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ABSTRACT: Recent years have witnessed tremendous advances in
machine learning techniques for wearable sensors and bioelectronics,
which play an essential role in real-time sensing data analysis to
provide clinical-grade information for personalized healthcare. To this
end, supervised learning and unsupervised learning algorithms have ﬁ

emerged as powerful tools, allowing for the detection of complex
patterns and relationships in large, high-dimensional data sets. In this
Review, we aim to delineate the latest advancements in machine
learning for wearable sensors, focusing on key developments in
algorithmic techniques, applications, and the challenges intrinsic to
this evolving landscape. Additionally, we highlight the potential of ~So
machine-learning approaches to enhance the accuracy, reliability, and

interpretability of wearable sensor data and discuss the opportunities

and limitations of this emerging field. Ultimately, our work aims to provide a roadmap for future research endeavors in this
exciting and rapidly evolving area.

Machine Learning for
Wearable Sensors

KEYWORDS: machine learning, wearable sensors, personalized healthcare, supervised learning, unsupervised learning, data analysis,
real-time monitoring, human—machine interaction, bioelectronics

INTRODUCTION

Wearable sensors have emerged as a transformative technology
in the fields of personalized healthcare and human—machine
interaction (HMI).'”® By continuously monitoring an
individual’s physiological states and motions, these devices

as demonstrated by the extensive range of applications and the
interdisciplinary nature of related publications (Figure 1a).
Despite these significant benefits, using artificial intelligence
(Al) for wearable sensors still faces several challenges. One
major obstacle is the processing and analysis of the vast
amounts of data generated by these devices.®$! High levels of
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possess the potential to provide personalized, real-time insights
and support.”~? Recent technological advancements have
catalyzed the development of advanced wearable devices adept
at capturing an expansive range of physiological signals,
providing opportunities for personalized healthcare and
HMI.2741 With the increasing availability and demand for
such devices, wearable sensors have gained significant
attraction in remote patient monitoring, sports performance
tracking, and health and wellness coaching.*>™* For instance,
these devices can continuously monitor physiological param-
eters such as heart rate, blood pressure, physical activity levels,
among others.?075 This real-time monitoring offers the
potential for early detection and intervention of potential
health issues, ultimately improving health outcomes.>~63
Wearable sensors can also provide personalized feedback and
support, enabling individuals to make informed decisions to
improve their health and wellness.®*~% The field of wearable
sensors has witnessed significant growth in recent years, =7

noise and interference can impact the accuracy and reliability
of the results.$>%> Additionally, the compact design of wearable
devices limits both data storage and computing capabilities,
posing a challenge to conducting intricate on-device analyses.*
Nevertheless, the rapid evolution of wearable sensing
technology and the growing demand for personalized health-
care and HMI solutions make this a field of significant interest
and potential. ®% In this context, artificial intelligence has the
potential to overcome these challenges and make wearable
sensors more reliable and effective.®”"% Using machine-
learning (ML) algorithms and statistical models can improve
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Figure 1. An overview of using ML for wearable sensors. a, The keywords of publications related to wearable sensors demonstrate the
extensive application scope and interdisciplinarity of this field. Keywords from Web of Science. b, Typical process of applying ML algorithms
to wearable sensors for data collection, preprocessing, feature extraction, and model training. ¢, Comparison of edge Al and cloud Al
approaches in wearable sensors, highlighting their respective advantages and drawbacks. d, Use of supervised and unsupervised learning
techniques for wearable sensors, with supervised learning often applied for classification and prediction of health metrics and unsupervised

learning for discovering underlying patterns and relationships in the data.

the accuracy of the data collected by wearable sensors and help
to identify meaningful patterns in the data that may be useful
for healthcare professionals.?*! For example, ML algorithms
can be trained on large amounts of data from wearable sensors
to detect early signs of various health conditions, such as
cardiovascular disease, sleep apnea, and even Parkinson’s
disease.”>? This application has the potential to help
healthcare professionals diagnose and treat these abnormalities
at earlier stages, significantly improving patient healthcare
outcomes.” Moreover, ML can also help to optimize the
sensing performance of wearable sensors.” For example, ML
algorithms can be used to calibrate wearable sensors and

improve their accuracy, by considering the different types of
interference and noise that may affect the data.”

Herein, we summarize the role of ML in the field of wearable
sensors. We describe the various applications of ML in
wearable sensors, including the use of algorithms for data
analysis and prediction as well as the development of wearable
sensors that incorporate advanced ML techniques. Then, we
discuss the challenges and limitations of ML in wearable
biomonitoring, including issues related to data privacy and
security as well as the need for robust and scalable algorithms
that can handle large amounts of data. Furthermore, the
Review encompasses the latest research and technological
advances in this area including the development of algorithms,
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data processing techniques, and wearable sensors designed to
improve the accuracy and reliability of biomonitoring.
Considering the future of ML for wearable biomonitoring,
integration of ML is revolutionizing the accuracy and efficiency
of wearable sensors by identifying and correcting errors in the
collected data. By addressing the challenges that wearable
sensors currently face, ML has the potential to significantly
improve people’s health and wellness, facilitating healthcare
professionals to diagnose and treat various health conditions
more effectively.

MACHINE LEARNING

ML algorithms are increasingly harnessed to process vast
amounts of data generated by sensors.”® As shown in Figure
1b, the process typically begins with the collection of raw
sensing data, which is then preprocessed to filter the noise and
reduce the motion artifacts.? Next, feature extraction
techniques are applied to identify relevant features in the
data. These features may include statistical measures such as
mean and variance or more complex ones such as spectral
features. Upon the extraction of relevant features, they are used
as inputs to ML algorithms, which are trained on a data set of
labeled examples. The training process involves adjusting the
parameters of the model to minimize the difference between
the predicted output and the true output. Once the model has
been trained, it can be used to make predictions on unseen
data. In the context of wearable sensors, ML algorithms have
been used to predict a variety of outcomes, including activity
recognition, fall detection, and disease diagnosis. The ability of
ML algorithms to learn from data and deliver accurate
predictions makes them powerful tools for processing wearable
sensor data and extracting meaningful insights about human
health and behavior.

Traditionally, data collected by wearable sensors has been
processed using methods such as statistical analysis and signal
processing.” These methods have limitations in terms of the
complexity and diversity of the data that they can effectively
handle. The main difference between ML algorithms and their
traditional counterparts lies in their adaptability and general-
ization capabilities.” Traditional algorithms rely on manually
defined rules and features to process sensor data, which often
limits their applicability to specific scenarios and data
sets.?87100 ML, on the other hand, has several advantages
over traditional methods in the context of wearable
sensors.'?17103 First, ML algorithms can handle large and
complex data sets, allowing for more accurate analysis and
insights. Second, these algorithms can learn from data and
continuously improve their performance, leading to better
results over time. Third, ML algorithms can detect patterns
and relationships in data that may not be easily noticeable with
traditional methods. Finally, ML algorithms can handle a wide
range of data types and modalities, ranging from physiological
signals to behavioral data, rendering them versatile tools for
processing data from wearable sensors. These advantages have
positioned ML as a valuable tool in improving the performance
of wearable sensors and enabling applications in the field of
wearable healthcare and wellness.

Edge Al and Cloud Al. In the wearable sensor field, the
deployment of ML algorithms can be categorized into two
broad approaches: edge Al and cloud Al (Figure 1c).1%* Both
approaches offer their advantages and drawbacks, contingent
on the specific use case at hand. Edge Al involves the
deployment of ML models and algorithms directly on wearable

sensors such as smartwatches and fitness trackers. This
approach enables real-time data processing and decision-
making on the device, which reduces the need for constant
communication with the cloud. Furthermore, it also minimizes
privacy and security risks associated with the transmission of
sensitive health data. On the other hand, cloud Al leverages the
computational power and storage capacity of remote servers to
process and analyze wearable sensor data. This approach can
provide more accurate results, given its access to a larger data
set and the ability to leverage more sophisticated algorithms.
Additionally, cloud Al facilitates centralized data management
and sharing, allowing the combination of data from multiple
wearable devices to gain a more comprehensive understanding
of a person’s health.

The choice between edge Al and cloud Al in wearable
sensors depends on the desired balance between privacy,
security, and data accuracy. For instance, edge Al is well-suited
for use cases where privacy and security are paramount, such as
in wearable sensors designed to monitor patients with medical
conditions. In contrast, cloud Al finds its forte in use cases
where data accuracy is the primary concern such as in wearable
sensors used to optimize athletic performance. Both edge Al
and cloud Al have important roles to play in the wearable
sensor field, and the ongoing advancement of Al technology is
expected to further enhance their capabilities and expand their
applications. As wearable sensors become more sophisticated
and integrated into our daily lives, the role of Al in
transforming fields and improving human health is anticipated
to become increasingly important.

Supervised Learning and Unsupervised Learning. In
the field of wearable sensors, selecting the right machine-
learning algorithm can be crucial in achieving the desired
outcomes. Figure 1d illustrates two prominently used Al
approaches in wearable sensors; supervised learning and
unsupervised learning.'%>1% This approach has proven to be
highly effective in predicting chronic health conditions, such as
diabetes and heart disease, thereby enhancing the accuracy of
wearable sensors. On the other hand, unsupervised learning
does not require labeled data and instead uses data-clustering
techniques to identify patterns and relationships in the data.
Particularly beneficial in situations characterized by an
abundant amount of data but limited labeled data,
unsupervised learning aids in identifying patterns that may
not be easily noticeable through manual inspection. In the
context of wearable sensors, unsupervised learning is frequently
employed to identify trends in large amounts of data such as
daily physical activity patterns or sleep quality. The adoption of
both supervised and unsupervised learning has tremendously
improved the accuracy and capabilities of wearable sensors,
positioning them as powerful tools for collecting and analyzing
health and wellness data. With the continued integration of Al
in wearable sensors, these devices are anticipated to become
even more sophisticated and capable of providing detailed
insights into human health and wellness. Consequently, the
strategic selection of a suitable ML algorithm for wearable
sensors is deemed a pivotal step in optimizing their
functionality.

BIOMONITORING

Health monitoring constitutes a fundamental aspect of
personalized healthcare, empowering clinicians to track and
manage real-time health status of their patients.!’"111 By
combining ML algorithms with wearable sensors, researchers
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Figure 2. ML-assisted physiological monitoring. a, Statistical moments collected by the wearable smart watch, including heart rate, skin
temperature, EDA, and step counts (top). Overview of the statistical learning methods employed and model evaluation methodology
(bottom). b, Wearable vital signs calculating features through random forest models using varying time windows. Reproduced with
permission from ref 119. Copyright 2021 Springer Nature. c, Illustration of the Bio-Z signal (top), and two Bio-Z signals recorded by two
pairs of GETs for collecting data and ML algorithm. d, Training models developed by shuffling hand grip and cold pressor data. Reproduced
with permission from ref 120. Copyright 2022 Springer Nature. e, Schematic workflow. Preprocessed images train the FCN-32 model, which
predicts left ventricular volume from unprocessed images, enabling derivation of stroke volume, cardiac output, and ejection fraction. f, Left
ventricular volume waveform generated from the wearable imager (W.I.) and labeled features in one cardiac cycle. Reproduced with
permission under a Creative Commons CC-BY license from ref 118. Copyright 2023 Springer Nature. g, Photograph of the conformable
multimodal sensory face mask. h, Schematic of ML model development. Data were loaded from the server, processed, and applied to a k-
means clustering-based classification model, with the test data set’s predicted positions compared to true values during testing. Reproduced

with permission from ref 121. Copyright 2022 Springer Nature.

have developed approaches to health monitoring that showcase
the potential to improve the accuracy and efficiency of these
systems. 1127116

One area where ML algorithms prove particularly advanta-
geous in health monitoring is in the development of
personalized health monitoring systems."”118 By analyzing
data from wearable sensors, ML algorithms can identify
individual differences in health factors, enabling clinicians to
tailor treatment plans to the specific needs of each patient. For
example, vital signs are often utilized for detecting and
monitoring medical conditions. However, traditional measure-
ments require clinical and laboratory tests for definitive
conclusions. Recently, Dunn et al. employed ML models,
including random forests and Lasso models, to predict clinical
laboratory test results based on vital signs measured by

22737

wearable sensors, such as continuous heart rate, skin
temperature, electrodermal activity (EDA), and motion
(Figure 2a).""% The study also investigated the impact of
time and personalization on the model’s accuracy. Results
revealed that wearable sensors provided more measurements
than those obtained in clinics during the detection period and
allowed for the design of more complex model features,
resulting in more accurate clinical laboratory test predictions.
Additionally, different time windows yielded varying model
performances (Figure 2b). Personalized models established by
using more observational results or intensive monitoring
periods with appropriate monitoring durations exhibited
improved accuracy, outperforming population-level models.
This study linked specific physiological features to clinical
characteristics, enhancing the understanding of the relationship
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Figure 3. ML-assisted wearable body motion sensing. a, Reconstructed body posture of a participant performing the 8-m walk is captured
using a motion suit with inertial sensors monitoring limb movement. The suit records a typical time series of angular positions for neck,
elbow, hip, and knee joints, along with a frame sequence of a Friedreich’s ataxia (FA) patient’s 8-m walk test at 0.5 s intervals. b, Utilizing
full-body motion capture and ML to analyze performance markers for reconstructing standard clinical assessments and improving FA disease
progression estimation. Reproduced with permission under a Creative Commons CC-BY license from ref 122. Copyright 2023 Springer
Nature. ¢, Probability distribution of joint angles at three skeletal joints comparing natural movement behavior data between individuals
with Duchenne muscular dystrophy (blue) and healthy controls (red). d, The system extracts ethomic fingerprints from participants’ natural
movement behavior using suit data, employing supervised GP regression to derive digital biomarkers from these fingerprints. Reproduced
with permission under a Creative Commons CC-BY license from ref 123. Copyright 2023 Springer Nature. e, Multi-sensor-based hand
function assessment glove. f, The hand function assessment process includes hand kinematic signals collecting, processing, and analyzing.

Reproduced with permission under a Creative Commons CC-BY license from ref 93. Copyright 2023 Wiley-VCH.

between clinical biochemistry tests and physiology. Personal-
ized monitoring and modeling frameworks can be readily
extended to other types of data and clinical measurements,
enabling the widespread implementation of personalized health
monitoring through wearable sensors.

Another area where ML algorithms play a pivotal role is in
the development of predictive health monitoring systems. By
continuously monitoring health data through wearable sensors,
ML algorithms can detect and interpret changes in a patient’s
health in real-time, allowing clinicians to timely intervene

22738

before a condition worsens. Arterial blood pressure (BP) is an
essential parameter for understanding various health con-
ditions, including cardiovascular diseases. Dynamic blood
pressure monitoring platforms can facilitate the analysis of
correlations between diseases and individual behaviors and
lifestyles, thereby facilitating proactive disease prevention.
However, traditional dynamic blood pressure sensors are
cumbersome and invasive. Kireev et al. introduced a self-
adhesive, low-impedance graphene electronic tattoo (GET)
based on bioimpedance measurements (Bio-Z) for continuous
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blood pressure monitoring.'? The Bio-Z waveforms are
inversely related to BP (Figure 2c top), and the AZarery
curve is used to identify four characteristic points, systolic
pressure foot, diastolic pressure peak, mean slope, and
inflection point for constructing ML regression algorithms
for BP prediction (Figure 2c bottom). Adaptive boosting
techniques process approximately 50 feature points extracted
from the four Bio-Z signals to train the ML algorithms.
Training is typically performed on shuffled data (Figure 2d);
the original time trajectories are randomized and divided into
ten equal parts, using one part for training and the remaining
nine for 10-fold cross-validation analysis. The implementation
of 10-fold cross-validation allows the ML model to utilize most
of the training data while avoiding overfitting. Post-training,
the data are reordered according to their original temporal
sequence. The results indicate that the bioimpedance platform
achieves higher accuracy than previously reported. The
prediction accuracy of the ML regression model trained
through cyclic training reaches 0.06 + 2.5 mmHg (diastolic
pressure) and 0.2 + 3.6 mmHg (systolic pressure). According
to the Institute of Electrical and Electronics Engineers (IEEE)
standards, these values are equivalent to grade A classification
wearable blood pressure measurement devices, providing a
solution for wearable blood pressure monitoring.

ML algorithms not only exhibit proficiency in extracting
feature points from curves but also demonstrate notable
capabilities in extracting information in the field of medical
imaging. Recently, Hu et al. reported a wearable ultrasound
device for continuous, real-time, and direct assessment of
cardiac function.!'® The device achieves effective mechanical
coupling with human skin, allowing examination of the left
ventricle from different angles during movement. Subse-
quently, deep learning neural networks are applied to extract
key information from continuous image streams, with
preprocessed images used to train the Fully Convolutional
Networks (FCN)-32 model. The trained model can automati-
cally predict left ventricular volume from continuous image
recordings, generating waveforms of key cardiac performance
indicators such as stroke volume, cardiac output, and ejection
fraction (Figure 2e). By comparing the output information on
left ventricular volume waveforms (Figure 2f top) and key
features in a detailed cardiac cycle (Figure 2f bottom) from the
wearable ultrasound device and commercial imagers, the
results validate comparable performance between the wearable
and commercial imagers. This technology enables dynamic
wearable monitoring of cardiac performance with significantly
improved accuracy in various environments and has the
potential to extend its benefits to outpatient and athletic
populations.

ML algorithms can also be used to enhance the accuracy and
reliability of health monitoring systems. By analyzing data from
multiple sensors, ML algorithms can detect and correct errors
in health monitoring, improving the overall quality and
usefulness of these systems. The emergence of COVID-19
and health policies worldwide has highlighted the importance
of masks in combating the spread of infectious diseases, and
integrating wearable electronic devices into masks can provide
valuable insights for both individual and public health. Kim et
al. reported a conformable multimodal sensory face mask
(cMaSK) that could be integrated with commercial masks
(Figure 2g) and simultaneously monitor multiple signals
related to both biological and environmental conditions,
including mask position, skin temperature, humidity, speech
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activity, and breathing patterns.’”’ An ML algorithm was
developed to classify the position of the mask. Here,
researchers employed k-means clustering, classifying points
into k clusters based on minimizing the distance between data
points and clusters” centroids (Figure 2h). Data stored on the
server were processed for training and testing of the algorithm.
The accuracy rates for male and female subjects were 92.8%
and 77.5%, respectively, reliably decoding mask positions. The
precise recognition of mask position effectively contributes to
improving the quality of device wear and proactively assists
users in optimizing mask fit, further enhancing the monitoring
quality of cMaSK. This work provides a modular, customizable
research tool for studying environmental and health
technologies in real-world environments where human
behavior may affect performance, broadening the under-
standing of key factors affecting mask-wearing behavior and
their impact on human health and well-being.

The integration of ML algorithms and wearable sensors has
the potential to transform health monitoring, enabling
clinicians to better track and manage the health of their
patients. By improving the accuracy, efficiency, and predictive
capabilities of health monitoring systems, this approach has the
potential to enhance the quality of care provided to patients in
a variety of settings, including hospitals, clinics, and home care
environments. As such, research in this area is crucial for
advancing the field of health monitoring and realizing its
complete potential in improving patient outcomes.

One area where ML algorithms exhibit practicality is disease
tracking and prediction, particularly in the early detection of
chronic diseases. By analyzing data from wearable sensors, ML
algorithms can detect subtle changes in health patterns that
may indicate the early onset of chronic diseases such as

diabetes or heart disease. Early detection enables clinicians to

intervene before the disease progresses, potentially improving

patient outcomes and reducing healthcare costs. For example,
one in every 17 people suffers from rare diseases, and drug

development progresses slowly due to the limited number of
patients. Clinical scales commonly adopted to measure the
progression of rare diseases are often slow and subjective,
necessitating objective methods.!?> For Friedreich’s ataxia

(FA), researchers captured the whole-body kinematic charac-
teristics of test subjects using wearable sensors (Figure 3a),

defining digital behavioral features based on their 8-m walk (8-

MW) test and 9-hole peg test (9 HPT) (Figure 3b).

Employing ML to longitudinally predict clinical scores in FA

patients, results showed that digital behavioral features could

accurately predict individual components of the Scale for the

Assessment and Rating of Ataxia (SARA) and Spinocerebellar

Ataxia Functional Index (SCAFI) scores and forecast future FA
gene expression levels. In this study, effective predictions for
early disease progression were shaped by analyzing these digital
behavioral features through ML. The advantage of this
approach lies in its ability to substantially reduce the duration
or scale of clinical trials for testing disease-modifying therapies
while providing more accurate predictive results. Physicians
can detect and diagnose diseases earlier, thereby offering more
effective treatment and management strategies and resulting in
better healthcare services and treatment outcomes for patients.
ML algorithms are instrumental in predicting disease
progression and assessing treatment effectiveness. By analyzing
data from wearable sensors over time, ML algorithms can
detect trends and patterns that may indicate disease
progression or a response to treatment. Clinicians can leverage
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this information to adjust treatment plans and monitor
patient’s progress, ultimately improving the overall quality of
care. For instance, the fusion of wearable sensors and ML
algorithms to analyze behavioral data holds great potential in
improving the prediction of disease progression and the
assessment of treatment outcomes. Ricotti et al. developed a
KineDMD ethic behavioral biomarker based on daily living
activity data, using ML algorithms to predict and assess the
progression and treatment efficacy of Duchenne muscular
dystrophy (DMD).!2 Specifically, a wearable sensor suite was
designed to quantitatively test the differences in joint motion
between healthy control subjects and DMD patients during
daily living activities, particularly the distinct manifestations of
DMD patients compared to healthy controls in terms of joint
angles and posture (Figure 3c). Subsequently, a whole-body
motion behavior analysis method was employed, extracting
ethomic fingerprints from participants” digital twins and
deriving digital biomarkers using the Gaussian process (GP)
regression ML algorithm (Figure 3d). Compared with current
clinical assessments, this biomarker demonstrates exceptional
performance in predicting disease progression and may
revolutionize the conduct of clinical trials for neurological
disorders. This approach holds the potential to provide more
personalized and effective treatment strategies for patients with
neuromuscular diseases. Furthermore, the utilization of
multisensor systems and ML algorithms can provide a more
comprehensive, objective, and detailed disease assessment for
clinical monitoring, aligning more effectively with clinical
rehabilitation needs. Recently, Li et al. developed a multimodal
sensor glove for hand function assessment in Parkinson’s
Disease (PD) patients with hand dysfunction (Figure 3e).%
The built-in flexible sensor network can comprehensively
capture patients” hand-related motion signs, such as rigidity,
muscle weakness, and tremors. By employing filtering,
normalization, clustering analysis, and neural network evalua-
tion, the data glove based on hand kinematics can
quantitatively assess finger flexibility, hand muscle strength,
and hand stability (Figure 3f). The generated hand function
impairment assessment grading results can be used to assist in
evaluating disease progression stages. In addition to helping
devise rehabilitation therapies, the multisensor data glove can
objectively assess patients’ progress following hand rehabil-
itation training, assist physicians in formulating disease
rehabilitation treatment plans, and bring breakthroughs in
evaluating hand function in PD patients.

Another area where ML algorithms find utility is in the
development of personalized disease tracking and prediction
systems. By analyzing data from multiple sensors, ML
algorithms can identify individual differences in health patterns
and risk factors, enabling clinicians to tailor disease prevention
and management strategies to the specific needs of each
patient. Quer et al. explored the possibility of using personal
sensor data to identify COVID-19-positive and negative
individuals.’* They developed a smartphone application that
collects data from individuals” smartwatches and activity
trackers, as well as self-reported symptoms and diagnostic
test results. The study results indicate that an ML model
combining symptom and sensor data effectively distinguishes
between COVID-19 positive and negative individuals (AUC =
0.80, P < 0.01), outperforming models that consider symptoms
alone (AUC = 0.71). This continuous, passively captured data
may serve as a complement to virus testing, aiding in more
accurately identifying COVID-19 infection risks and facilitating

the development of personalized prevention and management
strategies.

The integration of ML algorithms and wearable sensors
possesses the promise of revolutionizing disease tracking and
prediction, affording clinicians the ability to detect and
respond to health risks in real time. By improving the accuracy
and predictive capabilities of disease tracking and prediction
systems, this approach bears the prospect of enhancing the
quality of care provided to patients and reducing healthcare
costs.!?™128 [n essence, ongoing and dedicated research in this
area is crucial for advancing the field of pushing the boundaries
of disease management and prevention, ultimately unlocking
its full spectrum of possibilities in improving patient outcomes.

HUMAN—-MACHINE INTERACTION

HMI is an essential part of wearable sensors research that aims
to create a seamless interface between humans and
machines.?%127132 [t involves integrating various technologies
such as sensors, feedback mechanisms, and Al to enhance
communication and collaboration between humans and
machines.!*713 HMI plays a crucial role in various industries,
including aviation, healthcare, gaming, and robotics, among
others.!¥7142 However, traditional HMI approaches often rely
on predefined rules and models to facilitate the interaction
between humans and machines, constraining their adaptability
and responsiveness to individual differences, ultimately
producing a suboptimal experience. Additionally, predefined
rules and models may fall short of accommodating changes in
the environment, further diminishing their effectiveness.

The integration of wearable sensors and ML algorithms is
reshaping the HMI landscape, offering an approach capable of
adapting to the needs and preferences of each individual.™#314
Wearable sensors, such as body motion sensors and fitness
trackers, can provide real-time feedback on the user’s
behavioral and physiological states, which can be used to
inform ML algorithms. These algorithms, in turn, leverage this
information to personalize the interaction between humans
and machines, establishing a more adaptive and responsive
interface. This innovative approach to HMI enhances the user
experience by improving the effectiveness of machines in
comprehending and responding to human behavior.

Gesture recognition, which is rapidly evolving in the field of
HMI, aims to bridge the gap between machines and humans by
allowing machines to interpret and respond to human gestures
with reliability and precision. This critical area of research
contributes to enhancing the efficiency and usability of
human-machine interfaces. The integration of ML algorithms
and wearable sensors holds promise to improve the accuracy
and robustness of gesture recognition systems. The applica-
tions of ML algorithms in gesture recognition are vast and
varied.#>14 One key application is the development of real-
time gesture recognition systems. By analyzing data from
multiple wearable sensors, ML algorithms can detect and
correct errors in gesture recognition, improving the reliability
and accuracy of these systems. This approach allows machines
to recognize complex gestures accurately, even in the presence
of significant data noise. Researchers at the University of
California, Los Angeles designed a smart wearable glove based
on the triboelectric nanogenerator (TENG) for real-time
translation of sign language movements into audio speech.%
By continuously monitoring individuals’ finger movement, the
smart glove could successfully detect and collect signals of
different American Sign Language (ASL) gestures. With the
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Figure 4. ML algorithms for wearable gesture recognition. a, Photographs of the gestures and the corresponding TENG wearable glove-
generated voltage signals used for sign language recognition with the assistance of ML. b, Photograph showing the wearable sign-to-speech
translation system translating the sign-to-speech and real-time display on a commercial mobile phone application interface. Scale bar, 2 cm.
Reproduced with permission from ref 86. Copyright 2020 Springer Nature. c, Custom-designed 16 X 4 array of electrodes with a
miniaturized printed circuit board (PCB) that conforms to the forearm of a participant for surface electromyography (SEMG) recordings. d,
Using hyperdimensional (HD) computing algorithm to implement in-sensor adaptive learning and real-time inference for hand gesture
classification. e,f, Projecting sSEMG data into hyper-vectors through (e) spatial encoding and (f) temporal encoding. g, Usage of the
associative memory (AM) from prototype calculation and storage for training (left) to Hamming distance calculation for inference (right).
Reproduced with permission from ref 149. Copyright 2020 Springer Nature. h, Principles of sensor signal processing and unsupervised time-
dependent contrastive (TD-C) learning with unlabeled signals. MFS stands for motion feature space. i, Transfer learning and real-time
inference mechanism with the provided few-shot labeled data set. Dim 16 and MIPS stand for a dimension of 16 and maximum inner
product search, respectively. j,k, Demonstration of two-handed keyboard typing recognition with nanomesh printed on both hands via (j) a
picture of the user interface and (k) illustration. Reproduced with permission from ref 102. Copyright 2022 Springer Nature.

assistance of ML, the collected signals were merged into a
matrix and analyzed by using principal component analysis
(PCA) to extract the main features of each gesture and
eliminate redundant information (Figure 4a). The extracted
features were then classified using a multiclass support vector
machine (SVM) algorithm to create a real-time sign-to-speech
translation system. To demonstrate the efficacy of the device,
11 sign language hand gestures were selected from ASL to
represent numbers, words, and phrases (Figure 4b). Four deaf
signers repeated each gesture 15 times, resulting in 660 gesture
recognition patterns that were randomly split into a training set
of 440 and a test set of 220. The confusion matrix showed an
overall accuracy of 98.63% and an average recognition time of
less than 1 s. To enhance the user experience, a mobile
application was developed to convert the translated text to
speech via a third-party platform. The study underscores the
transformative impact of ML algorithms on the ability of
wearable sensors for more accurate detection and recognition.
The result is a real-time interpretation of human gestures,

fostering enhanced communication not only between humans
and machines but also among individuals.

Another area where ML algorithms find valuable applica-
tions is in the development of personalized gesture recognition
systems. By analyzing data from sensors, ML algorithms can
identify individual differences in gesture patterns, enabling
machines to respond to the distinct gestures of each user. This
approach offers a noteworthy advantage. ensuring machines
can quickly and accurately interpret human input. While the
indisputable power of ML in wearable technology has been
demonstrated in numerous studies, most commercialized
devices cannot update their ML models during usage, leading
to lower performance under practical conditions.#7.148
Addressing this challenge, recent research has introduced a
wearable biosensing system incorporating hyperdimensional
computing for in-sensor adaptive learning and real-time hand
gesture classification.’® The proposed wearable biosensing
system features a screen-printed electrode array affixed on the
human arm to continuously monitor muscle activity for hand
gesture recognition (Figure 4c). Hyperdimensional computing
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Figure 5. ML-assisted wearable sensors for environment perception. a—d, The self-supervised calibration network removes artifacts and
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of the letters and the orientation classification. Reproduced with permission from ref 150. Copyright 2021 Springer Nature. h, Convolutional
neural network (CNN) architecture used for identifying and weighing objects from tactile information. “ReLU” stands for rectified linear
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is an inventive computational approach known for its quick
learning and resistance to noise and errors. This method
processes high-dimensional hyper-vectors and simplifies
complex tasks like classification and reasoning (Figure 4e).
Consequently, it permits the reuse of the same hardware
modules for both sensor training and classification. The
process involves the sliding window approach, extracting five
feature segments in total (each being 50 ms long), with the
mean absolute value of the feature calculated for each channel
in each segment. The feature vector for each segment is
projected into a hyper-vector representing spatial information
by scaling and summing unique, pseudorandom bipolar hyper-
vectors representing electrode channels. The resultant spatial
hyper-vector is transformed into a spatiotemporal hyper-vector
by encoding the order in which the five vectors occur through
a bitwise rotation (Figure 4f). The rotated hyper-vectors are
multiplied together elementwise, resulting in a single 1,000D
bipolar hyper-vector that represents the entire 250 ms window
(Figure 4g). The encoded hyper-vectors that represent both
space and time can serve as either training examples or search
queries. This research introduced a prototype hyper-vector i
for each category, calculated by determining the centroid of
that category. These prototypes were then saved in associative
memory for subsequent use in classification. In contrast to
other neural network methods, this process is simple and one-
pass, helping the studied wearable sensor to improve sensing
accuracy and reliability by updating the ML model in response
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to changing conditions in real time without needing an external
device.

Besides updating and simplifying the process of ML
algorithms, an alternative approach to improve the function-
ality of ML in wearable sensors involves optimizing the data
volume or calibration processes. Researchers at Stanford
University described the creation of a nanomesh artificial
mechanoreceptor capable of recognizing different hand tasks
without the need for extensive data or individual calibration.’02
The system could analyze signal patterns from skin stretches by
extracting proprioception information similar to that from
cutaneous receptors. The system required only a single sensor
to decode complex proprioceptive signals and could
reconstruct multijoint proprioceptive information from low-
dimensional data (Figure 4h). The authors developed a time-
dependent contrastive learning framework that uses unlabeled
random finger motions to furnish prior motion representation
knowledge, which allows the system to learn task-specific signal
patterns from unlabeled signals collected from multiple users
(Figure 4i). The pre-trained model exhibited quick adaptation
to different daily tasks using minimal hand signals, exemplified
by its proficiency in recognizing two-handed keyboard typing
(Figure 4j k).

Environment perception is a critical research area that
enables machines to interpret and understand their surround-
ings. It concentrates on recognizing hand posture and delving
into touch-based environmental interpretation rather than

https://doi.org/10.1021/acsnano.4c05851
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simply analyzing finger movements. The combined help of ML
algorithms and wearable sensors has led to innovative
methodologies in environment perception, promising im-
proved accuracy, and robustness. One of the key areas of
research in environmental perception is the development of
tactile sensors that can simulate the sense of touch. This is
achieved by integrating a variety of sensors onto the surface of
a wearable sensor that can detect different types of pressure,
friction, and temperature. These sensors can then provide
information about the texture, shape, and material properties
of an object upon touch, promoting a more profound
understanding of the object and its environment. Exploiting
ML algorithms to analyze the data generated by these sensors
is a common practice, allowing the devices to undergo a
learning process in which they become adept at recognizing
and interpreting different types of objects and environments.
The model is trained on an extensive data set, enabling it to
distinguish between different types of objects and environ-
ments and to precisely predict the properties of encountered
objects.

Researchers at the Massachusetts Institute of Technology
developed a tactile learning platform employing textile
materials crafted from piezoresistive fibers to record and
learn human—environment interactions (Figure 5a,b).’" To
ensure its sensing accuracy, ML techniques were equipped for
correction and calibration (Figure 5c,d). By utilization of a self-
supervised learning framework, the correlation between
responses significantly increased, ensuring more uniform and
continuous responses that were robust against variation and
disruption among individual elements. Moreover, the data set
was collected by pressing three letter cutouts against the back
of a manikin dressed in a vest made of functional fibers in
various orientations. The type and orientation of the letter
were predicted using a classification network that took a small
window of tactile responses. The accuracy of prediction was
63.76%, and the effective resolution influenced the accuracy, as
depicted by the decrease in accuracy as resolution decreases
(Figure 5e). The platform successfully captured diverse
human-—environment interactions and showcased promising
results for classifying various poses and motions. The results
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underscore the possibility of the proposed self-supervised
sensing correction to normalize sensor responses and correct
malfunctioning sensors in the array. The demonstrated
applications highlight the value of the developed system for
various human—environment interaction learning scenarios.

Another work introduced a cost-effective method of
constructing a tactile glove with 548 sensors that cover the
entire hand.’®! The glove not only generates tactile maps with
high resolution but also measures normal forces ranging from
30 mN to 0.5 N with a quantization of approximately 150
levels and a peak hysteresis of about 17.5%. It also captured
tactile videos with a frame rate of about 7.3 Hz. Furthermore,
the authors also introduced a large data set of tactile maps
consisting of 135,000 frames recorded using the tactile glove
while manipulating objects with a single hand. The tactile
maps’ spatial correlations and finger regions’ correspondence
revealed the human grasping strategy’s tactile signatures. A
convolutional neural network (CNN) was trained to identify
objects using filtered frames, which were 32 X 32 arrays in
sensor coordinates (Figure 5f). The classification accuracy of
the CNN improved with the number of input frames and
reached its maximal performance with about seven random
input frames, as shown in Figure 5g. Along with the
corresponding tactile frames shown in Figure 5h, the output
classification vectors of eight example tactile frames are shown
in Figure 5i.

CONCLUSION AND PERSPECTIVE

Wearable sensors have witnessed significant advances in recent
years, prominently marked by the integration of ML playing a
crucial role in enhancing its capabilities (Figure 6a). This
includes the ability to make accurate predictions and detect
patterns in large and complex sets of biometric data, leading to
a better understanding of human physiology and providing
insights into various health conditions. The application of
supervised learning algorithms has notably resulted in the
development of personalized health models, enabling wearable
sensors to forecast the likelihood of certain health conditions
based on individual data. In parallel, unsupervised learning
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Table 1. Comparison of Different Machine-Learning Algorithms

Algorithm Advantages

Decision Trees - Simple to understand and interpret

- Requires little data preprocessing

- Reduces overfitting

- Handles large data sets well
Support Vector Machines (SVMs) - Effective in high-dimensional spaces

- Robust to overfitting (especially in high-
dimensional space)

- Simple and easy to implement

- No training phase

- Fast and efficient

- Performs well with small data sets
- High accuracy

- Can model complex relationships

- Excellent for image and spatial data

Random Forest

K-Nearest Neighbors (KNNs)
Naive Bayes
Neural Networks

Convolutional Neural Networks
(CNNs)

Recurrent Neural Networks

- Good for sequential data
(RNNs)

Effects on Wearable Sensors

- Can handle large feature spaces, useful for multisensor data
- Prone to overfitting, affecting sensor data reliability

- Enhances sensor data accuracy through ensemble learning

- Requires more computational resources

- High accuracy for sensor data classification

- Computationally intensive, may affect real-time processing

- Effective for real-time applications with wearable sensors

- Performance decreases with large data sets

- Quick to adapt to new data

- Assumes independence of features, which may not always be the case
- Suitable for complex, multisensor data integration

- Requires significant computational power and large training data sets

- Highly effective for sensor data with spatial dependencies (e.g.,
motion sensors)

- High computational cost
- Ideal for time-series sensor data (e.g., heart rate, temperature)

- Computationally expensive and can suffer from vanishing gradients

algorithms have been employed to detect hidden patterns in
biometric data, providing a more holistic comprehension of
underlying biological processes. The increasing availability of
large and diverse data sets propelled the adoption of deep
learning techniques in the field of wearable biomonitoring.
CNNs and Recurrent Neural Networks (RNNs) have proven
effective in extracting features from raw biometric signals and
classifying different physiological states, thereby leading to
improved accuracy in detecting physiological states and
predicting health outcomes. Table 1 provides an overview of
how different machine-learning algorithms can be applied to
wearable sensor data, highlighting their advantages and
potential effects on the performance and reliability of the
sensors. The integration of ML in wearable biomonitoring has
also enabled the development of real-time monitoring systems.
Wearable sensors can now provide continuous monitoring of
critical health parameters and alert the user in the case of any
deviations, promoting timely interventions and reducing the
risk of adverse health outcomes.

The wearable sensor market is expected to continue to
expand, driven by an aging population, increasing chronic
disease burden, and a growing focus on preventative
healthcare.’5>715 As wearable sensors become more wide-
spread, ML algorithms will play a critical role in analyzing the
vast amounts of data generated by these sensors. One of the
prominent trends in the field of ML for wearable
biomonitoring involves the development of personalized health
algorithms. These algorithms leverage ML to analyze data from
wearable sensors and other sources to generate personalized
health profiles, which can help guide health decision-making
and treatment planning.’” Another area of growth for ML in
wearable biomonitoring is the development of predictive
models. These models harness ML algorithms to analyze data
from wearable sensors and other sources to predict future
health outcomes such as disease progression or hospitalization.
Such models stand poised to transform healthcare manage-
ment by enabling early identification of health risks and
interventions to prevent negative outcomes. Finally, ML is
assuming an increasingly important role in advancing our
understanding of complex health conditions such as mental
illness and sleep disorders. By analyzing data from wearable
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sensors and other sources, ML algorithms can help identify
patterns and correlations in health data that may be missed by
traditional methods, advancing our understanding of these
conditions and treatments.

The future of ML for wearable sensors holds significant
promise, with several areas of development being envisioned
on the horizon. One such area is the integration of ML with
next-generation wearable sensors.'*1% These sensors will
likely be smaller, thinner, more flexible, and capable of
capturing a wider range of physiological data. Another
promising avenue for development is the integration of ML
with existing wearable biomonitoring technologies, such as
electrocardiograms and sleep monitoring sensors, to provide
more accurate and comprehensive health assessments. For
example, Al algorithms can be used to optimize the power
consumption of wearable sensors, by reducing the amount of
data transmitted and stored and by improving the efficiency of
the algorithms that process the data. This can help extend the
battery life in wearable sensors and make them more
convenient and user-friendly.

Personalized healthcare is a growing expanding field
dedicated to delivering individualized medical treatment
based on an individual’s unique health profile.'®0~168 This
approach recognizes that each person’s health is influenced by
a variety of factors, including genetics, lifestyle, and environ-
mental factors.!®~176 Wearable sensors offer a powerful tool
for collecting data on these factors, supplying healthcare
providers with a more comprehensive understanding of an
individual’s health status.””7'$ In tandem, ML algorithms
serve as a robust means for analyzing this data, identifying
patterns and relationships that may not be immediately
apparent to human analysts. By combining wearable sensors
with ML algorithms, personalized healthcare providers can
develop tailored treatment plans that consider an individual’s
unique health profile.

Disease tracking and prediction is an important area of
research in healthcare, as it can help clinicians identify and
respond to health risks before they become more seri-
ous.’%718 By combining ML algorithms with wearable
sensors, researchers have developed approaches for disease
tracking and prediction that hold significant potential to
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improve the accuracy and effectiveness of these systems.'$71%
Additionally, an increasing interest centers on using ML to
personalize health interventions based on an individual’s
unique physiological profile (Figure 6b). Fiber bioelectronics
is a compelling platform for developing advanced wearable
sensors, as it enables the integration of sensors into textiles,
enhancing flexibility, comfort, and wearability.127200 VR
interactions represent a cutting-edge application area where
wearable sensors can significantly enhance user experience and
provide immersive, real-time data visualization and anal-
ysis.21202 Combining ML and wearable sensors encompasses
tailoring recommendations for physical activity, nutrition, and
stress management based on real-time data derived from
wearable sensors.257208 ML algorithms may also be used to
detect early signs of disease and predict future health
outcomes, helping to inform preventative strategies and
improve health outcomes.'2320°7211 Finally, there exists a
need to enhance the interpretability and transparency of ML
models in the wearable biomonitoring domain. This under-
taking will help ensure the reliability of predictions and
decisions made by these models, garnering trust from medical
professionals and patients alike.
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VOCABULARY

Machine Learning (ML):A subset of artificial intelligence
that involves the use of statistical models and algorithms to
enable computers to perform specific tasks without explicit
programming, focusing on making predictions or decisions
based on data.

Wearable Sensors:Devices worn on the body that con-
tinuously measure and transmit information about bodily
functions and external environment, commonly used in
healthcare and fitness monitoring.

Supervised Learning:A type of machine learning where the
model is trained on labeled data, i.e., data that includes the
correct answer, to predict outcomes for new, unseen data.
Unsupervised Learning:A machine-learning technique used
to find hidden patterns or intrinsic structures in input data
that is not labeled, often used for clustering or association
tasks.

Human—Machine Interaction (HMI):The study and design
of systems and environments that involve interaction
between humans and machines, enhancing user interface
and experience through responsive technology.
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