; equal to K.

After the systematic transmissions we will use the non-
binary version of the scheme proposed by Naghshvar et al.
[6], where the number of “bins” to partition the message set 2
is the number of symbols in the channel alphabet. We consider
the block of D; bits transmitted from time ¢ = s; to ¢t = $;41
a single symbol out of an alphabet of 2! symbols, and
partitions €2 into 2" “bins.” The symbol X5'*P transmitted
at time s; will be the D;-bit label assigned to the bin that
contains the transmitted message 6, which could just be the
index of the bin. The binary partitions at each transmission j
from time ¢ = s; to t = s; + D; will be given by assigning
to Sy the “bins” whose label has a 0 at the j-th entry to S}
“bins” whose label has 1 at the j-th entry. Using this scheme,
the problem reduces to finding, at each time s;, the largest
block size D; for which we can guarantee that all constraints
are met at every time t = s; + 1,5, +2,...,s;+ D;.



A. The “Weighted Median Absolute Difference” Rule

We now introduce the “Weighted Median Absolute Dif-
ference” rule, a partitioning rule that further relaxes the
tolerance in the difference of sums (11), sufficient to guarantee
constraints (12) to (14). At each time ¢ let Py, P; and A be:

AL piy) =D pilyh) (23)
1€8So 1€S1
14+ A
Py2Pr(0e Sy | Y=yl = Z pily) = —— @4
1€S0
A t t t 1-A
PLEP0eS Y =y") =) ply)=—— (25
1€S1 2

Note that Py + P; = 1, and thus Py = 132 and Py = 152,
Let {01,...,0p} be an ordering of the vector of posteriors
such that p,, (t) > po, (t) > -+ > po,, (t), and let m be the

index of the “median” posterior defined by:

m—1 m
1
¢ ¢

0 < =< 0; . 26
;lel(y) 5 ;lel(y) (26)
The “Weighted Median Absolute Difference” rule is given by:

2
A% < =po, (y) 27)

Rule (27) offers two significant advantages over SEAD and
SED: the first is a larger tolerance on A, for most times s,
since y/2p,,, (y) is often much larger than p,, (y"). The
second advantage is that the bound on A does not depend
on which items are in Sp, which allows to allocate items to
Sy and S7 to tune A without affecting the tolerance, unlike
SED and SEAD in (6), (11) where changes in the partitioning
cause changes in the tolerance.

To guarantee the bound 75 on E[7] in equation (22) we only
need to prove that rule (27) suffices to satisfy constraint (14)
and enforce the singleton constraint (15). In [18] we showed
that constraint (13) is satisfied by any non-empty Sy and 51,
and that |A| < 1/3 suffices to guarantee constraint (12), which
can be trivially extended to the any value allowed by rule (27).
The proof consists of lower bounding the left side of (14) by
a function of only A and p,, (y') and then showing that (14)
holds for any A that satisfies (27).

A detailed proof can be found in [20]. We now provide the
steps needed in the proof.

1) Use the definition to expand E[Up(t+1)—Uy(t)|Y =y']:

> piWHEU(t+1)-U; (1)[Y' =y, 0=1]
ieQ

2) Write U;(t) and U;(t+1) in terms of p;(y') and p;(y*+1).

3) Write p; (y'*1) in terms of p;(y'), p, A using eq. 120 and
121 from [18].

4) Extract a term C' from the sum using eq. 122 to 124 in
[18]. From here the problem reduces to showing that the
remaining terms combine to a non-negative value.

5) Apply Jensen’s inequality over p,q to obtain a lower

bound on the sum and write it as two sums over Sy and
S1, eq: 125 and 126 in [18].

(28)

6) Write each sum over Sy and S7 as two sums that separate
items ¢ with p;(y*) > po,. (y') and let R be the fraction
of such items in .Sg.

7) Remove the dependencies on i and p;(y'), by replacing
the arguments of the log,(-) with lower bounds in terms
of A and p,, (y').

8) Define the right sum in (26) as 1T+5 and express the
weights in the four sums in terms of A, and R using
eq. (24), (25) and (26).

9) Use Jensen’s inequality over the four weights to lower
bound E[Uy(t + 1) — Up(t)|Y* = y'] by an expression
of the form C' —log,(1—f(A, 4, R, po,, (y'))).

10) Now it remains only to show that f(A, 4, R, p,,, (y')) <
0. Use the worst case scenario R and J to upper bound
F(A,8, R, po,, (1)) by a function g(| A |, po,, (4)).

11) Finally show that if [A| < y/2p,, (y?) then
(| A ], po,, (yt)) < 0 for every 0 < p,, (y') < 1.

B. The “look-ahead” Algorithm

Now we introduce the “look-ahead” algorithm, a method
to design, based only on Y;*, the partitions for the next few
transmissions s;+1, s;+2, ..., s;+D; for some D;. The “look-
ahead” algorithm needs to guarantee that constraint (27) is
satisfied at each t=s;+1, s;+2,...,5+ D, for the already
received sequence y* and for each future possible extension
sub-sequence Ys‘jff j=1,2,...,D; — 1. We now identify
the key challenges for the “look-ahead” algorithm and the
steps that we take to overcome these challenges.

First we note that at any time ¢t = s;, only a few D
values might be feasible, thus, we need to find one such
value before designing the partitions. We know from the non-
sparse case that D; = 1 is always feasible and know how
to construct two partitions, say using Naghshvar’s algorithm
[6] or the thresholding algorithm 6 in [18] Sec. VII. Second,
the algorithm must always converge to a solution in a finite
number of steps, which we desire to be reasonably small.
For this reason, we will execute a single attempt for a
given D;, and upon failure, reduce D; by one before trying
again. This procedure could fall back to the non-sparse case
where D; = 1. Third, if we fix Sy and S; for next times
t=s+1,8+2,...5+ D, — 1, then each future p,_ (3°)
and A is a random function of Y, 1, Ys,42,..., Ys,+D,—1, the
future received symbols. The “look-ahead” algorithm needs to
guarantee that the pair p,,, (y') and A satisfies constraint (27)
at the current time s; any any future time up to s; + D; — 1.

To overcome these challenges, the “look-ahead” algorithm
proceeds as follows: let the 2D “pins” at time t = s;, be
Eky k=0,1,...,2P" —1 and define “bin” posteriors P, , O,
and dpax by:

ng £ Zpi(y&)a (5kéP5k_27Dla 5maxém]iix{|5k|}7
1€

(29)

where 277 is the target posterior for each bin. To overcome
the uncertainty on p,,, (y*) and guarantee that constraint (27)
on A is satisfied at future time ¢ = s; + 1,5, + 2,...,8 +
D;—1 the algorithm finds a lower bound p2"(y*) on p,,, (")
that is used to compute an upper bound A, on A for each
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Fig. 2. Feedback sparseness vs. message size K of the “look-ahead”
algorithm. The curves show average feedback packet size E[D;] vs. K for
channels with capacity C' = 0.50 and C' = 0.75. The dashed line — — A is
the overall E[D;], the dotted line - - excludes the systematic block D1 = K
and the solid line —o is the performance for only non-systematic transmissions
where p;(y*) < 0.5Vi € Q, the target region of the “look-ahead” algorithm.

future time up to D; — 1. The algorithm then uses Ap,ax to
determine d,,,, the largest difference J; between the posterior
Pg, and the target 277!, Note that at each time s; + j, j =
0,1,...,D; — 1 each set S,, x € {0,1} collects the half of
“bins” whose label has z at entry j, Then, A at time s; + j
is given by:

Al=1 > 6= > Okl <27 6max (30)
ELESo ELEST
Since p,,. (y**!) depend on A at time ¢, we use an initial
Al .y to compute p2"(y"), and then compute bounds Apax
on A and . On each 0y, t = s;,5,+1,...,8+D;—1 via:
2 A D
Amax—mln{Amdxv gpfﬁf‘(yt)}, Omax =Amax2™" (31)
We now explain how to compute pIin(yt). Let 2! (k) be the
label of bin &, and let Z;, £ S77_, Y;;lfl @ P! (k). At each

time ¢ = s;+7 the posterior p;(y?) for i € & will be:

Pr(Y2F =yt |Vt =y 0=i)p:(y")
D
i:lo PY(YSTE yifﬂ | Y5t =yst.0€ &) P,
S quj—ka%pi(y ) S quj—kaka(ySz)
- 1+Amin o ]‘+A;mn ’

pi(y° )=

(32)

where (32) follows since {Y** =y} determines the partitions
Eky k=0,1,...,2Pt — 1 and {0 € &} sets Xj’fl = z] (k).
A bound pmm( t) could just be the smallest item on any
collection C C © such that -, . pi(y") > 1/2. However, we
want the largest possible lower bound pmm( t), thus, we find
a collection C using the items with largest posterior from only
the “bins” Uy, with larger ¢/**p?*. We cannot control which
bins those will be, but we do know that at time ¢t = s; + j

Capacity
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Fig. 3. Rate vs message size K for the look-ahead algorithm over two

channels with capacities C = 0.50 and C' = 0.75, horizontal solid blue
lines. The “look-ahead algorithm” performance are the brown solid lines —e.
The green solid lines —e are the non-sparse algorithm from [18]. The orange
dashed curves are the lower bounds K/E[7] for systematic transmission in
(19) and the yellow dashed line iss are the lower bound of (20) for uniform
input distribution.

each value of z; will be shared by 2P:—J (Zk) “bins”. Thus
we choose h, a maximum zj and find a value v such that:

h .
4 . , 1
9=DiNT 9D (T i pioa > (1L AL ) (33
y2 Py (z,)qu > 51+ A0 (33)

2k

Now suppose that the posteriors in each bin &, are ordered
such that p_x (y®') is the i-th largest posterior in &, and let
Pok (y°!) be the value of the posterior pyx (y°!) such that:

Zpo

Then, a candidate bound p2™ (y*) on p,,, (y') at time t = s;+j
is given by the smallest value of pox (y*), with the worst

) <27 Dl<2pk y°r).

=1

(34)

coefficient ¢/ ~"p", given by:

min

Pyt

L 9i=hyh min

35
k=0,1,...,2P1—1 (35)

{por (y*)}
Finally, we wish to make the smallest Pok x (y°!) as large as pos-
sible to obtain the largest possible bound pm‘“(ysl+j ). For this,
the “look-ahead” algorithm distributes largest items p;(y*')
across all “bins” until each crosses the 42~ threshold.

V. SIMULATION RESULTS

We implemented the “look-ahead” algorithm and obtained
performance results to demonstrate how “sparse” the feedback
times can be while maintaining a rate above the bounds for
the non-sparse case. We show sparsity by the expected size
Dy of the “blocks” transmitted at each time s;1 =1,2,...,17.
The “sparsity” performance of the “look-ahead” algorithm is
provided in Fig. 2 as a function of message size K for two
channels with capacity 0.50 and 0.75. The solid line —o shows
the performance of the “look-ahead” in the communication
phase, the target region where each p;(y*) < 0.5 where 22
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Fig. 4. Run-time complexity of the “look-ahead” algorithm vs. K, in average
time per 1000 symbols for channels with capacity C' = 0.50 and C' = 0.75.

“bins” with D; > 1 could be constructed and still satisfy con-
straint (27). For reference we show the overall E[D;] including
the systematic block D; = K and the average E[D; | i > 2]
that includes the times where 3i € Qp;(y*) > 0.5. Fig. 3
shows the rate performance of the “look-ahead” algorithm for
the same simulations of Fig. 2, and the bounds (20) and (22)
that validate the claim that the rate performance is above the
bounds. The rate performance of the non-sparse algorithm in
[18] is provided for reference, which is no better than that of
the “look-ahead” algorithm. The simulations show that as K
grows we can increase the sparsity, in the target region, up to
an average E[D;] of 5 to 6 bits per block.

The run-time complexity of the “look-ahead” algorithm
as a function of channel crossover probability p for K =
16,32,64,96 is shown in Fig. 4. The complexity curves of
the algorithm increases very rapidly with p and with K. To
the right the curves seem to taper down, but this is probably
artifact introduced by a cap on the largest D;, which we set
at D; < 12 because of hardware memory restrictions.

VI. CONCLUSION

This work explores how the frequency of feedback trans-
missions affects achievable rate when noiseless feedback of
received symbols is used for posterior-matching communi-
cation. Although previous works usually assume that each
received symbol is fed back before the next transmission,
this work shows that the frequency of the feedback can be
significantly reduced with no noticeable loss in achievable rate.
No feedback is required until after the initial transmission of
systematic bits. After that, careful partitioning allows multiple
symbols to be transmitted before feedback is required for a
new partitioning step.
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