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ABSTRACT 

Aeolian vibration is a significant factor contributing to the 
fatigue failure of power transmission lines. The mitigation of 
such vibrations in power lines has traditionally been achieved 
using Stockbridge dampers along the line spans, which are 
modeled as fixed vibration absorbers.  They largely depend on 
their resonant frequencies and placement on the cable. 
Therefore, given the stochastic nature of the wind, recent studies 
have explored the concept of dynamic/moving absorbers. 
Although the effectiveness of the moving absorber has been 
demonstrated in the literature to be superior to that of the fixed 
absorber, analyses have primarily been limited to linear cases 
and have not accounted for nonlinearity introduced by the 
moving absorber or the wind inflow on the powerline.  Aiming to 
fill this gap, this work combines the nonlinearities from the 
fluctuating lift force modeled as a van der Pol oscillator, with a  
nonlinear moving absorber into a single model to investigate the 
effect of a nonlinear mobile damper relative to its linear 
counterpart. We observe that the system with a nonlinear moving 
absorber exhibits smaller amplitude oscillations when compared 
to its linear counterpart.  This finding underscores the superior 
mitigation characteristics of nonlinear vibration absorbers and 
suggests the potential for designing an optimal nonlinear moving 
vibration absorber. 
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1. INTRODUCTION

In the field of structural engineering, the intricate interaction 
between man-made infrastructure and external environmental 

forces introduces significant challenges. Among these, wind-
induced and Aeolian vibrations present a persistent threat to the 
integrity of high-tension power transmission lines. Aeolian 
vibrations, characterized by small-amplitude, flexural 
oscillations in the crosswind direction, typically occur under 
light to moderate wind speeds [1]. Although these oscillations 
might seem to be minor amplitude, often less than the diameter 
of the conductor, their cumulative effect over time can lead to 
structural fatigue and the potential for catastrophic cable failure 
[2]. Consequently, understanding the dynamics of cable during 
Aeolian vibration is crucial for developing effective mitigation 
strategies. 

The suppression of fatigue failure in power lines has 
traditionally been achieved through the use of Stockbridge 
dampers along the line spans [3-6]. However, studies indicate 
that the efficacy of Stockbridge dampers largely depends on their 
resonant frequencies and placement on the cable [7-9]. These 
dampers are usually positioned at the cable ends, where variable 
wind patterns may reduce their effectiveness. Specifically, fixed 
damper placements may coincide with nodal points within the 
frequency spectrum, significantly reducing their mitigation 
efficiency [8]. Thus, researchers have been investigating the use 
of dynamic/moving dampers for enhanced control. Notably, 
Bukhari et al. [4] introduced a concept of moving damper for 
power lines, while Kakou et al. [6] explored a PID-based control 
mechanism implemented on a mobile robot for both vibration 
suppression and line inspection.  Their findings suggest that 
moving absorbers are more effective than fixed absorbers. 
However, these studies have yet to consider the impact of 
nonlinearity in the structure and the fluid-structure interaction, 
marking an essential direction for future research. 
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Due to the nonstationary and stochastic nature of wind, 
nonlinear dampers have been recognized as an optimal solution 
for vibration mitigation [10-14]. Their effectiveness is attributed 
to their ability to cover a broad frequency band for vibration 
attenuation [10,12] and their high level of robustness against 
unpredictable environmental conditions [13]. For instance, 
Samani and Pellicano [15] explored the dynamics of a beam 
under a moving load, comparing linear and nonlinear 
(specifically, cubic nonlinear) absorbers. They revealed that 
dampers with cubic nonlinear characteristics significantly 
reduced the maximum amplitude of vibrations.  More recently, 
Zhang et al. [16] examined the performance of a nonlinear 
energy sink (NES) with cubic nonlinear damping. They found 
such an NES could outperform linear damping NES systems in 
reducing vibrations within nonlinear systems. It's critical to 
recognize that nonlinearity in these contexts can emerge from a 
variety of sources, including materials and environmental 
conditions, beyond just the absorbers themselves. 

Aeolian vibrations are a type of resonance response most 
observed in slender, flexible structures, such as overhead power 
lines, when subjected to wind forces. These vibrations result 
from the shedding of vortices, known as the von Kármán vortex 
street, forming in the wake of the structure. The unsteady 
aerodynamic forces generated by this vortex shedding can 
resonate with structure, leading to Aeolian vibrations. Although 
Aeolian vibrations share characteristics with Vortex-Induced 
Vibrations (VIV) [17], they are distinct in their manifestation, 
typically occurring in air and involving higher frequencies and 
lower amplitude. For moving bodies, such as cylinders and 
sheets undergoing stretching, the simple sinusoidal force 
approximation used in basic fluid-structure interaction (FSI) 
models is often inadequate [18-20] due to the complex nature of 
the interaction involved.  Consequently, more sophisticated 
models, like the coupled wake-oscillator models, have been 
developed to represent these phenomena more accurately. These 
models, which incorporate self-sustained oscillations through 
mechanisms such as negative damping, provide a closer 
approximation of the complex dynamics involved in VIV and 
Aeolian vibrations. Empirical validations of these models have 
demonstrated good agreement with experimental observations, 
establishing them as valuable tools for understanding and 
predicting the behavior of structures subjected to VIV [20,21]. 

In a review of existing literature, studies such as [4,6] have 
demonstrated the superior performance of moving absorbers 
over fixed absorbers in mitigating vibrations. However, these 
studies have not fully addressed the complexities introduced by 
nonlinearities, both from the absorber and wind forces. Given the 
critical role of nonlinear dynamics in the optimal design of 
vibration absorbers, especially under the conditions of high 
amplitude oscillations, this work introduces a novel approach. 
We examine a system in which a cable, modeled as an Euler-
Bernoulli beam for its flexibility and bending characteristics, is 
integrated with a nonlinear moving absorber. The system is 
further coupled with a nonlinear lift force model, enhancing our 
understanding of its interactions with aerodynamic forces. The 

design of the moving damper system consists of a moving mass, 
a nonlinear spring, and a nonlinear damper, in addition to another 
mass, to effectively simulate the dynamic behavior of the 
absorber. The forces acting on the cable include pretension and 
the vortex-induced lift force, which are modeled using the van 
der Pol oscillator.  This approach enables a more comprehensive 
exploration of the nonlinear cable’s response to nonlinear 
aerodynamic excitations. 

The rest of the paper is organized as follows. In Section 2, 
we briefly present the mathematical model for the beam-moving 
absorber system coupled with the van der Pol oscillator. The 
validation of the model and its difference from the sinusoidal 
force model will be shown in Section 3, followed by the 
effectiveness of the nonlinear moving absorber in vibration 
suppression, detailed in Section 4. Finally, some conclusions are 
drawn in Section 5. 

 
FIGURE 1:  CONCEPTUAL DESIGN OF THE MOBILE 
DAMPER ATTACHED TO A POWER LINE CABLE [6] 

 

 
FIGURE 2:  SCHEMATIC OF A SIMPLY SUPPORTED BEAM 
WITH A MOVING MASS-NONLINEAR SPRING-NONLINEAR 

DAMPER-MASS ABSORBER 

2. MATHEMATICAL MODELING 

The proposed conceptual design and the corresponding 
schematic of the moving vibration absorber are shown in Fig. 1 
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and 2, respectively. The system consists of a conductor with 
length 𝐿, a flexural rigidity of 𝐸𝐼, and a mass per unit length 𝑚. 
Moreover, the Stockbridge damper consists of a clamped mass 
𝑚𝑐 and a suspended mass 𝑚𝑎. The damper has an equivalent 
linear/nonlinear stiffness (𝑘, 𝑘𝑛𝑙) and an equivalent 
linear/nonlinear damping coefficient (𝑐, 𝑐𝑛𝑙). Accordingly, the 
position vectors for the beam 𝑟𝑏, in span mass 𝑟𝑐, and the 
suspended mass 𝑟𝑎 are given as 

𝑟𝑏 = 𝑥𝒊 + 𝑦(𝑥, 𝑡)𝒋, 

(1) 𝑟𝑐 = 𝑥𝑐(𝑡)𝒊 + 𝑦(𝑥𝑐 , 𝑡)𝒋, 

𝑟𝑎 = 𝑥𝑐(𝑡)𝒊 + 𝑣(𝑡)𝒋, 

where 𝑥𝑐 is the position of the absorber from the origin and 𝑣 is 
the displacement of the absorber. Utilizing these position 
vectors, the total kinetic energy of the system is given by 

𝐾.𝐸.=  
1

2
𝑚 ∫ {[𝑦̇(𝑥, 𝑡)]2}𝑑𝑥

𝐿

0

 

(2) +
1

2
𝑚𝑐[𝑥̇𝑐

2 + (𝑦̇(𝑥𝑐, 𝑡) + 𝑦′(𝑥𝑐 , 𝑡) ⋅ 𝑥̇𝑐)
2]

+
1

2
𝑚𝑎[𝑥̇𝑐

2 + 𝑣̇2] 

where the over dot  denotes  the  derivative  with  respect  to  time  
𝑡 and  the prime  denotes  the  derivative  with  respect  to  the  
spatial  coordinate 𝑥. The total potential energy can be defined 
as 

𝜋 =
1

2
𝐸𝐼 ∫ {[𝑦′′(𝑥, 𝑡)]2}𝑑𝑥 +

1

2
 𝑘 [𝑦(𝑥𝑐 , 𝑡) − 𝑣]2

𝐿

0

 

(3) 
+

1

4
𝑘𝑛𝑙[𝑦(𝑥𝑐 , 𝑡) − 𝑣]4

+
1

2
𝑐[𝑦̇(𝑥𝑐 , 𝑡) + 𝑦′(𝑥𝑐 , 𝑡) ⋅ 𝑥̇𝑐 − 𝑣̇]2 

+
1

4
𝑐𝑛𝑙[𝑦̇(𝑥𝑐, 𝑡) + 𝑦′(𝑥𝑐 , 𝑡) ⋅ 𝑥̇𝑐 − 𝑣̇]4 

Finally, the work done by the axial force, i.e., the tension 𝑇 on 
the system can be expressed as 

𝑊 =
1

2
 ∫ 𝑇 𝑦′2𝑑𝑥

𝐿

0

 (4) 

Hence, the governing equations of motion for the system can be 
obtained by employing Hamilton’s principle, which states 

 𝛿 ∫ (𝜋 − 𝐾.𝐸.− 𝑊)𝑑𝑡 = 0.
𝑡2

𝑡1
 (5) 

Substituting Eqs. (2), (3) and (4) in the above equation to get the 
following governing equations of motion as 

𝐸𝐼𝑦′′′′ + 𝑚𝑦̈ − 𝑇𝑦 = 𝐹𝐿(𝑥, 𝑡) − {𝐹1 + 𝐹2} 𝐺(𝑥, 𝑡) (6) 

 

𝑚𝑎  𝑣̈ = 𝐹2 (7) 

where 𝐹1 and 𝐹2 are expressed as 

𝐹1 = 𝑚𝑐  (
𝜕2𝑦

𝜕𝑡2
+ 2

𝜕2𝑦

𝜕𝑥𝑟𝜕𝑡
⋅
𝑑𝑥𝑟

𝑑𝑡
+

𝜕2𝑦

𝜕𝑥𝑟
2
⋅ (

𝑑𝑥𝑟

𝑑𝑡
)

2

+
𝜕𝑦

𝜕𝑥𝑟

⋅
𝑑2𝑥𝑟

𝑑𝑡2
) 

(8a) 

𝐹2 = [𝑘[𝑦 − 𝑣] + 𝑏(𝑦 − 𝑣)3 + 𝑐(𝑦̇ + 𝑦′𝑥𝑐̇ − 𝑣̇)
+ 𝑐(𝑦̇ + 𝑦′𝑥𝑐̇ − 𝑣̇)3]|𝑥=𝑥𝑐

 

(8) 

and 𝐺(𝑥, 𝑡) in Eq. (6) is used to define the location profile of the 
absorber using the Dirac delta functions and the Heaviside step 
function. The four location profiles correspond to 

𝐺 = {

𝑔1,
𝑔2,
𝑔3,
𝑔4,

 𝑓𝑖𝑥𝑒𝑑 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟
𝑜𝑛𝑒 − 𝑤𝑎𝑦 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟
𝑡𝑤𝑜 − 𝑤𝑎𝑦 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟

 𝑡𝑤𝑜 − 𝑤𝑎𝑦 𝑡𝑤𝑜 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟𝑠

 

where 

𝑔1 = 𝛿(𝑥 − 0.02𝐿), (9a) 

𝑔2 = 𝛿(𝑥 − 𝑉𝑎𝑡)𝐻(0.1𝐿/𝑉𝑎 − 𝑡), (9b) 

𝑔3 = 𝛿(𝑥 − 𝑉𝑎𝑡)𝐻 (
0.1𝐿

𝑉𝑎
− 𝑡)

+ 𝛿(𝑥 − (0.2𝐿 − 𝑉𝑎𝑡))𝐻(𝑡

− 0.1𝐿/𝑉𝑎)𝐻(0.2𝐿/𝑉𝑎 − 𝑡), 

(9c) 

𝑔4 = 𝑔3 + 𝛿(𝑥 − (0.9𝐿 − 𝑉𝑎𝑡))𝐻(0.1𝐿/𝑉𝑎 − 𝑡)

+ 𝛿(1.1𝐿 − 𝑉𝑎𝑡)𝐻(𝑡
− 0.1𝐿/𝑉𝑎)𝐻(0.2𝐿/𝑉𝑎 − 𝑡). 

(9d) 

Following Skop and Balasubramanian [23], the fluctuating fluid 
force, 𝐹𝐿(𝑥, 𝑡) can be defined in terms of fluctuating lift 

coefficient 𝐶𝐿(𝑥, 𝑡) as 𝐹𝐿 =
𝜌𝑓𝑉𝑓

2𝐷𝐶𝐿

2
, where 𝐶𝐿 is governed by the 

following equation 

𝐶𝐿(𝑥, 𝑡) = 𝑞(𝑥, 𝑡) −
2𝛼

𝜔𝑠

𝑦̇. (10) 

In the above equation, 𝑞(𝑥, 𝑡) represents the wake variable, and 
is further governed through a following nonlinear van der Pol 
oscillator 

𝑞̈ − 𝜔𝑠𝐺(𝐶𝐿0
2 − 4𝑞2) 𝑞̇ + 𝜔𝑠

2𝑞 = 𝜔𝑠𝐹𝑦̇. (11) 

On combining the fluctuating force and van der Pol equations we 
get 

𝐹𝐿 =
𝜌𝑓𝑉𝑓

2𝐷

2
 (𝑞(𝑥, 𝑡) −

2𝛼

𝜔𝑠

𝑦̇) (12) 
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Thus, the combined governing equations of motion with a 
nonlinear absorber and a van der Pol oscillator after neglecting 
the Coriolis effect can be written as 

𝐸𝐼𝑦′′′′ + 𝑚𝑦̈ − 𝑇𝑦′′ 

(13a) 
=

𝜌𝑓𝑉𝑓
2𝐷

2
 (𝑞 −

2𝛼

𝜔𝑠

𝑦̇) − {𝐹1 + 𝐹2} 𝐺(𝑥, 𝑡) 

𝑚𝑎  𝑣̈ = 𝐹2 (13b) 

𝑞̈ − 𝜔𝑠𝐺(𝐶𝐿0
2 − 4𝑞2) 𝑞̇ +  𝜔𝑠

2𝑞 = 𝜔𝑠𝐹𝑦̇ (13c) 

Using the eigenfunction expansion, we define 𝑦(𝑥, 𝑡) and  
𝑞(𝑥, 𝑡) as  

𝑦(𝑥, 𝑡)

= ∑𝜙𝑟(𝑥) ⋅ 𝐴𝑟(𝑡)

∞

𝑟=1

 
and 

𝑞(𝑥, 𝑡)

= ∑𝜙𝑟(𝑥) ⋅ 𝑞̃𝑟(𝑡)

∞

𝑟=1

 
(14) 

where 𝐴𝑟(𝑡), 𝑞̃𝑟(𝑡) are unknown functions of time and 𝜙𝑟(𝑥) are 
the normalized eigenfunctions. Note that the eigenfunctions of 
the bare beam with tension [4] can be obtained as 

𝜙𝑟(𝑥)

= √
2

𝑚𝑙
 𝑠𝑖𝑛 

[
 
 
 
 

(

 
 

√
−𝑇

2𝐸𝐼
+ √

𝑇2

4(𝐸𝐼)2
+

𝑚𝜔𝑟
2

𝐸𝐼

)

 
 

 𝑥

]
 
 
 
 

   
(15) 

where 𝜔𝑟  represents the natural frequencies of the bare beam and 
it is given by 

𝜔𝑟 = (
𝜋

𝐿
)

2

√
𝐸𝐼

𝑚
 (𝑟4 +

𝑟2 𝑇𝐿2

𝜋2𝐸𝐼
) (16) 

By substituting the assumed form of the solution into the 
governing equations (Eq. (13)) and performing Galerkin 
projection, we obtain following reduced order model as 

𝐴𝑝̈ + 2𝜁𝜔𝑝𝐴𝑝̇ + 𝜔𝑝
2𝐴𝑝 

+ [𝑚𝑐 (∑𝜙𝑖𝐴̈𝑖

∞

𝑖=1

) +  𝑘 (∑{𝜙𝑖𝐴𝑖}

∞

𝑖=1

− 𝑣) 

+𝑘𝑛𝑙 (∑{𝜙𝑖𝐴𝑖}

∞

𝑖=1

− 𝑣) (∑{𝜙𝑗𝐴𝑗}

∞

𝑗=1

− 𝑣)(∑{𝜙𝑘𝐴𝑘}

∞

𝑘=1

− 𝑣) 

+ 𝑐 (∑{𝜙𝑖𝐴𝑖
̇ }

∞

𝑖=1

− 𝑣̇) + 𝑐𝑛𝑙 (∑{𝜙𝑖𝐴𝑖
̇ }

∞

𝑖=1

− 𝑣̇{𝜙𝑖𝐴̇𝑖}) 

(∑{𝜙𝑗𝐴𝑗̇}

∞

𝑗=1

− 𝑣̇)(∑{𝜙𝑘𝐴𝑘̇}

∞

𝑘=1

− 𝑣̇)] |𝑥=𝑥𝑐
  

× ∫ 𝜙𝑝(𝑥)𝐺(𝑥, 𝑡)
𝐿

0

  =
𝜌𝑓𝑉𝑓

2𝐷

2𝑚
 (𝑞𝑝 −

2𝛼

𝜔𝑆

 𝐴𝑝) (17a) 

 

𝑚𝑎𝑣̈ =  [𝑘 (∑{𝜙𝑖𝐴𝑖}

∞

𝑖=1

− 𝑣) + 𝑘𝑛𝑙 (∑{𝜙𝑖𝐴𝑖}

∞

𝑖=1

− 𝑣) 

(∑{𝜙𝑗𝐴𝑗}

∞

𝑗=1

− 𝑣)(∑{𝜙𝑘𝐴𝑘}

∞

𝑘=1

− 𝑣)  

(17b) 

+𝑐 (∑{𝜙𝑖𝐴𝑖
̇ }

∞

𝑘=1

− 𝑣̇) 

+𝑐𝑛𝑙 (∑{𝜙𝑖𝐴𝑖
̇ }

∞

𝑖=1

− 𝑣̇)(∑{𝜙𝑗𝐴𝑗
̇ }

∞

𝑗=1

− 𝑣̇)(∑{𝜙𝑘𝐴𝑘
̇ }

∞

𝑘=1

− 𝑣̇)]  

 
 

𝑞̈𝑝 − 𝜔𝑆𝐺𝐶𝐿0
2  𝑞̇𝑝 − 4𝜔𝑠𝐺 (∑𝑞̇𝑝 ⋅ 𝑞𝑖

2

∞

𝑖=1

 ∫ 𝜙𝑝
2 ⋅ 𝜙𝑖

2 𝑑𝑥
𝐿

0

 

+2 ∑ 𝑞𝑝𝑞𝑖𝑞̇𝑖

∞

𝑖=1 𝑖≠𝑝 

 ∫ 𝜙𝑝
2 ⋅ 𝜙𝑖

2
𝐿

0

 𝑑𝑥) + 𝜔𝑠
2𝑞𝑝

= 𝜔𝑠𝐹𝐴̇𝑝 

(17c) 

We emphasize that the above set of ODEs include the dynamics 
for cable (𝐴𝑝), moving nonlinear absorber (𝑣) coupled with a 
van der Pol oscillator (𝑞𝑝). In the subsequent sections, the 
simulations are obtained numerically by using ten mode 
expansion for more accurate results. Given the semi-empirical 
nature of the wake oscillator, it is crucial to validate the accuracy 
of the proposed model and demonstrate the differences between 
the wake oscillator model and a sinusoidal force model. This is 
shown in the next section.  
 
3. Validation and Parameter Identification 

 
In this section, we validate the accuracy of the proposed 

model. It should be noted that the van der Pol oscillator is derived 
from empirical observations and embodies theoretical principles, 
making it inherently a semi-empirical model. Thus, the damping 
and coupling parameters in the wake oscillator need to be 
identified. For this purpose, we compare the response of the 
system with the lift force modeled as a wake oscillator against 
the system with a sinusoidal lift force as presented in [4].  

To achieve this, we establish the similarities between both 
models. Therefore, we substitute the stall term in Eq. (17a), 𝛼,  
as 0. This step ensures that the system's damping arises solely 
from structural damping and from the damping in the vibration 
absorber. Moreover, the excitation magnitude for sinusoidal 
forcing is amplified by the average of the steady-state response 
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of the wake variable 𝑞 across the given frequency range. With 
these values of the excitation amplitude and stall parameter, the 
time history at a given frequency used in [4] and the frequency 
response curve for the first mode of the cable is analyzed and 
shown in Fig. 3.  

 
(a) 

 
(b) 

FIGURE 3:  a) COMPARISONAND OF THE TIME 
RESPONSE OBTAINED BY TWO DIFFERENT FORCE 

MODELS AT 20𝐻𝑧  b) COMPARISON OF THE FREQUENCY 
RESPONSE OF THE CABLE WITH WAKE OSCILLATOR AND 
SINUSOIDAL FORCE CORRESPONDING AVERAGE VALUE 

 

The comparison of time response of the system at the 
midspan with average sinusoidal forcing and wake forcing is 
shown in Fig. 3a. From Fig. 3a, we observe that for the given 
values of the primary system parameters in [4] and the values of 
the van der Pol oscillator i.e., 𝐶𝑙0 = 0.28, 𝑐𝑑 = 1, 𝐹 = 1.2534 ×
10−2 and 𝐺 = 0.3763 [5], there is a good agreement between 
the sinusoidal lift-force model and the wake oscillator model. 
However, to elucidate the effect of the wake variable on the 
current system dynamics, we compare the corresponding 
frequency response curves for the first mode and is shown in Fig. 
3b. The results show that the van der Pol model is approximately 
equivalent to the one corresponding to the sinusoidal oscillator; 
however, the later one could not capture the effect of nonlinearity 
in the system dynamics. This observation can be realized through 
the damping term in Eq. (17c), which is velocity-dependent and 
quadratic in nature. Nonlinearity is crucial in our system as it 

allows for a more accurate representation of the current nonlinear 
system.  

Having established the differences and similarities 
between the current model and the sinusoidal forcing [4] to 

 
FIGURE 4:  TIME RESPONSE AT THE MID-SPAN OF THE 
CONDUCTOR FOR A FIXED LINEAR ABSORBER AND A 

FIXED NONLINEAR ABSORBER AT 𝑓 = 2.415 𝐻𝑧 

 

elucidate the effect of nonlinearity on the system, we present the 
effect of nonlinear absorbers in the wake-coupled system as 
compared to their linear counterpart as presented in [4] in the 
next section.  

4. Results and Discussion 
 

In this section, we explore the effectiveness of the moving 
nonlinear absorber on vibration mitigation by investigating the 
effect of different location profiles on the system dynamics.  
Figures (4-7) depict the comparison of the time response  of the 
system for the fixed absorber, the linear moving absorber, and 
the nonlinear moving absorber for different location profiles 

mentioned in Eq. (9). It should be noted that in all cases of 
different location profiles, the cable is excited at the primary 
resonance only. For the sake of comparison with the analysis 
presented in [4], we also place the fixed linear absorber at 2% of 
the conductor’s length.       

For the first case of location profile 𝑔1,  it can be observed 
from Fig. 4 that at resonance, the nonlinear absorber outperforms 
its linear counterpart at the same location and for the parameters 
listed in [4], i.e. 𝑘𝑛𝑙 = 1356.96 and 𝑐𝑛𝑙 = 177 𝑁. 𝑠. This can be 
attributed to the fact that at resonance, the amplitude of the 
system becomes maximum. causing the damping force from the 
nonlinear absorber to increase nonlinearly at resonance.  

The comparison of the response of the cable with the fixed linear 
absorber, a moving linear absorber, and a moving nonlinear 
absorber is depicted in Fig. 5 for the second location profile, 𝑔2. 
The moving absorber (linear and nonlinear) moves forward and 
stops after some time. As anticipated from [4], the moving 
absorber (green) shows an improvement over its fixed 
counterpart at resonance. The dynamic nature of the absorber 
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enables the absorber to sweep through more efficient locations 
along the length of the cable, which is unattainable by a fixed 
absorber. Furthermore, similar to the observation drawn from 
Fig. 4, a nonlinear moving absorber (purple curve in Fig. 5)  

 

 
FIGURE 5:  TIME RESPONSE AT THE MID-SPAN OF THE 

CONDUCTOR FOR A FIXED ABSORBER,  A ONE WAY 
MOVING LINEAR ABSORBER AND A ONE WAY MOVING 

NONLINEAR ABSORBER AT 𝑓 = 2.415 𝐻𝑧 

further decreases the response of the cable as compared to a 
moving linear absorber.  

The response of the forward-moving absorber can be 
significantly improved by implementing the third location 
profile 𝑔3 (i.e., the absorber moves back and forth), as shown in 
Fig. 6. The vibration amplitude at resonance is reduced to less 
than half of that observed with a fixed linear absorber, over a 
period twice as long as the time taken by the absorber to move 
forward. Moreover, the moving nonlinear absorber fully 
envelopes the two-way moving linear absorber. Note that the 
response of the system in either case does not diminish to zero 
due to the limit cycle oscillations from the nonlinear van der Pol 
oscillator. 

Finally, for a span length of 27.5𝑚, the results in Fig. 7 show a 
reduction of the vibration displacement when an additional 
nonlinear absorber is embedded at the other side of the cable 
corresponding to the location profile, 𝑔4. The displacement of 
the moving linear absorber is still envelopes the moving 
nonlinear absorber most of the time, but due to the nonlinearities 
in the absorber, the response of the two-way moving absorbers 
on both sides of the cable exhibits some fluctuations before 
reaching the limit cycle.  

The prior results show that at resonance and with an appropriate 
choice of parameters, a nonlinear moving absorber can 
significantly mitigate the vibration of the cable. With the 
availability of multiple parameters for the nonlinear moving 
absorber, such as the velocity, the nonlinear stiffness and 
damping as well as the effect of the van der Pol parameters, this 
becomes more of an optimization problem and is left for future 
work. The various parameters affecting the response of the 

system suggest that a parametric study and a performance 
assessment based on the efficiency of the absorber will enable us 
to further understand the potential improvement of the nonlinear 
moving absorber. 

 
FIGURE 6:  TIME RESPONSE AT THE MID-SPAN OF THE 

CONDUCTOR FOR A FIXED ABSORBER,  A TWO WAY 
MOVING LINEAR ABSORBER AND A TWO WAY MOVING 

NONLINEAR ABSORBER AT 𝑓 = 2.415 𝐻𝑧 

 
FIGURE 7:  TIME RESPONSE AT THE MID-SPAN OF THE 
CONDUCTOR FOR A FIXED ABSORBER,  TWO-WAY TWO 

MOVING LINEAR ABSORBERS AND TWO-WAY TWO 
MOVING NONLINEAR ABSORBERS AT 𝑓 = 2.415 𝐻𝑧 

5. CONCLUSIONS 

In this study, we investigated the effectiveness of moving 
nonlinear vibration absorbers for different configurations on 
Aeolian vibration mitigation of nonlinear overhead powerlines. 
The nonlinear absorber comprised of a mass-nonlinear spring- 
nonlinear damper-mass subsystem and moves along a certain 
region to cover a wider range of frequencies. Moreover, the 
impact of the nonlinear moving absorber was elucidated by 
incorporating a nonlinear wake oscillator. The governing 
equations of motion were obtained through Hamilton’s principle. 
The current model’s parameters were identified by showing 
good agreement with the sinusoidal lift-force model. The time 
response at the first mode revealed that a fixed nonlinear 
absorber outperforms in mitigating the vibration amplitude of the 
conductor as compared to its linear counterpart at the same 
location. The mitigation was further enhanced by allowing the 
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nonlinear absorber to move forward for different configurations. 
We observed that a two-way moving nonlinear absorber was able 
to keep the amplitude at a very safe level at resonance. By adding 
an extra absorber on the other side, the response was 
significantly reduced. In all configurations, the linear moving 
absorber’s response envelopes its nonlinear counterpart response 
and the nonlinear moving absorber showed better suppression of 
the amplitude at resonance. 
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