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Key points

o Graph neural networks (GNNs) hold immense potential for
harnessing data power to effectively tackle a range of application
challenges in electrical engineering.

e Research in information science and cutting-edge hardware within
electrical engineering offer valuable insights into the practical
implementation of GNNs, overcoming their limitations related to
model reliability and computational efficiency.

o GNNs find extensive applications in various scientific domains,
including physics, materials science and biology. Electrical
engineering methodologies can enhance GNN performance in
these fields and, potentially, lead to significant impacts in science.

Introduction

Since the beginning of the twenty-first century the field of electrical
engineering has made great strides. For example, the development
of robust and efficient telecommunication networks has revolution-
ized global communication, underpinned the Internet and enabled
instantaneous, worldwide connectivity'. The field of information and
signal processing has redefined our interaction with digital media
and enhanced our capabilities in data analysis and interpretation®.
Modern advances in circuit design have also led to miniaturization
and paved the way for portable computing and the Internet of Things>.
Electrical engineering has embarked on a new era — one of advanced
communication systems, machine learning and neural networks — in
whichthe need for ultra-efficient hardware and system design, coupled
with ultra-fast, highly accurate information processing algorithms,
has become paramount.

Meanwhile, artificial intelligence (Al) has undergone a transfor-
mation, demonstrating its extraordinary ability to distil knowledge
from vast amounts of data and enhance human decision-making and
predictive abilities across awide range of applications. Representative
examplesinclude AlphaGo beating the best human players at the game
of Go*,and large language models performing language understanding
and reasoning>®.

Among the various Al tools, graph neural networks (GNNs) have
emerged as powerful techniques for processing irregular or non-
Euclidean data, such as graphs or point clouds™. GNNs have also shown
tremendous potentialinnumerous electrical engineering tasks such as
forecasting and controlling the dynamics of electrical and electronic
systems. Conventional methods based on assumptions, simulations
or heuristics often fall short in terms of precision, efficiency and opti-
mality when applied to real-world systems’. Luckily, many electrical
engineering systems canbe naturally represented as graphs or gener-
ategraph-structured data, opening the door for GNNsto leverage the
power of dataand provide improved forecasting and control strategies.
For instance, in the domain of wireless communication, GNNs can
encode the channel states between multiple user devices and access
points, enablingimproved understanding and optimization of commu-
nication processes'® ™, Similarly, in power systems, GNNs can encode
the structure and dynamics of power grids, facilitating tasks such as
optimal power flow and prediction of power outages'®®. GNNs can
also be used to predict latency and sizes of circuits without relying
on time-consuming simulations'*** and provide the representations

of circuit data to accelerate the iteration process in circuit design
loops?®>?. Besides the use of GNNs in strictly related electrical engi-
neering applications, GNNs can also be used in other domains such as
physics?*2¢, materials science?* and biology* ..

Despite the opportunities, GNNs face a generalization issue
across the diverse scientific domains due to the gap between the less
explored, yet promising, regimes and the well-explored ones in which
most labelled data are found. Principled theories grounded in the
studies of electrical engineering, including information theory and
signal processing, offer promising directions to refine GNN architec-
tures and their training algorithms to tackle this challenge. Moreover,
the effective success of Al, and particularly that of GNNs, hinges on
substantial computational power. Specifically, the processing of
irregular data involves random memory access, often leading to a
large memory footprint. This aspect highlights the need for dedicated
hardware support, a requirement that electrical engineering is well
positioned to address.

Here we present a selection of application examples to discuss
the ability of GNNs in addressing challenges in electrical engineer-
ing and the potential of electrical engineering in overcoming GNN
limitations across diverse domains. We start with a concise overview
of basic GNN architectures. We then delve into representative GNN
applications in electrical engineering, physics and biology to illus-
trate the opportunities and issues that arise at the intersection of
GNNs with different disciplines. We conclude by offering an outlook
onlimitations, emerging possibilities and the potential socialimpact
of GNN developments.

Graph neural networks

GNNs process datathat canbe represented as graphs. Agraph G consists
of anode setV and an edge set E. The structure of G can be denoted
as an adjacency matrix A € RV where A,, =1ifthereisanedge
(u,v) € Eand O otherwise. Here, we use a simple unweighted graph as
anexample. The processed graphs may also be associated with features,
where eachnode v € V has a feature vector X,€ R, where Fdenotes a
dimension. All feature vectors are collected in X= [X/, XJ, ...,X|TV|]T,
where Tis the transpose operation.

A GNN works as a function f that combines node features
and graph structures in_learning node representations:
H=fA,X)=[H] HI, ..., H|TV|]T e RWI*four where F,, denotesadimen-
sion. Learned node representations can then be used for various tasks
tobediscussed later. A fundamental inductive bias for modelling graph
datais that the order of nodes in the graph should not affect the rep-
resentations associated with them, which is named permutation equiv-
ariance. Specifically, take a permutation matrix P€ RV A proper
architecture of GNN f should satisfy PH=Pf(A, X) :f(PAPT, PX).
The architectures of GNNs discussed here satisfy this property.

Depending on the design motivations and derivations, GNNs can
bedistinguished into two categories: message passing neural networks
(MPNNs; sometimes called spatial GNNs)***° and spectral GNNs***
(see Box 1 and Supplementary information). When using GNNs in
real-world scenarios, several limitations are noteworthy and deserve
careful consideration by practitioners.

Limited expressive power

The expressive power of amodel depictsits capability to approximate
complex functions. Traditional feed-forward neural networks, for
instance, are known for their capacity to approximate any continuous
function withina compact space*°. However, GNNs — including MPNNs
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Box 1| Overview of graph neural network architectures

As the name implies, message passing neural networks (MPNNs)
follow a message passing procedure along the edges of the input
graph to learn node representations (see the figure, panel a).

In learning the representation of a node v, a single MPNN layer first
aggregates messages, that is node representations Xff), from its
neighbours u € N(v) and then combines the aggregated messages
with v's own representation X to obtain an update X&*". Here,

t denotes the layer index. By stacking multiple MPNN layers
sequentially (t=0,1,...,L-1) and treating the output representations of
the previous graph neural network (GNN) layer as the input to the
current GNN layer, the final node representations can be used as
the ultimately learned representations H = X© which can be further
used to make downstream predictions. An MPNN consists of two major
operations: aggregating (AGG) neighbours’ features; and combining
aggregated features to update (UPDATE) one’s own features.

A spectral GNN typically uses multiple-hop graph convolution
(see the figure, panel b). The obtained Z will pass through a neural
network to either make predictions or go through another round
of graph convolution. The key idea of spectral GNNs lies in signal
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filtering. In classical signal processing, filtering refers to the
amplification or attenuation of a signal at different frequencies.
Spectral GNNs apply polynomial filters to the graph signals in the
spectral domain. Suppose the graph signals have multiple channels.
The filtering process to generate the output signal Z in the ith
channel follows Z,;= Y UG W] ij/\l)UTX:,, where X.; denotes

the input signal X in the jth channel, and [W]; is the ith-row, jth-column
entry of a parameter matrix W, 0<[<K, which denotes a polynomial
coefficient of the filter.

GNN architectures should keep the predictions unchanged when
the input system is shifted according to some physical principles
(see the figure, panel €). GNNs found extensive use in analysing
irregular geometric objects, such as particle hits in Large Hadron
Collider (LHC) detectors®?® or molecules with 3D structures®. These
objects can often be conceptualized as point clouds, where each
point v is associated with a coordinate vector in addition to other
features. Graphs can be constructed to capture relationships among
these points, such as k-nearest neighbour relations. GNNs can then
be applied to the constructed graphs.
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and spectral GNNs — lack this capacity when it comes to approximat-
ing continuous functions defined on graphs*"*2. Practical methods
to deal with this issue often rely on using higher-order tensors***,

or performing augmentation of node features or graph structure***,

Over-smoothing

Many GNN architectures such as graph convolutional networks
(GCNs)* adopt mean pooling to aggregate the features both of the
neighbours and of the centre node. These GNNs suffer from an over-
smoothing problem*. As the depth of the GNNincreases, the acquired
representations of nodes that are closely positioned on the graph
become increasingly alike. This phenomenon hinders the predictive
performance of GNNs in tasks where closely adjacent nodes on the
graph arerequired to produce notably distinct predictions.

Over-squashing

The dimensions of node representations usually do not scale along
with the model depth. This characteristic, when combined with the
aggregation of neighbours’ representationsin MPNNSs, can potentially
lead to an over-squashing issue***°. More specifically, node represen-
tations constrained by limited dimensions often struggle to maintain
high-quality feature information from distant nodes within the graph.
However, this over-squashing problem can be mitigated by rewiring
edges to enhance connectivity across various graph sections*®,

GNN-enabled learning tasks

The application of GNNs across diverse domains can be broadly clas-
sified into three types of learning tasks: predictive, optimization and
data generation tasks (Box 2).

Predictive tasks
Predictive tasksinfer missing attributes or properties of entities within
agraph. Depending on the number of nodes involved, predictive tasks
canbe classified into node-level, edge-level and graph-level predictions.
GNNs are extensively used to solve the predictive tasks across
various applications. For instance, node-level predictions find use
in detecting fault locations in power grids*>*' and identifying noisy
particle hits from collision events in Large Hadron Collider (LHC)
experiments®>*, Edge-level predictions are utilized for predicting
potential drug-disease associations>***, and for reconstructing par-
ticle tracks in the LHC**%, In node or edge-level prediction tasks, the
predictive labels can be determined by the characteristics and graph
structure surrounding the pertinent nodes or edges. For instance,
the likelihood of a power outage could be inferred from the weather
signals captured by nearby sensors". GNNs can effectively learn such
relationships based on observed labels from different graph sections
and extrapolate this understanding across the entire graph. Note that
the permutation equivariant property of GNNs affords a valuable
inductive bias for this generalization, thereby enhancing their pre-
dictive capability. Graph-level prediction tasks include predicting
circuit performance'’*>*, determining molecular properties such as
electronic properties and solubility”*°"*?, and identifying the type of
particle decaying process after collisions®***. Traditional techniques
to measure graph properties in these applications often necessitate
the execution of time-consuming and expensive simulations, analy-
ses or experiments®’. GNNs may approximate the complex relation-
shipbetweeninput and output, and bypass such a costly process viaa
direct estimation. Consequently, GNNs offer a notable improvement
in efficiency in addressing prediction tasks.

Optimization tasks

Numerous electrical engineering applications rely on solving optimiza-
tion problems. Many of these problems have intrinsic graph structures
that may highly impact the optimization outcomes. Notable examples
include resource allocation problems in wireless networks'*'**% and
optimal power flow in power grids'***“¢, as well as the low-density parity-
check decoding problem where the relationship between variable
nodes and check nodes form a graph®”®S,

GNNs canbe used to accelerate the procedure of solving the opti-
mization problemsin these applications. A straightforward approach
istotreatthe problemasa predictive task, which could involve collect-
ing a set of problem configurations G,, G,, ... and the corresponding
optimal solutions ®*(G,), w*(G,), .... A GNN can be trained to map
directly from the problem configuration G, to the corresponding opti-
mal solution w*(G;). However, in practice, it has been observed that a
neural network model trained in this manner tends to struggle with
generalization or delivering high-accuracy solutions®. The conjectured
reason behind this problem s that the optimal solution to an optimiza-
tion problemis typically more numerically sensitive to variationsin the
problem configuration, compared with a standard predictive task.
Consequently, ahigher demand on the model’s ability to generalize is
placed on optimization tasks.

A more compelling approachis to harness the algorithmic struc-
ture inherent in some traditional methodologies, allowing neural
networks to supplant the most time-consuming or uncertain aspects.
An important approach that follows this idea is known as algorithm
unrolling or unfolding’. This method prompts the unrolling of the
iterative processes often foundintraditional algorithms and lets GNNs
replace some parts of the iterative procedure with abetter data-driven
operator. Suppose eachiterative step can follow w“? = g(w;G), where
the selection of function g often depends on the problem structure
and the system uncertainty £ Traditional approaches may yield a practi-
cally suboptimal gby assuming certain distributions of §, which results
inslow convergence rates or imprecise solutions. In this context, GNNs
canbeusedtolearnfromthedataandreplace the most uncertainand
potentially suboptimal part of g. Forinstance, GNNs have been utilized
toimprove the unrolled belief propagation algorithmby learning from
the data, which yields faster and more accurate low-density parity-
check decoding®”*®. GNNs for optimization can also be applied to link
schedulingin wireless systems” 7 or to optimize power flow in power
systems'®186,

Data generation tasks

Many applications in electrical engineering and scientific domains
require practitioners to create objects with graph representations, such
as circuit layouts designed to fulfil certain size and area constraints™,
ormaterial designs with various mechanical and thermal properties”.
GNNs for graph data generation have emerged as apromising method
to solve these tasks.

Classical random graph models such as the Erd6s-Rényi (ER)
model” are not flexible enough to model the intricate distribution
ofreal graphs. These models usually use simplistic parameterization of
the graph distribution, whichis oftenimprecise to describe the actual
graphbehaviour. By contrast, GNNs offer far more expressiveness and,
thus, may consequently facilitate more accurate distribution modelling
in practice. GNNs can be integrated with many generative Al frame-
works for graph data generation such as variational autoencoder’,
generative adversarial network’ and diffusion models’”. In these
frameworks, GNNs are generally trained to map simple distributions;
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forexample, from the standard Gaussian distribution to the complex
distribution of graphs. Samples from the simple distribution canthen
betransformed to generated graph dataviathe trained GNNs. Recent
advancements demonstrate the superior performance of GNN-based
generative Al models in tasks such as conditional molecule data
generation® 2 and circuit design generation tasks® ™,

Applications
The versatility of GNNs enable their application in different fields,
from electrical engineering, in electronic design and wireless

communication, to life science. These applications benefit from elec-
trical engineering advancements, ensuring GNNs are both robust and
computationally efficient.

Electronic design

The functionalities in electronic systems and the complexity of their
design have experienced consistent growth in accordance with
Moore’s Law, driven by advancements across devices, circuits, sys-
tems and software. The design of electronic systems can be divided
into two maingroups: those encompassing analogue/radio-frequency/

Box 2 | Three categories of graph neural network-enabled learning tasks

Predictive tasks

Node-level prediction is concerned with predicting a specific
property, denoted as y,, of a node v € V within the graph G (see the
figure). This task is accomplished by training a model to map the
node representation H, output by the graph neural network (GNN) to
the property y,. Edge-level prediction focuses on predicting a specific
property, denoted as y,,, of a pair of nodes v, u € V within the graph G.
This task is achieved by training a model to map a combination of the
representations of the two relevant nodes, H, and H,, to the property
Y..- Commonly used combinations include the concatenation of H,
and H,, into a single vector, and the computation of the inner product
or the cosine similarity between H, and H,. Graph-level prediction
aims to predict a property, denoted as y;, of the entire graph G. This
task is often performed on datasets comprising multiple graphs. The
prediction can be made by pooling all node representations into a
graph-level representation, followed by learning a mapping from this
representation to the label y;. Pooling operations range from simple
summation or averaging to more complex hierarchical methods.

Predictive tasks

GNNs can predict the label of
a node, an edge or the graph
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Optimization tasks

The optimization problems can be generally denoted as minEgL(w; G, &),
where w denotes the optimization variables, G denotes’the problem
configuration represented as a graph, & denotes some randomness
(such as signal noises within the system) and L represents the objective
function (see the figure). The goal is to efficiently approximate the
optimal solution w*(G) with a specified degree of accuracy.

Data generation tasks

Typically, the graph generation process begins with a collection of
graph-structured data associated with specific properties, denoted
as (G, y,), where y, represents the property of G; (see the figure).

The objective is to generate graphs G that possess properties
complying with specific constraints y € Q. Typically, the generation
is also expected to be novel and diverse. The task essentially asks to
model a distribution of the graphs conditioning on the properties of
interest based on the graph dataset. LDPC, low-density parity check;
LHC, Large Hadron Collider.

Data generation tasks

GNNs can generate graph data
with certain properties

s 5,

Placement 3

Placement1  Placement 2

Circuit design
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mixed-signal functions (with similar requirements to those used for
analogue design); and those focused on digital functionalities. Over
the course of evolution, chip design processes have integrated arrays
of software tools operating across multiple levels of hierarchy. Referred
toaselectronic design automation (EDA) tools, these resources effec-
tively serve to automate chip design, reducing the time to market while
enhancing design quality®’.

Digital design. In the context of digital systems, designers primarily
focus onthe optimization of three performance metrics: power, speed
and area. However, the number of componentsin adigital chip canbe
much higher, often leading to extensive runtime for full chip devel-
opment. Notable progress has been made in the evolution of digital
full-flow tools, encompassing logic synthesis and physical design.
Consisting of four main tasks, floor planning, placement, routing and
timing optimization, physical design takes most of the runtime. With
the increasing demand for enhanced chip functionality, the scale of
digital designs has grown to the point where running even non-optimal
or heuristics algorithms for the original nondeterministic polynomial-
time (NP)-complete problems poses notable challenges®. Machine
learning algorithms are being increasingly used to address various
problems in physical design. These algorithms effectively learn from
existing layouts and design knowledge and improve the turnaround
time and quality of solutions for unseen designs by providing early
estimates of the critical parameters. Graph structures are natural
representations of Boolean functions, circuits and layouts®. It is no
surprise that, compared with other machine learning techniques, GNNs
areabetter fit for the problem.

As of June 2024, commercial digital EDA tools, placement, rout-
ing and timing optimization steps are executed one after the other.
However, an optimal flow necessitates placement and atiming engine
to work together. A fast and accurate pre-route timing estimation is
therefore necessary for timing-driven placement as running routing
and static timing analysisiniterationis expensive. A possible solution
is the introduction of a timing engine-inspired GNN model that can
predict arrival time and slack at timing end-points without static tim-
ing analysis (Fig. 1a). Experimental results on real-world open-source
designs demonstrate that the proposed GNN framework has astrong
correlation with labelled data while being more than three orders
of magnitude faster than routing and static timing analysis-based
approaches®.

GNNshavealsobeenusedin otherareas within the physical design.
Forexample, if floor planningis posed as areinforcement learning (RL)
problem, anedge-based GCN architecture, capable of learning richand
transferable representations of the chip, can reduce the runtime of
floor planning from months to hours while giving comparable results®.
A GNN-assisted deep RL framework can also be trained to optimally
tune placement parameters of acommercial toolin acompletely unsu-
pervised manner and without domain knowledge®. The trained RL
agent achieves up to 11% and 2.5% wire-length improvements in just
one iteration, that is 20x and 50x% fewer iterations compared with a
human engineer and a state-of-the-art tool, respectively. k-Means
clustering can be used within the GNN-based framework to guide the
placement tool to optimally cluster cells leading to 3.9% wire length,
2.8% power and 85.7% performance improvement compared with
a commercial placer®. A framework that utilizes a long short-term
memory network and a GNN is proposed to predict post-route total
negative slack. Experiments show the prediction quality is within 5.2%
of normalized root mean squared error in early design stages on two

validation designs not included in the training®’. A graph attention
network (a variant of GNN)-based framework can be used to predict
routing congestion. Experiments show that the framework improves
prediction quality by 29%, and takes 19 s, compared with 10-60 min
required by other methods on a circuit with 1.3 million cells™.

Analogue design. In contrast to digital circuits, analogue circuits typi-
cally comprise fewer components. However, the number of performance
metrics in analogue circuits is higher and navigating the trade-offs
amongthe different parametersis complex. The typical analogue circuit
design process starts from a specification and goes through topology
selection, sizing and physical design steps. Although analogue physical
designsteps are similar to those of digital design, there are some unique
requirements to thisdomain (such as matching, symmetry and variation
tolerance) which make the process error-prone, non-optimal and often
in need of expensive design iterations. Although considerable efforts
havebeeninvested towards automating analogue design, progress has
been modest dueto the knowledge-intensive nature and widely varying
requirements typical of this domain®. Many tools have failed to encap-
sulate the intentions of expert designers and lacked the capability to
achieve generalization asthey have only been usefulin handling specific
classes of circuits™. The advent of Al hasinvigorated design automation
efforts by enabling tools to emulate the methods used by experienced
designers, effectively learning from them’*%,

The problem of analogue circuit sizing across technology can be
addressed, for example, by training an RL agent on one technology
node and then directly applying the trained agent to search the same
circuit under different technology nodes by virtue of similar design
principles among different technologies® (Fig. 1b). By mapping the
circuittoagraph, where transistors are represented as nodes and wires
asedges,aGCN*®isusedtolearnthe circuit’s topology representation.
Theoptimization problemis thensolvediteratively throughthe steps
ofaction vector generation, denormalization, refinement, simulation
and policy update. Experiments on transfer learning between five
technology nodes and two circuit topologies demonstrated that RL
with transfer learning can achieve a much higher figure of merit than
methods without knowledge transfer. GNNs have also been explored
in other areas in analogue circuit design, including topology gen-
eration”, circuit sizing”°”*%, parasitic prediction®’, performance-
driven layout'°°, automatic constraint generation'® and analogue/
radio-frequency design®'°%,

The use of GNNs in electronic system design is still in its early
stages. The need for handling more complex circuit characteristics
will necessitate the adoption of more complex graph structures, such
asdynamicgraphs or bipartite graphs®’. The practicality of executing
optimal algorithms might be limited by extensive runtime demands,
but this problemis common to both analogue and digital chip design.
Theintegration of GNN algorithms is essential to enhance efficiency by
identifying promising starting points and informed guesses, thereby
streamlining the optimization processin full chip development.

Process variationin analogue designisacrucial areathatrequires
more attention from the machine learning community'®. In digital
design, marked performanceimprovementis possibleif several physi-
cal design steps are combined into a single framework where timing,
routing and placement all happen simultaneously.

Resource allocation in wireless systems
In a wireless network, devices talk with each other through a shared
wireless medium. Similar to people at a cocktail party who need to
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Fig.1| Application of graph neural networks in electronic design
automation. a, Use of graph neural network (GNN) models in digital electronic
design automation (EDA) for timing optimization. The logic circuitis mapped

to graphs. GNN models are trained using these mapped graphs to predict net
delays and cell delays. Delays are propagated through net propagation layers
and cell propagation layers to estimate arrival time and slews at the timing
end-points. Toaugment model training and enhance performance, net and

cell delay predictions are used as auxiliary tasks. The GNN model, built on the
concept of path delay calculations, reduces the required GNN receptive field and
enhances model explainability and interpretability. The model consists of two

stages. In net embedding, the first stage, the model captures post-route Elmore
delay of nets from designs after placement. This stage utilizes a bi-directional
graph consisting of net edges and reversed net edges. In the next stage, delay
propagation, cell delays and computation of arrival time and slews are modelled.
b, Use of a GNN for transistor sizing in analogue EDA. Here, the circuit is
represented by atopology graph in which nodes are transistors and edges are
wires. Ina GNN-equipped reinforcement learning (RL) framework, the RL agent
is trained on one circuit, and the trained model is used to optimize new circuits
or the same circuitin different technology nodes. MLP, multilayer perceptron.
Panel bis reprinted with permission fromref. 96, IEEE.
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manage their volumes and orders of speaking to have meaningful con-
versations, resource allocation in wireless networks, such as transmit
power control and link scheduling, is critical to the function and per-
formance of wireless systems. Generally, these tasks are formulated
as optimization problems on graphs, where the nodes of the graph
capture devicesin awireless network, and the edges of the graph model
the wireless channels between them.

In infrastructure-based wireless networks, such as cellular and
Wi-Fi networks, resource allocation for wireless devices can be done
by dedicated base stations or access points within a single hop. For
example, mobile phones connect directly to their nearest base station
without any intermediary relays. For multi-hop wireless networks,
such as wireless ad hoc networks, wireless backhaul networks, device
to device networks and certain vehicle to everything networks, distrib-
uted resourceallocationis preferred asitis ofteninfeasible to dedicate
serverstoresourceallocationor collect the full network state at aserver
in a timely manner. GNNs are particularly well suited to solve these
distributed resource allocation problems.

Power control for communication rate maximization. In wireless
networks, raising the transmit power of one device can simultane-
ously increase the strength of the received signal at the intended
receiver and the unwanted signal (interference) at other unintended
receivers. Based on the wireless channels between all transmitters
and receivers, the task of power control is to optimize the transmit
power of each transmitter in awireless network to ensure areasonable
signal-to-interference-and-noise ratio at each receiver. The signal-to-
interference-and-noise ratio, in turn, determines the data rate of the
correspondinglink (link rate), using, for example, Shannon’s capacity
theorem. Common goals of power controlinclude maximizing the sum
rate of all links across the network and extending the lifetime of the
network by avoiding draining the battery of certain devices.

To build a GNN for power control (Fig. 2a), the wireless network
istypically modelled as an edge-weighted graph (V,E,H), where anode
v E V represents a transmitter-receiver pair and for allv,ueV,
aweighted edge (v, u) € E represents the channel state between the
transmitterinvand thereceiverinu (refs.12-14,16,66,104). Hdenotes
the channel state information matrix: the weight of a self-loop H,,
encodes the channel gain from a transmitter v to its intended
receiver v. Whereas the weights of other edges, H,, where u#v,
represent the gains of interference channels between a transmitter v
and other unintended receivers u. The problem of power control for
sum-rate maximization canbe formulated as to design a map w(-) that
generates a power allocation p from a channel state information
matrix H, that is p = w(H), to maximize the rate of data transition.
Finding the optimal power allocation w*(-) is NP-hard'®*. Previous
methods often adopted heuristics. GNNs can be used tolearna power
control heuristic p = p(H;0) with learnable parameters © from data.
The way to learn such GNNs is based on the principle of algorithmic
unfolding">1%, Specifically, one can design a specific GNN with
architecture inspired by the iterative algorithm weighted minimum
mean square error (WMMSE)'°?, denominated the unfolded WMMSE
(UWMMSE)™>1%,

Link scheduling for network utility maximization. A pair of wireless
transceivers that can directly talk to each other represent alink. In a
wireless network with N transceivers, there could be at most N2 links,
but not all of them can be activated simultaneously. Link scheduling
in wireless networks refers to the task of deciding which links in a

wireless network should be activated at a given time slot (potentially
along with other parameters such as transmit power or frequency).

Link scheduling (Fig. 2b) in multi-hop wireless networks under
orthogonal multiple access is often defined on a conflict graph (V£ x),
whereanodev € Vrepresentsalinkand the existence of an unweighted
edgebetweentwo nodes, (v,0,) € E, indicates that the corresponding
links cannot be activated simultaneously due to radio interference or
sharing the same wireless device. Anode feature x, captures the utility
of activating the corresponding link v.

The objective of link scheduling is to find a set of non-conflicting
links with maximum total utility, which can be formulated as finding
amaximum weighted independent set on the conflict graph'”’. As the
maximum weighted independent set problem is known to be
NP-hard'®®, in practice it is solved approximately via fast heuristics,
denoted as y = h(V,E,x). Conventional heuristics include greedy
search'® and distributed local greedy search (LGS)"'°. GNNs can be used
toaugment link scheduling heuristics in a hybrid pipeline” >, where a
GCN is followed by a conventional heuristic LGS. To be precise, we
considerlearnable topology-aware weights z = Y(V,E;0) generated by
the GCN ¥(-;0). These weights modify the utility of scheduling each
correspondinglink viathe element-wise product x®z. The graph with
modified utilities is then fed into a conventional heuristic A(-), which
generates adiscrete solutiony = h(V,E,x®z) guaranteed tobe aninde-
pendent set. Depending on the use cases, h(-) can be selected as differ-
ent heuristics, for example, centralized rollout search (CRS) and
distributed LGS are respectively used as the underlying heuristics of
hybrid heuristics GCN-CRS and GCN-LGS by Zhao et al.”’. Comparing
approximationratios of methods with regard to the optimal solutions
generated by the Gurobi solver™, the combination of GCNs with heu-
ristics (denoted by the ‘GCN-’ prefix) outperforms the sole heuristic

approaches and a message passing algorithm'?,

Other applications of GNNs in wireless systems. Other notable appli-
cations of GNNsin wireless systems include channel decoding in signal
reception, packet routing and computational offloading. In channel
decoding, the parity-check matrix can be represented as afactor graph,
and processed with GNNs®“®%, For packet routing in wireless networks,
GNNs are able to close the optimality gaps of conventional heuristics
for three different combinatorial optimization problems for routing™
and can enhance the shortest-path biased backpressure routing™*.
GNNs canbe used as efficient digital twins to predict the performance
of routing, replacing computationally costly network simulators in
quick evaluation of routing schemes™". In computational offload-
ing®, GNNs can be used to process both the computational context
(subtask dependency relationship) and the edge network topology.

Experimetal particle physics

Since 2019, GNNs have been widely adopted in high-energy physics
(HEP) across the energy, intensity and cosmic frontiers, thanks to their
unparalleled ability to handle the irregularly structured, hierarchical
and sparse data structures commonly found in the field** . Further-
more, thereis substantialinterestin applying GNN methodsinreal time,
especially toselect, filter and compress data using field programmable
gatearrays (FPGAs) and application-specific integrated circuits, needed
to deal with the extremely large data rates found in collider physics™’.
GNN applicationsin HEP can be categorized as node-level, edge-level
or graph-level learning tasks**°. Graph-structured data can be used
for tracking charged particles, tagging jets, clustering calorimeter
energy deposits and identifying signal events (Fig. 3).
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Fig.2| Graph modelling and performance evaluations of graph neural
network-enhanced resource allocation in wireless multi-hop networks.

a, Transmit power control under non-orthogonal multiple access. The generic
transmit power control problem, its graph representation and the corresponding
channel state information matrix (first two panels from the left). Sum rates
achieved by an unfolded weighted minimum mean square error (UWMMSE)
algorithm and two baseline methods in a numerical experiment with

10,000 instances of simulated multiple-input and multiple-output wireless
networks with 20 pairs of 5-antenna transmitters and 3-antenna receivers, and
Rayleigh fading channels under alow-noise regime'* (right panel). The UWMMSE
is composed of three unrolled weighted minimum mean square error (WMMSE)
layers with each layer having two 2-layered graph convolutional networks
(GCNs). The learnable components in UWMMSE enable the use of fewer layers
than the iterationsin WMMSE. The baseline WMMSE has 100 iterations, and

the truncated WMMSE (Tr-WMMSE3) is just the classical WMMSE limited

to 3iterations (for comparison with the 3 layers in UWMMSE). Compared

with WMMSE, UWMMSE increases the average sum rate by 61% with a per-
instance execution time of only 1/24th that of WMMSE. b, Link scheduling
under orthogonal multiple access. The generic link scheduling problem and

its corresponding node-weighted undirected conflict graph (first two panels
fromthe left). Comparison of the performance of GCN-enhanced maximum
weighted independent set heuristics compared with the baselines (right panel).
The approximation ratios of the tested heuristics with regard to the optimal
solutions are generated by the Gurobi solver. A set of 500 random graphs
generated from the Erd6s-Rényi (ER) model™ are considered, with 100-300
nodes and uniformly distributed node weight x, € U(0,1). Consistently, the
combination of GCNs with heuristics (denoted by the ‘GCN-’ prefix) outperform
the sole heuristic approaches and a message passing algorithm'2. In link
scheduling”, such a higher approximation ratio can be translated to higher
throughputin the network. CGS, centralized greedy search; CRS, centralized
rollout search; GNN, graph neural network; LGS, local greedy search;

MLP, multilayer perceptron; MP, message passing.

Particle-flow reconstruction. Particle-flow reconstruction is an
essential application of GNNs for node-level prediction in HEP"®, This
application comprehensively reconstructs each individual particle
(charged and neutral hadrons, photons, electrons and muons) within

anevent using combined information from all sub-detectors. The task
callsfor anintricate understanding of the responses of various detec-
tors (silicon trackers, electromagnetic and Hadron calorimeters, and
muon detectors) to different particle types, providing a precise global
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Fig.3|Visual representation of a collision event at the Large Hadron Collider
and several graph neural network tasks. Proton beams (red arrows) cross

ata collision point (brown cross). Outgoing particles make tracks (curved
orange lines), energy deposits in the electromagnetic calorimeter (green

boxes) and energy deposits in the Hadron calorimeter (blue boxes). The orange
cone represents a cluster of tracks and energy deposits reconstructed as a jet.
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Four examples of constructing graph-structured data are shown for the tasks

of charged particle tracking (top left), jet tagging (top right), calorimeter

energy clustering (bottom left) and signal eventidentification (bottom right).
MET, missing transverse momentum. The figure is adapted from ref. 24, CCBY 4.0
(https://creativecommons.org/licenses/by/4.0/).

description of the final-state particlesin an event. Traditional particle-
flow reconstructionalgorithmsrely onacomplexset of rulesbased on
physicist-engineered features and are sensitive to detectorimperfec-
tions and changing conditions. GNNs have emerged as a promising tool
for modelling the complex underlying relationships between different
detector measurements, embedded as nodes in a graph. GNNs allow
simultaneous classification of particle types and regression of particle
properties, leading to improved event reconstruction accuracy and
improved physics measurements'’. As reconstructed particles are
often related to a collection of input detector measurements, spe-
cialized set-to-set loss functions, such as object condensation'*, and
hypergraph networks'” have been developed. A key advantage of GNN
approachesisimproved computational scalability in both training and
inference'”. Similar approaches canalso be applied to identify particles
originating from additional simultaneous collisions during particle
beam crossing, known as pileup'?. Recasting pileup identificationasa
node classification task, in which nodes represent particles and edges
represent pairwise relations, GNNs are used to understand the complex
structure of data to distinguish signal particles from pileup particles™.

Charged particle tracking. InHEP dataanalysis itis crucial to estimate
as accurately as possible the kinematics (such as the position, direc-
tionand momentum of the particles at their production points) of the
particles producedina collision event. Tracking devices, placed close
to the beam collision area and immersed in a strong magnetic field,
can provide high-precision position measurements from which the
trajectories of charged particles can be determined. This task, known
ascharged particle tracking'”, is challenging because of the volume of
data, noise and complexity of interactions with the detectors.
Traditional track reconstruction methods, based on combinatorial
Kalman filters'”, are computationally intensive. Reformulated as an
edge classification task, with tracker hits asnodes and edges indicating
prospective track ‘doublets’ (pairs of hits belonging to a track), GNNs
can exploit the relational structure of data, enabling efficient and

accurate track reconstruction®* 8, Itis possible to deploy compressed
and quantized GNNs with hundreds of nodes and thousands of edges
withlatencyinthe order of microseconds™*'* with the HLS4ML Python
package'”®'?’, Nuclear physics experiments have also explored GNN

tracking for trigger applications'°.

Jet tagging. Jets are sprays of particles produced through the strong
forcein high-energy collisions. Jets are complex manifestations of the
originating quarks and gluons, but they contain structure and infor-
mation that help us determine their origin. The task of jet tagging is
toinfer, on a statistical basis, the origin of ajet based on its measured
characteristics. Thus, jet tagging can provide crucial information for
various searches and measurements involving the decay products
of top quarks, W and Z bosons, Higgs bosons and, potentially, new,
undiscovered particles. GNNs address this as a graph classification
task, where a graph represents a jet and nodes and edges represent
particles and their geometric relations, respectively, capturing the
underlying complex structural information of the particles within a
jetand deliveringimproved performance®*""**, The JEDI-net architec-
ture™ has beenimplemented as alow-latency FPGA implementation’*
forreal-time applications. Because GNN jet tagging algorithms run on
multiple jets per event, and potentially billions of simulated and real
events, approachesto leverage coprocessors, such as graphic process-
ing units (GPUs) and FPGAs, as aservice to accelerate these algorithms
have been pursued™*'*. Itis also possible to encode symmetries, such
as Lorentz symmetry, or other physics-inspired inductive biases in
GNN models™*"’,

Anomaly detection is a related task, which can be viewed as an
unsupervised way to detect novel jets in a collision event. Rather
than applying the standard supervised learning paradigm, the goal
of anomaly detection is to train an algorithm to learn the distribu-
tion or characteristics of the most common backgrounds, and thus
look for outliers that are different along some dimensions. Typically,
(variational) autoencoders are used™®. GNN-based autoencoders,
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in which individual reconstructed particles are the nodes, have been
appliedtoidentify bothanomalous events and jets”**"*°, Models equiv-
ariant to Lorentz transformations have also been explored'*°. Finally,
there is notable interest in deploying such GNN anomaly detection
algorithms in the real-time event selection system at the LHC'*".

Materials science

The versatility and flexibility of GNNs for irregular data have made
themwell suited for applications covering the breadth of the materials
spaceinthe materials sciences. The rapid introduction and adoption of
GNNsinthe materials sciences have been motivated by several critical
challenges. Traditionally, evaluating materials for their potentially use-
ful properties is a resource-consuming and time-consuming process
often involving complex synthetic procedures and characterization
techniques, or computationally expensive simulations with ab initio
modelling (such as density functional theory). At the same time, build-
ing viable machine learning models to predict these properties often
requires extensive feature engineering and domain-specific knowl-
edge for a given material and property, which were rarely transfer-
able across the materials space. In this domain, GNNs have been able
to make substantial breakthroughs as broadly applicable models for
materials and have been successfully used in property predictionand
screening, molecular dynamics simulations and the inverse design of
new materials®*'** (Fig. 4a).

Material property prediction. Fundamentally, the structure of a
material at the atomic level can be represented as a materials graph
or crystal graph with atoms as nodes and with edges encoding spatial
informationbetween these atoms, such as their distances and angles.
Structure-property relationships of materials can then be learned as
either node-level tasks for atomic properties (for example, charge,
magnetic moments, local electronic states) or as graph-level proper-
ties (for example, formation energies, band gaps, bulk moduli and a
myriad of other functional properties). GNNs can be used to predict
the properties of glassy materials, such as particle propensity, tounder-
stand the long-term dynamics of the system'* or the band gaps of com-
plexdisordered crystals, aided using amulti-fidelity transfer learning
approach™*. GNNs have also successfully predicted the synthesizability
of amaterial'*®, which is a key property for screening which materials
could be experimentally realized in the laboratory.

The architectures of GNNs have evolved over the years to better
leverage the geometric information of atomic structures and their
atomic local environments and improve the prediction accuracy of
material properties (Fig. 4b). SchNet®® and CGCNN® are the earli-
est examples of message passing GNN models for periodic systems
encompassing distance-based edges encoding the material structure
and node updates. Building on top of this message passing framework
for materials, a succession of novel model architectures have been
introduced with better geometric learning capability. For instance,

a
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Fig. 4 |Molecular and crystal graphs and a chronological overview of graph
neural networks used in material design. a, Molecules and crystals undergo
aninitial transformation into molecular and crystal graphs, which then serve
as the input data for graph neural networks (GNNs). Main applications of GNNs

inmolecular and materials chemistry include property prediction, molecular
dynamics and inverse design. b, Chronological overview of recent advancements
inGNN architecture, featuring highlights of some notable added features and
models. MPNN, message passing neural network.
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MEGNet'*® incorporates additional features such as residual connec-
tions and edge and global state updates. Subsequently, it became
evident that the existing models overlooked the spatial orientations
betweenatoms, a piece of pivotal directional information for structural
fidelity. This limitation motivated the development of models such as
DimeNet'", ALIGNN"® and M3GNet (ref. 149), which include informa-
tion about the angles between atoms. DimeNet incorporates angular
embeddings directly inthe message passing process whereas ALIGNN
creates anadditional line graph wherein nodes representinteratomic
bonds and edges represent the bond angles. These models use scalar
features suchasinteratomic distances and angles that are invariant to
translation and rotation. Alongside such scalar features, other GNN
models, such as NequlP"° and PaiNN", encompass equivariant opera-
tions which preserve transformations. Beginning in2022, equivariant
transformers such as TorchMD-NET"**and Equiformer*** have emerged
as a new class of models that combine the strengths of transformers
and equivariant features.

Accelerating molecular dynamics simulation. A subset of the
property prediction problem is the prediction of the total potential
energy and atomic forces of the system, which can be used to perform
geometry optimization and molecular dynamics simulations. Molecu-
lar dynamics serves as a powerful tool to understand the dynamical
processes and evolution of materials over time at the atomic level.
This process traditionally requires expensive quantum mechanical
evaluation of the atomic forces for every time step. GNNs utilizing
angular information and equivariance-preserving message passing
provide an inexpensive method for obtaining forces for simulations,
achieving near ab initio performance with accuracies of <0.1eV A™.,
Although other machine learning approaches have also been used
to predict forces, such as structural descriptor-based methods™*,
GNNs possess several appealing advantages. For example, the ability
to provide compact embeddings of local atomic environments for
systems or datasets containing many unique elements, which struc-
tural descriptors struggle to do™>. This characteristic has led to the
rise of ‘universal potentials’ which can be used for systems of arbitrary
composition across the periodic table, rather than a narrow subset of
elements. Successful demonstrations of universal potentials using
GNNs such as M3GNet (ref. 149) and ALIGNN"® have been performed,
with these models showing broad applicability to materials with com-
positions across the periodic table. This approach could be used to
greatly accelerate materials discovery by not only predicting stable
materials from existing experimental databases of crystal structures
butalso performing optimization on new enumerated structures with

no known structures'*’.

Data-driven inverse design. Beyond using GNNs as a tool for high-
throughput screening of materials and molecular dynamics, recent
efforts have leveraged these architectures with generative models to
generate entirely new materials in a data-driven manner, conditional
on some desired property. GNNs provide a promising avenue for the
data-driven inverse design of materials, a long-standing challenge
in the field"’. Using G-SchNet"*®, for example, molecules can be con-
structed one atomatatime by relying onthe GNN to predict the prob-
ability of the next atomic position. In another approach, CDVAE'’,
crystal structures are generated via a diffusion process, where a GNN
is trained to denoise a noisy structure. Using CDVAE, new materials
that exhibit unique 2D structures'® or superconducting properties'™
were discovered. A shared theme to these generative approaches for

materials structures is the utilization of the GNNs to provide effective
low-dimensional embeddings of the structures to be used in various
decoder architectures.

Current challenges and opportunities. GNNs are an effective class
of machine learning models for materials science for various different
tasks. At the same time, there is still much room for improvement in
these models. Known challenges of GNNs, such as over-smoothing
and limitations of global pooling for graph-level predictions, could
hamper the effective prediction of material properties. Moreover,
as highlighted by the Open Catalyst competition'®, the prediction of
properties of noisy or imprecise input structures is an ongoing grand
challenge. Most critically, GNNs are also well known to be data-hungry
models. This aspect presents a problem for materials science where
datasets are generally many orders of magnitudes smaller than in
other domains such as computer vision. Apart from purpose-built
large-scale materials databases, most materials problems require
machine learning models to work well with, at most, hundreds of
labelled datasamples. Consequently, new developments to GNN model
architectures and methods for improving data efficiency and out-of-
distribution performance such as model pre-training are needed to
enable the widespread application of GNNs in this domain.

Biology
Networks (or graphs) are ubiquitous across all scales of biological sys-
tems (Fig. 5a). Inthe molecular world (0.1-10 nm), biomolecules such
as proteins and small-molecule drugs are formed by atoms and bonds,
which canbe represented as graphs. Numerous protein functions are
jointly carried out by protein complexes or pathways (10-100 nm),
which are sub-graphs in the global protein-protein interaction net-
works. At the genomic level, gene regulatory networks extracted
from transcriptomic data describe the inhibition, activation and
co-expression relationships and genetic interactions among genes.
Many biological processes (100 nm) are connected and contribute to
various phenotypes at the cellular level (10 um), or in tissues (1 cm)
and complex organisms (10 cm) of humans (1 m). Popular databases
organized such knowledge of biological processes ingraph-like forms,
such as Gene Ontology (GO)'®*. At the population level (1 m-10°km),
individuals are also linked in a network through common genotypes,
phenotypes, geolocations and other factors to study complex diseases.
Theabovebiological entities and relations possess a higher degree
of irregularity and heterogeneity characterized by the underlying
complex topology. GNNs are well suited to model those types of bio-
logical data astherelational inductive bias encoded in GNNs naturally
describes the graph-structured information in biological networks.

Protein structures and functions. GNNs provide natural ways to
model protein structures, where amino acids or heavy atoms are
represented as graph nodes and spatial relations (proximity or dis-
tance) are encoded as edges. AlphaFold'**, the state-of-the-art protein
structure predictor, is arguably the most notable example of GNN
applicationinbiology. The key idea of AlphaFold is formulating protein
structure prediction as a graph inference problem, where the edges
tobeinferredreflect the spatial proximity of residuesinthe 3D space
(Fig.5b). Theremarkable prediction accuracy of AlphaFold, as demon-
strated by comprehensive evaluations'* and in the CASP14 challenge
of protein structure prediction'®, has suggested the importance of
domain-guided design principles for GNNs in real-world applications
inbiology.
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Fig. 5| The ubiquity of networks (or graphs) in biological systems.

a, Representative biological systems that can be naturally explored with graphical
neural networks (GNNs) from nanoscale to macroscale: small molecules, proteins,
generegulatory networks, protein-protein interaction networks, Gene Ontology
(GO) graph, heterogeneous drug-target interaction networks and patient-patient
similarity networks. Nodes and edges are defined for every biological system.

b, AlphaFold” is the state-of-the-art protein structure predictor. AlphaFold takes
proteinsequences as input and implements amessage passing-based module called

Node: drug, protein, disease
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Drug

Evoformer toiteratively refine single (node) and pairwise (edge) representations of
residues. It thus predicts the 3D coordinates for the input protein from its sequence,
thatis, p(structure|sequence) ¢, Target-conditioned molecule generation refers to
the task of designing small-molecule drugs that have binding affinity with the target
protein binding pocket. Conditioned on the graph built from the target, GNN-based
generative models have been widely applied to generate novel ligands with desired
target binding affinity'®™%.

In addition to protein structure prediction, GNNs are also widely
usedinstructure-based protein sequence design (inverse folding) prob-
lems®, where the goal is to design a protein sequence that canfoldintoa
desired structure, thatis, p(sequence|structure). Here, methods such as
ProteinMPNN** used GNNs as the structure encoder to learn representa-
tions of the 3D structure input and guide the prediction of sequences.
Invariant geometric features (such as distance, direction, dihedral
angles and orientation frames) are often derived from the protein struc-
tureand used as features for nodes and edges to learn information-rich
protein representations'®. Furthermore, as a structure encoder, the
representations learned by GNNs have substantially benefited a wide
range of applications, including protein function annotation'?, fitness
prediction'®, stability prediction'® and many intermolecular predic-
tions, suchas protein-proteininteraction”, protein-ligand binding'”!
and the binding pocket or interacting surface'”.

Apart from predictive models, generative models for proteins
have recently been extensively studied by the community which focus
ongenerating protein sequences or structures with a desired function
(alsoknownas proteindesign). Forexample, GNNs are used as structure
encoders and decoders in other generative machine learning frame-
works, such as diffusion models'”, to design novel protein structures
with a specified property"* or generate binding structure'.

Small-molecule drug discovery. The chemical structure of adrugis
naturally described asagraph, withatoms asnodes and chemical bonds
as edges. For this reason, GNNs can be used to model small-molecule
drugs for various applications in drug discovery, including property
prediction®**°, drug targetidentification®, lead optimization®® and

others'®. The applications of GNNs in small-molecule drug discovery

canbe categorized into prediction and generation tasks. In prediction
tasks, GNNs are applied to learn the molecule to property relation-
ship, such as the predictions of toxicity, efficacy, binding activity to
targets and side effects"”’7°. General GNN architectures have been
specialized toincorporate the domain knowledge of small molecules,
suchasincluding chemical information as node or edge features™ and
decomposing the molecular graphinto semantic substructures known
asjunction trees®’. The recent progress in geometric learning has also
led to new GNN architectures, known as equivariant GNNs', for 3D
molecular structure modelling, in which the non-linear transforma-
tions are specifically designed to respect the physical symmetry (such
as rotation and translation) in the 3D space. High-quality benchmark
datasets have been used to evaluate GNNs for molecular property
prediction®®!,

As with proteins, the generative modelling of molecules has also
gained interest,and GNNs have been coupled with generative machine
learning frameworks, such as variational autoencoder® and diffusion
models'”, to generate an ensemble of molecular conformations’and
molecules with desired functions'. A representative generation task
is the target-conditioned molecule generation, where the goal is to
design a small-molecule drug that can dock into the binding pocket
of a given target protein (Fig. 5c). Recent studies paired equivariant
GNN architectures with diffusion models to build models for molecule
generation’®’, Conditioned on the protein binding pocket structures,
equivariant GNNs are used to predict the atom types and coordinates of
afitmolecule. The prediction process ofteninvolves multipleiterations
of message passing to update the representation of the nodes and/or of
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theedges andrefine the predicted atom types and coordinates. Domain
insights are alsoincorporated to guide molecule generation. For exam-
ple,inspired by the traditionsin the drug design process, some genera-
tive models™’ chose to decompose moleculesinto scaffolds and arms
and generate them separately with decomposed priors in considera-
tion of the different roles of ligand atoms. Enabled by GNNs and other
generative machinelearning frameworks, target-conditioned molecule
generation has shown promising results for generating molecules
that are chemically valid and novel with improved properties™* ™"
Nevertheless, many interesting questions and challenges remain, such
as ensuring the synthesizability of generated molecules, given com-
mercially available molecules as building blocks, and simultaneously
optimizing multiple properties in the generation process.

Other applications of GNNs in biology. In addition to the applica-
tions of GNNs in modelling proteins and small molecules, research
efforts have explored the potential of GNNs in other levels of biological
systemsto address fundamental questionsinbiology and healthcare.
Some examples include single-cell RNA data analyses — GNN-based
models have been developed to learn low-dimensional embeddings
that capture the cell-cell relationships characterized by gene expres-
sionand transcriptional regulationinformationin single-cell RNA data,
whichinform downstreamtasks suchas dataimputation, cell clustering
andregulatory network inference'**'®’; network medicine — GNNs have
increasingly become a key instrument in network medicine, aiding in
the development of predictive models and therapeutic strategies'**"”!
and the prediction of drug-disease associations®, drug-drug and
drug-targetinteractions””**?, which are problems crucial forimportant
applications such asidentifying biomarkers of disease and repurposing
drugs**'*; and healthcare and population health — beyond the molecu-
lar and cellular scales, GNNs also have notableimpacts onalarger scale
inhealthcare and population health, such as processing and analysing
biomedical imaging'**'** and electronic health records™*"”.

Software and hardware

Withthe advancement of GNN algorithms and their applications, com-
putational challenges, encompassing both training and inference,
have rapidly emerged as limiting factors. For instance, the challenge
of handling extra-large graph sizes affects memory and bandwidth.
Scalable and distributed training poses difficulties for current train-
ing platforms and strategies. The demand for high-throughput and/or
low-latency inference pushes the boundaries of existing hardware.

Despite these challenges, recentinnovationsin software and hard-
ware have stimulated the development of new GNN architectures and
their deployment mechanisms. On standard GPU platforms, lead-
ing frameworks such as PyTorch Geometric (PyG)'*® and Deep Graph
Library (DGL)"’ excel in optimizing data throughput. They leverage
GPU acceleration, sophisticated CUDA kernels and efficient batching
methods.

Furthermore, certain applications, especially indomains such as
HEP, require exceptional inference speeds combined with energy effi-
ciency. For suchrequirements, custom hardware designs using FPGAs
or application-specific integrated circuits often outperform GPUs
and CPUs by marked margins. The HLS4ML package'”’, for instance,
is specifically designed to enhance machine learning inference on
FPGAsandis currently integrating GNN operations from PyG'*. Simul-
taneously, FlowGNN?>?° offers a specialized FPGA-based solution, opti-
mized for adiverse set of GNN models, emphasizing graph structures
and computational sparsity.

Open challenges and outlook

Although GNNs show remarkable promise in various electrical engi-
neering and scientific applications, there are opportunities for further
enhancement to fully realize their potential. These areas of improve-
ment also pave the way for compelling future research trajectories
in GNNs.

Data scarcity

Similar to most deep learning methods, abundant high-quality data
are an essential factor in GNN performance. Data scarcity is a shared
problem between electrical engineering and the scientific domains
and hampers GNNs from unleashing their full potential in real-world
problems. Considering, for example, using GNNs for EDA, to achieve
accurate circuit property prediction, one must first gather asubstantial
volume of labelled data, often through time-consuming simulation or
synthesis®®". Yet a challenge arises as there is no established infrastruc-
ture toaccelerate such data collection. Moreover, there isno standard
graph format that raw EDA data can be seamlessly transformed into'®.
Thevaried representations, such as directed acylic graphs (DAGs)*** or
directed hypergraphs®, complicate benchmarking processes. A similar
problem has been shown with dataacquisition in wireless networks?*?,
wherereal-time communication dataare often extracted in various time
granularities depending on the capturing device. The development
of standardized data collection infrastructures is then necessary to
facilitate standard data collection.

Datascarcity issues also hinder GNNs from having agreaterimpact
onscientific applications. Inchemistry and biology domains, datalabel-
ling from the wetlaboratory is expensive inboth time and resources**.
Fortunately, abundant data are sometimes available from well-studied
areas, but these may have different distributions compared with less
exploredyetscientifically intriguing regions. Therefore, transfer learn-
ing of GNNs and enhancing out-of-distribution generalization of GNNs
have emerged as viable strategies to address the data scarcity issue’”.
Notably, with such a goal, the field of electrical engineering offers
insights: researchers with a rich history in information theory have
presented multiple tools that could help understand the generalization
capability of GNNs and foster the development of more adaptable GNNs.
A case in point is the information bottleneck method*®, integrated
into GNN model training in 2022 (ref. 207). The model captures only
the essential information from data features, enhancingits prediction
accuracy, out-of-distribution generalizability and model interpretation.

Real-time computation

Real-time inference boasting minimal latency is indispensable for
numerous practical GNN applications. Forinstance, in HEP, GNNs must
process particle hit data within a strict time frame matching that of
real-time LHC experiments. Given that the detector harvests collision
dataevery 25 ns,any GNN latency surpassing this limit risks overflowing
memory buffers, leading to data loss®*®. Similarly, tasks such as power
allocation and link scheduling in wireless networks demand instantane-
ous processing. A casein pointisthe ultra-reliable and low-latency com-
munications in 5G, which mandates sub-1 ms latency while sustaining
adownlink speed of 20 Gbps®*’. Therefore, the need to expedite GNNs
to meet these real-time requisites cannot be overstated.

Electrical engineering techniques, especiallyin hardware accelera-
tion, emerge as highly promising avenues to address the challenges
posed by GNNs. Computing hardware can be properly tailored to deal
with the irregular nature of graph data and message passing mecha-
nisms innate to GNNs. These tailored hardware solutions, whether

Nature Reviews Electrical Engineering | Volume 1| August 2024 | 529-546

542


http://www.nature.com/natrevelectreng

Review article

through FPGAs or application-specific integrated circuits, promise
speed and energy enhancements over conventional GPUs and CPUs.
Worthwhile exploration directions encompass process-in-memory and
emerging memory-based techniques”®*", exploiting graph structures
and sparsity?*°*?and conducting algorithm and hardware co-design.

The challenge of graph data privacy

Therising utilization of GNNs in areas with sensitive graph data, such as
healthcare data”and device datain afragile network system, highlights
the imperative to address the relevant privacy of graph data. When
applying GNNsto this type of data, itis crucial to ensure sensitive data
details remain confidential. However, the inherent interdependence of
graph data exacerbates the privacy challenge: the leakage risk intensi-
fies because one data point’s information might be intertwined with
another’s. Recognizing this complexity, there hasbeen asurge in efforts
todevelop privacy-preserving GNN models”*?”, These models strive to
ensure their parameters remain insensitive to specificnodes or edges
inthe training graph. Machine unlearning, another frontier in privacy
preservation, emphasizes the rights of data providers to retract their
datafrom the dataset used for training amodel”**”. This field explores
efficient ways to modify trained models when users revoke their data,
with the goal of approximating amodel trained without the rescinded
data. Whereas effort has been made in creating private GNN models
and pursuing GNN unlearning”®, many current methods either exhibit
heightened privacy vulnerability or are built upon oversimplified
architectures. There remains a notable path ahead.

Privacy concerning graph data typically hinges on the indistin-
guishability of algorithmic (say GNN) outputs when the input graphs
vary by asingle node or edge. Such privacy assuranceis contingent on
the comparison of the distributions of such outputs?”.

Conclusions

GNNs, with their intrinsic ability to handle sparse, irregular and rela-
tional data, have emerged asapotentinstrument for the intricate graph
datafound in diverse applications.

Traditional algorithmsinelectronic design, wireless communica-
tion and power systems often involve time-consuming optimization
steps, which can be swapped out for the faster methods built upon
GNNs. This change offers electrical engineering researchers a chance
toboost their work with the efficiency of GNNs. Thereis also room for
electrical engineering experts to make GNNs even better. They can
tackle current GNN challenges by designing dedicated hardware for
quick, on-the-spotapplications or by designing better model architec-
tures or more principled training strategies for areas where there are
not many labels but need GNNs to be out-of-distribution generalizable.

As we find ourselves balancing between classical electrical engi-
neering and the new world of machine learning, GNNs, backed by care-
ful research and teamwork, have the potential to bring fresh, exciting
changesto thefield.
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