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Abstract: Coastal eutrophication and hypoxia are growing challenges globally, yet their impacts
can be difficult to evaluate because of limited biomonitoring that typically postdates the onset of
these stressors. We address this limitation by investigating how the taxonomic and functional
diversity of marine bivalve communities vary with primary productivity, dissolved oxygen,
temperature, and seafloor sediment properties across the northern Gulf of Mexico, a region that
includes one of the world’s largest dead zones. We hypothesized that taxonomic and functional
richness would decline in eutrophic and hypoxic coastal environments. Live bivalve mollusks
were sampled at 15 stations, spanning more than 600 km of continental shelf habitat. Individuals
were identified to species and characterized based on feeding, mobility, fixation, life position
relative to the sediment-water interface, and body size. Alpha and beta species and functional
diversity were computed using Hill numbers and linear models used to assess their covariation
with regional environmental conditions. Species and functional diversity were highest in less
eutrophic environments characterized by normoxic conditions, and lowest in more eutrophic
environments where oxygen was more limited. Community-level differences were underlain by
functional shifts, with abundant shallow-infaunal, deposit and mixed feeders in more eutrophic
settings, in contrast with less eutrophic settings where suspension feeders were more abundant.

Median body size increased with eutrophication, possibly as a result of hypoxia-induced declines
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in predator and competitor populations. These results suggest that intensifying nutrient loading
and deoxygenation in the coastal zone will cause declines in multiple dimensions of benthic

biodiversity with implications for ecosystem function.

Keywords: Functional diversity; Species richness; Coastal eutrophication; Hypoxia; Space-for-

time; Gulf of Mexico; Benthic; Bivalve mollusk; Continental Shelf
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1. INTRODUCTION

Ocean deoxygenation is a global challenge. Since the 1960s dissolved oxygen
concentrations have decreased by approximately 2% on average, and up to 30% regionally, due
to a combination of anthropogenic nutrient loading and climate change (Schmidtko et al. 2017,
Deutsch et al. 2024). Nutrient-rich runoff from agricultural and urban development enhances
coastal primary productivity, and the aerobic decomposition of phytoplankton and algal blooms
depletes dissolved oxygen leading to the formation of coastal dead zones (Rabalais et al. 2007,
Levin et al. 2009, Breitburg et al. 2018, Deutsch et al. 2024). Warmer waters also hold less
oxygen and thermal stratification can reduce mixing, thereby isolating oxygen-limited bottom
waters (Breitburg et al. 2018, Deutsch et al. 2024). Warming may also result in greater runoff
due to more frequent and intense precipitation events, which is projected to increase nutrient
loading in some coastal regions (Sinha et al. 2017, Laurent et al. 2018). Understanding the
impacts of current and future changes in oxygen availability on coastal fauna requires integrative
approaches that consider the combined effects of interacting environmental stressors on different
levels of biological organization.

Reductions in oxygen have been shown experimentally to inhibit the growth and
abundance of marine benthos and to increase their mortality rates (Villnids et al. 2012, Sampaio
et al. 2021). Experimental approaches allow one to isolate the unique effects of oxygen versus
temperature or other environmental factors; however, scaling observed responses up to
ecosystems in which multiple stressors act in tandem is challenging (Breitburg et al. 2019,
Woods et al. 2022). Observational data can be used to evaluate experimental predictions at
broader scales (e.g., Karlson et al. 2002, Kendzierska & Janas 2024), and have documented mass
mortality of marine fauna in response to hypoxia, often in combination with warming events
which accelerate metabolic rates, increase biological oxygen demand, and reduce aerobic scope
(Breitburg et al. 2018, Deutsch et al. 2024). The extent of biological monitoring in most marine
ecosystems is exceptionally limited though and, where available, tends to postdate the onset of
many causes of anthropogenic environmental change, including ocean deoxygenation (Finnegan
et al. 2024). Space-for-time approaches can help address the dearth of historical observational
data by focusing on biotic response to interacting environmental drivers along present-day
geographic gradients. Previous studies have used this approach to investigate changes in species

richness with oxygen concentration along depth transects and across oxygen minimum zones
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(Rhoads & Morse 1971, Levin et al. 2009, Sperling et al. 2016, Gallo et al. 2020), but the
corresponding impacts of these changes on ecosystem function are understudied and/or have
tended to focused on select species (though see Fajardo et al. 2018 and Bon et al. 2021, among
others). Taxonomic and functional responses to environmental stress can be highly divergent
(Edie et al. 2018, Pimiento et al. 2020, Moyes et al. 2023), depending on species functional
redundancy, which limits any attempt to use taxonomic data to predict ecosystem functional
responses to ocean deoxygenation or other types of environmental change.

Pronounced gradients in dissolved oxygen, primary productivity, and seafloor properties
exist today across the northern Gulf of Mexico (Mendelssohn et al. 2017). Watershed size varies
markedly across the region, and greatly affects environmental conditions on the adjacent
continental shelf (Van der Zwaan 2000, Krause et al. 2023). Primary productivity is highest
offshore of Louisiana, which is influenced by the Mississippi River watershed which drains
3.3x10% km? (roughly 40%) of the contiguous United States (Mendelssohn et al. 2017, Krause et
al. 2023). Decomposition of phytoplankton and algal blooms in coastal Louisiana result in the
annual development of one of the most extensive dead zones globally (Rabalais et al. 2007,
Levin et al. 2009, Osterman et al. 2009). The Mobile Bay and Apalachicola watersheds are 3.5%
and 1.6% the size of the Mississippi watershed, and consequently primary productivity is more
constrained offshore of Alabama and north Florida (Harnik et al. 2017, Krause et al. 2023,
Calderaro et al. 2024). Hypoxic conditions are also more spatiotemporally variable in Alabama
than Louisiana (Brunner et al. 2006, Harnik et al. 2017, Dzwonkowski et al. 2018, Calderaro et
al. 2024), and have not been observed on the north Florida continental shelf (Rabalais 1992,
Santema et al. 2015). Seafloor properties also vary geographically, from abundant fine-grained
sediments proximal to the Mississippi delta to coarser grains offshore of Alabama and north
Florida where sedimentation rates are slower (Davis 2017). In contrast, regional differences in
mean annual sea surface temperature are modest, and less than the observed seasonal variation
(Mendelssohn et al. 2017, Calderaro et al. 2024).

Using the northern Gulf of Mexico as a model system, we investigate how the taxonomic
and functional alpha and beta diversity of marine bivalve communities vary along these present-
day environmental gradients on the continental shelf. We hypothesize that bivalve taxonomic
(i.e., species) diversity will be lower in more productive and more oxygen-limited environments

consistent with previous studies of other macrobenthic fauna (Rhoads & Morse 1971, Levin et al.
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2009, Sperling et al. 2016, Gallo et al. 2020). We also expect corresponding declines in bivalve
functional diversity in areas of lower oxygen concentration, with the magnitude of decline
mediated by the extent of functional redundancy among bivalve species. We expect greater
reductions in both species and functional diversity in areas where warmer ocean temperatures
coincide with eutrophic conditions (Deutsch et al. 2024). Such changes in species and functional
composition along environmental gradients should also result in increasing beta diversity with
increasing geographic distance between communities. We investigate these hypotheses using
bivalve mollusks, because of (i) their role in ecosystem functioning in aquatic, soft-sediment
habitats (Norkko et al. 2013, Vaughn & Hoellein 2018, Lockwood & Mann 2019), (i1) their
species richness and abundance on the continental shelf relative to other groups of macrobenthic
invertebrates (e.g., Kokesh et al. 2022), and (iii) because their compositional variation along
human and non-human environmental gradients is often congruent with other marine

macrobenthos (Tyler & Kowalewski 2017, Kokesh et al. 2022).

2. MATERIALS & METHODS

2.1. Study area and datasets

We sampled live bivalve mollusks at 15 stations that span more than 600 km of
continental shelf habitat in May and June 2018 (Fig. 1a, Table 1). All samples were collected in
U.S. Federal Waters in the northern Gulf of Mexico in accord with federal policies for collecting
marine invertebrates that are not listed as at risk. Stations were distributed along the -20 m
isobath on the inner shelf in order to investigate regional variation in environmental conditions
while controlling for water depth; shallower, more inshore locations can be strongly influenced
by point source nutrient enrichment and salinity variation which were not the focus of the current
study. Five stations were sampled in each of three regions (Louisiana, LA; Alabama, AL;
Florida, FL), and stations within each region were spaced 10 km apart. Benthic samples were
collected using a Grey O’Hara-type box corer (LA and AL) and Van Veen sediment grab (FL);
the size (area) of each of these sampling devices was 0.1 m?. Multiple samples were collected at
each station and processed using a 2 mm sieve, with the goal of collecting 100 or more live
individuals per station (median = 105 individuals/station) (Table 1). We used a 2 mm sieve

because previous work has shown that molluscan biodiversity data (species composition and



131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

relative abundance) generated using finer mesh sizes (< 2 mm) consist primarily of recent
recruits, many of whom die before reaching adult size (> 2 mm) (Kidwell 2001). As a result, fine
mesh (< 2 mm) molluscan datasets are particularly sensitive to census timing. Sample size (i.e.,
number of living individuals) varied among stations and regions (Table 1), and consequently we
used coverage-based diversity metrics to control for varying sampling effort in our subsequent
analyses (see 2.2. Data analysis). We focused on diversity comparisons at a consistent sampling
coverage estimated using numerical abundance data (i.e., the number of live individuals per site),
rather than a fixed number of sediment grabs per site, because the current study is part of a
broader-scale effort focused on reconstructing molluscan biodiversity change over time in the
northern gulf using a combination of live censuses and historical data generated from molluscan
skeletal remains (shells). The density of historical shells sampled at a given station is affected not
only by the density of living individuals, but also by sedimentation rates among other factors,
and consequently paleoecologists generally analyze relative versus absolute abundance and have
shied away from comparisons of population density over time. The low densities of living
bivalves in these settings (median = 3 live individuals per benthic sample; Fig. S1), in
conjunction with the costs involved in offshore fieldwork, limited the number of stations (15 in
total) that could be sampled. Live individuals were separated offshore, frozen for transport, and
air-dried prior to data collection.

Individuals were identified to species using regional monographs (Mikkelsen & Bieler
2008, Tunnell Jr. et al. 2010) and taxonomically standardized following the World Register of
Marine Species (WoRMS Editorial Board 2023). Individuals were categorized functionally
based on their body size, feeding, mobility, fixation, and life position relative to the seafloor (i.e.,
tiering) (Fig. 1b). The body size of each individual was calculated using shell area, as
approximated by an ellipse (Calderaro et al. 2024); shell length (the anterior-posterior dimension
of the shell parallel to the hinge) and height (the dorsal-ventral dimension perpendicular to the
length measurement) were measured using a Leica M 125 stereomicroscope. Other functional
categories were determined based on a literature review (Mikkelsen & Bieler 2008, Huber 2010,
2015, Rocha & Matthews-Cascon 2015, Audino & Marian 2018, Taylor & Glover 2021). The
degree of phylogenetic conservatism of these functional traits varies across the Bivalvia, and

most of these assignments were made at the genus or family level; a dearth of inter- and
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intraspecific studies makes it challenging to assess variation in bivalve functional traits at finer
taxonomic scales.

Environmental measurements for each station were compiled using a combination of
openly-available gridded climate data analyzed in a previous study (Calderaro et al. 2024), and
new sediment measurements that we generated from our field samples (Table 1). We focused on
temporally-averaged climate data rather than measurements of environmental variables made at
the time of each benthic census (e.g., via CTD casts) in order to summarize the environmental
conditions that bivalves encounter over their multi-year lifespans. Gridded climate data were
downloaded from the Ocean Productivity Project (Oregon State University 2022) and Gulf of
Mexico Regional Climatology (ver. 2) derived from the World Ocean Database (Garcia et al.
2018, Seidov et al. 2020), and used to calculate net primary production (NPP, in mgC/m?/day),
sea surface temperature (SST, in °C), and dissolved oxygen (DO, in umol/kg). Mean NPP values
were calculated by averaging data for each month from 2003 through 2018 and then calculating
the mean across months. NPP values were generated from MODIS data that are available from
2002 onwards; we began with the first full year of NPP data in 2003. The mean and standard
deviation of SST and mean DO were calculated for bottom waters (15 m depth) for summer
months (July, August, and September) from 1955 through 2017. DO data are only available as a
single climatology that spans 1955-2017, and we chose a similar temporal range for the SST data
that are available from the same data source. We analyzed northern hemisphere summer climate
using July-August-September climatology in order to minimize the geographic distance between
gridded environmental data and our sampling stations and because of our interest in investigating
the combined impacts of SST, DO, and NPP on bivalve biodiversity; low DO is generally
associated with higher NPP and warmer SST, conditions generally encountered in particular
shelf environments in the late summer. Each station was matched to the nearest grid point with
climate measurements, based on the shortest geographic distance using the World Geodetic
System of 1984 . The mean distance between our stations and grid points with NPP, DO, and
SST data was NPP = 5.5 km, DO = 77.9 km, and SST = 6.74 km, respectively. Spatial resolution
varies among these three environmental measures, from 0.1° for SST, 0.16° for NPP, to 1° for
DO. Due to the lower spatial resolution of the DO data in the World Ocean Database, a total of
four unique DO values were retrieved for the 15 studied stations. Additional details regarding the

compilation of gridded climate data at these 15 sampling stations are available in Calderaro et al.
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(2024). Seafloor sediment properties were characterized by measuring the weight percent of silt
and clay (i.e., particles < 63 microns) in bulk sediment that we collected at each station (mean
sample size was 350 g dry weight). Sediment samples contained a mixture of carbonate,
siliciclastic, and organic grains. Sediment samples were stored at room temperature prior to grain
size analysis. Geochemical data (e.g., total organic carbon, total nitrogen) were not collected for

this study.
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Fig. 1. (a) Map of sampling stations in the northern Gulf of Mexico. LA, Louisiana, MS,
Mississippi, AL, Alabama, and FL, Florida. (b) Illustration using select bivalve species
from the northern gulf to show that taxonomic and functional richness measure unique
dimensions of benthic biodiversity. Species are denoted by capital letters: A, Nuculana
acuta; B, Nucula proxima; C, Radiolucina amianta; D, Abra lioica; E, Noetia ponderosa;
F, Cardiomya costellata; G, Lirophora obliterata; H, Caryocorbula swiftiana; 1,
Argopecten gibbus. Species vary in functional similarity (e.g., feeding mode, denoted by
color). H and I, for example, both suspension feed, yet are infaunal and epifaunal
respectively, whereas D and G are both infaunal, but D deposit feeds and G suspension
feeds. (c¢) Principal Components Analysis of environmental variation across all 15
sampling stations; DO = dissolved oxygen concentration; NPP = net primary
productivity; Silt-Clay = weight percent silt and clay; SST Mean and SST SD = mean
and standard deviation of summer sea surface temperature. Panel 15 was drawn by Lena

Harnik.



Region Station | Latitude | Longitude | Depth | Collection | Sample | Number Taxonomic diversity Functional diversity DO NPP | Silt- | SST Mean | SST_SD
(m) Date Size of Clay
(D/M/Y) (N) | benthic
samples
=0 | ¢g=I q=2 =0 | g=1 | ¢=
Louisiana | LA21 | 2876715 | -90.752 | 203 | 20/05/2018 | 78 20 786 | 426 | 3.19 | 242 | 19 | 176 | 103.7 | 3128 | 0.59 | 28.18 147
LA22 | 28.79128 | -90.6526 | 20.6 | 22/05/2018 | 105 30 379 | 321 | 284 | 19 | 1.69 | 157 | 103.7 | 3043 | 0.55 | 2781 1.97
LA23 | 28.83182 | -90.5609 | 20.4 | 23/05/2018 | 101 25 333 | 284 | 252 | 2.08 | 1.91 | 1.78 | 103.7 | 3043 | 06 28.46 101
LA24 | 28.87188 | -90.4687 | 20.3 | 18/05/2018 | 99 40 236 | 1.84 | 159 | 1.66 | 1.44 | 133 | 103.7 | 3864 | 0.84 | 2845 1.03
LA25 19/05/2018, | 58 28 294 169 | 1.57
28.8926 | -90.3686 | 20.9 | 24/05/2018 247 | 216 | 188 103.77) 3864 | g9 | 2837 0.74
Alabama | AL21 | 30.06492 | -88.5216 | 205 | 31/05/2018 | 125 25 | 1066 | 7.68 | 584 | 3. | 27 | 246 | 1987 | 3071 | 024 | 2631 271
AL22 | 30.06112 | 88418 | 20 | 31/052018 | 37 40 | 1526 | 843 | 529 | 294 | 228 | 1.94 | 1987 | 2910 | 0.02 | 27.14 137
AL23 | 30.07827 | -883165 | 205 | 01/06/2018 | 124 40 [ 1479 | 853 | 564 | 301 | 216 | 1.8 | 1987 | 2946 | 002 | 27.16 139
AL24 | 30.08993 | -882138 | 19.83 | 30/052018 | 121 50 | 1177 | 503 | 2.83 | 2.65 | 1.75 | 1.47 | 198.7 | 2946 | 0.03 | 2735 171
AL25 | 30.0985 | -88.1101 | 207 | 01/06/2018 | 162 20 [ 1338 | 7.5 | 499 | 327 | 2 | 1.69 | 198.7 | 3028 | 0.06 | 2736 1.72
Florida | FL21 | 29.56453 | -84.5318 | 205 | 21/06/2018 | 109 20 [ 2197 | 126 | 781 | 421 | 3.18 | 2.68 | 202.7 | 1654 | 0 28.66 0.78
FL22 | 29.61222 | -84.4438 | 19 | 25/06/2018 | 85 30 194 | 1159 | 8.04 | 513 [ 335|285 1959 | 1485 | 0 29.40 112
FL23 | 29.62953 | -84.3423 | 20.5 | 22/06/2018 | 118 25 | 2395 | 1441 | 10.11 | 532 [ 352 | 2.93 | 1959 | 1485 | 0.01 29.29 123
FL24 24/06/2018 | 102 20 | 16.02 328 | 2.69
29.61475 | -84.2404 | 182 | 25/06/2018 891 | 6.06 | 5.16 19597 1428 | g3 | 2872 1.48
FL25 | 29.57232 | 841495 | 19.5 | 24/06/2018 | 115 15 | 2222 14 | 961 | 576 | 387 | 3.19 | 1959 | 1486 | 0.01 | 29.09 1.59
214
215 Table 1. Information regarding the location, water depth, collection date, sample size (# of live individuals), number of benthic
216 samples, taxonomic and functional diversity, and environmental conditions at 15 stations on the continental shelf that are
217 distributed across the northern Gulf of Mexico from Louisiana to north Florida. Diversity order q = 0 is the effective number of
218 rare species or functional groups; q = 1 is the effective number of common species or functional groups; q = 2 is the effective
219 number of highly abundant species or functional groups. DO, dissolved oxygen concentration (umol/kg); NPP, net primary
220 productivity (mg C/m?*/day); Silt-Clay, weight percent silt-clay; SST, sea-surface temperature (°C), mean and standard
221 deviation (SD). Note, the data at three stations (LA24, LA25, and AL22) were too sparse to accurately estimate sample
222 coverage (see 3. Results) and these stations were excluded from subsequent diversity analyses.
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2.2. Data analysis

Ecologists have long recognized that observed diversity measurements depend on
sampling effort and sample completeness and thus cannot be directly compared across stations
and regions without standardization. Proper standardization can be achieved by comparing
samples at the same level of sample coverage, where sample coverage is the proportion of
individuals in a community that belong to the species represented in a given sample. Sample
coverage can be accurately estimated from the observed data, and provides an objective measure
of sample completeness for standardizing diversity comparisons. We used Hill numbers to
compute alpha and beta diversity from our station-level taxonomic and functional data at a
standardized sample coverage of 90% (Hill 1973, Ellison 2010, Chao et al. 2014, Chao et al.
2019, Chao et al. 2020). Hill numbers describe the effective number of species, and functional
groups, with diversity order (q) controlling the sensitivity of these measures to species
abundance; q = 0 measures the effective number of rare species (i.e., species richness), whereas
increasing g-values weight abundance more heavily, with ¢ = 1 and q = 2 being the effective
number of common (i.e., Shannon diversity) and highly abundant (i.e., Simpson diversity)
species, respectively. Hill numbers are increasingly used in marine ecology to investigate
geographic variation in diversity and their associations with environmental factors (e.g.,
Kusumoto et al. 2020, Hong et al. 2022, Mamo et al. 2023). Species alpha diversity at varying q-
values was calculated using the INEXT.3D standardization (Chao et al. 2021). Functional alpha
diversity at varying g-values was computed from species-pairwise Gower distances based on one
continuous (shell area) and four categorical traits (feeding, mobility, fixation, and life position
relative to the substrate) (Fig. 1b) (Chao et al. 2019). Standardized functional diversity measures
were then generated from the resulting pairwise distance matrix using iNEXT.3D (Chao et al.
2021).

We investigated the association between taxonomic and functional diversity using linear
models. These diversity measures are not independent because functional diversity was
calculated using both species (e.g., feeding mode) and individual-level (e.g., body size) traits,
which may bias estimated slope coefficients upward. We determined if the observed association
between taxonomic and functional diversity was greater than expected using a bootstrap
procedure in which we resampled, with replacement, taxonomic and functional diversities from

the 12 stations with robust diversity estimates (see 3. Results). To address the potential
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dependence of functional diversity on taxonomic diversity, we required that each taxonomic
diversity value was greater than or equal to the resampled functional diversity value. We then fit
a linear model to the bootstrap sample and repeated this process 10,000 times in order to
generate a null distribution of slope coefficients that were used to determine whether the
observed coefficient value was significantly greater (one-tailed test).

Given the strong covariation among environmental variables in the northern gulf (Fig.
S2), a principal component analysis (PCA) was conducted to generate composite environmental
metrics that describe regional environmental conditions (Fig. 1c); all environmental variables
were mean centered and scaled to the standard deviation prior to analysis. Linear regression
models were used to assess the association between these composite environmental metrics (PC1
and PC2) and taxonomic and functional alpha diversity. Non-metric multidimensional scaling
(nMDS) of the incidence and abundance-based distance matrices were generated in INEXT.3D
using Segrensen and Morisita-Horn dissimilarities, respectively, and these were used to visualize
similarities among stations in taxonomic and functional composition. To investigate the role of
geographic distance in faunal composition, pairwise taxonomic and functional beta diversities
were calculated following Chao et al. (2023) and plotted against the geographic distances
between stations. Differences in body size among regions were assessed using Kolmogorov-
Smirnov and Mann-Whitney U (Wilcoxon Rank Sum) tests. All analyses were conducted in R, R
version 4.3.3 (R Core Team 2024); all data and R code used in this study will be archived in the

Dryad Digital Repository prior to publication.

3. RESULTS

Taxonomic and functional diversities of bivalve mollusks varied markedly across the
northern Gulf of Mexico (Fig. 2). Diversity curves based on sample size (i.e., # of individuals)
indicate that all samples are incomplete due to undetected rare species (Fig. S3), and thus the
taxonomic and functional diversities of stations and regions were compared at a standardized
sampling coverage of 90% (Fig. S4). Diversities were highest offshore of Florida, intermediate
offshore of Alabama, and lowest offshore of Louisiana (Fig. 2). Similar geographic patterns were
observed for rare (q = 0), common (q = 1), and highly abundant (q = 2) species and functional
groups (Fig. 2). In any given region, taxonomic diversity always exceeded functional diversity

when compared at the same diversity order (e.g., q = 0), reflecting the degree of functional
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redundancy among species. Station-level differences in species and functional alpha diversity in
Florida and Alabama were not geographically structured, however species diversity in Louisiana
tended to increase with distance from the Mississippi Delta (Table 1). Sparse data at LA24,
LA25, and AL22 limit statistical inference of diversity at these stations (Table 1). Samples from
LA24 and LA25 contained only four live-collected species and insufficient frequencies of
singletons and doubletons to accurately estimate sample coverage; at LA24, no singleton or
doubleton species were sampled, and at LA25, there were no singletons and only one doubleton
species. These two stations are located at the core of the dead zone adjacent to the Mississippi
Delta; LLA24 is within 0.5 km of C6B, a station where mid-summer hypoxia has been
documented most years between 1985 and 2014 (see C6 in Fig. 1 of Rabalais & Baustian 2020).
Consequently, dissolved oxygen concentrations likely limit species diversity estimates for this
area of the Louisiana continental shelf. The number of live individuals sampled at AL22 was too
limited (N = 37) to reliably estimate sample coverage. As a result, these three sites (LA24, LA25,
and AL22) were excluded from subsequent diversity analyses. Excluding LA24 and LA25 from
subsequent analyses is statistically conservative; the lack of singletons in spite of reasonable
samples sizes, in conjunction with documented hypoxia in this area of the Louisiana shelf,
suggest that the very low diversities at these two stations are biologically meaningful, even
though coverage-based standardization was not possible.

Taxonomic and functional alpha diversity were strongly positively correlated (Fig. 2);
Pearson product moment correlation values were 0.90 and 0.91, respectively, for rare and highly
abundant species and functional groups at the 12 sampling stations with robust diversity
estimates (Fig. S2). Taxonomic and functional diversities covaried with regional environmental
gradients (Table 2, Fig. S5). Linear models explained > 51% of the variation in standardized
taxonomic and functional diversities (median adjusted R? value = 0.72), and were more effective
in describing the diversities of rare (q = 0) than common (q = 1) or highly abundant (q =2)
species and functional groups (Table 2, Fig. S5). PC1 scores primarily reflect differences among
stations in dissolved oxygen concentration, net primary productivity, and sediment grain size,
whereas PC2 scores primarily reflect differences among stations in the mean and standard
deviation of sea surface temperature (Fig. 1c); cumulatively, these two components explain
89.3% of the environmental variation among stations. Species and functional diversities were

highest in normoxic, less productive settings, characterized by coarser seafloor sediments (i.e.,
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stations offshore of Florida) (Table 2, Fig. S5). Species and functional diversities declined with
increasing primary productivity, decreasing dissolved oxygen concentration, and decreasing
grain size (Table 2), and were lowest at stations offshore of Louisiana (Fig. 1c). In contrast,
differences in sea surface temperature (PC2) explained relatively little additional variation in
taxonomic and functional diversity across the northern gulf (Fig. 1c, Table 2). The diversities of
rare functional groups tended to be higher in regions with warmer, less variable, sea surface
temperatures, however, this was due to regional differences between Florida and Alabama, with
stations offshore of Louisiana deviating from the trend (Table 2, Figs 1c & S5).

Differences in taxonomic and functional alpha diversity were associated with a change in
bivalve community composition (Table S1). A non-metric multidimensional scaling of
taxonomic and functional dissimilarity revealed distinct clusters of stations, with taxonomic
differences between regions somewhat more pronounced than functional differences (Figs 3 &
S6). Consistent regional differences in taxonomic and functional composition were observed
across different diversity orders; q = 0 (Fig 3) and q = 2 (Fig S6) are presented to illustrate the
compositional dissimilarities of rare and highly-abundant species, respectively. Taxonomic and
functional dissimilarities (i.e., beta diversity) both increased with increasing geographic distance
between stations (Fig. 4). Taxonomic and functional dissimilarities between sampling stations
tended to be greater offshore of Florida than offshore of Alabama or Louisiana, however there
was considerable overlap among regions in beta diversity (Fig. S7).

Regional differences in bivalve alpha and beta diversity across the northern gulf were
underlain by shifts in functional traits (Figs 5, 6, & S8). Bivalve communities in more eutrophic
environments offshore of Louisiana and Alabama contained a greater abundance of obligate
deposit feeders and mixed feeders (Fig. 5); mixed feeders are individuals which may be capable
of deposit or detritus feeding as well as suspension feeding. In contrast, less eutrophic
environments located offshore of Florida contained many more suspension feeders, and a greater
diversity of feeding types overall (Fig. 5). Other categorical functional traits (i.e., mobility,
position relative to the substrate, fixation) exhibited less variation geographically (Fig. 5).
Mobile bivalves comprised the bulk of individuals overall, with a slight increase in the relative
abundance of immobile and swimming individuals offshore of Florida. Most bivalves in the
northern gulf were siphonate and infaunal, however asiphonate infauna increased in relative

abundance from Louisiana to Florida, though remained uncommon. Stations offshore of Florida
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347  also contained rare epifaunal and nestling individuals. With respect to fixation, most bivalves
348 lived unattached, though rare cementing individuals were sampled offshore of Florida and
349  Dbyssate individuals were somewhat less common offshore of Alabama than offshore of Louisiana

350 and Florida.
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Fig. 2. Geographic trends in the taxonomic and functional alpha diversity of marine
bivalves at 15 stations across the northern Gulf of Mexico, for rare (q = 0), common (q =
1), and highly abundant (q = 2) species and functional groups at a standardized sampling
coverage of 90%. Bivalve taxonomic and functional alpha diversity are strongly
positively correlated in the northern gulf. Solid lines are linear regression models for
diversity orders q =0, q =1, and q = 2 at 12 stations with robust diversity estimates (p <
0.01 for each linear model determined using a bootstrap procedure); stations that were
excluded from these models (see 3. Results) are indicated with an “X.” LA, Louisiana,

AL, Alabama, FL, Florida.
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Model with PC1 and Model with only PC1
PC2 as covariates as covariate

p<0.05 adj. R? p<0.05 adj. R?
TD q0 PC1 0.87 PC1 0.84
TD ql PC1 0.78 PC1 0.75
TD q2 PC1 0.68 PC1 0.66
FD q0 PC1 + PC2 0.84 PC1 0.76
FD ql PC1 0.68 PC1 0.62
FD q2 PC1 0.56 PCl1 0.51

Table 2. Linear models relating taxonomic (TD) and functional diversity (FD) to regional
environmental conditions at 12 stations across the northern Gulf of Mexico. TD and FD
were modeled using estimates for the diversity of rare (q = 0), common (q = 1), and
highly abundant (q = 2) species and functional groups. Regional environmental
conditions were modeled using PCA axis 1 and 2 scores based on ordination of all 15
stations as composite environmental variables; dissolved oxygen concentration, net
primary productivity, and percent silt-clay contribute to variation along PC1, and sea
surface temperature (mean and standard deviation) contribute to variation along PC2.
PC1 scores were significant predictors of TD and FD at all g-values, whereas PC2 scores
were only a significant additional predictor when modeling the diversity of rare
functional groups. Overall, models that included PC2 explained relatively little additional

variation over those in which PC1 was the only predictor.
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Individual body size also varied considerably among regions (Fig. 6). The median size of
individuals offshore of Louisiana was significantly larger than in either coastal Alabama or
Florida; p < 0.05 for all pairwise regional comparisons using Mann-Whitney U tests. Regional
differences in body size reflect variation in size both within and among species (Fig. S9).
Populations of relatively abundant species (Table S1) that were sampled in all three regions (e.g.,
Ameritella versicolor, Foveamysia soror, Nuculana acuta) tend to contain larger individuals
offshore of Louisiana than offshore of either Alabama or Florida, though with considerable
regional overlap (Fig. S9). Size differences among species sampled in only a single region also
contribute to regional differences in median size (Fig. S9). For example, relatively larger bodied
species such as Lunarca ovalis and Agriopoma texasianum in Louisiana, and Noetia ponderosa
and Eurytellina nitens in Alabama, versus smaller bodied species like Corbula dietziana and
Semelina nuculoides in Florida. The shapes of regional size frequency distributions also differed
significantly; p < 0.05 for all pairwise regional comparisons using Kolmogorov-Smirnov tests.
Size frequency distributions in Alabama and Florida are leptokurtic (i.e., more concentrated
around the median), whereas the size frequency distribution in coastal Louisiana is platykurtic;
kurtosis values of 10.7, 10.6, and -0.1 respectively for the three regions. Although individuals in
Alabama and Florida were smaller on average than in Louisiana, a greater range of body sizes,
and specifically larger body sizes, was observed in these two regions (Figs 6, S8, & S9). Larger-
sized individuals in the tails of the size frequency distributions in Alabama and Florida are due to
regional differences in species composition; e.g., large individuals of Arca zebra and Noetia
ponderosa that were only sampled offshore of Florida and Alabama, respectively. To evaluate
whether observed geographic differences in body size were associated with changes in
population density (i.e., an abundance of small individuals versus few large individuals), we
compared the median number of live individuals per benthic sample in each region using Mann-
Whitney U tests (Fig. S1), and found no significant differences; p > 0.05 for all pairwise regional

comparisons.

4. DISCUSSION
Bivalve species alpha diversity in the northern Gulf of Mexico declines with increasing
primary productivity and decreasing dissolved oxygen. We observed broadly similar

biogeographic patterns for rare (q = 0), common (q = 1), and highly abundant (q = 2) species,
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with lowest diversities proximal to the Mississippi River delta in coastal Louisiana, a region that
includes one of the world’s largest dead zones (Fig 2) (Rabalais et al. 2007, Levin et al. 2009).
Coastal environments that are characterized by higher dissolved oxygen concentrations (i.e.,
Alabama and Florida) supported a greater diversity of species, and more rare species in
particular, than settings in which hypoxia occurs annually (i.e., Louisiana) (Fig. 2). Our results
are congruent with previous studies of bathymetric diversity gradients and oxygen minimum
zones in other regions of the global ocean (Levin et al. 2009, Sperling et al. 2016, Fajardo et al.
2018, Gallo et al. 2020, Bon et al. 2021), which have documented reduced richness of benthic
and demersal species under lower oxygen conditions.

Strong covariation between primary productivity, dissolved oxygen, and seafloor
sediment properties is typical in the coastal zone, and limits attempts to statistically estimate the
unique effects of different environmental drivers at the regional-scale using multivariate models.
Two observations, however, highlight the primary roles of eutrophication and deoxygenation in
structuring observed diversity gradients on the continental shelf in the northern gulf. First,
bivalve taxonomic and functional diversities decline significantly from Florida to Alabama as
primary productivity increases, whereas seafloor sediment properties do not differ appreciably
between these two regions (Fig. 2, Table 1). Dissolved oxygen also does not differ significantly
between Alabama and Florida in the gridded environmental data (Table 1), however, previous
studies have documented episodic hypoxia offshore of Alabama whereas hypoxia has not been
historically observed on the north Florida shelf (Rabalais 1992, Brunner et al. 2006, Santema et
al. 2015, Dzwonkowski et al. 2018). Second, of all the environmental variables considered,
primary productivity has the strongest correlation with taxonomic and functional diversities
across all g-values (Fig. S2). Although low diversities offshore of Louisiana may reflect the
combination of high productivity, fine-grained sediment, and low dissolved oxygen that is
typical of continental shelf habitats adjacent to large watersheds, diversity variation across the
northern gulf as a whole is best explained by regional differences in productivity and dissolved
oxygen.

Habitat heterogeneity could also contribute to these taxonomic diversity gradients in the
northern Gulf, if heterogeneity is greater in less eutrophic environments on the continental shelf
where terrestrial inputs of sediment, freshwater, and nutrients are reduced. Our results are

qualitatively consistent with this prediction, with greater beta diversity among stations in Florida
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than in either Alabama or Louisiana, though with considerable overlap among regions (Figs 3, 4,
& S7).

Taken together, analyses of taxonomic alpha diversity along oxygen gradients highlight
the critical role of physiology in structuring present-day biogeographical patterns, with the
implication that projected declines in dissolved oxygen will reduce bivalve species richness.
Species loss may be most pronounced in continental shelf environments adjacent to large
terrestrial watersheds, where the combined effects of anthropogenic nutrient loading and ocean
warming coincide (Deutsch et al. 2024).

Regarding functional responses to hypoxia, there is a gap between integrative studies of
taxonomic and functional diversity conducted at relatively fine spatiotemporal scales (e.g.,
Baustian & Rabalais 2009, Rabalais & Baustian 2020) and broader space-for-time studies which
have tended to focus on taxonomic diversity but not associated changes in functional diversity
and trait composition (e.g., Sperling et al. 2016, though see Fajardo et al. 2018 and Bon et al.
2021). We addressed this gap by investigating gradients in bivalve species and functional
diversity across the northern Gulf of Mexico and found that these two biodiversity measures
were positively correlated, consistent with previous work on global diversity gradients in marine
bivalves (Berke et al. 2014). Bivalve species and functional alpha diversity in the northern gulf
also both covaried with regional environmental conditions. Bivalve communities in eutrophic
environments that experience episodic hypoxia were characterized by an abundance of shallow
infaunal deposit and mixed feeders, in contrast with less eutrophic, normoxic environments in
which infaunal and epifaunal suspension feeding bivalves were most abundant and a greater
diversity of feeding types was observed (Figs 5 & 1¢). These functional differences, however,
may be even more pronounced than reported here. There are limited data on intraspecific
variation in bivalve feeding type; for some mixed feeders (e.g., tellinids such as Ameritella
versicolor), experiments have documented individual shifts between suspension and detritus
feeding (Volkenborn et al. 2012, Gadeken & Dorgan 2023), whereas for others (e.g., nuculanids
such as Nuculana acuta) less is known, and they have been classified as obligate deposit feeders
by some (e.g., Briggs et al. 2015) and capable of mixed feeding by others (Mikkelsen & Bieler
2008). The functional transition in bivalve feeding types that we documented across the northern
gulf is consistent with other macrobenthic studies in the region that have documented an

abundance of shallow infaunal and surficial deposit feeding polychaete worms offshore of
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Louisiana (Baustian & Rabalais 2009, Rabalais & Baustian 2020) and, more broadly, with
transitions from suspension feeding to deposit feeding with increasing hypoxia elsewhere in the
global ocean (Levin et al. 2009). The congruent functional responses of different macrobenthic
groups to increased primary production and decreased dissolved oxygen (this study, and citations
therein), in combination with recent work highlighting the potential for bivalves to serve as
taxonomic surrogates for other macrobenthos (Tyler & Kowalewski 2017, Kokesh et al. 2022),
indicate that species and functional diversity vary predictably with primary production and
dissolved oxygen in continental shelf ecosystems in the northern gulf and other locations around
the world.

The body sizes of macrobenthos are known to affect a variety of ecosystem services
(Norkko et al. 2013, Lockwood & Mann 2019). Filtration rates and infaunal burrowing depths
both positively scale with body size in marine bivalves (Stanley 1970, Lockwood & Mann 2019),
with implications for water quality and carbon cycling in the coastal zone (Vaughn & Hoellein
2018). Larger bodied individuals are also more frequently subject to exploitation (Lockwood &
Mann 2019, Huang et al. 2023), and are more vulnerable to ocean deoxygenation due to their
higher metabolic rates (Woods et al. 2022, Deutsch et al. 2024). Regional to global studies that
have considered environmental correlates of body size rarely account for intraspecific variation
in size. Here we have analyzed a dataset of bivalve body size measurements for approximately
1500 individuals across the northern gulf and documented an increase in median size in the
productive, lower oxygen environments that occur today in coastal Louisiana. These results
reflect both intra- and interspecific size differences (Fig. S9), and are consistent with a previous
study that examined body size variation in a subset of bivalve genera across the northern gulf
using Holocene-age shell samples (Calderaro et al. 2024). Intraspecific increases in bivalve size
in eutrophic environments have also been documented in other regions, including Macoma
balthica from the Wadden Sea (Beukema et al. 2014) and Varicorbula gibba from the Adriatic
Sea (Tomasovych et al. 2020). In the Adriatic, increasing V. gibba size and abundance during the
20" century (Tomasovych et al. 2018) coincided with increasing seasonal hypoxia, as evident by
declines in bioturbation depth (TomaSovych et al. 2021). Larger sizes in more eutrophic
environments is consistent with some previous studies that have documented a positive
relationship between bivalve size and growth rate and primary productivity within and among

species (Kirby & Miller 2005, Carmichael et al. 2012, McClain et al. 2012, though see Berke et
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al. 2013, Saulsbury et al. 2019), but runs counter to the expected reduction in body size that may
occur as the severity of eutrophication increases and dissolved oxygen concentrations
correspondingly decline (Pearson & Rosenberg 1978, Levin et al. 2009, Clark et al. 2013,
Deutsch et al. 2024). Differences among trophic levels in aerobic scope provide a potential
explanation for the differences in body size that we documented among regions. Due to their
higher metabolic rates, predators may be excluded from lower-oxygen aquatic environments
before their prey (Riedel et al. 2012, Sperling et al. 2013), and consequently settings that
experience hypoxia may serve as a predation refuge for basal consumers such as marine bivalves
(Altieri 2008, Calderaro et al. 2024). Differences in aerobic scope among bivalves may also
contribute, with increased mortality and/or reduced recruitment among certain species as a result
of declining oxygen concentrations resulting in competitive release of hypoxia-tolerant species
and thereby their enhanced growth in oxygen-limited settings (Tomasovych et al. 2020). As a
result, the increase in median bivalve size we document here in eutrophic and hypoxic
environments in the northern gulf may reflect greater longevity and/or faster growth of hypoxia-
tolerant species due to a combination of reduced predation pressure, reduced competition, and
greater food availability (Kirby & Miller 2005, Altieri 2008, Tomasovych et al. 2020) (). Indirect
support for the role of enhanced food supply in structuring regional differences in body size
comes from our comparison of population densities across the northern gulf. Increases in median
body size were not associated with declines in median population density in Louisiana or
Alabama (Fig. S1), suggesting that nutrient enrichment may relax tradeoffs between individual
growth and population size for some species. Although median body size was larger in the more
eutrophic, lower oxygen environments offshore of Louisiana, the largest individuals in that
region were smaller than those that comprise the tail of the size frequency distributions observed
in Alabama and Florida (Fig. 6). This truncation of the larger-bodied end of the size frequency
distribution in Louisiana is consistent with oxygen concentration limiting the maximum body
size of basal consumers in that region, and is underlain by interspecific changes in community
composition, specifically the absence of larger-bodied, infaunal and semi-infaunal suspension
feeders, such as Megapitaria maculata and Arca zebra, in these more nutrient-rich environments.
Shifts in bivalve feeding type and body size on the continental shelf going from Florida to

Louisiana may signal a marked reduction in filtration rates and burrowing depth, with
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corresponding impacts on rates of carbon cycling, filtration of the water column, and aeration of
the seafloor.

Rising temperatures and decreasing oxygen concentrations synergistically increase the
vulnerabilities of marine animals to anthropogenic environmental change (Woods et al. 2022,
Deutsch et al. 2024). Warming waters speed up metabolism yet hold less oxygen which places
aquatic organisms in a double bind. These covarying stressors coincide with some of the largest
biotic crises in Earth’s history (Penn et al. 2018, Finnegan et al. 2024), and with increasing
records of marine mass mortality in recent decades (Breitburg et al. 2018, Deutsch et al. 2024).
Sea surface temperatures have increased ~1.0°C since 1970 in the Gulf of Mexico, a rate that is
approximately double that of the global ocean (Wang et al. 2023). Gridded climatological data,
however, show relatively minimal differences in mean summer SST among regions of the
northern gulf (Table 1). Mean summer SSTs are slightly warmer offshore of Florida and
Louisiana relative to Alabama (Fig. 1c¢), however, these differences are modest compared to
seasonal variation in each region. Consequently, the limited range of mean summer SST
observed today across the northern gulf plays relatively little role in observed biogeographical
patterns. Coincident changes over time in oxygen concentrations due to high nutrient discharge
from the Mississippi and warming have likely contributed to the low taxonomic and functional
diversities that we observed in coastal Louisiana, however testing this hypothesis will require
biological and environmental timeseries that extend beyond observational records. These
timeseries can be derived from studying the biomineralized tissues of bivalve mollusks and other
macrobenthos which can persist for decades to millennia in seafloor sediments (Finnegan et al.
2024).

Anthropogenic nutrient loading and climate change are contributing to ocean
deoxygenation globally. Here we provide baseline data on the present-day species and functional
alpha and beta diversity of marine bivalve communities across the northern Gulf of Mexico. We
document declines in multiple measures of biodiversity with increasing eutrophication and
hypoxia. Space-for-time approaches, like those employed here, can help us better understand the
biotic implications of current and future environmental change and can also serve as a basis for
hindcasting historical conditions before the onset of anthropogenic eutrophication and climate
change. We predict that macrobenthic communities that occur today in eutrophic and hypoxic

coastal environments (e.g., Louisiana and, to a lesser extent, Alabama) were more taxonomically

27



575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

and functionally diverse before the onset of anthropogenic nutrient loading, and would have
contained a greater abundance of suspension feeders. In contrast, normoxic coastal environments
where hypoxia has not occurred historically (e.g., Florida) would have experienced less
pronounced change in species and functional diversity over time. Differing regional
environmental histories in the northern gulf and elsewhere may be reflected in greater temporal
beta diversity offshore larger, and more populated, watersheds like the Mississippi River (LA)
and more limited spatial beta diversity along these coastlines (e.g., LA vs. FL) before

anthropogenic eutrophication.
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Electronic Supplementary Material for

deoxygenation gradient in the northern Gulf of Mexico

Harnik et al. Declining bivalve species and functional diversity along a coastal eutrophication-

Table S1. The relative abundance of the five most common species in each sampled region of the
northern gulf. Species relative abundance was calculated using the pooled numerical abundance

data for all sampling stations in each region. LA, Louisiana, AL, Alabama, and FL, Florida.

LA AL FL
Species Relative Species Relative Species Relative

abundance abundance abundance
Nuculana 0.37 | Nuculana 0.33 | Caryocorbula 0.19
concentrica acuta dietziana
Caryocorbula 0.25 | Abra lioica 0.15 | Semelina 0.15
swiftiana nuculoides
Ameritella 0.17 | Ameritella 0.13 | Varicorbula 0.12
versicolor versicolor limatula
Abra 0.16 | Caryocorbula 0.07 | Gouldia 0.07
aequalis swiftiana cerina
Foveamysia 0.01 | Parvilucina 0.05 | Nucula 0.07
soror crenella proxima
Cumulative 0.96 0.73 0.6
abundance of
top S ranks
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Fig. S3. Size-based (i.e., number of individuals) sampling curves for taxonomic (TD) and

functional (FD) diversity for regions (left columns) and stations (right columns) for rare

(q=0), common (q = 1), and highly abundant (q = 2) species (top row) and functional

groups (bottom row). Size-based curves indicate that all samples are incomplete due to

undetected rare species. Size-based curves were unstable for rare species and functional

groups, and stable for common and highly abundant species and functional groups.

Consequently, in all analyses we compared taxonomic and functional diversities at a

standardized sampling coverage of 90%. LA, Louisiana, AL, Alabama, and FL, Florida.
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through 25. LA, Louisiana, AL, Alabama, and FL, Florida.
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Fig. S9. Variation in individual body size for species that were sampled in one, two, or
three regions of the northern gulf. LA, Louisiana, AL, Alabama, and FL, Florida.
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