
Using Honeybuckets to Characterize Cloud Storage Scanning in the Wild

Katherine Izhikevich
UC San Diego

Geoffrey M. Voelker
UC San Diego

Stefan Savage
UC San Diego

Liz Izhikevich
Stanford University

Abstract—In this work, we analyze to what extent actors
target poorly-secured cloud storage buckets for attack. We
deployed hundreds of AWS S3 honeybuckets with different
names and content to lure and measure different scanning
strategies. Actors exhibited clear preferences for scanning
buckets that appeared to belong to organizations, especially
commercial entities in the technology sector with a vul-
nerability disclosure program. Actors continuously engaged
with the content of buckets by downloading, uploading,
and deleting files. Most alarmingly, we recorded multiple
instances in which malicious actors downloaded, read, and
understood a document from our honeybucket, leading them
to attempt to gain unauthorized server access.

1. Introduction

This paper explores a simple but poorly understood
question: to what extent is insecure cloud storage actively
targeted for attack?

Storage in the cloud, such as Amazon Simple Stor-
age Service (S3) and Google Cloud Storage, provides
reliable, available, and elastic storage on demand to vir-
tually anyone with the means to pay. Moreover, it is
extremely easy to deploy. A client need only choose a
name for their storage “bucket” and specify its access
control list, before it is ready to serve files. This ease of
use has made such services extremely popular; in 2021,
Amazon’s S3 service hosted more than 100 trillion files
on behalf of its users [1]. However, this same flexibility
has given rise to new risks. The confidentiality of each
bucket is not governed by traditional enterprise security
mechanisms, but by the correct configuration of individual
access control settings by the bucket operator. Thus, if
a bucket is misconfigured to be public, then any party
guessing its name may gain access to all of its sensitive
content. In 2018, Ero [2] found that unsolicited parties
were indeed guessing the names of public storage buckets.
Shortly after, a survey of almost 200,000 buckets revealed
that 10% contained sensitive data, including passports and
financial records [3].

However, it remains unclear how scanners find such
buckets and how many of these are targeted in actual
attacks. To put it another way: is this merely an abstract
risk, or are concrete threat actors actively searching for
such vulnerabilities and exploiting them in the wild?
While more than a few high profile breaches have been
publicly attributed to misconfigured cloud storage [4]–[9],
none have documented how these attacks took place, nor
the mechanism by which attackers identified the oppor-
tunity. Indeed, scanning for buckets is non-trivial as an
attacker must correctly guess the bucket’s full name, yet
the potential search space of these names is 1062 times

larger than IPv6 and no public repository of buckets-in-use
exists. The names of misconfigured buckets must therefore
either be guessed, or found in an unrelated passive data
source (e.g., DNS).

In this work, we empirically analyze this question
by deploying a range of “honeybuckets” on the AWS
S3 platform, configured with names, permissions, and
content to lure and measure different scanning strategies.
By modulating how our buckets are named and whether
they are leaked to other data sources, we have been able to
identify the most widely used strategies employed by third
parties to scan for misconfigured buckets. We identify
that there are clear preferences for scanning particular
kinds of organizations, notably commercial entities in the
technology sector. Moreover, while we find that it is com-
mon for all such actors to hide behind proxy servers, we
show how to automatically group seemingly disparate IP
addresses by dynamically modulating filename content to
create causal dependencies between metadata and attempts
to access individual files.

To distinguish between potential benign actors who
may be scanning to help notify vulnerable parties [10] (or
at least to try to sell a subscription to such a security
scanning service) and those who have malicious aims,
we further configured our honeybuckets to create multiple
opportunities for actors to engage in clearly malicious
acts. First, we configure our buckets to allow actors to
delete or upload data. We consider users who delete data
or upload content that is designed to gain unauthorized
access (i.e., to compromise a user who interacts with it and
spawn a reverse shell) to be malicious. Second, we create
lures whose value requires one to affirmatively violate a
security norm (i.e., an unauthorized login to a third-party
server exploiting an ssh credential extracted from one of
our buckets). We show that all of these behaviors occur
in our data.

In summary, we provide strong empirical evidence that
shows how unsecured data on cloud storage is exploited
today. While many targeted scans may reflect benign
security interests, there is a range of malicious activity
targeting commercial data. We conclude with a range
of recommendations for how organizations might better
protect such cloud assets in practice.

2. Background and Related Works

Cloud storage mimics a traditional file system inter-
face. Files are stored in a file directory structure, with
the top level directory referred to as a “bucket.” Buckets
are simple to create: a client must, at minimum, (1)
choose a service-wide globally unique name that is 3–64
alphanumeric-symbolic characters long and (2) configure
the bucket contents to be private (the default option)

or publicly accessible. Once a bucket is created, it is
accessible via the cloud provider’s API, cloud browser
interface, or through a cloud-specific subdomain (e.g., my-
bucket.s3.amazonaws.com). A user with sufficient access
can upload an unlimited number of files and delete files,
among other bucket operations [11].

Once a bucket is accessible (i.e., its access controls
allow public access), a third-party must know its name to
access it. There is no mechanism for enumerating names,
nor any public repository of bucket names (public or
otherwise). Thus, any party who does not possess a priori
knowledge of a bucket’s name must either guess it—from
a potential namespace of roughly 10101 possibilities—or
find it in another data source.

An attacker seeking to narrow the search space for
guessing such names—-to find and sell stolen data, for
example [5]—can use one of several scanning methodolo-
gies. The simplest bucket scanners rely on a pre-defined
list of strings and patterns (e.g., Slurp [12], s3enum [13],
and BucketStream [14]), tailored towards targeting likely-
popular bucket names. Similar to password guessing soft-
ware, bucket scanners generate target names by mechani-
cally combining dictionary words, technology terms, etc.

However, not all bucket names will be simple or use
popular words—for example, a number of applications
generate random bucket names (e.g., project IDs) for
intermediate storage [15]. Continella et al. show that
some such names can be identified using passive DNS
collection services [16] (i.e., where another party exposes
the name via their DNS lookups) and Cable et al.
generalize this idea by showing that such data can be
used to train a machine learning model to generate a
large set of valid names [3].

Such approaches have been used by the research
community to explore the storage bucket ecosystem and
empirically establish the widespread existence of mis-
configured buckets. Indeed, both Continella et al. [16]
and Cable et al. [3] found thousands of public buckets
that exposed sensitive data, including private keys and
national defense documents. Ero [2] and Cable et al.
further deployed empty storage buckets to establish the
existence of online bucket scanning behavior. However,
while both found evidence of unsolicited scans, neither
investigated the method by which names were targeted,
nor the actions taken once such buckets were found. We
are the first to demonstrate how public storage buckets
are attacked (i.e., when actors delete, modify, upload, and
exploit content) in the wild.

Overall, attacks on cloud storage have been relatively
understudied, especially when compared to the broad lit-
erature characterizing active attacks on other infrastruc-
ture namespaces such as the IPv4 address space [17]–
[19], IPv6 address space [20]–[22], cloud compute ser-
vices [23]–[26], DNS [27]–[29], and BGP [30]–[33].
In these other environments, researchers have also used
honeypots—infrastructure deployed for the purpose of
detecting malicious behavior [34]—to characterize IPv4
scanning [35]–[37], email security [38], leaked document
activity [39], and DNS activity [40]. Our work brings
this approach to the cloud storage context, particularly
in service to understanding more about the nature of
unsolicited visitors: how they target victims and the extent
to which they reveal clear malicious intent.

3. Pilot study: How Buckets Are Targeted

This section describes our pilot experiment to broadly
understand how, and to what extent, buckets are targeted
for attack. Using a deployment of more than one hundred
honeybuckets over a period of six months, we show that
exploitation of misconfigured buckets is very real: hun-
dreds of IP addresses attempted to download, delete, or
upload objects including malicious shell scripts. Notably,
the first honeybucket was scanned only 40 minutes after
deployment. Buckets named after companies, universities,
and government organizations were scanned and attacked
the most, implying that actors intentionally scan for spe-
cific targets. We then use the results of the pilot study to
inform a refined experiment in Section 4.

3.1. Methodology

To understand how actors scan and interact with sensi-
tive bucket content, we deployed 112 unique buckets (i.e.,
“honeybuckets”) on the AWS S3 platform on February
18, 2022, and hosted them for 6 continuous months. We
configured the bucket names, permissions, and contents to
attract bucket-scanning actors that use various scanning
strategies to find public buckets. We focused only on
the AWS S3 platform, as prior work found that AWS
S3 receives the largest amount of unsolicited scanning
traffic [3]. We do not use AWS decoy resources [41], as
these decoys neither provide bucket naming schemes nor
sample content.

3.1.1. Bucket Names. Scanning buckets is not a trivial
task. The enormous search-space of bucket names is too
large to exhaustively enumerate. Thus, actors must employ
directed strategies for scanning for public buckets. We
used five approaches to name buckets, each designed to
measure a unique bucket-scanning strategy. We list all
bucket names in the Appendix in Table 11.
Target Generated Buckets. To increase the success rate
of finding public buckets, actors can use an open-source
tool to discover commonly-named S3 buckets. These tools
generate their scanning targets using target generation
algorithms (TGAs), a method that uses a pre-defined list of
strings and patterns—often common bucket names—and
optionally concatenates them with a user-provided list of
keywords.

To measure if actors use open-source tools to
find buckets, we named 12 of the 112 buckets with
names generated by three of the most popular bucket
enumeration tools found on Github and Pastebin—
Slurp [12], DNSpop [42], and bucket-stream-permutation-
feature [14].1 To identify an actor’s use of a particular
enumeration tool, we computed the disjoint set of target
names that belong to each tool—and not to any other—
to create a set of honeybucket names that are likely to be
found by one—and only one—tool. We chose four unique
bucket names from each disjoint set, for a total of 12
buckets covering the three tools. To act as a control group,
we created four additional buckets named with strings that

1. We also considered s3enum [13] and s3Mining [43], but after
comparing outputs we found that their generated bucket names were
proper subsets of the other TGAs.

2

did not appear in any of the bucket enumeration tools.
Crucially, all chosen target generated bucket names were
a part of a fixed set of names that the TGA program
constructs (i.e., concatenates with an empty string), no
matter if the user provides the keyword; it is not clear if
this is a bug or a feature of the TGAs.
Company, University, and Government Buckets.
Rather than only scanning for popular bucket names, an
actor might curate a list of names that target a specific
entity. To detect whether actors explicitly search for buck-
ets named after organizations, we named 48 of the 112
buckets after the names of companies (Tesla, Walmart,
Tinder), government organizations (FBI, CIA, NYPD) and
universities (UCSD and Stanford). We concatenated each
of the eight organizations with six unique keywords that
appeared in a subset of the bucket enumeration tools. The
six unique keywords consisted of three sensitive (“hid-
den”, “private”, “security”) and three non-sensitive (“pro-
duction”, “download”, “public”) keywords, to additionally
measure if a sensitive bucket name influences the type of
organizational bucket scanners search for. There was no
overlap between the TGA names and the 48 organization
names.
Cryptocurrency Buckets. If an actor targets specific
content, rather than a specific entity, they might scan for
buckets named after the content. To detect actors who may
be searching for buckets storing cryptocurrency, we named
four of the 112 buckets after two cryptocurrencies: Bitcoin
and Ethereum. At the time of our experiment, many vari-
ations of “bitcoin” and “ethereum” bucket names already
existed, so we hyphenated the names of the cryptocur-
rencies with keywords found in the most popular bucket
enumeration tools (e.g.,“bitcoin-confidential”).
Sensitive and Non-Sensitive Buckets. To search for
sensitive content without restriction to a specific entity
or content-type, an attacker might scan for bucket names
with sensitive keywords. To compare the discovery rate of
buckets named after sensitive keywords (e.g., “passport”
and “bank”) to non-sensitive keywords (e.g., “pictures”
and “pretty”), we named four of the 112 buckets using
each of these keywords.2 At the time of our experiment,
bucket names with only the keyword already existed, so
we hyphenated all sensitive and non-sensitive keywords
with a non-sensitive keyword found in the most popular
bucket enumeration tools (“10”).
Leaked-Alphanumeric Buckets. Rather than blindly
guessing names, an actor might harvest bucket names
from client activity (e.g., DNS queries) to increase the
likelihood of discovering buckets. To measure if scanning
actors are harvesting names, we assigned 40 out of the
112 honeybuckets with “unlikely-guessable” names: ran-
domly generated alphanumeric names of length 16 (e.g.,
“q81osr2ba5wnid4g”). To identify potential sources of
leaked buckets, we leaked 20 of our 40 unlikely-guessable
honeybuckets across a variety of platforms, including a
Github repository, a new Pastebin repository, a single
tweet on a new Twitter account, and the HTML of an
academic website (but not visible in a browser). We leaked

2. We used sensitive keywords defined by the U.S. Justice Depart-
ment [44] and non-sensitive keywords defined by the disjoint set of those
sensitive keywords and the top 1,000 most common English words [45].

two buckets at a time on each platform to verify whether
a scanner likely guessed the bucket by chance (i.e., visited
only one bucket) or likely found the bucket on the leaked
platform (i.e., visited both buckets). To identify if scanners
used passive DNS as sources for bucket names, we also
queried the domains of two unlikely-guessable honey-
buckets across DNS resolvers: two resolvers operated by
Google, two by Spectrum, two by AT&T, two by a Russian
ISP (ASN 12714), and two by a Chinese ISP (ASN 4134).
Finally, to identify if scanners, such as Google bots,
unsolicitedly download content from bucket names found
in email, we saved two unlikely-guessable honeybuckets
in a single email draft on Gmail. We withheld and did
not leak the remaining 20 of 40 alphanumeric buckets to
serve as a control group.

3.1.2. Bucket Permissions. Having chosen candidate
bucket names to scan, an attacker could use one or more
of Amazon’s 100 operations to interact with the bucket.
To capture as many potential interactions as possible,
we gave bucket-scanning actors considerable freedom to
interact with our honeybuckets: all honeybuckets allowed
any actor to read the contents of the bucket and write new
content to the bucket. However, deleting files originally
uploaded by us was forbidden (although we could detect
deletion attempts). We enabled bucket versioning—a fea-
ture that saves all past versions of files in a bucket—to
track how actors upload, delete, and modify the files they
themselves upload. We recorded all available metadata of
interactions with the honeybuckets, including the time of
interaction, actor’s IP address, actor’s AWS account (if
the actor sent an authenticated request [46]), request URI,
and any error messages the actor received if their request
was malformed or forbidden. To promote reproducibility,
we share our raw data at https://github.com/kizhikevich/
honeybuckets.

3.1.3. Bucket Contents. After listing the directory of a
bucket, an actor might only choose to download a subset
of “interesting” files. We uploaded files with a variety
of enticing names and contents to each honeybucket to
test for file-download preferences among scanning actors.
Table 1 lists the nine files we placed in each honeybucket.
To function as controlled variables when comparing down-
load preferences among scanning actors, the file names
and contents were identical across all buckets. For exam-
ple, each honeybucket included a “Client list Dec 2021”
file to lure scanning actors searching for sensitive client in-
formation. The file included fake names, home addresses,
and social security numbers generated by Faker [47]. Files
named “Backup.pst”, “Outlook.pst”, “id ed25519”, and
“Inbox.mbox” were lures for actors who were searching
for sensitive email folder names, SSH private keys, and
Google takeout backups, respectively. Each file contained
fake data in the expected format. We additionally included
a file with the commonly abused .jar extension [48] to test
for malicious actors who might wish to replace existing
.jar files with hidden “trojan” malware. The content of
the uploaded .jar file emulated a benign calculator pro-
gram [49]. Finally, we included two README files—
sized 0 bytes and 2 kilobytes—to test if actors checked
for file size prior to downloading.

3

https://github.com/kizhikevich/honeybuckets
https://github.com/kizhikevich/honeybuckets

File Name Content Unique IPs Unique ASNs Downloads

Client list Dec 2021 Fake names, SSNs, addresses 88 56 160
Backup.pst Sensitive mail folder names 69 47 155
README1 AAA... 64 41 127
Outlook.pst Sensitive mail folder names 54 34 110
README2 Empty file 53 32 112
id ed25519 SSH private key 53 31 117
Inbox.mbox Google Takeout backup 50 32 107
UTC* UTC wallet (keystore file) 48 30 112
javazoom.jar Benign jar file 41 21 103

TABLE 1: Honeybucket File Contents—Each honeybucket hosted nine unique files that contained a variety of sensitive
names and content, intended to attract scanning actors with different target preferences.

3.2. Pilot Study Results

In this section we characterize how scanning actors
engaged with our honeybuckets. We investigate the most
common methods actors used to scan for buckets, the
type of abusive activities buckets received, the amount
of time actors spent interacting with a public bucket, and
who was hunting for buckets. Most notably, we found that
buckets named after companies were the most likely
to be accessed (Section 3.2.1). Although the majority
of bucket interactions only checked for bucket existence,
hundreds of IP addresses attempted to download,
delete, or upload objects—including malicious shell
scripts (Section 3.2.2). This activity happened quickly af-
ter the buckets become accessible: actors scanned public
buckets within 40 minutes of deployment and uploaded
unsolicited content within 10 days (Section 3.2.3).

3.2.1. How Buckets Were Found. Buckets named af-
ter companies were scanned with the highest number of
operations and IP addresses. Table 2 lists the top 20
buckets with the most attempted operations. Half of these
top 20 buckets had a company in their name, with the
top five named after “Tesla.” For a detailed breakdown,
Table 3 presents the number of unique IP addresses and
Autonomous Systems (ASes) that targeted each bucket on
average per bucket type. Company buckets were targeted
with statistically significantly3 more IPs and ASes per
day compared to all other bucket types. On average, at
least one unique IP and AS visited a company bucket per
day. In Section 4, we further investigate why actors are
lured towards particular companies by deploying a second
honeybucket experiment.

Seven of the top 20 buckets with the most number
of interactions had names from open-source bucket target
generators (TGAs); however, the majority of actors did
not appear to use only the TGAs to generate these bucket
names. Rather, actors were likely using their own list of
target bucket names that coincided with the TGA’s list.
We considered an actor to be using a TGA if (1) a single

3. We used a one-sided Mann-Whitney U test to evaluate whether
the volume of traffic per day that targeted a specific bucket type was
stochastically greater than the volume that targeted the bucket type with
the next greatest volume of traffic per day. We used p < 0.05 and
additionally applied a Bonferroni correction—to account for multiple
comparisons—when determining statistical significance.

Bucket Name Type # Ops # IPs

teslaproduction Company 2538 467
teslapublic Company 1620 355
tesladownload Company 1601 375
teslasecurity Company 1470 339
teslaprivate Company 1456 342
origin-www TGA (DNSpop) 1379 349
612 TGA (DNSpop) 1312 446
lyncdiscover TGA (DNSpop) 980 278
www-download TGA (Pastebin) 894 323
walmartproduction Company 872 170
tinderproduction Company 755 178
ucsdprivate University 747 143
fbiproduction Government 627 179
www-slack TGA (Pastebin) 604 260
www-security TGA (Pastebin) 572 220
screenshots-www TGA (Pastebin) 552 245
tinderpublic Company 542 139
tinderdownload Company 527 129
walmartsecurity Company 516 133
ciaproduction Government 508 151

TABLE 2: Top 20 Buckets With The Most Attempted
Operations—Five out of six buckets named after Tesla
experienced the most attempted operations.

IP address4 targeted all four bucket names that belonged
to that TGA; or (2) all TGA buckets were scanned by
a uniform distribution of unique IP addresses (which
accounts for actors using multiple IPs when scanning, e.g.,
from VPNs). In Table 3, we filtered for IP addresses that
targeted all four buckets from a single TGA and found sta-
tistically significantly fewer actors that exhaustively used
the TGA names compared to the number of unique IPs that
scanned buckets named after organizations. Furthermore,
TGA buckets were not targeted by a uniform number of IP
addresses (e.g., “origin-www” from DNSpop was targeted

4. The majority of actors used one IP address when scanning (Sec-
tion 4).

4

Total Per Day

Bucket Type IPs ASNs IPs ASNs

Companies 195.39 35.72 1.63∗ 1.44∗

Universities 133.83 20.75 1.27 1.19

Government 100.22 19.50 1.08∗ 1.04∗

Non-sensitive Keywords 74.50 15.00 0.95 0.90

Sensitive Keywords 43.50 8.50 0.74 0.72

Cryptocurrency 27.75 7.75 0.56∗ 0.54∗

TGA (filtered) 12.67 12.67 0.42∗ 0.46∗

Leaked 6.17 3.22 0.46∗ 0.45

Control 1.17 1.17 0.44 0.44∗

TABLE 3: Traffic Across Bucket Types—Average num-
ber of unique IP addresses and associated ASNs that
visit the various types of buckets. Buckets named after
companies experienced the most traffic on average both
overall and per day. Statistically significant increases of
traffic per day, relative to all other types of buckets
that experienced less average traffic per day, are marked
with an *. For example, while university buckets did
not experience statistically significantly more traffic than
government buckets, government buckets did experience
significantly more traffic than all bucket types except for
company buckets.

by 349 IPs, whereas “lyncdiscover” from DNSpop was
targeted by 278 IPs).

Buckets named after universities or a government
service were the second-most likely to be scanned, with
no statistically-significant difference between the two (Ta-
ble 3). Among the buckets associated with organizations,
bucket names concatenated with the word “production”
were scanned the most. Table 4 shows the relationship
between the number of scanning IPs and the organiza-
tion/keywords in the bucket name. While 467 unique IPs
scanned “teslaproduction,” only 375 unique IPs scanned
“tesladownload.” On the other hand, across all organi-
zation types, bucket names concatenated with the word
“hidden” were an order of magnitude less likely to be
targeted than all other keywords (e.g., 4 compared to 127
unique IPs for “fbihidden” vs. “fbisecurity”).

Buckets leaked to passive data sources were the least
likely to be scanned: an average of just 0.46 unique IP
addresses visited a leaked bucket per day compared to
an average of 1.63 IPs that visited a company bucket per
day. The bucket names embedded in the website HTML
content were scanned by just 45 IP addresses, and those
leaked via Twitter by 22 IPs (compared to the 467 IPs that
scanned teslaproduction). The buckets leaked via DNS
queries were never scanned.

Since the search space for buckets is vast, prior work
has found that targeting shorter and lower entropy names
results in an overall higher hit rate when scanning buck-
ets [3]. However, our results imply that actors are opti-
mizing to find specific targets in addition to maximizing
overall hit rate. For example, while bucket “612” con-
tained the least amount of entropy in our honeybucket
set, it was scanned by fewer unique IP addresses than
five of the six Tesla buckets (Table 2), each of which

was substantially longer and higher in entropy. Using the
Kolmogorov-Smirnov test, we found no statistically sig-
nificant difference between the number of unique IPs and
ASes that targeted buckets “612” and “teslaproduction”
(the Tesla bucket with the highest number of operations)
per day, indicating that maximizing overall hit rate was
not the only popular scanning strategy. Overall, buckets
named after companies were scanned the most compared
to TGA buckets, leaked buckets, and buckets with names
of a lower entropy.

3.2.2. Bucket Interactions and Abuse. Over 100 unique
IP addresses (of 6,567 total IPs) uploaded at least one
file to a bucket, for a total of 206 files. Through manual
investigation, we identified four unique files that hosted
malicious content (uploaded across 16 unique buckets):
(1) a “poc.jsp” JavaScript file that spawned a reverse
shell to a server specified by a command-line argument;
(2) a “test-file.svg” file that, when opened, re-directed
to a suspicious domain (“ngrok.io”); and (3) two files,
named “ snapshot/test” and “ snapshot/test2”, that con-
tained code to send the contents of the /etc/passwd
file to the actor who uploaded the file.

Only two files, “upload.png” and “s3sec.txt”, con-
tained a message to the bucket owner as a warning
that their bucket was public. Notably ironic, these good-
samaritan warnings were shared through an unsolicited
upload. Of the remaining uploaded files, six unique files
uploaded across nine buckets contained benign content,
six files were not accessible due to the object permissions
set by the actor, and 188 files were empty. We summarize
the contents of all uploaded files in Table 10 in the
Appendix.

Over 700 unique IP addresses (of 6,567 total IPs)
attempted to download a file from a bucket. The client list
file was downloaded the most, with 160 total downloads
across 88 unique IP addresses (Table 1). We did not find
any file to have a statistically significantly5 greater number
of downloads per day, likely due to the infrequent nature
of downloads per day (i.e., on average, there are just
0.00005 downloads per bucket per day). Thus, we cannot
conclude that actors check for file size before downloading
files. We summarize the remaining non-abusive bucket
interactions in Table 9 in the Appendix, which often
consists of checking a bucket’s existence and/or listing
files.

3.2.3. Bucket Time-to-Abuse. We consider a bucket to
be abused when an actor attempted to upload a non-empty
file, download a file, or delete a file from a bucket. While
actors were quick to find buckets—within 40 minutes of
deployment the bucket “walmartdownload” had its direc-
tory listed— it took over a week for an actor to abuse a
bucket for the first time.

Buckets named after TGA targets or company names
were the only two categories to experience uploads, with
buckets receiving a first upload within an average of
71 days. The first successful upload across all 112 buckets
occurred 10 days after deployment with the “lyncdiscover”
bucket generated with the TGA DNSpop. An unauthen-
ticated actor uploaded a file with instructions on how to

5. We calculated statistical significance using the methodology from
Section 3.2.1.

5

Unique IPs Targeting Org-Keyword Bucket
Organization ‘production’ ‘download’ ‘public’ ‘private’ ‘security’ ‘hidden’ Total

Tesla 467 375 355 342 339 8 1886
Walmart 170 142 140 139 133 8 732
Tinder 178 129 139 125 108 5 684
UCSD 130 131 128 143 129 3 664
Stanford 163 173 162 158 158 3 817
FBI 179 122 119 116 127 4 667
CIA 151 116 116 117 118 4 622
NYPD 78 78 76 78 78 3 391

Total 1516 1266 1235 1218 1190 38 6463

TABLE 4: The Impact of Bucket Name Construction on Received Scans—Buckets that contained the keyword
“production” were targeted by more unique IP addresses than buckets containing any other keyword, no matter the
organization.

make the bucket private. The file was called “s3sec.txt”
and can be found in the Github repository s3sec [50].

Compared to uploading content, actors were much
slower to download content. The average time-to-first
download across all bucket types was 78 days, with the
first successful download of the file “Backup.pst,” 27 days
after deployment, in the bucket “tesladownload.” Content
inside the non-sensitive keyword and control buckets was
never downloaded over the course of the experiment.

The most rare and slowest-to-occur abuse of a bucket
was file deletion: the only attempt to delete a file from
Table 1 occurred 134 days after bucket deployment. Thus
we conclude that actors were quick to find buckets and
overall performed abusive operations by uploading non-
empty unsolicited files and downloading files, but rarely
attempted to delete files from buckets.

3.2.4. Identifying Bucket-Scanning Actors. A total of
6,567 unique IP addresses performed at least one op-
eration to at least one bucket. Nearly all (99.9%) IP
addresses sent an unauthenticated AWS request,6 allowing
the user to remain anonymous. However, 27 actors au-
thenticated themselves, and eight used non-alphanumeric
usernames. Table 5 lists the eight actors, showing their
username, IP addresses used, buckets visited, etc. Three
actors had usernames that alluded to bugfinding (i.e.,
“s3bug”, “bug”, “pudsec”). The user “bug” uploaded a
“Read.txt” file that described how to pen-test buckets for
the purposes of receiving a bug bounty. Three authenti-
cated users alluded to being “administrators,” in which
at least one suggested they were a “bot” for scanning
(i.e., “Admin.../xbotusr”). The remaining 19 authenticated
users used non-informative, random alphanumeric names.
In Section 4, we deploy a new set of experiments to filter
for only non-bot scanners.

Authenticated users also gave a glimpse into under-
standing if bucket-scanning actors often used multiple
source IP addresses, and whether a unique IP address was
likely to identify a unique scanning actor. We used the
authenticated actor set as an approximate ground truth

6. Amazon allows users to be unauthenticated, which is when a user
does not have an AWS account [46] or when an authenticated user adds
the flag “–no-sign-request” to their command line argument [51].

mapping of unique users to IP addresses.7 IP addresses
were a sufficient approximate indicator of unique scanning
actors: 90% of authenticated actors used only one scan-
ning IP address and 100% of authenticated actors used IP
addresses from the same autonomous system (Table 5).
In Section 4.1, we show that the vast majority of bucket
scanning actors were likely only using one IP address.

All scanners originated from a set of 330 au-
tonomous systems, a subset of which have security-
critical reputations. Approximately 66% of scanners orig-
inated from three ASes: M247 (ASN 9009), HostRoyale
(ASN 203020), and CHOOPA (ASN 20473). Clients using
M247 and Choopa are known to be consistently engaged
in high-risk and highly fraudulent behavior [52], [53].
HostRoyale’s clients are known to use its anonymizing
VPN services [54].

3.3. Summary

This pilot study systematically demonstrated that scan-
ning strategies are not random: our honeybuckets named
after well-known companies received the most activity
(Section 3.2.1). Scanners were quick to discover new pub-
licly accessible buckets, finding buckets within 40 minutes
of deployment (Section 3.2.3). Finally, scanning actors
actively interacted with the bucket contents in a variety of
concerning ways: at least one file containing sensitive data
was downloaded across nearly all buckets, many buckets
had malicious files uploaded to them, and some had files
targeted for deletion (Section 3.2.2).

While this experiment established many aspects of
scanning activity, a number of questions remain. It is un-
clear why actors were lured towards particular companies,
how actors might take further advantage of downloaded
sensitive data, and whether identical files across buckets
could cause actors to recognize the decoys and modify
their behavior. Furthermore, actors can use multiple IPs
and VPNs to mask their activity, and such aliasing leaves
unresolved how to attribute multiple interactions to the
same actor. In the next section, we build on our pilot

7. The set is likely biased towards users that did not care about
concealing their identity and thus served as an expected upper-bound
of the number of actors that used only one scanning IP address.

6

User IPs ASN Buckets Visited Operations

user/energi-0001 103.157.116.108/32 Cloud Teknologi (137331) All DNSpop Check exist, List dir, Get ACL
assumed-role/... 12 IPs in DC Protection (198949) origin-www (DNSpop) Get ACL
Admin.../xbotusr 148.177.96/24
user/Admin 186.29.129.113/32 ETB (19429) 612 (DNSpop) List dir, Get ACL

190.25.111.135/32
user/bref-cli 159.89.129.123/32 DIGITAL OCEAN (14061) lyncdiscover (DNSpop) Check exist, List dir, Get ACL
user/Administrator 143.238.166.88/32 Telstra (1221) origin-www (DNSpop) Check exist, List dir, Get ACL

lyncdiscover (DNSpop) Check exist, List dir, Get ACL
user/s3bug 103.105.154.178/32 Global Ra Net (135692) 3/4 Tinder buckets Get ACL
user/bug 103.79.171.204/32 MNR Broadband (133648) tinderpublic List dir, Upload object
user/pudsec 216.126.238.240/32 Hostodo (399804) 612 (DNSpop) Check exist, List dir, Get ACL

TABLE 5: Authenticated User Activity— We present a list (8 out of 27) of all authenticated users who used non-
alphanumeric usernames (omitting their unique account ID for brevity). The majority of authenticated users used only
one IP address to scan, only visited buckets of one type (e.g., TGA, company), and did not interact with bucket content.

study and deploy a new, refined honeybucket experiment
to provide more insight into precisely these questions.

4. Exploitation of Company Buckets

In our pilot study, actors were most likely to scan
and download sensitive files from buckets named after
companies, occasionally using multiple IPs to do so. In
this section, we conduct a new, refined experiment to
broadly investigate (1) what types of companies receive
the most traffic (e.g., industry sector, Fortune 500 stand-
ing, having a vulnerability disclosure program), (2) if
actors using multiple IP addresses can be more easily
identified and, most importantly, (3) whether downloaded
content is exploited. We found that companies with a
vulnerability disclosure program were more likely to be
scanned. Most alarmingly, though, we recorded eight in-
stances of actors exploiting downloaded content from our
buckets, which directly led to unauthorized attempts to
login to a honeypot server.

4.1. Methodology for Bucket Configuration

We deployed 120 honeybuckets on the AWS S3 plat-
form on October 2, 2022 and hosted them for 1 month. We
configured buckets with three primary differences from the
methodology in Section 3.1: (1) names followed a single
enterprise-themed naming scheme, (2) buckets contained
an informative document that tracked the longevity of
information post-download, and (3) bucket contents used
a unique identifier that helped track actors who used
multiple IPs.

4.1.1. Bucket Names. We investigated what factors cause
the buckets of one company to be at a higher risk of abuse
(e.g., malicious uploads, malicious downloads) than an-
other company. To study the cloud-storage attack surface
of enterprises, we named 120 new buckets after 60 Fortune
500 companies [55]. We created the set of 60 companies
by (1) removing company names with an “&”, as that
symbol is not allowed in bucket names, (2) randomly
ordering the remaining Fortune 500 companies, and (3)
selecting the first 30 companies that had a clear vulnerabil-
ity disclosure procedure (VDP) and the first 30 companies

that did not appear to have a VDP. To determine if a
company hosted a VDP, we used Google to search for
“<company name> vulnerability disclosure” and looked
for a disclosure procedure within the top 10 results.8

To construct the bucket names, we concatenated (with
no spaces) each chosen company with the two keywords
from Section 3.2.1 that attracted the greatest number of
actors—“production” and “download”—thereby assigning
two buckets per company (e.g., “carvanaproduction” and
“carvanadownload”). Table 12 in the Appendix lists the
names of all chosen companies,9 their offering of a VDP
and/or bug bounty, and their 2022 Fortune 500 ranking.
In Section 5, we discuss the ethics of this methodology.

4.1.2. Bucket Contents. Recall that in Section 3.2, some
actors downloaded at least one file from the bucket. In this
experiment, our goals were to (1) identify what actors do
after downloading a file, and (2) better estimate the num-
ber of actors engaging with the buckets. To accomplish
these goals, all buckets in our second experiment hosted
(i) fictitious sensitive content to lure actors to interact with
our honeybuckets in a way that allowed for tracking their
actions, and (ii) a new text document that served as a
source of information to trace the identity of actors.
Sensitive Information. To lure actors into interacting
with our honeybuckets, we hosted a nested directory of
fake financial data generated by the Faker tool [47].
Each honeybucket hosted unique data (unlike our first
experiment in Section 3.1) to reduce the chance of actors
finding multiple company-named honeybuckets and possi-
bly growing suspicious if they encountered identical data.
We named the nested directory with an hourly-changing
hashed time stamp (i.e., “update 2022 chargeback {unix
time}”). As a result, an actor who used multiple IP
addresses across multiple hours to list bucket contents
and download individual files could be identified using
the hashed time stamp. To avoid triggering alarms (see

8. This search methodology identified that 21% of the first set of the
60 randomly chosen companies had a vulnerability disclosure program,
which is nearly identical to what prior work has found [56].

9. During bucket deployment, we encountered an already-existing
bucket, “Blackrockproduction”. We replaced Blackrock with another
randomly-chosen Fortune 500 company.

7

Appendix A.2), we zip-encrypted the contents of individ-
ual sensitive files across all honeybuckets.

Informative Document. All buckets hosted a single, un-
encrypted text document that (1) encouraged actors to con-
tact the bucket owner, (2) traced the longevity of sensitive
information post-download, and (3) identified actors who
used multiple IP addresses. To encourage actors to contact
us, the document included an email address that we con-
trolled, and attributed bucket ownership to an ambiguous
financial analytics contractor of the Fortune 500 company.
In this way, we could still measure interactions associated
with buckets named after Fortune 500 companies, but—
assuming the actor read the informative document—re-
direct follow-up email interactions to us.

We also wanted to infer whether actors who down-
loaded sensitive data had malicious intentions, such as
using the downloaded information for nefarious purposes.
For this goal, in the document we also included an SSH
username, password, and IP address for a Cowrie SSH
honeypot [37] that we hosted. To lure an actor to login
via SSH, the file (falsely) stated that the encryption key to
the sensitive files in the bucket could be found in our SSH
honeypot. While no username or password combination
granted entry into our Cowrie honeypot, we monitored
login attempts (i.e., IP address, timestamp, username and
password attempted) to see if any attempted SSH creden-
tials matched the credentials provided in the honeybucket.

In the first experiment (Section 3.2), thousands of
unique IP addresses interacted with our buckets. To iden-
tify individual actors who may have used multiple IP
addresses to search for buckets and attempts to login
into our honeypot, we updated the SSH password in the
informative document every hour. Specifically, the doc-
ument stated to “Concatenate your unique 3-digit token
with the secure numeric key, like so: <token>62514653”
where the “secure numeric key” was a hash of the current
timestamp. We then used the SSH password as a link
between the IP address that obtained the password and the
IP address that used it. In a similar manner, we updated
the name of the text document to trace actors who may
have used different IP addresses to list directory contents
and download individual files. To attract actors to the
informative document, we named the document ‘secure-
encryption-ssh-quickstart-{unix time}.txt’ to attract down-
loads with an enticing name. Relative to all other bucket
contents, the document’s name was alphabetically first, en-
suring that the informative document appeared first when
an actor listed the contents of the bucket. Appendix A.3
shows the exact text of the document.

4.1.3. Bucket Permissions. In Section 3.2.2, we docu-
mented actors uploading over 100 files—some of which
were inaccessible to us—across different buckets. To pre-
serve the integrity of our bucket configuration, in this
experiment actors were only allowed to (1) list the bucket
directory, (2) download all objects, and (3) upload an
object if and only if the actor transferred ownership of
the uploaded object to the bucket owner. Currently, this
permission is the only mechanism to automatically ensure
uploaded files can be accessed by the bucket owners, since
files are automatically owned by the uploader [57], [58].
Deleting objects was forbidden.

Company Attribute Avg # IPs per bucket

Has VDP 17.75∗

No VDP 10.78

Technology 28.19∗

Healthcare 16.20

Transportation 16.00

Financials 15.69

Retail 10.25

Chem./Energy/Industrial 8.78

Eng./Construction/Materials 5.83

Aerospace/Defense 5.50

Business Services 4.00

TABLE 6: Company Attribute Impact On Scanning—
Buckets that were named after companies with vulnera-
bility disclosure programs (VDPs), or were in the tech-
nology sector, attracted statistically significantly more IP
addresses. Statistically significant increases of a metric,
relative to all metrics with a smaller average value, are
marked with an *.

4.2. Results

In this section, we use the increased lures and tracking
capabilities to further understand how bucket scanners
operate. We start by investigating what kinds of companies
lured the most actors and found a significantly increased
number of actors and significantly increased amount of
abusive behavior correlated with companies with a vul-
nerability disclosure program (Section 4.2.1). Certain
scanners used VPNs, prompting us to develop a scalable
approach to track and group colluding IPs as belonging to
the same actor. Using this approach, we found most actors
still only used one IP address (Section 4.2.3). Finally, we
analyze the “abusiveness” of actor behavior, distinguishing
between those actors who merely downloaded our purport-
edly sensitive information and those who used that data to
login to another machine that they were not authorized to
access. We traced over 3000 login attempts to 8 unique
actors who had previously downloaded content from
our bucket (Section 4.2.4).

4.2.1. Understanding Company Targets. Buckets that
contained the names of companies with a vulnerability
disclosure program (“VDP companies”) were statistically
significantly10 more likely to be scanned. Table 6 presents
the number of IP addresses which scanned different cate-
gories of companies. On average, VDP-company buckets
were scanned by 60% more IP addresses compared to
non-VDP company buckets, attracting roughly 18 IPs per
day. VDP-company buckets were also responsible for the
majority (6/8) of the abusive SSH behavior (Section 4.2.4).
Our results are consistent with previous work [59] that
found a positive correlation between bug bounty programs
and data breaches when studying government-reported
breaches. One possible explanation is that potential finan-

10. We used the one-sided Mann-Whitney U methodology from Sec-
tion 3.

8

Bucket Name # Unique IPs

americanexpressdownload 139
americanexpressproduction 140
oracledownload 112
intuitproduction 55
oracleproduction 54
intuitdownload 46
nvidiadownload 44
nvidiaproduction 44
targetdownload 43
polarisproduction 42

TABLE 7: Top 10 Most Scanned Buckets—Over 58%
of the total number of IPs scanned the top 10 buckets
(719 out of 1,228 total IPs), which spanned six compa-
nies. Every company, except Polaris, has a vulnerability
disclosure program.

cial incentives attract scanners, but we cannot discount
the possibility that companies with valuable online assets
are simply more likely to institute VDPs (perhaps due to
being attacked more frequently).

Additionally, buckets with names of companies in the
technology sector were statistically significantly11 more
likely to be scanned by unique IP addresses compared
to any other sector. Buckets named after technology
companies12 were scanned by 74% more IPs on average
than healthcare buckets, the second-most scanned sector.
Technology company buckets attracting the most IPs
was not a symptom of having a VDP: while 5 out of
8 technology companies had a VDP, 10 out of 10 of
the health companies and 10 out of 16 of the financial
companies also had a VDP. We also found no correlation
between a company’s Fortune 500 rank and the number
of IP addresses who scanned its corresponding bucket.

Table 7 lists the top ten buckets that were scanned by
the greatest number of unique IP addresses,totaling 719
IPs out of the total 1228 unique IPs (58.55%). The two
most-scanned buckets were both named after American
Express, which has a VDP. Unique actors consistently
scanned American Express buckets throughout our
experiment. Six of the top ten most-scanned buckets
were named after technology companies, and nine were
named after companies with a VDP.

4.2.2. AWS Triggered Reports. We received two re-
ports during the course of our experiment sent via AWS.
However, these reports were not prompted by an internal
AWS hygiene system. Instead, they were instigated by
people (employees or contractors) who explicitly searched
for buckets named after the corresponding companies.
The first AWS report was for a bucket named after a
technology company. AWS included the email addresses

11. Accounting for Bonferroni correction, the Mann-Whitney U
methodology only returns significant p-values for sample sizes greater
than 10. Thus, we excluded the following company sectors from statisti-
cal analysis: Healthcare (10 buckets total), Transportation (8), Engineer-
ing (6), Aerospace (4), and Business Services (2).

12. We determine sector by using the Fortune 500 sector label [60].

of the “original abuse reporter[s]” who were two em-
ployees of that company. The second report was for two
buckets named after a healthcare company, and included
the contact information of a security employee from the
company. After removing the buckets, as per their request,
we spoke with the healthcare security team and learned
that the buckets were reported to them by a third party
rather than an internal scanning system or team. These
experiences highlight that actors explicitly searching for
buckets trigger more warnings than AWS’s internal, auto-
mated detection systems [61], [62].13

4.2.3. Identifying and Tracking Unique Actors.
Since some actors are likely to use VPNs to interact
with the buckets, we developed an algorithm to identify
“colluding” IP addresses to better identify and track
at scale a single actor’s operations across multiple IP
addresses. We define a single actor using colluding
IP addresses to be either one scanner operating under
a VPN, one host whose DHCP lease expired between
actions, or multiple parties colluding by sharing or selling
information to each other. We used this algorithm to
better approximate the true number of actors interacting
with the buckets, rather than just using the number of
unique IP addresses.

Algorithm. To identify colluding IP addresses, we relied
on the hourly updates of unique identifiers in bucket
filenames (Section 4.1.2). These identifiers provided a link
between colluding IP addresses that execute operations on
behalf of each other. Concretely, there are three cases of
operations that revealed colluding IPs:

Failure: Without having ever listed the directory,
there was an attempt to download a file that used to,
but no longer, exists. For example, in Figure 1, IP9
never listed the directory, but attempted to download
file d, which no longer existed. IP8 was the only IP
that listed the directory during file d’s existence, thus
IP8 and IP9 must have been colluding IPs.

Success: Without having ever listed the directory,
there was a successful download of a file. For
example, in Figure 1, IP6 never listed the directory,
but successfully downloaded file c. IP5 was the only
IP address that listed the directory after file c was
uploaded, but before IP6 downloaded file c. Thus
IP6 must have been colluding with IP5.

SSH: Without having ever downloaded the informa-
tive document, there was an attempt to login to the
SSH honeypot. For example, in Figure 1, IP12 never
listed the directory, but attempted to login to the SSH
honeypot using the credentials only found in file f.
IP11 was the only IP address that successfully down-
loaded file f, thus IP12 and IP11 must be colluding
IPs. We use the success case above to determine that
IP10 and IP11 must have been the same actor as well.

Algorithm 1 formalizes the logic to detect all three cases
of likely-colluding events. It takes as input (1) an IP
address and (2) a token associated with the IP address. The

13. Indeed, to the best of our knowledge, neither the AWS security
investigator, Detective [61], nor the AWS threat detection service, Guard-
Duty [62], specifically monitor for buckets hosting exposed sensitive
data.

9

Algorithm 1: find colluding ips(IP,token):
// extract filename from token
if token==valid SSH password then

file = unhash(token)
end
else if token==informative doc then

file = token
else

return // IP did not download a file or
SSH

end
// base case: no collusion
if time(‘IP lists directory’) < time(‘IP downloads file’) then

return IP // the IP listed directory for
itself

end
// get time of first download
first download=MIN(logs[logs[‘ips’]==IP][‘time’])
// get bucket of first download
bucket=logs[logs[‘time’]==first download][‘bucket name’]
// find if download was successful
successful download=
logs[logs[‘time’]==first download][‘error’]
// get upload time
upload time=get upload time(file)
// get deletion time
delete time=upload time + 1 hour
if successful download then

cut off=first download // file not deleted by
download time

end
if !successful download then

cut off=delete time // file already deleted
by download time

end
// get all directory-listing IPs
ips list dir= logs[logs[‘operation’]==‘list directory’][‘ips’]
for i in ips list dir do

// if directory listing between upload
and cut off time, mark colluding_ips

if logs[logs[‘ips’]==i][‘time’] ≥ upload time &
logs[logs[‘ips’]==i][‘time’] ≤ cut off then

colluding ips.append(i)
end

end
return colluding ips

algorithm returns as output a (potentially empty) set of IP
addresses that colluded with the input IP address based
upon the time of their operations. The token associated
with the IP address is the informative document or SSH
password that the IP address had downloaded or used.
The token contains the unique time-based identifier that
identifies which time frame another colluding IP could
have downloaded the token from. Upon identifying the
time frame, the algorithm simply searches for which other
IP addresses downloaded the token in the target time
frame, and assigns those IP addresses to the returned
colluding set. We note that if the input IP address did not
download a document or abuse an SSH password (i.e.,
“token == none”), then the algorithm will not return any
colluding IPs for the current IP. Instead, if it was indeed
a colluding IP, it may be returned as a colluding IP for
another IP address that did download a document or abuse
an SSH password.

Notably, the algorithm’s accuracy directly depends
upon the granularity of content updates. For example,
since our methodology updates bucket file names every
hour, IP addresses that appear together within the same
hour—whether by accident or due to collusion—often

cannot be differentiated and are all considered candidates
for collusion. For example, this situation occurs with IP2,
IP3, and IP4 in Figure 1, where IP2 and IP3 both listed
the bucket directory and therefore both are considered
candidates for colluding with IP4. Further, the algorithm
cannot detect if two unique actors are using two VPNs
within the same hour on the same bucket. Nevertheless,
as shown in Table 3 the number of unique IPs that visited a
bucket per day—let alone per hour—is often too low (i.e.,
< one unique IP per day) for the algorithm’s limitation to
be an issue for our study.

Characterizing Actors. Applying this algorithm across
all logged bucket operations, the vast majority (94.6%)
of actors used only one IP address. In the most extreme
case, one actor used 45 unique IPs—a subset of which
map to known VPN products and Tor exit nodes—to
download files. Section 4.2.4 shows that the actors who
used more than one IP address were more likely to par-
ticipate in security-critical behavior. The remaining 5%
(61 out of 1228) of IP addresses clustered to at most six
unique actors. Finally, we found no set of colluding IPs
announced by the same Autonomous System, suggesting
that the collusion was likely not a result of a host’s DHCP
lease expiration.

4.2.4. Abusive access. Among the challenges for a study
like ours is that threat actors are anonymous and their
underlying motivations are undeclared. Thus, it can be
difficult to distinguish between the visits of a benign
scanner (e.g., a security researcher or pentester), and a
malicious party who is seeking to exploit exposed re-
sources. We introduced the SSH honeypot component of
our experiment to address this ambiguity. By creating an
opportunity for scanners to “cross the line” and attempt
an unauthorized login to third-party infrastructure using
credentials harvested from our buckets, we created a mea-
surement that is clearly interpretable. Independent of any
motivation, such actions are widely understood to violate
ethical norms [63] and, in most countries, civil and crimi-
nal law as well.14 Put another way, there is no motivation
that excuses an attempt to use purloined credentials to
gain unauthorized access to an unknown server. Indeed,
it would be particularly worrying if purportedly benign
researchers were taking such action. Thus, we consider
all such accesses to be malicious.

We tracked the downloads of the informative docu-
ment and monitored our SSH honeypot over a span of 6
months. A total of 182 unique IP addresses downloaded at
least one bucket’s informative document, which contained
an email address (i.e., a direct method to contact the
bucket owner) and leaked SSH credentials. Eight unique
IPs, traced to eight unique actors, collectively performed
over 3,000 login attempts using the leaked SSH creden-
tials. Only one actor contacted us directly.15

14. For example, in the US unauthorized access of this form is a
violation of 18 USC 1030, the Computer Fraud and Abuse Act.

15. The party warned us, in our capacity as the purported financial an-
alytics contractor, that our usaadownload bucket was public. This “Good
Samaritan” requested that we pay a bug bounty and sent three follow-
up email messages insisting on a reward. We note that USAA, which
operates a monetary VDP [64], belongs to the category of organizations
that attract the most scanning traffic.

10

IP1 IP1 IP2 IP4IP3 IP5 IP6 IP7 IP8
a

a b c d e

Failed Collusion
IP7 + IP8

Successful Collusion
IP5 + IP6

Successful Collusion
(IP2,IP3) + IP4

No Collusion

b c

Time

DI
R:
 [a
]

IP9 IP10

f

Successful Collusion
IP9+ IP10 + IP11

f

IP11

SS
H(

)

RE
Q
(a
)

DI
R:
 [b

]

DI
R:
 [b

]

RE
Q
(b
)

RE
Q
(c
)

DI
R:
 [c
]

DI
R:
 [d

]

DI
R:
 [f
]

RE
Q
(d
)

RE
Q
(f)

f

Figure 1: Identifying Colluding IP Addresses— We identified colluding IPs using the causal dependencies created by
hourly-updated filenames. In our figure, “DIR: [a]” is the return of a directory listing with the filename “a”, “REQ(a)” is
the request of filename “a”, and “SSH(a)” is the extraction of SSH credentials from filename “a”. When an IP requested
a file without having listed the directory (e.g., IP4), all IPs that listed the directory within the same hour (e.g., IP2 and
IP3) were identified as potentially colluding with the file-requesting IP. An IP that SSH’ed into our honeypot server
(e.g., IP12), without having downloaded the file with the SSH instructions, was identified as colluding with the IP that
downloaded the file with the matching SSH credentials (e.g., IP11).

Using the algorithm outlined in Section 4.2.3 we place
activity related to SSH abuse into two categories, “SSH
Attempt” and “SSH Brute Force”, based on the number
of login attempts by an actor.
SSH Attempt. Five unique actors—whose IP ad-
dresses belong to Microsoft Cloud (AS 8075), Char-
ter Communications (AS 11427), the high-fraud risk
Cloudvider (AS 66240), TIAA (AS 2923), and NETSPI
(AS 397919)—attempt at most eight passwords against
our SSH honeypot (in particular, they do not exhaustively
enumerate all possible passwords).

In the first SSH case (16 days after bucket deploy-
ment), a single actor used two IP addresses to find a
company bucket, download the informative document, and
attempt to login to the SSH honeypot—all within three
minutes. The actor used address IP1 to list the directory of
the bucket “tiaadownload” and download the informative
document. Within two minutes, address IP2 attempted to
login to the SSH honeypot using both the username and
password originally displayed to IP1 a few minutes prior.
IP1 was the only address to download the informative
document with the credentials used by IP2. We therefore
conclude that the two IPs were the same actor who down-
loaded and used the leaked SSH credentials.

The IP addresses both resolve to the “vpn.netspi.com”
domain, which belongs to NetSPI, a penetration test-
ing, threat and attack surface management company [65].
While NetSPI used the SSH credentials found in TIAA’s
bucket, we do not find public evidence that TIAA is a
customer of NetSPI.16 However, even if TIAA were a
customer of NetSPI who authorized them to act on their
behalf, neither the credentials we provided nor the domain
accessed belonged to TIAA. Indeed, the downloaded in-
formative document clearly stated that the SSH credentials
belonged to a third-party contractor, and not to TIAA.
Notably, NetSPI did not append a three-digit identification
number to the SSH password, which the informative docu-

16. While TIAA is not a public customer of NetSPI, both companies
do have another connection: NetSPI’s current CTO previously worked
for TIAA as the Head of Cybersecurity Technology [66], [67].

ment instructed to do. While it is conceivable that NetSPI
understood that no access would be accomplished, their
attempt at unauthorized access violates ethical norms.

SSH Brute Force. Three unique actors—whose IP
addresses belong to the high-fraud risk Packethub
(AS 147049), Midco VPN (AS,11232), and 31173 Ser-
vices VPN (AS 39351)—attempt all one thousand varia-
tions of the password leaked in the informative document.

In the first brute force event, an actor used multiple
IP addresses to find a company bucket, download the
informative document, and attempt to log into the SSH
honeypot across a 24-hour period. We determined that
two IP addresses used in these interactions belonged to
the same actor. On October 30th, address IP1 listed the
directory of the bucket “oracledownload.” Nearly 24 hours
later, address IP2 attempted to download the informative
document, DocA, in “oracledownload” that was originally
presented to IP1. However, IP2 was unsuccessful due to
DocA having already been deleted because of our hourly
updates (Section 4.1.2). Since IP1 was the only IP address
to list the directory during DocA’s existence, IP1 and IP2
must have been the same actor.

We determined that this actor also used two additional
IP addresses. Since the actor realized that the original
DocA was no longer in the bucket, within 10 seconds
a new address, IP3, listed the bucket directory again. Yet
another address, IP4, then downloaded the new informa-
tive document (DocB) originally listed to IP3. Having
finally successfully downloaded DocB, which contained
the leaked SSH credentials, IP1 attempted to login to the
SSH honeypot using the username and password displayed
to IP4 five minutes prior. We therefore conclude that these
four IP addresses were all the same actor that ultimately
found and used the leaked SSH credentials. All four IPs
belong to AS39351, “31173 Services AB,” which provides
a VPN service [68].

However, unlike the other SSH-abuse attempts, this ac-
tor clearly understood the requirement to append a three-
digit identification number to the SSH password, as they
iterated through all 1000 possibilities while attempting to

11

login. It is difficult to construct a credible scenario in
which the actor could have believed these actions were
authorized.17

4.3. Summary

Actor engagement with company buckets increased
with the presence of a vulnerability disclosure program
(Section 4.2.1). To identify scanners using VPNs and to
better approximate unique actor activity, we developed
a scalable approach to identify colluding IP addresses
(Section 4.2.3). Colluding IP addresses were more likely
to participate in security-critical behavior. In the most
abusive case, we identified eight separate events in which
colluding IP addresses downloaded, read and understood
our informative document, leading them to perform unau-
thorized login attempts into our honeypot server (Sec-
tion 4.2.4).

5. Ethics

We considered two classes of ethical issues in this
work: potential human subject issues and potential harms
to companies. As per discussions with our university’s
human subjects office, our work does not constitute human
subjects research for the purposes of the US HHS Com-
mon Rule (45 CFR 46) because we are not collecting in-
formation about individuals. Indeed, we have not solicited
for any contact and any data that we receive is a byproduct
of explicit actions taken to search for our buckets. We
take no actions with this data (i.e., we do not act on the
unauthorized logins to our infrastructure other than to log
it) and thus we reason that any harms are minimal. This
is consistent with a long line of research into third-party
scanning behavior that has long been considered within
the ethical norms of the community [69].

The second issue we considered was potential harm
to companies due to trademark confusion or unwarranted
reputational damage. Working with the guidance of our
university’s general counsel, we designed our methodol-
ogy to minimize these issues in several ways. First, during
the targeting phase of the study, we did not leak (i.e.,
advertise) buckets that included organizational names.
Thus, organizational-named buckets could only be found
by those actively and blindly guessing the names (mini-
mizing any potential for confusion). Second, we provided
multiple paths for resolving any confusion: a contact
email address in the informative document, a university
affiliation that became clear if a visitor requested the
access control list, and the normal notification path via
AWS. Finally, in the two instances in which we were
contacted by brandholders (themselves notified by third
parties, Section 4.2.2) we immediately removed the asso-
ciated buckets as per their request.

As well, we adhered to AWS terms of service, did
not host any (real) sensitive data, and did not allow
unauthorized login attempts from the attackers who sought
to exploit our seemingly misconfigured buckets.

17. Moreover, since in most countries such unauthorized accesses are
criminal acts (e.g., in the US under the Computer Fraud and Abuse
Act, 18 USC 1030), this action would be a substantial risk for a benign
organization to take.

6. Recommendations

Our work demonstrates that buckets named after com-
mercial entities are actively targeted and exploited.

Defending against cloud storage attackers is simple:
configure buckets with sensitive information to be private.
Unfortunately, prior work [16] has shown that thousands
of buckets remain publicly exposed with sensitive infor-
mation. Furthermore, over time, buckets are more likely
to be misconfigured [3]. It is possible that misconfigured
buckets are a symptom of owners who are unaware of the
perils of exposing sensitive information, or are unaware
that the bucket is theirs in the first place.

Nevertheless, we propose the following recommenda-
tions for decreasing the risk of bucket exploitation, beyond
simply making buckets private and reiterating the empiri-
cal observation that buckets with high entropy names were
less likely to be found.
Scan assets. Buckets named after the organization
itself—as opposed to just low-entropy names—are the
most attractive targets for scanners (Section 3.2.1).
We recommend that organizations consistently scan
for both known and unknown cloud storage assets to
immediately detect misconfigurations. To scan for known
assets, organizations can maintain a bucket bookkeeping
system that periodically scans all buckets. To scan for
unknown assets (e.g., [70]), organizations should scan
for “easy-to-guess” buckets named after the organization
itself. Scanning for unknown organization-named assets
is not a new concept: prominent organizations (e.g.,
Levi’s, New Balance, etc.) already use products (e.g.
BrandShield [71]) that protect brand reputation by
scanning for organization-named Internet domains (e.g.,
‘Levis.xyz’) that might be engaging in phishing, fraud,
or trademark infringement. Thus, such brand-reputation
scanning protections can, with likely minimal overhead,
also scan for the presence of organization-named buckets
to help protect organizations from data breaches (another
threat against brand reputation).
Weigh risk according to organization type. Compa-
nies with a VDP are more likely to be at risk than
universities (Section 4.2.1). We recommend that security
services which exist to help organizations trace stray and
unknown assets (e.g., Censys [72]) weigh the risk of
exposed bucket exploitation according to the organization
type. Such services can more aggressively scan and push
to patch according to the organization type.
Encourage cloud providers to protect customer assets.
No matter the cause of misconfigured buckets, we believe
cloud providers are in the best position to help trace and
notify misconfigured bucket owners for two reasons. First,
while it is challenging for a third party to identify who
truly owns a misconfigured bucket, cloud providers can
use the email address registered with the bucket owner’s
account to remind owners of buckets that are open to
public access. Second, while no public repository enu-
merating all existing buckets exists, cloud providers likely
have some internal bookkeeping of resources that can be
used to exhaustively identify all public buckets. Currently,
our experience with AWS is that it provided only limited
proactive notifications: across the 232 honeybuckets de-
ployed across a total of 8 months, AWS only notified our

12

account about four buckets that were publicly exposing
sensitive data.

7. Conclusion

Actors scan and abuse the information found in cloud
storage buckets. We deployed honeybuckets across two
different experiments to measure how actors scan for
buckets. Buckets named after companies—especially with
a vulnerability disclosure program—were the most likely
to be scanned and abused. Attackers constantly abused the
permissions of the bucket they found: downloading files,
uploading malicious executables, and even deleting exist-
ing content. Most concerning, actors read and exploited
the contents they downloaded: in eight cases, SSH login
instructions leaked from our honeybuckets were precisely
followed and used to attempt to gain unauthorized server
access. Given that attackers exploiting cloud storage is
a reality, we hope our findings encourage both cloud
storage operators and customers to track and secure their
misconfigured buckets.

Data Availability

To promote reproducibility, we share our raw data
and the source code used to identify colluding IPs at
https://github.com/kizhikevich/honeybuckets. Raw data in-
cludes logs of all scans that target any honeybucket or SSH
server.

Acknowledgements

The authors thank Tatyana Izhikevich for providing
insightful comments on various versions of this work.
Funding for this work was provided in part by NSF grant
CNS-2152644, generous research support from Cisco Sys-
tems, a CRA-WP/ACSA Scholarship for Women Studying
Information Security (SWSIS), the Irwin Mark and Joan
Klein Jacobs Chair in Information and Computer Science,
the CSE Professorship in Internet Privacy and/or Internet
Data Security, and operational support from the UCSD
Center for Networked Systems.

References

[1] J. Barr, “Celebrate 15 Years of Amazon S3 with ‘Pi Week’
Livestream Events,” https://aws.amazon.com/blogs/aws/
amazon-s3s-15th-birthday-it-is-still-day-1-after-5475-days-
100-trillion-objects/, 2021.

[2] C. Ero, “The Bucket List: Experiences Operating S3 Honeypots,”
in BSidesSF, 2018.

[3] J. Cable, D. Gregory, L. Izhikevich, and Z. Durumeric, “Strato-
sphere: Finding Vulnerable Cloud Storage Buckets,” in Proc. of
24th RAID, 2021.

[4] “A Cyberattack Illuminates the Shaky State of Student
Privacy,” https://www.nytimes.com/2022/07/31/business/student-
privacy-illuminate-hack.html?referringSource=articleShare,
2022, [Accessed: 2023-05-26].

[5] “A Huge Data Leak of 1 Billion Records Exposes China’s
Vast Surveillance State — TechCrunch,” https://techcrunch.com/
2022/07/07/china-leak-police-database/?guccounter=1, 2022,
[Accessed: 2023-05-26].

[6] “Microsoft Leaked 2.4TB of Data Belonging to Sensitive
Customer. Critics are Furious.” https://arstechnica.com/
information-technology/2022/10/microsoft-under-fire-
for-response-to-leak-of-2-4tb-of-sensitive-customer-data/
?utm brand=arstechnica&utm source=twitter&utm social-type=
owned&utm medium=social, 2022, [Accessed: 2023-05-26].

[7] “Misconfigured AWS S3 Bucket Leaks 36,000 Inmate
Records,” https://www.trendmicro.com/vinfo/ph/security/news/
cybercrime-and-digital-threats/misconfigured-aws-s3-bucket-
leaks-36-000-inmate-records, [Accessed on: 2023-05-21].

[8] “S3 misconfiguration exposes sensitive data on more than 3
million senior citizens,” https://www.scmagazine.com/news/
cloud-security/s3-misconfiguration-exposes-sensitive-data-on-
more-than-3-million-senior-citizens, [Accessed on: 2023-05-21].

[9] “UK data protection regulator receiving ‘large number
of reports’ about Capital,” https://therecord.media/
capita-data-breaches-information-commissioners-office,
[Accessed on: 2023-05-29].

[10] “Grayhat Warfare,” https://grayhatwarfare.com, [Accessed: 2023-
05-02].

[11] “AWS S3 Actions,” https://docs.aws.amazon.com/AmazonS3/
latest/userguide/using-with-s3-actions.html#using-with-s3-
actions-related-to-buckets, [Accessed: 2023-05-1].

[12] Bharath, “Slurp’s S3 string formatting permuations,” https://
github.com/0xbharath/slurp/blob/master/permutations.json, 2018,
[Accessed: 2023-05-26].

[13] K. Rouwhorst, “s3enum,” https://github.com/koenrh/s3enum,
2021, [Accessed: 2023-05-26].

[14] Moorer, “Pastebin bucket-stream-permutation-feature,” https://
pastebin.com/RpUkywbV, 2018, [Accessed: 2023-05-26].

[15] “Bucket of Staging files after deploying an app
engine,” https://stackoverflow.com/questions/42947918/
bucket-of-staging-files-after-deploying-an-app-engine, 2017.

[16] A. Continella, M. Polino, M. Pogliani, and S. Zanero, “There’s
a Hole in that Bucket! A Large-Scale Analysis of Misconfigured
S3 Buckets,” in Proc. of 34th ACM CCS, 2018.

[17] M. A. T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,
Z. Durumeric, A. J. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai
Botnet,” in Proc. of 26th USENIX Security, 2017.

[18] K. Bock, A. Alaraj, Y. Fax, K. Hurley, E. Wustrow, and D. Levin,
“Weaponizing Middleboxes for TCP Reflected Amplification,” in
Proc. of 30th USENIX Security, 2021.

[19] L. Izhikevich, R. Teixeira, and Z. Durumeric, “LZR Identifying
Unexpected Internet Services,” in Proc. of 30th USENIX Security,
2021.

[20] D. Barrera, G. Wurster, and P. C. van Oorschot, “Back to the Fu-
ture: Revisiting IPv6 Privacy Extensions,” LOGIN: The USENIX
Magazine, vol. 36, no. 1, pp. 16–26, 2011.

[21] V. C. Perta, M. V. Barbera, G. Tyson, H. Haddadi, and A. Mei,
“A Glance Through the VPN Looking Glass: IPv6 Leakage and
DNS Hijacking in Commercial VPN Clients,” in Proc. of 15th
PETS, 2015.

[22] J. Ullrich, K. Krombholz, H. Hobel, A. Dabrowski, and E. Weippl,
“IPv6 Security: Attacks and Countermeasures in a Nutshell,” in
Proc. of 8th USENIX WOOT 14, 2014.

[23] E. Izhikevich, Building and Breaking Burst-Parallel Systems.
University of California, San Diego, 2018.

[24] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You,
Get off of My Cloud: Exploring Information Leakage in Third-
party Compute Clouds,” in Proc. of 16th ACM CCS, 2009.

[25] A. Yelam, S. Subbareddy, K. Ganesan, S. Savage, and A. Mirian,
“Coresident Evil: Covert Communication in the Cloud with
Lambdas,” in Proc. of 30th WWW, 2021.

[26] L. Izhikevich, M. Tran, M. Kallitsis, A. Fass, and Z. Durumeric,
“Cloud Watching: Understanding Attacks Against Cloud-Hosted
Services,” in Proc. of 23rd ACM IMC, 2023.

13

https://github.com/kizhikevich/honeybuckets
https://aws.amazon.com/blogs/aws/amazon-s3s-15th-birthday-it-is-still-day-1-after-5475-days-100-trillion-objects/
https://aws.amazon.com/blogs/aws/amazon-s3s-15th-birthday-it-is-still-day-1-after-5475-days-100-trillion-objects/
https://aws.amazon.com/blogs/aws/amazon-s3s-15th-birthday-it-is-still-day-1-after-5475-days-100-trillion-objects/
https://www.nytimes.com/2022/07/31/business/student-privacy-illuminate-hack.html?referringSource=articleShare
https://www.nytimes.com/2022/07/31/business/student-privacy-illuminate-hack.html?referringSource=articleShare
https://techcrunch.com/2022/07/07/china-leak-police-database/?guccounter=1
https://techcrunch.com/2022/07/07/china-leak-police-database/?guccounter=1
https://arstechnica.com/information-technology/2022/10/microsoft-under-fire-for-response-to-leak-of-2-4tb-of-sensitive-customer-data/?utm_brand=arstechnica&utm_source=twitter&utm_social-type=owned&utm_medium=social
https://arstechnica.com/information-technology/2022/10/microsoft-under-fire-for-response-to-leak-of-2-4tb-of-sensitive-customer-data/?utm_brand=arstechnica&utm_source=twitter&utm_social-type=owned&utm_medium=social
https://arstechnica.com/information-technology/2022/10/microsoft-under-fire-for-response-to-leak-of-2-4tb-of-sensitive-customer-data/?utm_brand=arstechnica&utm_source=twitter&utm_social-type=owned&utm_medium=social
https://arstechnica.com/information-technology/2022/10/microsoft-under-fire-for-response-to-leak-of-2-4tb-of-sensitive-customer-data/?utm_brand=arstechnica&utm_source=twitter&utm_social-type=owned&utm_medium=social
https://arstechnica.com/information-technology/2022/10/microsoft-under-fire-for-response-to-leak-of-2-4tb-of-sensitive-customer-data/?utm_brand=arstechnica&utm_source=twitter&utm_social-type=owned&utm_medium=social
https://www.trendmicro.com/vinfo/ph/security/news/cybercrime-and-digital-threats/misconfigured-aws-s3-bucket-leaks-36-000-inmate-records
https://www.trendmicro.com/vinfo/ph/security/news/cybercrime-and-digital-threats/misconfigured-aws-s3-bucket-leaks-36-000-inmate-records
https://www.trendmicro.com/vinfo/ph/security/news/cybercrime-and-digital-threats/misconfigured-aws-s3-bucket-leaks-36-000-inmate-records
https://www.scmagazine.com/news/cloud-security/s3-misconfiguration-exposes-sensitive-data-on-more-than-3-million-senior-citizens
https://www.scmagazine.com/news/cloud-security/s3-misconfiguration-exposes-sensitive-data-on-more-than-3-million-senior-citizens
https://www.scmagazine.com/news/cloud-security/s3-misconfiguration-exposes-sensitive-data-on-more-than-3-million-senior-citizens
https://therecord.media/capita-data-breaches-information-commissioners-office
https://therecord.media/capita-data-breaches-information-commissioners-office
https://grayhatwarfare.com
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-with-s3-actions.html#using-with-s3-actions-related-to-buckets
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-with-s3-actions.html#using-with-s3-actions-related-to-buckets
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-with-s3-actions.html#using-with-s3-actions-related-to-buckets
https://github.com/0xbharath/slurp/blob/master/permutations.json
https://github.com/0xbharath/slurp/blob/master/permutations.json
https://github.com/koenrh/s3enum
https://pastebin.com/RpUkywbV
https://pastebin.com/RpUkywbV
https://stackoverflow.com/questions/42947918/bucket-of-staging-files-after-deploying-an-app-engine
https://stackoverflow.com/questions/42947918/bucket-of-staging-files-after-deploying-an-app-engine

[27] G. Akiwate, R. Sommese, M. Jonker, Z. Durumeric, K. Claffy,
G. M. Voelker, and S. Savage, “Retroactive Identification of
Targeted DNS Infrastructure Hijacking,” in Proc. of 22nd ACM
IMC, 2022.

[28] A. Randall, E. Liu, R. Padmanabhan, G. Akiwate, G. M. Voelker,
S. Savage, and A. Schulman, “Home is Where the Hijacking is:
Understanding DNS Interception by Residential Routers,” in Proc.
of 21st ACM IMC, 2021.

[29] R. Sommese, M. Jonker, and K. Claffy, “Observable KINDNS:
Validating DNS Hygiene,” in Proc. of 22nd ACM IMC, 2022.

[30] S. Cho, R. Fontugne, K. Cho, A. Dainotti, and P. Gill, “BGP
Hijacking Classification,” in Proc. of 3rd IEEE TMA, 2019.

[31] C. C. Demchak and Y. Shavitt, “China’s Maxim–Leave No Access
Point Unexploited: The Hidden Story of China Telecom’s BGP
Hijacking,” Military Cyber Affairs, vol. 3, no. 1, p. 7, 2018.

[32] A. Gavrichenkov, “Breaking HTTPS with BGP hijacking,” Black
Hat. Briefings, 2015.

[33] P.-A. Vervier, O. Thonnard, and M. Dacier, “Mind Your Blocks:
On the Stealthiness of Malicious BGP Hijacks,” in Proc. of 23rd
NDSS, 2015.

[34] C. Kiekintveld, V. Lisý, and R. Pı́bil, “Game-theoretic Founda-
tions for the Strategic Use of Honeypots in Network Security,” in
Cyber Warfare. Springer, 2015, pp. 81–101.

[35] “Kippo,” https://github.com/desaster/kippo, [Accessed: 2022-05-
22].

[36] “T-Pot - The All In One Multi Honeypot Platform,” https://github.
com/telekom-security/tpotce, [Accessed: 2023-05-23].

[37] M. Oosterhof, “Cowrie SSH and Telnet Honeypot,” https://github.
com/cowrie/cowrie, [Accessed: 2023-05-30].

[38] A. Mirian, J. DeBlasio, S. Savage, G. M. Voelker, and K. Thomas,
“Hack for Hire: Exploring the Emerging Market for Account
Hijacking,” in Proc. of 25th WWW, 2019.

[39] M. Lazarov, J. Onaolapo, and G. Stringhini, “Honey Sheets:
What Happens to Leaked Google Spreadsheets?” in Proc. of 9th
USENIX CSET, 2016.

[40] J. Oberheide, M. Karir, and Z. M. Mao, “Characterizing Dark
DNS Behavior,” in Proc. 4th DIMVA, 2007.

[41] M. Ranganath and M. Keating, “How to Detect Suspicious Ac-
tivity in Your AWS Account by Using Private Decoy Resources,”
https://aws.amazon.com/blogs/security/how-to-detect-suspicious-
activity-in-your-aws-account-by-using-private-decoy-resources/,
2022, [Accessed on: 2023-10-31].

[42] Bitquark, “DNSpop,” https://github.com/bitquark/dnspop/
blob/master/results/bitquark 20160227 subdomains popular
1000000, 2016, [Accessed: 2023-05-26].

[43] Treebuilder, “S3 Mining,” https://github.com/treebuilder/
s3-mining/blob/master/s3.py, 2017, [Accessed: 2023-05-26].

[44] “Protecting Yourself While Using The Internet,” https://www.
justice.gov/usao-ndga/protecting-yourself-while-using-internet,
2015, [Accessed on: 2023-11-01].

[45] “1000 Most Common US English Words - GitHub Repository
by Ddeekayen,” https://gist.github.com/deekayen/4148741, [Ac-
cessed on: 2023-11-01].

[46] “Access Ccontrol List (ACL) Overview,” https://docs.aws.
amazon.com/AmazonS3/latest/userguide/acl-overview.html, [Ac-
cessed: 2023-04-14].

[47] D. Faraglia and Other Contributors, “Faker,” https://github.com/
joke2k/faker, [Accessed: 2023-05-30].

[48] L. E. G. Medina, “A Brazilian Trojan Using A Jar File, VB
Scripts And A DLL For Its Multi-Stage Infection,” https://
www.fortinet.com/blog/threat-research/a-brazilian-trojan-using-
a-jar-file-vb-scripts-and-a-dll-for-its-multi-stage-infection,
[Accessed: 2022-12-01].

[49] “Github - Java Calculator,” https://github.com/arif98741/Java-
Calculator/blob/master/Calculator.jar, [Accessed: 2024-05-13.

[50] “s3sec,” https://github.com/0xmoot/s3sec, [Accessed: 2023-05-
13].

[51] “Access S3 Public Data Without Credentials,” https://dev.to/
aws-builders/access-s3-public-data-without-credentials-4f06,
[Accessed: 2023-04-14].

[52] “M247 - Fraud Risk,” https://web.archive.org/web/
20200806070926/https://scamalytics.com/ip/isp/m247,
[Accessed: 2023-05-26].

[53] “Choopa - Fraud Risk,” https://scamalytics.com/ip/isp/choopa,
[Accessed: 2023-05-26].

[54] “Hostroyale - Fraud Risk,” https://scamalytics.com/ip/isp/
hostroyale, [Accessed: 2023-05-26].

[55] “Fortune 500 List,” https://fortune.com/fortune500/2022/search,
[Accessed: 2023-05-13].

[56] “Vulnerability Disclosure Programs Among the Fortune
500,” https://www.rapid7.com/blog/post/2021/05/21/
rapid7s-2021-icer-takeaways-vulnerability-disclosure-programs-
among-the-fortune-500/, [Accessed: 2023-05-30].

[57] V. Shah, G. Sundaresan, and L. Kear, “Enforcing Ownership
of Amazon S3 Objects in a Multi-Account Environment,”
https://aws.amazon.com/blogs/storage/enforcing-ownership-of-
amazon-s3-objects-in-a-multi-account-environment/, 2021,
[Accessed on: 2023-10-31].

[58] “How to Download Files That Others Put in Your
AWS S3 Bucket,” https://medium.com/artificial-industry/
how-to-download-files-that-others-put-in-your-aws-s3-bucket-
2269e20ed041, 2019, [Accessed on: 2023-10-31].

[59] A. Aaltonen and Y. Gao, “Does the Outsider Help? The Impact
of Bug Bounty Programs on Data Breaches,” in Fox School of
Business Research Paper, 2021.

[60] “Visualize the Fortune 500,” https://fortune.com/franchise-list-
page/visualize-the-fortune-500-2023/, [Accessed: 2024-05-15].

[61] “Amazon Detective Documentation,” https://docs.aws.amazon.
com/detective/, [Accessed on: 2023-11-01].

[62] “Amazon GuardDuty Features,” https://aws.amazon.com/
guardduty/features/, [Accessed on: 2023-11-01].

[63] Z. Durumeric, E. Wustrow, and A. J. Halderman, “ZMap: Fast
Internet-wide Scanning and Its Security Applications,” in Proc.
of 22nd USENIX Security, 2013.

[64] “USAA Vulnerability Disclosure Program,” https://bugcrowd.
com/usaa, [Accessed on: 2023-05-23].

[65] “NetSPI,” https://www.netspi.com/, [Accessed: 2023-05-04].

[66] “NetSPI TIAA,” https://www.netspi.com/webinars/
financial-services-cybersecurity-part-two/, [Accessed: 2023-
05-04].

[67] “Venturebeat: NetSPI expands,” https://venturebeat.com/security/
pentesting-firm-netspi-expands-into-attack-surface-management/
amp/, [Accessed: 2023-05-04].

[68] “31173 Services AB,” https://www.31173.se/, 2022, [Accessed:
2023-05-20].

[69] E. Pauley and P. McDaniel, “Understanding the Ethical Frame-
works of Internet Measurement Studies,” in Proc. of 2nd EthiCS
Workshop, 2023.

[70] “Defending Assets You Don’t Know About, Against
Cyberattacks,” https://threatpost.com/defending-unknown-
assets-cyberattacks/175730/, [Accessed: 2023-05-23].

[71] “BrandShield, Anti-Phisihing Solutions,” https://www.
brandshield.com/products/anti-phishing/, [Accessed: 2023-
05-26].

[72] “Attack Surface Management and Data Solutions,” https://censys.
io, [Accessed: 2023-05-30].

[73] “CVS Health Vulnerability Disclosure Program,”
https://www.cvshealth.com/vulnerability-disclosure-program,
[Accessed: 2023-05-23].

[74] “Vulnerability Disclosure Program,” https://www.optum.com/
business/vulnerability.html#:∼:text=Bug%20Bounties,in%
20accordance%20with%20this%20policy., [Accessed: 2023-05-
23].

14

https://github.com/desaster/kippo
https://github.com/telekom-security/tpotce
https://github.com/telekom-security/tpotce
https://github.com/cowrie/cowrie
https://github.com/cowrie/cowrie
https://aws.amazon.com/blogs/security/how-to-detect-suspicious-activity-in-your-aws-account-by-using-private-decoy-resources/
https://aws.amazon.com/blogs/security/how-to-detect-suspicious-activity-in-your-aws-account-by-using-private-decoy-resources/
https://github.com/bitquark/dnspop/blob/master/results/bitquark_20160227_subdomains_popular_1000000
https://github.com/bitquark/dnspop/blob/master/results/bitquark_20160227_subdomains_popular_1000000
https://github.com/bitquark/dnspop/blob/master/results/bitquark_20160227_subdomains_popular_1000000
https://github.com/treebuilder/s3-mining/blob/master/s3.py
https://github.com/treebuilder/s3-mining/blob/master/s3.py
https://www.justice.gov/usao-ndga/protecting-yourself-while-using-internet
https://www.justice.gov/usao-ndga/protecting-yourself-while-using-internet
https://gist.github.com/deekayen/4148741
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://github.com/joke2k/faker
https://github.com/joke2k/faker
https://www.fortinet.com/blog/threat-research/a-brazilian-trojan-using-a-jar-file-vb-scripts-and-a-dll-for-its-multi-stage-infection
https://www.fortinet.com/blog/threat-research/a-brazilian-trojan-using-a-jar-file-vb-scripts-and-a-dll-for-its-multi-stage-infection
https://www.fortinet.com/blog/threat-research/a-brazilian-trojan-using-a-jar-file-vb-scripts-and-a-dll-for-its-multi-stage-infection
https://github.com/arif98741/Java-Calculator/blob/master/Calculator.jar
https://github.com/arif98741/Java-Calculator/blob/master/Calculator.jar
https://github.com/0xmoot/s3sec
https://dev.to/aws-builders/access-s3-public-data-without-credentials-4f06
https://dev.to/aws-builders/access-s3-public-data-without-credentials-4f06
https://web.archive.org/web/20200806070926/https://scamalytics.com/ip/isp/m247
https://web.archive.org/web/20200806070926/https://scamalytics.com/ip/isp/m247
https://scamalytics.com/ip/isp/choopa
https://scamalytics.com/ip/isp/hostroyale
https://scamalytics.com/ip/isp/hostroyale
https://fortune.com/fortune500/2022/search
https://www.rapid7.com/blog/post/2021/05/21/rapid7s-2021-icer-takeaways-vulnerability-disclosure-programs-among-the-fortune-500/
https://www.rapid7.com/blog/post/2021/05/21/rapid7s-2021-icer-takeaways-vulnerability-disclosure-programs-among-the-fortune-500/
https://www.rapid7.com/blog/post/2021/05/21/rapid7s-2021-icer-takeaways-vulnerability-disclosure-programs-among-the-fortune-500/
https://aws.amazon.com/blogs/storage/enforcing-ownership-of-amazon-s3-objects-in-a-multi-account-environment/
https://aws.amazon.com/blogs/storage/enforcing-ownership-of-amazon-s3-objects-in-a-multi-account-environment/
https://medium.com/artificial-industry/how-to-download-files-that-others-put-in-your-aws-s3-bucket-2269e20ed041
https://medium.com/artificial-industry/how-to-download-files-that-others-put-in-your-aws-s3-bucket-2269e20ed041
https://medium.com/artificial-industry/how-to-download-files-that-others-put-in-your-aws-s3-bucket-2269e20ed041
https://fortune.com/franchise-list-page/visualize-the-fortune-500-2023/
https://fortune.com/franchise-list-page/visualize-the-fortune-500-2023/
https://docs.aws.amazon.com/detective/
https://docs.aws.amazon.com/detective/
https://aws.amazon.com/guardduty/features/
https://aws.amazon.com/guardduty/features/
https://bugcrowd.com/usaa
https://bugcrowd.com/usaa
https://www.netspi.com/
https://www.netspi.com/webinars/financial-services-cybersecurity-part-two/
https://www.netspi.com/webinars/financial-services-cybersecurity-part-two/
https://venturebeat.com/security/pentesting-firm-netspi-expands-into-attack-surface-management/amp/
https://venturebeat.com/security/pentesting-firm-netspi-expands-into-attack-surface-management/amp/
https://venturebeat.com/security/pentesting-firm-netspi-expands-into-attack-surface-management/amp/
https://www.31173.se/
https://threatpost.com/defending-unknown-assets-cyberattacks/175730/
https://threatpost.com/defending-unknown-assets-cyberattacks/175730/
https://www.brandshield.com/products/anti-phishing/
https://www.brandshield.com/products/anti-phishing/
https://censys.io
https://censys.io
https://www.cvshealth.com/vulnerability-disclosure-program
https://www.optum.com/business/vulnerability.html#:~:text=Bug%20Bounties,in%20accordance%20with%20this%20policy.
https://www.optum.com/business/vulnerability.html#:~:text=Bug%20Bounties,in%20accordance%20with%20this%20policy.
https://www.optum.com/business/vulnerability.html#:~:text=Bug%20Bounties,in%20accordance%20with%20this%20policy.

[75] “Target Vulnerability Disclosure Program,” https://security.target.
com/vdp/, [Accessed: 2023-05-23].

[76] “State Farm Insurance Vulnerability Disclosure Program,”
https://www.statefarm.com/customer-care/privacy-security/
security/vulnerability-disclosure-policy, [Accessed: 2023-05-23].

[77] “Pfizer Vulnerability Disclosure Program,” https://hackerone.com/
pfizer?type=team, [Accessed: 2023-05-23].

[78] “General Electric Vulnerability Disclosure Program,”
https://www.ge.com/gas-power/products/digital-and-controls/
cybersecurity/vulnerability-response, [Accessed: 2023-05-23].

[79] “Goldman Sachs Vulnerability Disclosure Program,” https://
firebounty.com/416-goldman-sachs-vdp/, [Accessed on: 2023-05-
23].

[80] “HCA Healthcare Vulnerability Disclosure Program,”
https://hcahealthcare.com/legal/index.dot#responsible-disclosure,
[Accessed: 2023-05-23].

[81] “Deere Vulnerability Disclosure Program,” https://www.deere.
com/en/digital-security/responsible-disclosure/, [Accessed: 2023-
05-23].

[82] “American Express Cybersecrurity,” https://www.
americanexpress.com/us/security-center/cybersecurity.html,
[Accessed: 2023-05-20].

[83] “TIAA Vulnerability Disclosure Program,” https://www.tiaa.org/
public/support/security-center, [Accessed: 2023-05-23].

[84] “Oracle Vulnerability Disclosure Program,” https://
www.oracle.com/corporate/security-practices/assurance/
vulnerability/disclosure.html, [Accessed on: 2023-05-23].

[85] “Northwestern Mutual VDP,” https://bugcrowd.com/
northwestern-vdp/, [Accessed: 2023-05-23].

[86] “Capital One Financial Vulnerability Disclosure Program,”
https://www.capitalone.com/digital/responsible-disclosure/, [Ac-
cessed on: 2023-05-23].

[87] “Nvidia Vulnerability Disclosure Program,” https://www.nvidia.
com/en-us/security/psirt-policies/, [Accessed: 2023-05-23].

[88] “PNC Financial Services Group Vulnerability Disclosure
Program,” https://www.pnc.com/en/security-privacy/responsible-
disclosure-program.html, [Accessed on: 2023-05-23].

[89] “Charles Schwab Vulnerability Disclosure Program,”
https://www.schwab.com/schwabsafe/report-a-vulnerability,
[Accessed on: 2023-05-23].

[90] “Otis Worldwide Vulnerability Disclosure Program,” https://www.
otis.com/en/uk/cyber-security, [Accessed on: 2023-05-23].

[91] “Discover Financial Services Vulnerability Disclosure Pro-
gram,” https://discover.responsibledisclosure.com/hc/en-us, [Ac-
cessed on: 2023-05-23].

[92] “Carvana Vulnerability Disclosure Program,” https://
www.carvana.com/responsible-disclosure, [Accessed: 2023-
05-23].

[93] “Tractor Supply Vulnerability Disclosure Program,”
https://www.tractorsupply.com/policies-information customer-
solutions responsible-disclosure-statement, [Accessed: 2023-05-
23].

[94] “Keurig Dr Pepper Vulnerability Disclosure Program,” https://
hackerone.com/keurigdrpepper?type=team, [Accessed: 2023-05-
23].

[95] “CSX Vulnerability Disclosure Program,” https://www.csx.com/
index.cfm/about-us/contact-us/csx-responsible-disclosure-
policy/, [Accessed: 2023-05-23].

[96] “Boston Scientific Vulnerability Disclosure Program,”
https://www.bostonscientific.com/en-US/customer-service/
product-security/responsible-disclosure.html, [Accessed on:
2023-05-23].

[97] “Booking Holdings Vulnerability Disclosure Program,”
https://raw.githubusercontent.com/arkadiyt/bounty-targets-data/
master/data/hackerone data.json, [Accessed on: 2023-05-23].

[98] “Intuit Vulnerability Disclosure Program,” https://security.intuit.
com/responsible-disclosure, [Accessed on: 2023-05-23].

[99] “Dover Vulnerability Disclosure Program,” https://www.dover.
com/privacy-policy, [Accessed on: 2023-05-23].

[100] “Analog Devices Vulnerability Disclosure Program,”
https://www.analog.com/en/support/technical-support/product-
security-response-center/vulnerability-disclosure-policy.html,
[Accessed on: 2023-05-23].

[101] “Regions Financial Vulnerability Disclosure Program,” https://
www.regions.com/about-regions/privacy-security/vulnerability-
disclosure-program#:∼:text=Regions%20Bank%20does%20not%
20operate,a%20code%20or%20configuration%20change.,
[Accessed on: 2023-05-23].

15

https://security.target.com/vdp/
https://security.target.com/vdp/
https://www.statefarm.com/customer-care/privacy-security/security/vulnerability-disclosure-policy
https://www.statefarm.com/customer-care/privacy-security/security/vulnerability-disclosure-policy
https://hackerone.com/pfizer?type=team
https://hackerone.com/pfizer?type=team
https://www.ge.com/gas-power/products/digital-and-controls/cybersecurity/vulnerability-response
https://www.ge.com/gas-power/products/digital-and-controls/cybersecurity/vulnerability-response
https://firebounty.com/416-goldman-sachs-vdp/
https://firebounty.com/416-goldman-sachs-vdp/
https://hcahealthcare.com/legal/index.dot#responsible-disclosure
https://www.deere.com/en/digital-security/responsible-disclosure/
https://www.deere.com/en/digital-security/responsible-disclosure/
https://www.americanexpress.com/us/security-center/cybersecurity.html
https://www.americanexpress.com/us/security-center/cybersecurity.html
https://www.tiaa.org/public/support/security-center
https://www.tiaa.org/public/support/security-center
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/disclosure.html
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/disclosure.html
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/disclosure.html
https://bugcrowd.com/northwestern-vdp/
https://bugcrowd.com/northwestern-vdp/
https://www.capitalone.com/digital/responsible-disclosure/
https://www.nvidia.com/en-us/security/psirt-policies/
https://www.nvidia.com/en-us/security/psirt-policies/
https://www.pnc.com/en/security-privacy/responsible-disclosure-program.html
https://www.pnc.com/en/security-privacy/responsible-disclosure-program.html
https://www.schwab.com/schwabsafe/report-a-vulnerability
https://www.otis.com/en/uk/cyber-security
https://www.otis.com/en/uk/cyber-security
https://discover.responsibledisclosure.com/hc/en-us
https://www.carvana.com/responsible-disclosure
https://www.carvana.com/responsible-disclosure
https://www.tractorsupply.com/policies-information_customer-solutions_responsible-disclosure-statement
https://www.tractorsupply.com/policies-information_customer-solutions_responsible-disclosure-statement
https://hackerone.com/keurigdrpepper?type=team
https://hackerone.com/keurigdrpepper?type=team
https://www.csx.com/index.cfm/about-us/contact-us/csx-responsible-disclosure-policy/
https://www.csx.com/index.cfm/about-us/contact-us/csx-responsible-disclosure-policy/
https://www.csx.com/index.cfm/about-us/contact-us/csx-responsible-disclosure-policy/
https://www.bostonscientific.com/en-US/customer-service/product-security/responsible-disclosure.html
https://www.bostonscientific.com/en-US/customer-service/product-security/responsible-disclosure.html
https://raw.githubusercontent.com/arkadiyt/bounty-targets-data/master/data/hackerone_data.json
https://raw.githubusercontent.com/arkadiyt/bounty-targets-data/master/data/hackerone_data.json
https://security.intuit.com/responsible-disclosure
https://security.intuit.com/responsible-disclosure
https://www.dover.com/privacy-policy
https://www.dover.com/privacy-policy
https://www.analog.com/en/support/technical-support/product-security-response-center/vulnerability-disclosure-policy.html
https://www.analog.com/en/support/technical-support/product-security-response-center/vulnerability-disclosure-policy.html
https://www.regions.com/about-regions/privacy-security/vulnerability-disclosure-program#:~:text=Regions%20Bank%20does%20not%20operate,a%20code%20or%20configuration%20change.
https://www.regions.com/about-regions/privacy-security/vulnerability-disclosure-program#:~:text=Regions%20Bank%20does%20not%20operate,a%20code%20or%20configuration%20change.
https://www.regions.com/about-regions/privacy-security/vulnerability-disclosure-program#:~:text=Regions%20Bank%20does%20not%20operate,a%20code%20or%20configuration%20change.
https://www.regions.com/about-regions/privacy-security/vulnerability-disclosure-program#:~:text=Regions%20Bank%20does%20not%20operate,a%20code%20or%20configuration%20change.

Leaking Service Leaking Method

Github repository Both links in README.md
Pastebin One link per paste
Twitter One link in a tweet
Lab website Both links in HTML
Google’s DNS Query link’s A Record
Spectrum’s DNS Query link’s A Record
AT&T’s DNS Query link’s A Record
Open DNS (Russian AS12714) Query link’s A Record
Open DNS (Chinese AS4134) Query link’s A Record
Gmail drafts Both links in email

TABLE 8: Leaking Bucket Names—We leaked alphanu-
meric names of length 16 on a variety of platforms
(including public media, DNS, and email) to determine
if scanning actors are harvesting candidate names from
passive sources.

A. Appendix

We provide additional details regarding our honey-
bucket deployment, analysis, and results from Section 3
and Section 4.

A.1. Bucket Scanning Ecosystem Experiment

In Section 3, we conducted an initial experiment to
broadly study the bucket scanning ecosystem. Table 8 de-
scribes the platforms on which we leak our random alpha-
numeric buckets. Table 9 provides a general breakdown of
the most popular operations performed by actors. Notably,
60% of all operations only checked for the bucket’s ex-
istence and 30% only listed the files in a bucket without
pursuing a further action (e.g., such as downloading a file).

Table 10 provides information about the 18 unique
files that were uploaded by other users. We give the exact

Operation Occurrence Cumulative
(n=12233) Percentage

Check bucket existence 59.23% (7246) 59.23%
List bucket directory 29.03% (3551) 88.26%
Get object metadata 2.49% (305) 90.75%
Check bucket existence + 1.51% (185) 92.26%

List bucket directory
Upload object 1.37% (167) 93.63%
Fail to download an object 0.89% (109) 94.52%
Check bucket existence + 0.83% (102) 95.35%

Get ACL
List bucket directory + 0.76% (93) 96.11%

Fail to download an object
Successfully download object 0.62% (76) 96.73%
Get ACL + 0.36% (44) 97.09%

Check bucket existence

TABLE 9: Most Common Bucket Interactions—The
majority of bucket-IP pairs only checked for the bucket’s
existence, but did not pursue further action. Note that
the respective bucket-IP pairs listed completed only those
operations.

name of the file; an abbreviated description of its contents;
whether the upload is a warning, malicious, or appears
to serve no purpose; and the number of buckets the
file appeared in. To protect researchers from any harm
these unsolicited uploads may cause, researchers should
download files in a protected and isolating computer en-
vironment to minimize the potential for harm introduced
by these unsolicited uploads. However, simply listing the
bucket contents can be done on a research machine.

Finally, Table 11 lists the exact names of all honey-
buckets. For brevity, we exclude the exact names of the 40
random-alphanumeric buckets that we leaked on various
platforms.

16

File Name Description Type #

upload.png Warning Warn 1
s3sec.txt Warning [50] Warn 1
poc.jsp reverse shell Malicious 5
snapshot/test request Malicious 5

/etc/password
snapshot/test2 request Malicious 5

/etc/password
test-file.svg re-direct to Malicious 1

(ngrok.io)
bucket.png No access - 1
test No access - 1
test.txt No access - 1
indexx.html No access - 1
hello.txt No access - 1
s3-test.txt No access - 1
xss.svg image Benign 1
xss1.svg image Benign 1
Read.txt pen-test [50] Benign 1
testfile-nullg0re.txt “this is a test” Benign 4
test-test-nullg0re.txt “this is a test” Benign 1
testfile “this is a test” Benign 1

TABLE 10: Uploaded Files With Content—Actors up-
loaded a total of 206 unique files, 188 (91.3%) of which
were empty. The table summarizes the 18 files uploaded
with content. Two files warned that our buckets were
misconfigured, four had malicious code, and six were in-
accessible due to the uploader not permitting read access.

Type Bucket name

Cryptocurrency bitcoin-confidential
bitcoin-secret
ethereum-wallet
ethereum-passwords

Sensitive Keywords passport10
bank10

Non-sensitive keywords pretty10
pictures10

DNSpop TGA lyncdiscover
612
origin-www
liboyulecheng

Slurp TGA advogado
applogie
blognovo
click1mail

Pastebin TGA screenshots-www
www-slack
www-download
www-security

Comparison Set confidentialfiles
(not in any TGA) dont-open

ignore-me
pretty-pictures

Organization teslaproduction, tesladownload
teslapublic, teslaprivate
teslasecurity, teslahidden
walmartproduction, walmartdownload
walmartpublic, walmartprivate
walmartsecurity, walmarthidden
tinderproduction, tinderdownload
tinderpublic, tinderprivate
tindersecurity, tinderhidden
ucsdproduction
ucsddownload
ucsdpublic
ucsdprivate
ucsdsecurity
ucsdhidden
stanfordproduction
stanforddownload
stanfordpublic
stanfordprivate
stanfordsecurity
stanfordhidden
fbiproduction, fbidownload
fbipublic, fbiprivate
fbisecurity, fbihidden
ciaproduction, ciadownload
ciapublic, ciaprivate
ciasecurity, ciahidden
nypdproduction, nypddownload
nypdpublic, nypdprivate
nypdsecurity, nypdhidden

TABLE 11: Bucket Names—The list of bucket names for
our first experiment from Section 3, in which we broadly
studied the bucket scanning ecosystem. For brevity, we
exclude the 40 alphanumeric leaked buckets.

17

Vulnerability Disclosure Program No Vulnerability Disclosure Program
Company Rank VDP Company Rank

CVS Health 4 [73] $ Raytheon Technologies 58
United Health Group 5 [74] Charter Communications 69
Target 32 [75] Tyson Foods 81
State Farm Insurance 42 [76] 3M 102
Pfizer 43 [77] Applied Materials 156
General Electric 48 [78] Lithia Motors 158
Goldman Sachs Group 57 [79] $ Hartford Financial Services 160
HCA Healthcare 62 [80] Lincoln National 187
Deere 84 [81] Wesco International 200
American Express 85 [82] L3 Harris Technologies 206
TIAA 90 [83] Automatic Data Processing 242
Oracle* 91 [84] Pioneer Natural Resources 248
USAA 96 [64] $ Pulte Group 267
Northwestern Mutual 97 [85] Oreilly Automotive 279
Capital One Financial 108 [86] Rocket Companies 282
Nvidia 134 [87] Vistra 315
PNC Financial Services 178 [88] Unum Group 317
Charles Schwab 188 [89] Altice USA 355
Otis Worldwide 254 [90] ODP 379
Discover Financial Services 281 [91] Delek US Holdings 346
Carvana 290 [92] Univar Solutions 369
Tractor Supply 294 [93] Burlington Stores 377
Keurig Dr Pepper 296 [94] Jefferies Financial Group 387
CSX 298 [95] Polaris 419
Boston Scientific 319 [96] MasTec 429
Booking Holdings 340 [97] $ GXO Logistics 430
Intuit* 366 [98] Westinghouse Air Brake Tech 439
Dover 433 [99] Hertz Global Holdings 462
Analog Devices 463 [100] Graphic Packaging Holding 466
Regions Financial 489 [101] Landstar System 491

TABLE 12: Company Names—The final list of companies used to name our buckets, with each name concatenated
with ‘download’ and ‘production’ (e.g., 3mproduction, 3mdownload). Names indicated with a * were originally Comcast
and Equinix (Section 4.1.1). Rank indicates the company’s rank on the Fortune 500 list. In the vulnerability disclosure
program column we cite the source explaining the company’s VDP and indicate with a $ if the company has a monetary
bug bounty.

A.2. Fortune 500 Companies

Table 12 lists the companies we name our buckets
after for the experiment in Section 4, including buckets
we took down and replaced. After nine days of deploy-
ment, Amazon sent a note to an email address associated
with our lab’s AWS account, warning us that two out of
120 honeybuckets were “publicly hosting highly sensitive
and confidential information.” We immediately configured
these buckets to be private and renamed them to incorpo-
rate the names of two new Fortune 500 companies that
fit our criteria from Section 4.1.1. We list these replaced
buckets with an asterik in Table 12. We also separate
buckets that do and do not have vulnerability disclosure
programs, as well as indicate whether a monetary bug
bounty is offered.

18

A.3. Informative Document

In Section 4, we conducted a follow-up experiment
with additional lures to understand to what extent will
actors engage with the content they download. We provide
the exact text of the Informative Document, which is
uploaded to all honeybuckets, below.

%%%
Financial Analytics Storage Quick Start
%%%
This private storage bucket is used as a
temporary mechanism to transfer data from the
on-premise storage server to the client.
Transaction data provided is only from the past
three months. For security reasons, each csv
file is zip encrypted. See Encryption Key
Access tounzip. To provide the client with more
historical data, an analysis consultant must
manually copy the data from the on-premise
storage server to the storage bucket.
%%%%%%%%%
Login instructions:
%%%%%%%%%
To access the storage server, add the
following entry to your ˜/.ssh/config file.

Host transaction_storage
Hostname 35.162.99.242
User bain_fin_analytics

Password Instructions:
Concatenate your unique 3-digit token
with the secure numeric key, like so:
<token>62514653

If you do not have your unique 3-digit
token, please ask your manager or email
fanalytics.bain.IT@gmail.com.
%%%%%%%%%%%%
Encryption Key Access:
%%%%%%%%%%%%
Once logged into the server, navigate to
`/etc/s3_zip_encrypt`, in which the
encryption key can be found.
%%%%%%%%%%%%%%%
Data transfer instructions:
%%%%%%%%%%%%%%%
Once logged into the server, navigate to
`/mnt/transactions/<client name>/raw/`,
in which the raw historical data will be found.
Transferring data to and from the storage server
can be done through the following command:

`aws s3 sync /path/to/dir/ s3://COMPANY_BUCKET'
%%%%%%%%%%%%%%%
Questions:
%%%%%%%%%%%%%%%
For all other questions, email
fanalytics.bain.IT@gmail.com.

19

	Introduction
	Background and Related Works
	Pilot study: How Buckets Are Targeted
	Methodology
	Bucket Names
	Bucket Permissions
	Bucket Contents

	Pilot Study Results
	How Buckets Were Found
	Bucket Interactions and Abuse
	Bucket Time-to-Abuse
	Identifying Bucket-Scanning Actors

	Summary

	Exploitation of Company Buckets
	Methodology for Bucket Configuration
	Bucket Names
	Bucket Contents
	Bucket Permissions

	Results
	Understanding Company Targets
	AWS Triggered Reports
	Identifying and Tracking Unique Actors
	Abusive access

	Summary

	Ethics
	Recommendations
	Conclusion
	References
	 A: Appendix
	Bucket Scanning Ecosystem Experiment
	Fortune 500 Companies
	Informative Document

