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Abstract

Graph neural networks (GNNs) are a class of deep learning algorithms 
that learn from graphs, networks and relational data. They have found 
applications throughout the sciences and made significant strides 
in electrical engineering. GNNs can learn from various electrical and 
electronic systems, such as electronic circuits, wireless networks 
and power systems, and assist in solving optimization or inference 
tasks where traditional approaches may be slow or inaccurate. 
Robust learning algorithms and efficient computational hardware 
developed and tailored for GNNs have amplified their relevance to 
electrical engineering. We have entered an era in which the studies 
of GNNs and electrical engineering are intertwined, opening to 
opportunities and challenges to researchers in both fields. This Review 
explores applications of GNNs that might generate notable impacts 
on electrical engineering. We discuss how GNNs are used to address 
electrical automatic design, as well as the modelling and management 
of wireless communication networks. Additionally, we delve into GNNs 
for high-energy physics, materials science and biology. Presenting 
the applications, data and computational challenges, the need for 
innovative algorithms and hardware solutions becomes clear.
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of circuit data to accelerate the iteration process in circuit design 
loops20,23. Besides the use of GNNs in strictly related electrical engi-
neering applications, GNNs can also be used in other domains such as 
physics24–26, materials science27,28 and biology29–31.

Despite the opportunities, GNNs face a generalization issue 
across the diverse scientific domains due to the gap between the less 
explored, yet promising, regimes and the well-explored ones in which 
most labelled data are found. Principled theories grounded in the 
studies of electrical engineering, including information theory and 
signal processing, offer promising directions to refine GNN architec-
tures and their training algorithms to tackle this challenge. Moreover, 
the effective success of AI, and particularly that of GNNs, hinges on 
substantial computational power. Specifically, the processing of 
irregular data involves random memory access, often leading to a 
large memory footprint. This aspect highlights the need for dedicated 
hardware support, a requirement that electrical engineering is well 
positioned to address.

Here we present a selection of application examples to discuss 
the ability of GNNs in addressing challenges in electrical engineer-
ing and the potential of electrical engineering in overcoming GNN 
limitations across diverse domains. We start with a concise overview 
of basic GNN architectures. We then delve into representative GNN 
applications in electrical engineering, physics and biology to illus-
trate the opportunities and issues that arise at the intersection of 
GNNs with different disciplines. We conclude by offering an outlook 
on limitations, emerging possibilities and the potential social impact 
of GNN developments.

Graph neural networks
GNNs process data that can be represented as graphs. A graph G consists 
of a node set V  and an edge set E. The structure of G can be denoted  
as an adjacency matrix A∈ V| | ×|V|R , where A = 1uv  if there is an edge 
u v E( , ) ∈  and 0 otherwise. Here, we use a simple unweighted graph as 

an example. The processed graphs may also be associated with features, 
where each node v V∈  has a feature vector RX ∈v

F , where F denotes a 
dimension. All feature vectors are collected in X X X X= [ , , …, ]T T

V
T T

1 2 ∣ ∣ , 
where T is the transpose operation.

A GNN works as a function f  that combines node features 
and graph structures in learning node representations: 

∣ ∣
∣ ∣H f A X H H H= ( , ) = [ , , …, ] ∈T T

V
T T V F

1 2
× outR , where Fout denotes a dimen-

sion. Learned node representations can then be used for various tasks 
to be discussed later. A fundamental inductive bias for modelling graph 
data is that the order of nodes in the graph should not affect the rep-
resentations associated with them, which is named permutation equiv-
ariance. Specifically, take a permutation matrix P∈ V| | ×|V|R . A proper 
architecture of GNN f should satisfy PH Pf A X f PAP PX= ( , ) = ( , )T . 
The architectures of GNNs discussed here satisfy this property.

Depending on the design motivations and derivations, GNNs can 
be distinguished into two categories: message passing neural networks 
(MPNNs; sometimes called spatial GNNs)32–35 and spectral GNNs36–39 
(see Box 1 and Supplementary information). When using GNNs in 
real-world scenarios, several limitations are noteworthy and deserve 
careful consideration by practitioners.

Limited expressive power
The expressive power of a model depicts its capability to approximate 
complex functions. Traditional feed-forward neural networks, for 
instance, are known for their capacity to approximate any continuous 
function within a compact space40. However, GNNs — including MPNNs 

Key points

	• Graph neural networks (GNNs) hold immense potential for 
harnessing data power to effectively tackle a range of application 
challenges in electrical engineering.

	• Research in information science and cutting-edge hardware within 
electrical engineering offer valuable insights into the practical 
implementation of GNNs, overcoming their limitations related to 
model reliability and computational efficiency.

	• GNNs find extensive applications in various scientific domains, 
including physics, materials science and biology. Electrical 
engineering methodologies can enhance GNN performance in 
these fields and, potentially, lead to significant impacts in science.

Introduction
Since the beginning of the twenty-first century the field of electrical 
engineering has made great strides. For example, the development 
of robust and efficient telecommunication networks has revolution-
ized global communication, underpinned the Internet and enabled 
instantaneous, worldwide connectivity1. The field of information and 
signal processing has redefined our interaction with digital media 
and enhanced our capabilities in data analysis and interpretation2. 
Modern advances in circuit design have also led to miniaturization 
and paved the way for portable computing and the Internet of Things3. 
Electrical engineering has embarked on a new era — one of advanced 
communication systems, machine learning and neural networks — in 
which the need for ultra-efficient hardware and system design, coupled 
with ultra-fast, highly accurate information processing algorithms, 
has become paramount.

Meanwhile, artificial intelligence (AI) has undergone a transfor-
mation, demonstrating its extraordinary ability to distil knowledge 
from vast amounts of data and enhance human decision-making and 
predictive abilities across a wide range of applications. Representative 
examples include AlphaGo beating the best human players at the game 
of Go4, and large language models performing language understanding 
and reasoning5,6.

Among the various AI tools, graph neural networks (GNNs) have 
emerged as powerful techniques for processing irregular or non-
Euclidean data, such as graphs or point clouds7,8. GNNs have also shown 
tremendous potential in numerous electrical engineering tasks such as 
forecasting and controlling the dynamics of electrical and electronic 
systems. Conventional methods based on assumptions, simulations 
or heuristics often fall short in terms of precision, efficiency and opti-
mality when applied to real-world systems9. Luckily, many electrical 
engineering systems can be naturally represented as graphs or gener-
ate graph-structured data, opening the door for GNNs to leverage the 
power of data and provide improved forecasting and control strategies. 
For instance, in the domain of wireless communication, GNNs can 
encode the channel states between multiple user devices and access 
points, enabling improved understanding and optimization of commu-
nication processes10–15. Similarly, in power systems, GNNs can encode 
the structure and dynamics of power grids, facilitating tasks such as 
optimal power flow and prediction of power outages16–18. GNNs can 
also be used to predict latency and sizes of circuits without relying 
on time-consuming simulations19–22 and provide the representations 
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Box 1 | Overview of graph neural network architectures
 

As the name implies, message passing neural networks (MPNNs) 
follow a message passing procedure along the edges of the input 
graph to learn node representations (see the figure, panel a). 
In learning the representation of a node v, a single MPNN layer first 
aggregates messages, that is node representations Xu

t( ), from its 
neighbours u N v( )∈  and then combines the aggregated messages 
with v’s own representation Xv

t( ) to obtain an update Xv
t( 1)+ . Here, 

t denotes the layer index. By stacking multiple MPNN layers 
sequentially (t = 0, 1, …, L − 1) and treating the output representations of 
the previous graph neural network (GNN) layer as the input to the 
current GNN layer, the final node representations can be used as 
the ultimately learned representations H X ,L( )=  which can be further 
used to make downstream predictions. An MPNN consists of two major 
operations: aggregating (AGG) neighbours’ features; and combining 
aggregated features to update (UPDATE) one’s own features.

A spectral GNN typically uses multiple-hop graph convolution 
(see the figure, panel b). The obtained Z will pass through a neural 
network to either make predictions or go through another round 
of graph convolution. The key idea of spectral GNNs lies in signal 

filtering. In classical signal processing, filtering refers to the 
amplification or attenuation of a signal at different frequencies. 
Spectral GNNs apply polynomial filters to the graph signals in the 
spectral domain. Suppose the graph signals have multiple channels. 
The filtering process to generate the output signal Z in the ith 
channel follows = ∑ ∑= =Z U W U X( [ ] Λ)j i

F
l
K

l
l T

i: 1 0 ij : , where X i:  denotes 
the input signal X in the jth channel, and [Wl]ij is the ith-row, jth-column 
entry of a parameter matrix Wl, 0 ≤ l ≤ K, which denotes a polynomial 
coefficient of the filter.

GNN architectures should keep the predictions unchanged when 
the input system is shifted according to some physical principles 
(see the figure, panel c). GNNs found extensive use in analysing 
irregular geometric objects, such as particle hits in Large Hadron 
Collider (LHC) detectors24,25 or molecules with 3D structures60. These 
objects can often be conceptualized as point clouds, where each 
point v is associated with a coordinate vector in addition to other 
features. Graphs can be constructed to capture relationships among 
these points, such as k-nearest neighbour relations. GNNs can then 
be applied to the constructed graphs.
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Â = D ÂD ,
1
2

– 1
2

–
Z = Σl = 0 ÂlXWl

K
z:j = ΣΣ[Wl]ijÂlX:i = ΣU (Σ[Wl]ijΛl)UTX:i 

x:i, z:j denote the ith and jth feature channels before and after the convolution
[Wl]ij is the entry of Wl in the ith row and the jth column, which works the
polynomial coe�icient of the filter
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and spectral GNNs — lack this capacity when it comes to approximat-
ing continuous functions defined on graphs41,42. Practical methods 
to deal with this issue often rely on using higher-order tensors42,43, 
or performing augmentation of node features or graph structure44,45.

Over-smoothing
Many GNN architectures such as graph convolutional networks 
(GCNs)46 adopt mean pooling to aggregate the features both of the 
neighbours and of the centre node. These GNNs suffer from an over-
smoothing problem47. As the depth of the GNN increases, the acquired 
representations of nodes that are closely positioned on the graph 
become increasingly alike. This phenomenon hinders the predictive 
performance of GNNs in tasks where closely adjacent nodes on the 
graph are required to produce notably distinct predictions.

Over-squashing
The dimensions of node representations usually do not scale along 
with the model depth. This characteristic, when combined with the 
aggregation of neighbours’ representations in MPNNs, can potentially 
lead to an over-squashing issue48,49. More specifically, node represen-
tations constrained by limited dimensions often struggle to maintain 
high-quality feature information from distant nodes within the graph. 
However, this over-squashing problem can be mitigated by rewiring 
edges to enhance connectivity across various graph sections48.

GNN-enabled learning tasks
The application of GNNs across diverse domains can be broadly clas-
sified into three types of learning tasks: predictive, optimization and 
data generation tasks (Box 2).

Predictive tasks
Predictive tasks infer missing attributes or properties of entities within 
a graph. Depending on the number of nodes involved, predictive tasks 
can be classified into node-level, edge-level and graph-level predictions.

GNNs are extensively used to solve the predictive tasks across 
various applications. For instance, node-level predictions find use 
in detecting fault locations in power grids50,51 and identifying noisy 
particle hits from collision events in Large Hadron Collider (LHC) 
experiments52,53. Edge-level predictions are utilized for predicting 
potential drug–disease associations54,55, and for reconstructing par-
ticle tracks in the LHC56–58. In node or edge-level prediction tasks, the 
predictive labels can be determined by the characteristics and graph 
structure surrounding the pertinent nodes or edges. For instance, 
the likelihood of a power outage could be inferred from the weather 
signals captured by nearby sensors17. GNNs can effectively learn such 
relationships based on observed labels from different graph sections 
and extrapolate this understanding across the entire graph. Note that 
the permutation equivariant property of GNNs affords a valuable 
inductive bias for this generalization, thereby enhancing their pre-
dictive capability. Graph-level prediction tasks include predicting 
circuit performance19–22,59, determining molecular properties such as 
electronic properties and solubility27,60–62, and identifying the type of 
particle decaying process after collisions63,64. Traditional techniques 
to measure graph properties in these applications often necessitate 
the execution of time-consuming and expensive simulations, analy-
ses or experiments59. GNNs may approximate the complex relation-
ship between input and output, and bypass such a costly process via a 
direct estimation. Consequently, GNNs offer a notable improvement 
in efficiency in addressing prediction tasks.

Optimization tasks
Numerous electrical engineering applications rely on solving optimiza-
tion problems. Many of these problems have intrinsic graph structures 
that may highly impact the optimization outcomes. Notable examples 
include resource allocation problems in wireless networks10,12,13,65 and 
optimal power flow in power grids16,18,66, as well as the low-density parity-
check decoding problem where the relationship between variable 
nodes and check nodes form a graph67,68.

GNNs can be used to accelerate the procedure of solving the opti-
mization problems in these applications. A straightforward approach 
is to treat the problem as a predictive task, which could involve collect-
ing a set of problem configurations G1, G2, … and the corresponding 
optimal solutions ⋆ω G( )1 , ω G( )2

⋆ , …. A GNN can be trained to map 
directly from the problem configuration Gi to the corresponding opti-
mal solution ⋆ω G( )i . However, in practice, it has been observed that a 
neural network model trained in this manner tends to struggle with 
generalization or delivering high-accuracy solutions69. The conjectured 
reason behind this problem is that the optimal solution to an optimiza-
tion problem is typically more numerically sensitive to variations in the 
problem configuration, compared with a standard predictive task. 
Consequently, a higher demand on the model’s ability to generalize is 
placed on optimization tasks.

A more compelling approach is to harness the algorithmic struc-
ture inherent in some traditional methodologies, allowing neural 
networks to supplant the most time-consuming or uncertain aspects. 
An important approach that follows this idea is known as algorithm 
unrolling or unfolding70. This method prompts the unrolling of the 
iterative processes often found in traditional algorithms and lets GNNs 
replace some parts of the iterative procedure with a better data-driven 
operator. Suppose each iterative step can follow ω(t+1) = g(ω(t);G), where 
the selection of function g often depends on the problem structure 
and the system uncertainty ξ. Traditional approaches may yield a practi-
cally suboptimal g by assuming certain distributions of ξ, which results 
in slow convergence rates or imprecise solutions. In this context, GNNs 
can be used to learn from the data and replace the most uncertain and 
potentially suboptimal part of g. For instance, GNNs have been utilized 
to improve the unrolled belief propagation algorithm by learning from 
the data, which yields faster and more accurate low-density parity-
check decoding67,68. GNNs for optimization can also be applied to link 
scheduling in wireless systems71–73 or to optimize power flow in power 
systems16,18,66.

Data generation tasks
Many applications in electrical engineering and scientific domains 
require practitioners to create objects with graph representations, such 
as circuit layouts designed to fulfil certain size and area constraints74, 
or material designs with various mechanical and thermal properties75. 
GNNs for graph data generation have emerged as a promising method 
to solve these tasks.

Classical random graph models such as the Erdős–Rényi (ER) 
model76 are not flexible enough to model the intricate distribution 
of real graphs. These models usually use simplistic parameterization of 
the graph distribution, which is often imprecise to describe the actual 
graph behaviour. By contrast, GNNs offer far more expressiveness and, 
thus, may consequently facilitate more accurate distribution modelling 
in practice. GNNs can be integrated with many generative AI frame-
works for graph data generation such as variational autoencoder9, 
generative adversarial network77 and diffusion models78,79. In these 
frameworks, GNNs are generally trained to map simple distributions; 
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for example, from the standard Gaussian distribution to the complex 
distribution of graphs. Samples from the simple distribution can then 
be transformed to generated graph data via the trained GNNs. Recent 
advancements demonstrate the superior performance of GNN-based 
generative AI models in tasks such as conditional molecule data 
generation80–82 and circuit design generation tasks83–85.

Applications
The versatility of GNNs enable their application in different fields, 
from electrical engineering, in electronic design and wireless 

communication, to life science. These applications benefit from elec-
trical engineering advancements, ensuring GNNs are both robust and 
computationally efficient.

Electronic design
The functionalities in electronic systems and the complexity of their 
design have experienced consistent growth in accordance with 
Moore’s Law, driven by advancements across devices, circuits, sys-
tems and software. The design of electronic systems can be divided 
into two main groups: those encompassing analogue/radio-frequency/

Box 2 | Three categories of graph neural network-enabled learning tasks
 

Predictive tasks
Node-level prediction is concerned with predicting a specific 
property, denoted as yv, of a node v V∈  within the graph G (see the 
figure). This task is accomplished by training a model to map the 
node representation Hv output by the graph neural network (GNN) to 
the property yv. Edge-level prediction focuses on predicting a specific 
property, denoted as yvu, of a pair of nodes ∈v u V,  within the graph G. 
This task is achieved by training a model to map a combination of the 
representations of the two relevant nodes, Hv and Hu, to the property 
yvu. Commonly used combinations include the concatenation of Hv 
and Hu into a single vector, and the computation of the inner product 
or the cosine similarity between Hv and Hu. Graph-level prediction 
aims to predict a property, denoted as yG, of the entire graph G. This 
task is often performed on datasets comprising multiple graphs. The 
prediction can be made by pooling all node representations into a 
graph-level representation, followed by learning a mapping from this 
representation to the label yG. Pooling operations range from simple 
summation or averaging to more complex hierarchical methods.

Optimization tasks
The optimization problems can be generally denoted as E L ω G ξmin ( ; , )

ω
ξ ,  

where ω denotes the optimization variables, G denotes the problem 
configuration represented as a graph, ξ denotes some randomness 
(such as signal noises within the system) and L represents the objective 
function (see the figure). The goal is to efficiently approximate the 
optimal solution ω G( )�  with a specified degree of accuracy.

Data generation tasks
Typically, the graph generation process begins with a collection of 
graph-structured data associated with specific properties, denoted 
as (Gi, yi), where yi represents the property of Gi (see the figure). 
The objective is to generate graphs G that possess properties 
complying with specific constraints y ∈ Ω. Typically, the generation 
is also expected to be novel and diverse. The task essentially asks to 
model a distribution of the graphs conditioning on the properties of 
interest based on the graph dataset. LDPC, low-density parity check; 
LHC, Large Hadron Collider.
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mixed-signal functions (with similar requirements to those used for 
analogue design); and those focused on digital functionalities. Over 
the course of evolution, chip design processes have integrated arrays 
of software tools operating across multiple levels of hierarchy. Referred 
to as electronic design automation (EDA) tools, these resources effec-
tively serve to automate chip design, reducing the time to market while 
enhancing design quality86.

Digital design. In the context of digital systems, designers primarily 
focus on the optimization of three performance metrics: power, speed 
and area. However, the number of components in a digital chip can be 
much higher, often leading to extensive runtime for full chip devel-
opment. Notable progress has been made in the evolution of digital 
full-flow tools, encompassing logic synthesis and physical design. 
Consisting of four main tasks, floor planning, placement, routing and 
timing optimization, physical design takes most of the runtime. With 
the increasing demand for enhanced chip functionality, the scale of 
digital designs has grown to the point where running even non-optimal 
or heuristics algorithms for the original nondeterministic polynomial-
time (NP)-complete problems poses notable challenges87. Machine 
learning algorithms are being increasingly used to address various 
problems in physical design. These algorithms effectively learn from 
existing layouts and design knowledge and improve the turnaround 
time and quality of solutions for unseen designs by providing early 
estimates of the critical parameters. Graph structures are natural 
representations of Boolean functions, circuits and layouts88. It is no 
surprise that, compared with other machine learning techniques, GNNs 
are a better fit for the problem.

As of June 2024, commercial digital EDA tools, placement, rout-
ing and timing optimization steps are executed one after the other. 
However, an optimal flow necessitates placement and a timing engine 
to work together. A fast and accurate pre-route timing estimation is 
therefore necessary for timing-driven placement as running routing 
and static timing analysis in iteration is expensive. A possible solution 
is the introduction of a timing engine-inspired GNN model that can 
predict arrival time and slack at timing end-points without static tim-
ing analysis (Fig. 1a). Experimental results on real-world open-source 
designs demonstrate that the proposed GNN framework has a strong 
correlation with labelled data while being more than three orders 
of magnitude faster than routing and static timing analysis-based 
approaches22.

GNNs have also been used in other areas within the physical design. 
For example, if floor planning is posed as a reinforcement learning (RL) 
problem, an edge-based GCN architecture, capable of learning rich and 
transferable representations of the chip, can reduce the runtime of 
floor planning from months to hours while giving comparable results83. 
A GNN-assisted deep RL framework can also be trained to optimally 
tune placement parameters of a commercial tool in a completely unsu-
pervised manner and without domain knowledge89. The trained RL 
agent achieves up to 11% and 2.5% wire-length improvements in just 
one iteration, that is 20× and 50× fewer iterations compared with a 
human engineer and a state-of-the-art tool, respectively. k-Means 
clustering can be used within the GNN-based framework to guide the 
placement tool to optimally cluster cells leading to 3.9% wire length, 
2.8% power and 85.7% performance improvement compared with 
a commercial placer90. A framework that utilizes a long short-term 
memory network and a GNN is proposed to predict post-route total 
negative slack. Experiments show the prediction quality is within 5.2% 
of normalized root mean squared error in early design stages on two 

validation designs not included in the training91. A graph attention 
network (a variant of GNN)-based framework can be used to predict 
routing congestion. Experiments show that the framework improves 
prediction quality by 29%, and takes 19 s, compared with 10–60 min 
required by other methods on a circuit with 1.3 million cells92.

Analogue design. In contrast to digital circuits, analogue circuits typi-
cally comprise fewer components. However, the number of performance 
metrics in analogue circuits is higher and navigating the trade-offs 
among the different parameters is complex. The typical analogue circuit 
design process starts from a specification and goes through topology 
selection, sizing and physical design steps. Although analogue physical 
design steps are similar to those of digital design, there are some unique 
requirements to this domain (such as matching, symmetry and variation 
tolerance) which make the process error-prone, non-optimal and often 
in need of expensive design iterations. Although considerable efforts 
have been invested towards automating analogue design, progress has 
been modest due to the knowledge-intensive nature and widely varying 
requirements typical of this domain93. Many tools have failed to encap-
sulate the intentions of expert designers and lacked the capability to 
achieve generalization as they have only been useful in handling specific 
classes of circuits93. The advent of AI has invigorated design automation 
efforts by enabling tools to emulate the methods used by experienced 
designers, effectively learning from them94,95.

The problem of analogue circuit sizing across technology can be 
addressed, for example, by training an RL agent on one technology 
node and then directly applying the trained agent to search the same 
circuit under different technology nodes by virtue of similar design 
principles among different technologies96 (Fig. 1b). By mapping the 
circuit to a graph, where transistors are represented as nodes and wires 
as edges, a GCN46 is used to learn the circuit’s topology representation. 
The optimization problem is then solved iteratively through the steps 
of action vector generation, denormalization, refinement, simulation 
and policy update. Experiments on transfer learning between five 
technology nodes and two circuit topologies demonstrated that RL 
with transfer learning can achieve a much higher figure of merit than 
methods without knowledge transfer. GNNs have also been explored 
in other areas in analogue circuit design, including topology gen-
eration97, circuit sizing21,97,98, parasitic prediction21,99, performance-
driven layout100, automatic constraint generation101 and analogue/
radio-frequency design98,102.

The use of GNNs in electronic system design is still in its early 
stages. The need for handling more complex circuit characteristics 
will necessitate the adoption of more complex graph structures, such 
as dynamic graphs or bipartite graphs86. The practicality of executing 
optimal algorithms might be limited by extensive runtime demands, 
but this problem is common to both analogue and digital chip design. 
The integration of GNN algorithms is essential to enhance efficiency by 
identifying promising starting points and informed guesses, thereby 
streamlining the optimization process in full chip development.

Process variation in analogue design is a crucial area that requires 
more attention from the machine learning community103. In digital 
design, marked performance improvement is possible if several physi-
cal design steps are combined into a single framework where timing, 
routing and placement all happen simultaneously.

Resource allocation in wireless systems
In a wireless network, devices talk with each other through a shared 
wireless medium. Similar to people at a cocktail party who need to 
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Fig. 1 | Application of graph neural networks in electronic design 
automation. a, Use of graph neural network (GNN) models in digital electronic 
design automation (EDA) for timing optimization. The logic circuit is mapped 
to graphs. GNN models are trained using these mapped graphs to predict net 
delays and cell delays. Delays are propagated through net propagation layers 
and cell propagation layers to estimate arrival time and slews at the timing 
end-points. To augment model training and enhance performance, net and 
cell delay predictions are used as auxiliary tasks. The GNN model, built on the 
concept of path delay calculations, reduces the required GNN receptive field and 
enhances model explainability and interpretability. The model consists of two 

stages. In net embedding, the first stage, the model captures post-route Elmore 
delay of nets from designs after placement. This stage utilizes a bi-directional 
graph consisting of net edges and reversed net edges. In the next stage, delay 
propagation, cell delays and computation of arrival time and slews are modelled. 
b, Use of a GNN for transistor sizing in analogue EDA. Here, the circuit is 
represented by a topology graph in which nodes are transistors and edges are 
wires. In a GNN-equipped reinforcement learning (RL) framework, the RL agent 
is trained on one circuit, and the trained model is used to optimize new circuits 
or the same circuit in different technology nodes. MLP, multilayer perceptron. 
Panel b is reprinted with permission from ref. 96, IEEE.
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manage their volumes and orders of speaking to have meaningful con-
versations, resource allocation in wireless networks, such as transmit 
power control and link scheduling, is critical to the function and per-
formance of wireless systems. Generally, these tasks are formulated 
as optimization problems on graphs, where the nodes of the graph 
capture devices in a wireless network, and the edges of the graph model 
the wireless channels between them.

In infrastructure-based wireless networks, such as cellular and 
Wi-Fi networks, resource allocation for wireless devices can be done 
by dedicated base stations or access points within a single hop. For 
example, mobile phones connect directly to their nearest base station 
without any intermediary relays. For multi-hop wireless networks, 
such as wireless ad hoc networks, wireless backhaul networks, device 
to device networks and certain vehicle to everything networks, distrib-
uted resource allocation is preferred as it is often infeasible to dedicate 
servers to resource allocation or collect the full network state at a server 
in a timely manner. GNNs are particularly well suited to solve these 
distributed resource allocation problems.

Power control for communication rate maximization. In wireless 
networks, raising the transmit power of one device can simultane-
ously increase the strength of the received signal at the intended 
receiver and the unwanted signal (interference) at other unintended 
receivers. Based on the wireless channels between all transmitters 
and receivers, the task of power control is to optimize the transmit 
power of each transmitter in a wireless network to ensure a reasonable 
signal-to-interference-and-noise ratio at each receiver. The signal-to-
interference-and-noise ratio, in turn, determines the data rate of the 
corresponding link (link rate), using, for example, Shannon’s capacity 
theorem. Common goals of power control include maximizing the sum 
rate of all links across the network and extending the lifetime of the 
network by avoiding draining the battery of certain devices.

To build a GNN for power control (Fig. 2a), the wireless network 
is typically modelled as an edge-weighted graph (V,E,H), where a node 
v V∈  represents a transmitter–receiver pair and for all v u V, ∈ , 
a weighted edge v u E( , ) ∈  represents the channel state between the 
transmitter in v and the receiver in u (refs. 12–14,16,66,104). H denotes 
the channel state information matrix: the weight of a self-loop Hvv 
encodes the channel gain from a transmitter v  to its intended 
receiver v. Whereas the weights of other edges, Hvu where u v≠ , 
represent the gains of interference channels between a transmitter v 
and other unintended receivers u. The problem of power control for 
sum-rate maximization can be formulated as to design a map w(·) that 
generates a power allocation p from a channel state information 
matrix H, that is p = w(H), to maximize the rate of data transition. 
Finding the optimal power allocation w*(·) is NP-hard104. Previous 
methods often adopted heuristics. GNNs can be used to learn a power 
control heuristic p = p(H;Θ) with learnable parameters Θ from data. 
The way to learn such GNNs is based on the principle of algorithmic 
unfolding11–13,105. Specifically, one can design a specific GNN with 
architecture inspired by the iterative algorithm weighted minimum 
mean square error (WMMSE)106, denominated the unfolded WMMSE 
(UWMMSE)12,105.

Link scheduling for network utility maximization. A pair of wireless 
transceivers that can directly talk to each other represent a link. In a 
wireless network with N transceivers, there could be at most N2 links, 
but not all of them can be activated simultaneously. Link scheduling 
in wireless networks refers to the task of deciding which links in a 

wireless network should be activated at a given time slot (potentially 
along with other parameters such as transmit power or frequency).

Link scheduling (Fig. 2b) in multi-hop wireless networks under 
orthogonal multiple access is often defined on a conflict graph (V,E,x), 
where a node v ∈ V represents a link and the existence of an unweighted 
edge between two nodes, (v1,v2) ∈ E, indicates that the corresponding 
links cannot be activated simultaneously due to radio interference or 
sharing the same wireless device. A node feature xv captures the utility 
of activating the corresponding link v.

The objective of link scheduling is to find a set of non-conflicting 
links with maximum total utility, which can be formulated as finding 
a maximum weighted independent set on the conflict graph107. As the 
maximum weighted independent set problem is known to be 
NP-hard108, in practice it is solved approximately via fast heuristics, 
denoted as ŷ = h(V,E,x). Conventional heuristics include greedy 
search109 and distributed local greedy search (LGS)110. GNNs can be used 
to augment link scheduling heuristics in a hybrid pipeline71–73, where a 
GCN is followed by a conventional heuristic LGS. To be precise, we 
consider learnable topology-aware weights z = Ψ(V,E;Θ) generated by 
the GCN Ψ(·;Θ). These weights modify the utility of scheduling each 
corresponding link via the element-wise product x⊙z. The graph with 
modified utilities is then fed into a conventional heuristic h(·), which 
generates a discrete solution y = h(V,E,x⊙z) guaranteed to be an inde-
pendent set. Depending on the use cases, h(·) can be selected as differ-
ent heuristics, for example, centralized rollout search (CRS) and 
distributed LGS are respectively used as the underlying heuristics of 
hybrid heuristics GCN-CRS and GCN-LGS by Zhao et al.71. Comparing 
approximation ratios of methods with regard to the optimal solutions 
generated by the Gurobi solver111, the combination of GCNs with heu-
ristics (denoted by the ‘GCN-’ prefix) outperforms the sole heuristic 
approaches and a message passing algorithm112.

Other applications of GNNs in wireless systems. Other notable appli-
cations of GNNs in wireless systems include channel decoding in signal 
reception, packet routing and computational offloading. In channel 
decoding, the parity-check matrix can be represented as a factor graph, 
and processed with GNNs67,68. For packet routing in wireless networks, 
GNNs are able to close the optimality gaps of conventional heuristics 
for three different combinatorial optimization problems for routing113 
and can enhance the shortest-path biased backpressure routing114. 
GNNs can be used as efficient digital twins to predict the performance 
of routing, replacing computationally costly network simulators in 
quick evaluation of routing schemes115,116. In computational offload-
ing87, GNNs can be used to process both the computational context 
(subtask dependency relationship) and the edge network topology.

Experimetal particle physics
Since 2019, GNNs have been widely adopted in high-energy physics 
(HEP) across the energy, intensity and cosmic frontiers, thanks to their 
unparalleled ability to handle the irregularly structured, hierarchical 
and sparse data structures commonly found in the field24–26. Further-
more, there is substantial interest in applying GNN methods in real time, 
especially to select, filter and compress data using field programmable 
gate arrays (FPGAs) and application-specific integrated circuits, needed 
to deal with the extremely large data rates found in collider physics117. 
GNN applications in HEP can be categorized as node-level, edge-level 
or graph-level learning tasks24–26. Graph-structured data can be used 
for tracking charged particles, tagging jets, clustering calorimeter 
energy deposits and identifying signal events (Fig. 3).
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Particle-flow reconstruction. Particle-flow reconstruction is an 
essential application of GNNs for node-level prediction in HEP118. This 
application comprehensively reconstructs each individual particle 
(charged and neutral hadrons, photons, electrons and muons) within 

an event using combined information from all sub-detectors. The task 
calls for an intricate understanding of the responses of various detec-
tors (silicon trackers, electromagnetic and Hadron calorimeters, and 
muon detectors) to different particle types, providing a precise global 

Wireless
receiver

Link A

Link C

Link D
Link B

Link A

Link D
Link B

a   Transmit power control

b   Link scheduling

A

A

B
B

D

C

D

C

Transmitter
(TX)

Receiver
(RX)

Intended
signal

Unintended
signal

Bidirectional
link

Non-negligible
potential
interference

–82–65–69–31

–53–70–35–51

–63–25–68–48

–37–62–75–78

TX-A

TX-B

TX-C

TX-D

RX-A RX-B RX-C RX-D

Channel state information 
(CSI) matrix;
Unit: dB

A

B

C

D

Valid
schedule

Weighted
node

Undirected
edge

A node-weghted undirected
conflict graph

An edge-weighted directed graph
represented by CSI matrix

A

B

C

D

Self-loop

Weighted 
edge

160
140
120
100
80
60
40
20
0

WMMSE Tr-WMMSE UWMMSE

Su
m

 ra
te

0.80

0.85

0.90

0.95

1.00

GCN(1)
-C

RS-v,
ER

GCN(5)-C
GS,ER CRS

CGS

Ran
dom-C

RS

GCN(1)
-LG

S,ER

MLP
(5)-L

GS,ER

Ran
dom-LG

S

MP [P
as

ch
ali

dis1
5]

LG
S [J

oo12]

Ap
pr

ox
. r

at
io

 w
.r.

t.
op

tim
al

 s
ol

ve
r

Test algorithm

Centralized
solvers

Distributed
solvers

GNN-enhanced
Conventional

Baseline (high-complexity)
Baseline (low-complexity)
GNN-based power control
(algorithmic unfolding)

Link CLink C

Wireless networks Graph construction Numerical results

Wireless multi-hop network
(4 intended wireless links)

Fig. 2 | Graph modelling and performance evaluations of graph neural 
network-enhanced resource allocation in wireless multi-hop networks. 
a, Transmit power control under non-orthogonal multiple access. The generic 
transmit power control problem, its graph representation and the corresponding 
channel state information matrix (first two panels from the left). Sum rates 
achieved by an unfolded weighted minimum mean square error (UWMMSE) 
algorithm and two baseline methods in a numerical experiment with 
10,000 instances of simulated multiple-input and multiple-output wireless 
networks with 20 pairs of 5-antenna transmitters and 3-antenna receivers, and 
Rayleigh fading channels under a low-noise regime105 (right panel). The UWMMSE 
is composed of three unrolled weighted minimum mean square error (WMMSE) 
layers with each layer having two 2-layered graph convolutional networks 
(GCNs). The learnable components in UWMMSE enable the use of fewer layers 
than the iterations in WMMSE. The baseline WMMSE has 100 iterations, and 
the truncated WMMSE (Tr-WMMSE3) is just the classical WMMSE limited 
to 3 iterations (for comparison with the 3 layers in UWMMSE). Compared 

with WMMSE, UWMMSE increases the average sum rate by 61% with a per-
instance execution time of only 1/24th that of WMMSE. b, Link scheduling 
under orthogonal multiple access. The generic link scheduling problem and 
its corresponding node-weighted undirected conflict graph (first two panels 
from the left). Comparison of the performance of GCN-enhanced maximum 
weighted independent set heuristics compared with the baselines (right panel). 
The approximation ratios of the tested heuristics with regard to the optimal 
solutions are generated by the Gurobi solver111. A set of 500 random graphs 
generated from the Erdős–Rényi (ER) model76 are considered, with 100–300  
nodes and uniformly distributed node weight xv ∈ U(0,1). Consistently, the 
combination of GCNs with heuristics (denoted by the ‘GCN-’ prefix) outperform 
the sole heuristic approaches and a message passing algorithm112. In link 
scheduling71, such a higher approximation ratio can be translated to higher 
throughput in the network. CGS, centralized greedy search; CRS, centralized 
rollout search; GNN, graph neural network; LGS, local greedy search; 
MLP, multilayer perceptron; MP, message passing.
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description of the final-state particles in an event. Traditional particle-
flow reconstruction algorithms rely on a complex set of rules based on 
physicist-engineered features and are sensitive to detector imperfec-
tions and changing conditions. GNNs have emerged as a promising tool 
for modelling the complex underlying relationships between different 
detector measurements, embedded as nodes in a graph. GNNs allow 
simultaneous classification of particle types and regression of particle 
properties, leading to improved event reconstruction accuracy and 
improved physics measurements119. As reconstructed particles are 
often related to a collection of input detector measurements, spe-
cialized set-to-set loss functions, such as object condensation120, and 
hypergraph networks121 have been developed. A key advantage of GNN 
approaches is improved computational scalability in both training and 
inference122. Similar approaches can also be applied to identify particles 
originating from additional simultaneous collisions during particle 
beam crossing, known as pileup123. Recasting pileup identification as a 
node classification task, in which nodes represent particles and edges 
represent pairwise relations, GNNs are used to understand the complex 
structure of data to distinguish signal particles from pileup particles53.

Charged particle tracking. In HEP data analysis it is crucial to estimate 
as accurately as possible the kinematics (such as the position, direc-
tion and momentum of the particles at their production points) of the 
particles produced in a collision event. Tracking devices, placed close 
to the beam collision area and immersed in a strong magnetic field, 
can provide high-precision position measurements from which the 
trajectories of charged particles can be determined. This task, known 
as charged particle tracking124, is challenging because of the volume of 
data, noise and complexity of interactions with the detectors.

Traditional track reconstruction methods, based on combinatorial 
Kalman filters125, are computationally intensive. Reformulated as an 
edge classification task, with tracker hits as nodes and edges indicating 
prospective track ‘doublets’ (pairs of hits belonging to a track), GNNs 
can exploit the relational structure of data, enabling efficient and 

accurate track reconstruction56–58. It is possible to deploy compressed 
and quantized GNNs with hundreds of nodes and thousands of edges 
with latency in the order of microseconds126,127 with the HLS4ML Python 
package128,129. Nuclear physics experiments have also explored GNN 
tracking for trigger applications130.

Jet tagging. Jets are sprays of particles produced through the strong 
force in high-energy collisions. Jets are complex manifestations of the 
originating quarks and gluons, but they contain structure and infor-
mation that help us determine their origin. The task of jet tagging is 
to infer, on a statistical basis, the origin of a jet based on its measured 
characteristics. Thus, jet tagging can provide crucial information for 
various searches and measurements involving the decay products 
of top quarks, W and Z bosons, Higgs bosons and, potentially, new, 
undiscovered particles. GNNs address this as a graph classification 
task, where a graph represents a jet and nodes and edges represent 
particles and their geometric relations, respectively, capturing the 
underlying complex structural information of the particles within a 
jet and delivering improved performance63,131,132. The JEDI-net architec-
ture131 has been implemented as a low-latency FPGA implementation133 
for real-time applications. Because GNN jet tagging algorithms run on 
multiple jets per event, and potentially billions of simulated and real 
events, approaches to leverage coprocessors, such as graphic process-
ing units (GPUs) and FPGAs, as a service to accelerate these algorithms 
have been pursued134,135. It is also possible to encode symmetries, such 
as Lorentz symmetry, or other physics-inspired inductive biases in 
GNN models136,137.

Anomaly detection is a related task, which can be viewed as an 
unsupervised way to detect novel jets in a collision event. Rather 
than applying the standard supervised learning paradigm, the goal 
of anomaly detection is to train an algorithm to learn the distribu-
tion or characteristics of the most common backgrounds, and thus 
look for outliers that are different along some dimensions. Typically, 
(variational) autoencoders are used138. GNN-based autoencoders, 

Proton beams

Collision event

Tracks

Jet

 

Jet taggingParticle tracking

Single event identification

Jet

Jet

MET

Lepton

Hadron
calorimeter
energy

Electromagnetic
calorimeter
energy

Collision
point

Calorimeter energy clustering

Fig. 3 | Visual representation of a collision event at the Large Hadron Collider 
and several graph neural network tasks. Proton beams (red arrows) cross 
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Four examples of constructing graph-structured data are shown for the tasks 
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MET, missing transverse momentum. The figure is adapted from ref. 24, CC BY 4.0 
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in which individual reconstructed particles are the nodes, have been 
applied to identify both anomalous events and jets138,139. Models equiv-
ariant to Lorentz transformations have also been explored140. Finally, 
there is notable interest in deploying such GNN anomaly detection 
algorithms in the real-time event selection system at the LHC141.

Materials science
The versatility and flexibility of GNNs for irregular data have made 
them well suited for applications covering the breadth of the materials 
space in the materials sciences. The rapid introduction and adoption of 
GNNs in the materials sciences have been motivated by several critical 
challenges. Traditionally, evaluating materials for their potentially use-
ful properties is a resource-consuming and time-consuming process 
often involving complex synthetic procedures and characterization 
techniques, or computationally expensive simulations with ab initio 
modelling (such as density functional theory). At the same time, build-
ing viable machine learning models to predict these properties often 
requires extensive feature engineering and domain-specific knowl-
edge for a given material and property, which were rarely transfer-
able across the materials space. In this domain, GNNs have been able 
to make substantial breakthroughs as broadly applicable models for 
materials and have been successfully used in property prediction and 
screening, molecular dynamics simulations and the inverse design of 
new materials28,142 (Fig. 4a).

Material property prediction. Fundamentally, the structure of a 
material at the atomic level can be represented as a materials graph 
or crystal graph with atoms as nodes and with edges encoding spatial 
information between these atoms, such as their distances and angles. 
Structure–property relationships of materials can then be learned as 
either node-level tasks for atomic properties (for example, charge, 
magnetic moments, local electronic states) or as graph-level proper-
ties (for example, formation energies, band gaps, bulk moduli and a 
myriad of other functional properties). GNNs can be used to predict 
the properties of glassy materials, such as particle propensity, to under-
stand the long-term dynamics of the system143 or the band gaps of com-
plex disordered crystals, aided using a multi-fidelity transfer learning 
approach144. GNNs have also successfully predicted the synthesizability 
of a material145, which is a key property for screening which materials 
could be experimentally realized in the laboratory.

The architectures of GNNs have evolved over the years to better 
leverage the geometric information of atomic structures and their 
atomic local environments and improve the prediction accuracy of 
material properties (Fig. 4b). SchNet60 and CGCNN62 are the earli-
est examples of message passing GNN models for periodic systems 
encompassing distance-based edges encoding the material structure 
and node updates. Building on top of this message passing framework 
for materials, a succession of novel model architectures have been 
introduced with better geometric learning capability. For instance, 
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MEGNet146 incorporates additional features such as residual connec-
tions and edge and global state updates. Subsequently, it became 
evident that the existing models overlooked the spatial orientations 
between atoms, a piece of pivotal directional information for structural 
fidelity. This limitation motivated the development of models such as 
DimeNet147, ALIGNN148 and M3GNet (ref. 149), which include informa-
tion about the angles between atoms. DimeNet incorporates angular 
embeddings directly in the message passing process whereas ALIGNN 
creates an additional line graph wherein nodes represent interatomic 
bonds and edges represent the bond angles. These models use scalar 
features such as interatomic distances and angles that are invariant to 
translation and rotation. Alongside such scalar features, other GNN 
models, such as NequIP150 and PaiNN151, encompass equivariant opera-
tions which preserve transformations. Beginning in 2022, equivariant 
transformers such as TorchMD-NET152 and Equiformer153 have emerged 
as a new class of models that combine the strengths of transformers 
and equivariant features.

Accelerating molecular dynamics simulation. A subset of the 
property prediction problem is the prediction of the total potential 
energy and atomic forces of the system, which can be used to perform 
geometry optimization and molecular dynamics simulations. Molecu-
lar dynamics serves as a powerful tool to understand the dynamical 
processes and evolution of materials over time at the atomic level. 
This process traditionally requires expensive quantum mechanical 
evaluation of the atomic forces for every time step. GNNs utilizing 
angular information and equivariance-preserving message passing 
provide an inexpensive method for obtaining forces for simulations, 
achieving near ab initio performance with accuracies of <0.1 eV Å–1. 
Although other machine learning approaches have also been used 
to predict forces, such as structural descriptor-based methods154, 
GNNs possess several appealing advantages. For example, the ability 
to provide compact embeddings of local atomic environments for 
systems or datasets containing many unique elements, which struc-
tural descriptors struggle to do155. This characteristic has led to the 
rise of ‘universal potentials’ which can be used for systems of arbitrary 
composition across the periodic table, rather than a narrow subset of 
elements. Successful demonstrations of universal potentials using 
GNNs such as M3GNet (ref. 149) and ALIGNN156 have been performed, 
with these models showing broad applicability to materials with com-
positions across the periodic table. This approach could be used to 
greatly accelerate materials discovery by not only predicting stable 
materials from existing experimental databases of crystal structures 
but also performing optimization on new enumerated structures with 
no known structures149.

Data-driven inverse design. Beyond using GNNs as a tool for high-
throughput screening of materials and molecular dynamics, recent 
efforts have leveraged these architectures with generative models to 
generate entirely new materials in a data-driven manner, conditional 
on some desired property. GNNs provide a promising avenue for the 
data-driven inverse design of materials, a long-standing challenge 
in the field157. Using G-SchNet158, for example, molecules can be con-
structed one atom at a time by relying on the GNN to predict the prob-
ability of the next atomic position. In another approach, CDVAE159, 
crystal structures are generated via a diffusion process, where a GNN 
is trained to denoise a noisy structure. Using CDVAE, new materials 
that exhibit unique 2D structures160 or superconducting properties161 
were discovered. A shared theme to these generative approaches for 

materials structures is the utilization of the GNNs to provide effective 
low-dimensional embeddings of the structures to be used in various 
decoder architectures.

Current challenges and opportunities. GNNs are an effective class 
of machine learning models for materials science for various different 
tasks. At the same time, there is still much room for improvement in 
these models. Known challenges of GNNs, such as over-smoothing 
and limitations of global pooling for graph-level predictions, could 
hamper the effective prediction of material properties. Moreover, 
as highlighted by the Open Catalyst competition162, the prediction of 
properties of noisy or imprecise input structures is an ongoing grand 
challenge. Most critically, GNNs are also well known to be data-hungry 
models. This aspect presents a problem for materials science where 
datasets are generally many orders of magnitudes smaller than in 
other domains such as computer vision. Apart from purpose-built 
large-scale materials databases, most materials problems require 
machine learning models to work well with, at most, hundreds of 
labelled data samples. Consequently, new developments to GNN model 
architectures and methods for improving data efficiency and out-of-
distribution performance such as model pre-training are needed to 
enable the widespread application of GNNs in this domain.

Biology
Networks (or graphs) are ubiquitous across all scales of biological sys-
tems (Fig. 5a). In the molecular world (0.1–10 nm), biomolecules such 
as proteins and small-molecule drugs are formed by atoms and bonds, 
which can be represented as graphs. Numerous protein functions are 
jointly carried out by protein complexes or pathways (10–100 nm), 
which are sub-graphs in the global protein–protein interaction net-
works. At the genomic level, gene regulatory networks extracted 
from transcriptomic data describe the inhibition, activation and 
co-expression relationships and genetic interactions among genes. 
Many biological processes (100 nm) are connected and contribute to 
various phenotypes at the cellular level (10 µm), or in tissues (1 cm) 
and complex organisms (10 cm) of humans (1 m). Popular databases 
organized such knowledge of biological processes in graph-like forms, 
such as Gene Ontology (GO)163. At the population level (1 m–103 km), 
individuals are also linked in a network through common genotypes, 
phenotypes, geolocations and other factors to study complex diseases.

The above biological entities and relations possess a higher degree 
of irregularity and heterogeneity characterized by the underlying 
complex topology. GNNs are well suited to model those types of bio-
logical data as the relational inductive bias encoded in GNNs naturally 
describes the graph-structured information in biological networks.

Protein structures and functions. GNNs provide natural ways to 
model protein structures, where amino acids or heavy atoms are 
represented as graph nodes and spatial relations (proximity or dis-
tance) are encoded as edges. AlphaFold164, the state-of-the-art protein 
structure predictor, is arguably the most notable example of GNN 
application in biology. The key idea of AlphaFold is formulating protein 
structure prediction as a graph inference problem, where the edges 
to be inferred reflect the spatial proximity of residues in the 3D space 
(Fig. 5b). The remarkable prediction accuracy of AlphaFold, as demon-
strated by comprehensive evaluations164 and in the CASP14 challenge 
of protein structure prediction165, has suggested the importance of 
domain-guided design principles for GNNs in real-world applications 
in biology.
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In addition to protein structure prediction, GNNs are also widely 
used in structure-based protein sequence design (inverse folding) prob-
lems30, where the goal is to design a protein sequence that can fold into a 
desired structure, that is, p(sequence|structure). Here, methods such as 
ProteinMPNN30 used GNNs as the structure encoder to learn representa-
tions of the 3D structure input and guide the prediction of sequences. 
Invariant geometric features (such as distance, direction, dihedral 
angles and orientation frames) are often derived from the protein struc-
ture and used as features for nodes and edges to learn information-rich 
protein representations166. Furthermore, as a structure encoder, the 
representations learned by GNNs have substantially benefited a wide 
range of applications, including protein function annotation167, fitness 
prediction168, stability prediction169 and many intermolecular predic-
tions, such as protein–protein interaction170, protein–ligand binding171 
and the binding pocket or interacting surface172.

Apart from predictive models, generative models for proteins 
have recently been extensively studied by the community which focus 
on generating protein sequences or structures with a desired function 
(also known as protein design). For example, GNNs are used as structure 
encoders and decoders in other generative machine learning frame-
works, such as diffusion models173, to design novel protein structures 
with a specified property174 or generate binding structure175.

Small-molecule drug discovery. The chemical structure of a drug is 
naturally described as a graph, with atoms as nodes and chemical bonds 
as edges. For this reason, GNNs can be used to model small-molecule 
drugs for various applications in drug discovery, including property 
prediction31,32,60, drug target identification60, lead optimization60 and 

others176. The applications of GNNs in small-molecule drug discovery 
can be categorized into prediction and generation tasks. In prediction 
tasks, GNNs are applied to learn the molecule to property relation-
ship, such as the predictions of toxicity, efficacy, binding activity to 
targets and side effects177–179. General GNN architectures have been 
specialized to incorporate the domain knowledge of small molecules, 
such as including chemical information as node or edge features31 and 
decomposing the molecular graph into semantic substructures known 
as junction trees82. The recent progress in geometric learning has also 
led to new GNN architectures, known as equivariant GNNs180, for 3D 
molecular structure modelling, in which the non-linear transforma-
tions are specifically designed to respect the physical symmetry (such 
as rotation and translation) in the 3D space. High-quality benchmark 
datasets have been used to evaluate GNNs for molecular property 
prediction61,181.

As with proteins, the generative modelling of molecules has also 
gained interest, and GNNs have been coupled with generative machine 
learning frameworks, such as variational autoencoder82 and diffusion 
models173, to generate an ensemble of molecular conformations78 and 
molecules with desired functions182. A representative generation task 
is the target-conditioned molecule generation, where the goal is to 
design a small-molecule drug that can dock into the binding pocket 
of a given target protein (Fig. 5c). Recent studies paired equivariant 
GNN architectures with diffusion models to build models for molecule 
generation183. Conditioned on the protein binding pocket structures, 
equivariant GNNs are used to predict the atom types and coordinates of 
a fit molecule. The prediction process often involves multiple iterations 
of message passing to update the representation of the nodes and/or of 

a   Biological systems explored with GNNs b   Protein structure prediction

c   Target-conditioned molecule generation
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Fig. 5 | The ubiquity of networks (or graphs) in biological systems. 
a, Representative biological systems that can be naturally explored with graphical 
neural networks (GNNs) from nanoscale to macroscale: small molecules, proteins, 
gene regulatory networks, protein–protein interaction networks, Gene Ontology 
(GO) graph, heterogeneous drug–target interaction networks and patient–patient 
similarity networks. Nodes and edges are defined for every biological system. 
b, AlphaFold29 is the state-of-the-art protein structure predictor. AlphaFold takes 
protein sequences as input and implements a message passing-based module called 

Evoformer to iteratively refine single (node) and pairwise (edge) representations of 
residues. It thus predicts the 3D coordinates for the input protein from its sequence, 
that is, p(structure|sequence) c, Target-conditioned molecule generation refers to 
the task of designing small-molecule drugs that have binding affinity with the target 
protein binding pocket. Conditioned on the graph built from the target, GNN-based 
generative models have been widely applied to generate novel ligands with desired 
target binding affinity183–187.
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the edges and refine the predicted atom types and coordinates. Domain 
insights are also incorporated to guide molecule generation. For exam-
ple, inspired by the traditions in the drug design process, some genera-
tive models183 chose to decompose molecules into scaffolds and arms 
and generate them separately with decomposed priors in considera-
tion of the different roles of ligand atoms. Enabled by GNNs and other 
generative machine learning frameworks, target-conditioned molecule 
generation has shown promising results for generating molecules 
that are chemically valid and novel with improved properties183–187. 
Nevertheless, many interesting questions and challenges remain, such 
as ensuring the synthesizability of generated molecules, given com-
mercially available molecules as building blocks, and simultaneously 
optimizing multiple properties in the generation process.

Other applications of GNNs in biology. In addition to the applica-
tions of GNNs in modelling proteins and small molecules, research 
efforts have explored the potential of GNNs in other levels of biological 
systems to address fundamental questions in biology and healthcare. 
Some examples include single-cell RNA data analyses — GNN-based 
models have been developed to learn low-dimensional embeddings 
that capture the cell–cell relationships characterized by gene expres-
sion and transcriptional regulation information in single-cell RNA data, 
which inform downstream tasks such as data imputation, cell clustering 
and regulatory network inference188,189; network medicine — GNNs have 
increasingly become a key instrument in network medicine, aiding in 
the development of predictive models and therapeutic strategies190,191 
and the prediction of drug–disease associations55, drug–drug and 
drug–target interactions179,192, which are problems crucial for important 
applications such as identifying biomarkers of disease and repurposing 
drugs54,193; and healthcare and population health — beyond the molecu-
lar and cellular scales, GNNs also have notable impacts on a larger scale 
in healthcare and population health, such as processing and analysing 
biomedical imaging194,195 and electronic health records196,197.

Software and hardware
With the advancement of GNN algorithms and their applications, com-
putational challenges, encompassing both training and inference, 
have rapidly emerged as limiting factors. For instance, the challenge 
of handling extra-large graph sizes affects memory and bandwidth. 
Scalable and distributed training poses difficulties for current train-
ing platforms and strategies. The demand for high-throughput and/or 
low-latency inference pushes the boundaries of existing hardware.

Despite these challenges, recent innovations in software and hard-
ware have stimulated the development of new GNN architectures and 
their deployment mechanisms. On standard GPU platforms, lead-
ing frameworks such as PyTorch Geometric (PyG)198 and Deep Graph 
Library (DGL)199 excel in optimizing data throughput. They leverage 
GPU acceleration, sophisticated CUDA kernels and efficient batching 
methods.

Furthermore, certain applications, especially in domains such as 
HEP, require exceptional inference speeds combined with energy effi-
ciency. For such requirements, custom hardware designs using FPGAs 
or application-specific integrated circuits often outperform GPUs 
and CPUs by marked margins. The HLS4ML package129, for instance, 
is specifically designed to enhance machine learning inference on 
FPGAs and is currently integrating GNN operations from PyG198. Simul-
taneously, FlowGNN200 offers a specialized FPGA-based solution, opti-
mized for a diverse set of GNN models, emphasizing graph structures 
and computational sparsity.

Open challenges and outlook
Although GNNs show remarkable promise in various electrical engi-
neering and scientific applications, there are opportunities for further 
enhancement to fully realize their potential. These areas of improve-
ment also pave the way for compelling future research trajectories 
in GNNs.

Data scarcity
Similar to most deep learning methods, abundant high-quality data 
are an essential factor in GNN performance. Data scarcity is a shared 
problem between electrical engineering and the scientific domains 
and hampers GNNs from unleashing their full potential in real-world 
problems. Considering, for example, using GNNs for EDA, to achieve 
accurate circuit property prediction, one must first gather a substantial 
volume of labelled data, often through time-consuming simulation or 
synthesis201. Yet a challenge arises as there is no established infrastruc-
ture to accelerate such data collection. Moreover, there is no standard 
graph format that raw EDA data can be seamlessly transformed into103. 
The varied representations, such as directed acylic graphs (DAGs)202 or 
directed hypergraphs90, complicate benchmarking processes. A similar 
problem has been shown with data acquisition in wireless networks203, 
where real-time communication data are often extracted in various time 
granularities depending on the capturing device. The development 
of standardized data collection infrastructures is then necessary to 
facilitate standard data collection.

Data scarcity issues also hinder GNNs from having a greater impact 
on scientific applications. In chemistry and biology domains, data label-
ling from the wet laboratory is expensive in both time and resources204. 
Fortunately, abundant data are sometimes available from well-studied 
areas, but these may have different distributions compared with less 
explored yet scientifically intriguing regions. Therefore, transfer learn-
ing of GNNs and enhancing out-of-distribution generalization of GNNs 
have emerged as viable strategies to address the data scarcity issue205. 
Notably, with such a goal, the field of electrical engineering offers 
insights: researchers with a rich history in information theory have 
presented multiple tools that could help understand the generalization 
capability of GNNs and foster the development of more adaptable GNNs. 
A case in point is the information bottleneck method206, integrated 
into GNN model training in 2022 (ref. 207). The model captures only 
the essential information from data features, enhancing its prediction 
accuracy, out-of-distribution generalizability and model interpretation.

Real-time computation
Real-time inference boasting minimal latency is indispensable for 
numerous practical GNN applications. For instance, in HEP, GNNs must 
process particle hit data within a strict time frame matching that of 
real-time LHC experiments. Given that the detector harvests collision 
data every 25 ns, any GNN latency surpassing this limit risks overflowing 
memory buffers, leading to data loss208. Similarly, tasks such as power 
allocation and link scheduling in wireless networks demand instantane-
ous processing. A case in point is the ultra-reliable and low-latency com-
munications in 5G, which mandates sub-1 ms latency while sustaining 
a downlink speed of 20 Gbps209. Therefore, the need to expedite GNNs 
to meet these real-time requisites cannot be overstated.

Electrical engineering techniques, especially in hardware accelera-
tion, emerge as highly promising avenues to address the challenges 
posed by GNNs. Computing hardware can be properly tailored to deal 
with the irregular nature of graph data and message passing mecha-
nisms innate to GNNs. These tailored hardware solutions, whether 
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through FPGAs or application-specific integrated circuits, promise 
speed and energy enhancements over conventional GPUs and CPUs. 
Worthwhile exploration directions encompass process-in-memory and 
emerging memory-based techniques210,211, exploiting graph structures 
and sparsity200,212 and conducting algorithm and hardware co-design.

The challenge of graph data privacy
The rising utilization of GNNs in areas with sensitive graph data, such as 
healthcare data213 and device data in a fragile network system, highlights 
the imperative to address the relevant privacy of graph data. When 
applying GNNs to this type of data, it is crucial to ensure sensitive data 
details remain confidential. However, the inherent interdependence of 
graph data exacerbates the privacy challenge: the leakage risk intensi-
fies because one data point’s information might be intertwined with 
another’s. Recognizing this complexity, there has been a surge in efforts 
to develop privacy-preserving GNN models214,215. These models strive to 
ensure their parameters remain insensitive to specific nodes or edges 
in the training graph. Machine unlearning, another frontier in privacy 
preservation, emphasizes the rights of data providers to retract their 
data from the dataset used for training a model216,217. This field explores 
efficient ways to modify trained models when users revoke their data, 
with the goal of approximating a model trained without the rescinded 
data. Whereas effort has been made in creating private GNN models 
and pursuing GNN unlearning218, many current methods either exhibit 
heightened privacy vulnerability or are built upon oversimplified 
architectures. There remains a notable path ahead.

Privacy concerning graph data typically hinges on the indistin-
guishability of algorithmic (say GNN) outputs when the input graphs 
vary by a single node or edge. Such privacy assurance is contingent on 
the comparison of the distributions of such outputs219.

Conclusions
GNNs, with their intrinsic ability to handle sparse, irregular and rela-
tional data, have emerged as a potent instrument for the intricate graph 
data found in diverse applications.

Traditional algorithms in electronic design, wireless communica-
tion and power systems often involve time-consuming optimization 
steps, which can be swapped out for the faster methods built upon 
GNNs. This change offers electrical engineering researchers a chance 
to boost their work with the efficiency of GNNs. There is also room for 
electrical engineering experts to make GNNs even better. They can 
tackle current GNN challenges by designing dedicated hardware for 
quick, on-the-spot applications or by designing better model architec-
tures or more principled training strategies for areas where there are 
not many labels but need GNNs to be out-of-distribution generalizable.

As we find ourselves balancing between classical electrical engi-
neering and the new world of machine learning, GNNs, backed by care-
ful research and teamwork, have the potential to bring fresh, exciting 
changes to the field.
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