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ABSTRACT: Recent years have witnessed tremendous advances in 
machine learning techniques for wearable sensors and bioelectronics, 
which play an essential role in real-time sensing data analysis to 
provide clinical-grade information for personalized healthcare. To this 
end, supervised learning and unsupervised learning algorithms have 
emerged as powerful tools, allowing for the detection of complex 
patterns and relationships in large, high-dimensional data sets. In this 
Review, we aim to delineate the latest advancements in machine 
learning for wearable sensors, focusing on key developments in 
algorithmic techniques, applications, and the challenges intrinsic to 
this evolving landscape. Additionally, we highlight the potential of 
machine-learning approaches to enhance the accuracy, reliability, and 
interpretability of wearable sensor data and discuss the opportunities 
and limitations of this emerging field. Ultimately, our work aims to provide a roadmap for future research endeavors in this 
exciting and rapidly evolving area. 
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INTRODUCTION 

Wearable sensors have emerged as a transformative technology 
in the fields of personalized healthcare and human−machine 
interaction (HMI).1−8 By continuously monitoring an 
individual’s physiological states and motions, these devices 
possess the potential to provide personalized, real-time insights 
and support.9−20 Recent technological advancements have 
catalyzed the development of advanced wearable devices adept 
at capturing an expansive range of physiological signals, 
providing opportunities for personalized healthcare and 
HMI.21−41 With the increasing availability and demand for 
such devices, wearable sensors have gained significant 
attraction in remote patient monitoring, sports performance 
tracking, and health and wellness coaching.42−49 For instance, 
these devices can continuously monitor physiological param- 
eters such as heart rate, blood pressure, physical activity levels, 
among others.50−54 This real-time monitoring offers the 
potential for early detection and intervention of potential 
health issues, ultimately improving health outcomes.55−63 
Wearable sensors can also provide personalized feedback and 
support, enabling individuals to make informed decisions to 
improve their health and wellness.64−66 The field of wearable 
sensors has witnessed significant growth in recent years,64,67−79 

as demonstrated by the extensive range of applications and the 
interdisciplinary nature of related publications (Figure 1a). 

Despite these significant benefits, using artificial intelligence 
(AI) for wearable sensors still faces several challenges. One 
major obstacle is the processing and analysis of the vast 
amounts of data generated by these devices.80,81 High levels of 
noise and interference can impact the accuracy and reliability 
of the results.82,83 Additionally, the compact design of wearable 
devices limits both data storage and computing capabilities, 
posing a challenge to conducting intricate on-device analyses.84 
Nevertheless, the rapid evolution of wearable sensing 
technology and the growing demand for personalized health- 
care and HMI solutions make this a field of significant interest 
and potential.85,86 In this context, artificial intelligence has the 
potential to overcome these challenges and make wearable 
sensors more reliable and effective.87−89 Using machine- 
learning (ML) algorithms and statistical models can improve 
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Figure 1. An overview of using ML for wearable sensors. a, The keywords of publications related to wearable sensors demonstrate the 
extensive application scope and interdisciplinarity of this field. Keywords from Web of Science. b, Typical process of applying ML algorithms 
to wearable sensors for data collection, preprocessing, feature extraction, and model training. c, Comparison of edge AI and cloud AI 
approaches in wearable sensors, highlighting their respective advantages and drawbacks. d, Use of supervised and unsupervised learning 
techniques for wearable sensors, with supervised learning often applied for classification and prediction of health metrics and unsupervised 
learning for discovering underlying patterns and relationships in the data. 

 

 

the accuracy of the data collected by wearable sensors and help 

to identify meaningful patterns in the data that may be useful 

for healthcare professionals.90,91 For example, ML algorithms 

can be trained on large amounts of data from wearable sensors 

to detect early signs of various health conditions, such as 

cardiovascular disease, sleep apnea, and even Parkinson’s 

disease.92,93 This application has the potential to help 

healthcare professionals diagnose and treat these abnormalities 

at earlier stages, significantly improving patient healthcare 

outcomes.57 Moreover, ML can also help to optimize the 

sensing performance of wearable sensors.94 For example, ML 

algorithms can be used to calibrate wearable sensors and 

improve their accuracy, by considering the different types of 
interference and noise that may affect the data.95 

Herein, we summarize the role of ML in the field of wearable 
sensors. We describe the various applications of ML in 
wearable sensors, including the use of algorithms for data 
analysis and prediction as well as the development of wearable 
sensors that incorporate advanced ML techniques. Then, we 
discuss the challenges and limitations of ML in wearable 
biomonitoring, including issues related to data privacy and 
security as well as the need for robust and scalable algorithms 
that can handle large amounts of data. Furthermore, the 
Review encompasses the latest research and technological 
advances in this area including the development of algorithms, 
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data processing techniques, and wearable sensors designed to 
improve the accuracy and reliability of biomonitoring. 
Considering the future of ML for wearable biomonitoring, 
integration of ML is revolutionizing the accuracy and efficiency 
of wearable sensors by identifying and correcting errors in the 
collected data. By addressing the challenges that wearable 
sensors currently face, ML has the potential to significantly 
improve people’s health and wellness, facilitating healthcare 
professionals to diagnose and treat various health conditions 
more effectively. 

MACHINE LEARNING 

ML algorithms are increasingly harnessed to process vast 
amounts of data generated by sensors.96 As shown in Figure 
1b, the process typically begins with the collection of raw 
sensing data, which is then preprocessed to filter the noise and 
reduce the motion artifacts.2 Next, feature extraction 
techniques are applied to identify relevant features in the 
data. These features may include statistical measures such as 
mean and variance or more complex ones such as spectral 
features. Upon the extraction of relevant features, they are used 
as inputs to ML algorithms, which are trained on a data set of 
labeled examples. The training process involves adjusting the 
parameters of the model to minimize the difference between 
the predicted output and the true output. Once the model has 
been trained, it can be used to make predictions on unseen 
data. In the context of wearable sensors, ML algorithms have 
been used to predict a variety of outcomes, including activity 
recognition, fall detection, and disease diagnosis. The ability of 
ML algorithms to learn from data and deliver accurate 
predictions makes them powerful tools for processing wearable 
sensor data and extracting meaningful insights about human 
health and behavior. 

Traditionally, data collected by wearable sensors has been 
processed using methods such as statistical analysis and signal 
processing.96 These methods have limitations in terms of the 
complexity and diversity of the data that they can effectively 
handle. The main difference between ML algorithms and their 
traditional counterparts lies in their adaptability and general- 
ization capabilities.97 Traditional algorithms rely on manually 
defined rules and features to process sensor data, which often 
limits their applicability to specific scenarios and data 
sets.98−100 ML, on the other hand, has several advantages 
over traditional methods in the context of wearable 
sensors.101−103 First, ML algorithms can handle large and 
complex data sets, allowing for more accurate analysis and 
insights. Second, these algorithms can learn from data and 
continuously improve their performance, leading to better 
results over time. Third, ML algorithms can detect patterns 
and relationships in data that may not be easily noticeable with 
traditional methods. Finally, ML algorithms can handle a wide 
range of data types and modalities, ranging from physiological 
signals to behavioral data, rendering them versatile tools for 
processing data from wearable sensors. These advantages have 
positioned ML as a valuable tool in improving the performance 
of wearable sensors and enabling applications in the field of 
wearable healthcare and wellness. 

Edge AI and Cloud AI. In the wearable sensor field, the 
deployment of ML algorithms can be categorized into two 
broad approaches: edge AI and cloud AI (Figure 1c).104 Both 
approaches offer their advantages and drawbacks, contingent 
on the specific use case at hand. Edge AI involves the 
deployment of ML models and algorithms directly on wearable 

sensors such as smartwatches and fitness trackers. This 
approach enables real-time data processing and decision- 
making on the device, which reduces the need for constant 
communication with the cloud. Furthermore, it also minimizes 
privacy and security risks associated with the transmission of 
sensitive health data. On the other hand, cloud AI leverages the 
computational power and storage capacity of remote servers to 
process and analyze wearable sensor data. This approach can 
provide more accurate results, given its access to a larger data 
set and the ability to leverage more sophisticated algorithms. 
Additionally, cloud AI facilitates centralized data management 
and sharing, allowing the combination of data from multiple 
wearable devices to gain a more comprehensive understanding 
of a person’s health. 

The choice between edge AI and cloud AI in wearable 
sensors depends on the desired balance between privacy, 
security, and data accuracy. For instance, edge AI is well-suited 
for use cases where privacy and security are paramount, such as 
in wearable sensors designed to monitor patients with medical 
conditions. In contrast, cloud AI finds its forte in use cases 
where data accuracy is the primary concern such as in wearable 
sensors used to optimize athletic performance. Both edge AI 
and cloud AI have important roles to play in the wearable 
sensor field, and the ongoing advancement of AI technology is 
expected to further enhance their capabilities and expand their 
applications. As wearable sensors become more sophisticated 
and integrated into our daily lives, the role of AI in 
transforming fields and improving human health is anticipated 
to become increasingly important. 

Supervised Learning and Unsupervised Learning. In 
the field of wearable sensors, selecting the right machine- 
learning algorithm can be crucial in achieving the desired 
outcomes. Figure 1d illustrates two prominently used AI 
approaches in wearable sensors; supervised learning and 
unsupervised learning.105,106 This approach has proven to be 
highly effective in predicting chronic health conditions, such as 
diabetes and heart disease, thereby enhancing the accuracy of 
wearable sensors. On the other hand, unsupervised learning 
does not require labeled data and instead uses data-clustering 
techniques to identify patterns and relationships in the data. 
Particularly beneficial in situations characterized by an 
abundant amount of data but limited labeled data, 
unsupervised learning aids in identifying patterns that may 
not be easily noticeable through manual inspection. In the 
context of wearable sensors, unsupervised learning is frequently 
employed to identify trends in large amounts of data such as 
daily physical activity patterns or sleep quality. The adoption of 
both supervised and unsupervised learning has tremendously 
improved the accuracy and capabilities of wearable sensors, 
positioning them as powerful tools for collecting and analyzing 
health and wellness data. With the continued integration of AI 
in wearable sensors, these devices are anticipated to become 
even more sophisticated and capable of providing detailed 
insights into human health and wellness. Consequently, the 
strategic selection of a suitable ML algorithm for wearable 
sensors is deemed a pivotal step in optimizing their 
functionality. 

BIOMONITORING 

Health monitoring constitutes a fundamental aspect of 
personalized healthcare, empowering clinicians to track and 
manage real-time health status of their patients.107−111 By 
combining ML algorithms with wearable sensors, researchers 
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Figure 2. ML-assisted physiological monitoring. a, Statistical moments collected by the wearable smart watch, including heart rate, skin 
temperature, EDA, and step counts (top). Overview of the statistical learning methods employed and model evaluation methodology 
(bottom). b, Wearable vital signs calculating features through random forest models using varying time windows. Reproduced with 
permission from ref 119. Copyright 2021 Springer Nature. c, Illustration of the Bio-Z signal (top), and two Bio-Z signals recorded by two 
pairs of GETs for collecting data and ML algorithm. d, Training models developed by shuffling hand grip and cold pressor data. Reproduced 
with permission from ref 120. Copyright 2022 Springer Nature. e, Schematic workflow. Preprocessed images train the FCN-32 model, which 
predicts left ventricular volume from unprocessed images, enabling derivation of stroke volume, cardiac output, and ejection fraction. f, Left 
ventricular volume waveform generated from the wearable imager (W.I.) and labeled features in one cardiac cycle. Reproduced with 
permission under a Creative Commons CC-BY license from ref 118. Copyright 2023 Springer Nature. g, Photograph of the conformable 
multimodal sensory face mask. h, Schematic of ML model development. Data were loaded from the server, processed, and applied to a k- 
means clustering-based classification model, with the test data set’s predicted positions compared to true values during testing. Reproduced 
with permission from ref 121. Copyright 2022 Springer Nature. 

 

 

have developed approaches to health monitoring that showcase 
the potential to improve the accuracy and efficiency of these 
systems.112−116 

One area where ML algorithms prove particularly advanta- 
geous in health monitoring is in the development of 
personalized health monitoring systems.117,118 By analyzing 
data from wearable sensors, ML algorithms can identify 
individual differences in health factors, enabling clinicians to 
tailor treatment plans to the specific needs of each patient. For 
example, vital signs are often utilized for detecting and 
monitoring medical conditions. However, traditional measure- 
ments require clinical and laboratory tests for definitive 
conclusions. Recently, Dunn et al. employed ML models, 
including random forests and Lasso models, to predict clinical 
laboratory test results based on vital signs measured by 

wearable sensors, such as continuous heart rate, skin 
temperature, electrodermal activity (EDA), and motion 
(Figure 2a).119 The study also investigated the impact of 
time and personalization on the model’s accuracy. Results 
revealed that wearable sensors provided more measurements 
than those obtained in clinics during the detection period and 
allowed for the design of more complex model features, 
resulting in more accurate clinical laboratory test predictions. 
Additionally, different time windows yielded varying model 
performances (Figure 2b). Personalized models established by 
using more observational results or intensive monitoring 
periods with appropriate monitoring durations exhibited 
improved accuracy, outperforming population-level models. 
This study linked specific physiological features to clinical 
characteristics, enhancing the understanding of the relationship 
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Figure 3. ML-assisted wearable body motion sensing. a, Reconstructed body posture of a participant performing the 8-m walk is captured 
using a motion suit with inertial sensors monitoring limb movement. The suit records a typical time series of angular positions for neck, 

elbow, hip, and knee joints, along with a frame sequence of a Friedreichʼs ataxia (FA) patient’s 8-m walk test at 0.5 s intervals. b, Utilizing 
full-body motion capture and ML to analyze performance markers for reconstructing standard clinical assessments and improving FA disease 
progression estimation. Reproduced with permission under a Creative Commons CC-BY license from ref 122. Copyright 2023 Springer 
Nature. c, Probability distribution of joint angles at three skeletal joints comparing natural movement behavior data between individuals 
with Duchenne muscular dystrophy (blue) and healthy controls (red). d, The system extracts ethomic fingerprints from participants’ natural 
movement behavior using suit data, employing supervised GP regression to derive digital biomarkers from these fingerprints. Reproduced 
with permission under a Creative Commons CC-BY license from ref 123. Copyright 2023 Springer Nature. e, Multi-sensor-based hand 
function assessment glove. f, The hand function assessment process includes hand kinematic signals collecting, processing, and analyzing. 
Reproduced with permission under a Creative Commons CC-BY license from ref 93. Copyright 2023 Wiley-VCH. 

 

 

between clinical biochemistry tests and physiology. Personal- 
ized monitoring and modeling frameworks can be readily 
extended to other types of data and clinical measurements, 
enabling the widespread implementation of personalized health 
monitoring through wearable sensors. 

Another area where ML algorithms play a pivotal role is in 
the development of predictive health monitoring systems. By 
continuously monitoring health data through wearable sensors, 
ML algorithms can detect and interpret changes in a patient’s 
health in real-time, allowing clinicians to timely intervene 

before a condition worsens. Arterial blood pressure (BP) is an 
essential parameter for understanding various health con- 
ditions, including cardiovascular diseases. Dynamic blood 
pressure monitoring platforms can facilitate the analysis of 
correlations between diseases and individual behaviors and 
lifestyles, thereby facilitating proactive disease prevention. 
However, traditional dynamic blood pressure sensors are 
cumbersome and invasive. Kireev et al. introduced a self- 
adhesive, low-impedance graphene electronic tattoo (GET) 
based on bioimpedance measurements (Bio-Z) for continuous 

http://www.acsnano.org/?ref=pdf
https://doi.org/10.1021/acsnano.4c05851?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/doi/10.1021/acsnano.4c05851?fig=fig3&ref=pdf


ACS Nano www.acsnano.org Review 

22739 https://doi.org/10.1021/acsnano.4c05851 
ACS Nano 2024, 18, 22734−22751 

 

 

blood pressure monitoring.120 The Bio-Z waveforms are 
inversely related to BP (Figure 2c top), and the ΔZartery 
curve is used to identify four characteristic points, systolic 
pressure foot, diastolic pressure peak, mean slope, and 
inflection point for constructing ML regression algorithms 
for BP prediction (Figure 2c bottom). Adaptive boosting 
techniques process approximately 50 feature points extracted 
from the four Bio-Z signals to train the ML algorithms. 
Training is typically performed on shuffled data (Figure 2d); 
the original time trajectories are randomized and divided into 
ten equal parts, using one part for training and the remaining 
nine for 10-fold cross-validation analysis. The implementation 
of 10-fold cross-validation allows the ML model to utilize most 
of the training data while avoiding overfitting. Post-training, 
the data are reordered according to their original temporal 
sequence. The results indicate that the bioimpedance platform 
achieves higher accuracy than previously reported. The 
prediction accuracy of the ML regression model trained 
through cyclic training reaches 0.06 ± 2.5 mmHg (diastolic 
pressure) and 0.2 ± 3.6 mmHg (systolic pressure). According 
to the Institute of Electrical and Electronics Engineers (IEEE) 
standards, these values are equivalent to grade A classification 
wearable blood pressure measurement devices, providing a 
solution for wearable blood pressure monitoring. 

ML algorithms not only exhibit proficiency in extracting 
feature points from curves but also demonstrate notable 
capabilities in extracting information in the field of medical 
imaging. Recently, Hu et al. reported a wearable ultrasound 
device for continuous, real-time, and direct assessment of 
cardiac function.118 The device achieves effective mechanical 
coupling with human skin, allowing examination of the left 
ventricle from different angles during movement. Subse- 
quently, deep learning neural networks are applied to extract 
key information from continuous image streams, with 
preprocessed images used to train the Fully Convolutional 
Networks (FCN)-32 model. The trained model can automati- 
cally predict left ventricular volume from continuous image 
recordings, generating waveforms of key cardiac performance 
indicators such as stroke volume, cardiac output, and ejection 
fraction (Figure 2e). By comparing the output information on 
left ventricular volume waveforms (Figure 2f top) and key 
features in a detailed cardiac cycle (Figure 2f bottom) from the 
wearable ultrasound device and commercial imagers, the 
results validate comparable performance between the wearable 
and commercial imagers. This technology enables dynamic 
wearable monitoring of cardiac performance with significantly 
improved accuracy in various environments and has the 
potential to extend its benefits to outpatient and athletic 
populations. 

ML algorithms can also be used to enhance the accuracy and 
reliability of health monitoring systems. By analyzing data from 
multiple sensors, ML algorithms can detect and correct errors 
in health monitoring, improving the overall quality and 
usefulness of these systems. The emergence of COVID-19 
and health policies worldwide has highlighted the importance 
of masks in combating the spread of infectious diseases, and 
integrating wearable electronic devices into masks can provide 
valuable insights for both individual and public health. Kim et 
al. reported a conformable multimodal sensory face mask 
(cMaSK) that could be integrated with commercial masks 
(Figure 2g) and simultaneously monitor multiple signals 
related to both biological and environmental conditions, 
including mask position, skin temperature, humidity, speech 

activity, and breathing patterns.121 An ML algorithm was 
developed to classify the position of the mask. Here, 
researchers employed k-means clustering, classifying points 
into k clusters based on minimizing the distance between data 
points and clusters’ centroids (Figure 2h). Data stored on the 
server were processed for training and testing of the algorithm. 
The accuracy rates for male and female subjects were 92.8% 
and 77.5%, respectively, reliably decoding mask positions. The 
precise recognition of mask position effectively contributes to 
improving the quality of device wear and proactively assists 
users in optimizing mask fit, further enhancing the monitoring 
quality of cMaSK. This work provides a modular, customizable 
research tool for studying environmental and health 
technologies in real-world environments where human 
behavior may affect performance, broadening the under- 
standing of key factors affecting mask-wearing behavior and 
their impact on human health and well-being. 

The integration of ML algorithms and wearable sensors has 
the potential to transform health monitoring, enabling 
clinicians to better track and manage the health of their 
patients. By improving the accuracy, efficiency, and predictive 
capabilities of health monitoring systems, this approach has the 
potential to enhance the quality of care provided to patients in 
a variety of settings, including hospitals, clinics, and home care 
environments. As such, research in this area is crucial for 
advancing the field of health monitoring and realizing its 
complete potential in improving patient outcomes. 

One area where ML algorithms exhibit practicality is disease 
tracking and prediction, particularly in the early detection of 
chronic diseases. By analyzing data from wearable sensors, ML 
algorithms can detect subtle changes in health patterns that 
may indicate the early onset of chronic diseases such as 

diabetes or heart disease. Early detection enables clinicians to 
intervene before the disease progresses, potentially improving 
patient outcomes and reducing healthcare costs. For example, 

one in every 17 people suffers from rare diseases, and drug 
development progresses slowly due to the limited number of 

patients. Clinical scales commonly adopted to measure the 
progression of rare diseases are often slow and subjective, 
necessitating objective methods.122 For Friedreich’s ataxia 

(FA), researchers captured the whole-body kinematic charac- 
teristics of test subjects using wearable sensors (Figure 3a), 
defining digital behavioral features based on their 8-m walk (8- 

MW) test and 9-hole peg test (9 HPT) (Figure 3b). 
Employing ML to longitudinally predict clinical scores in FA 

patients, results showed that digital behavioral features could 
accurately predict individual components of the Scale for the 
Assessment and Rating of Ataxia (SARA) and Spinocerebellar 

Ataxia Functional Index (SCAFI) scores and forecast future FA 
gene expression levels. In this study, effective predictions for 

early disease progression were shaped by analyzing these digital 
behavioral features through ML. The advantage of this 
approach lies in its ability to substantially reduce the duration 

or scale of clinical trials for testing disease-modifying therapies 
while providing more accurate predictive results. Physicians 
can detect and diagnose diseases earlier, thereby offering more 
effective treatment and management strategies and resulting in 
better healthcare services and treatment outcomes for patients. 
ML algorithms are instrumental in predicting disease 

progression and assessing treatment effectiveness. By analyzing 
data from wearable sensors over time, ML algorithms can 
detect trends and patterns that may indicate disease 

progression or a response to treatment. Clinicians can leverage 
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this information to adjust treatment plans and monitor 
patient’s progress, ultimately improving the overall quality of 
care. For instance, the fusion of wearable sensors and ML 
algorithms to analyze behavioral data holds great potential in 
improving the prediction of disease progression and the 
assessment of treatment outcomes. Ricotti et al. developed a 
KineDMD ethic behavioral biomarker based on daily living 
activity data, using ML algorithms to predict and assess the 
progression and treatment efficacy of Duchenne muscular 
dystrophy (DMD).123 Specifically, a wearable sensor suite was 
designed to quantitatively test the differences in joint motion 
between healthy control subjects and DMD patients during 
daily living activities, particularly the distinct manifestations of 
DMD patients compared to healthy controls in terms of joint 
angles and posture (Figure 3c). Subsequently, a whole-body 
motion behavior analysis method was employed, extracting 
ethomic fingerprints from participants’ digital twins and 
deriving digital biomarkers using the Gaussian process (GP) 
regression ML algorithm (Figure 3d). Compared with current 
clinical assessments, this biomarker demonstrates exceptional 
performance in predicting disease progression and may 
revolutionize the conduct of clinical trials for neurological 
disorders. This approach holds the potential to provide more 
personalized and effective treatment strategies for patients with 
neuromuscular diseases. Furthermore, the utilization of 
multisensor systems and ML algorithms can provide a more 
comprehensive, objective, and detailed disease assessment for 
clinical monitoring, aligning more effectively with clinical 
rehabilitation needs. Recently, Li et al. developed a multimodal 
sensor glove for hand function assessment in Parkinson’s 
Disease (PD) patients with hand dysfunction (Figure 3e).93 
The built-in flexible sensor network can comprehensively 
capture patients’ hand-related motion signs, such as rigidity, 
muscle weakness, and tremors. By employing filtering, 
normalization, clustering analysis, and neural network evalua- 
tion, the data glove based on hand kinematics can 
quantitatively assess finger flexibility, hand muscle strength, 
and hand stability (Figure 3f). The generated hand function 
impairment assessment grading results can be used to assist in 
evaluating disease progression stages. In addition to helping 
devise rehabilitation therapies, the multisensor data glove can 
objectively assess patients’ progress following hand rehabil- 
itation training, assist physicians in formulating disease 
rehabilitation treatment plans, and bring breakthroughs in 
evaluating hand function in PD patients. 

Another area where ML algorithms find utility is in the 
development of personalized disease tracking and prediction 
systems. By analyzing data from multiple sensors, ML 
algorithms can identify individual differences in health patterns 
and risk factors, enabling clinicians to tailor disease prevention 
and management strategies to the specific needs of each 
patient. Quer et al. explored the possibility of using personal 
sensor data to identify COVID-19-positive and negative 
individuals.124 They developed a smartphone application that 
collects data from individuals’ smartwatches and activity 
trackers, as well as self-reported symptoms and diagnostic 
test results. The study results indicate that an ML model 
combining symptom and sensor data effectively distinguishes 
between COVID-19 positive and negative individuals (AUC = 
0.80, P < 0.01), outperforming models that consider symptoms 
alone (AUC = 0.71). This continuous, passively captured data 
may serve as a complement to virus testing, aiding in more 
accurately identifying COVID-19 infection risks and facilitating 

the development of personalized prevention and management 
strategies. 

The integration of ML algorithms and wearable sensors 
possesses the promise of revolutionizing disease tracking and 
prediction, affording clinicians the ability to detect and 
respond to health risks in real time. By improving the accuracy 
and predictive capabilities of disease tracking and prediction 
systems, this approach bears the prospect of enhancing the 
quality of care provided to patients and reducing healthcare 
costs.125−128 In essence, ongoing and dedicated research in this 
area is crucial for advancing the field of pushing the boundaries 
of disease management and prevention, ultimately unlocking 
its full spectrum of possibilities in improving patient outcomes. 

HUMAN−MACHINE INTERACTION 

HMI is an essential part of wearable sensors research that aims 
to create a seamless interface between humans and 
machines.28,129−132 It involves integrating various technologies 
such as sensors, feedback mechanisms, and AI to enhance 
communication and collaboration between humans and 
machines.133−138 HMI plays a crucial role in various industries, 
including aviation, healthcare, gaming, and robotics, among 
others.139−142 However, traditional HMI approaches often rely 
on predefined rules and models to facilitate the interaction 
between humans and machines, constraining their adaptability 
and responsiveness to individual differences, ultimately 
producing a suboptimal experience. Additionally, predefined 
rules and models may fall short of accommodating changes in 
the environment, further diminishing their effectiveness. 

The integration of wearable sensors and ML algorithms is 
reshaping the HMI landscape, offering an approach capable of 
adapting to the needs and preferences of each individual.143,144 
Wearable sensors, such as body motion sensors and fitness 
trackers, can provide real-time feedback on the user’s 
behavioral and physiological states, which can be used to 
inform ML algorithms. These algorithms, in turn, leverage this 
information to personalize the interaction between humans 
and machines, establishing a more adaptive and responsive 
interface. This innovative approach to HMI enhances the user 
experience by improving the effectiveness of machines in 
comprehending and responding to human behavior. 

Gesture recognition, which is rapidly evolving in the field of 
HMI, aims to bridge the gap between machines and humans by 
allowing machines to interpret and respond to human gestures 
with reliability and precision. This critical area of research 
contributes to enhancing the efficiency and usability of 
human−machine interfaces. The integration of ML algorithms 
and wearable sensors holds promise to improve the accuracy 
and robustness of gesture recognition systems. The applica- 
tions of ML algorithms in gesture recognition are vast and 
varied.145,146 One key application is the development of real- 
time gesture recognition systems. By analyzing data from 
multiple wearable sensors, ML algorithms can detect and 
correct errors in gesture recognition, improving the reliability 
and accuracy of these systems. This approach allows machines 
to recognize complex gestures accurately, even in the presence 
of significant data noise. Researchers at the University of 
California, Los Angeles designed a smart wearable glove based 
on the triboelectric nanogenerator (TENG) for real-time 
translation of sign language movements into audio speech.86 
By continuously monitoring individuals’ finger movement, the 
smart glove could successfully detect and collect signals of 
different American Sign Language (ASL) gestures. With the 
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Figure 4. ML algorithms for wearable gesture recognition. a, Photographs of the gestures and the corresponding TENG wearable glove- 
generated voltage signals used for sign language recognition with the assistance of ML. b, Photograph showing the wearable sign-to-speech 
translation system translating the sign-to-speech and real-time display on a commercial mobile phone application interface. Scale bar, 2 cm. 

Reproduced with permission from ref 86. Copyright 2020 Springer Nature. c, Custom-designed 16 × 4 array of electrodes with a 
miniaturized printed circuit board (PCB) that conforms to the forearm of a participant for surface electromyography (sEMG) recordings. d, 
Using hyperdimensional (HD) computing algorithm to implement in-sensor adaptive learning and real-time inference for hand gesture 
classification. e,f, Projecting sEMG data into hyper-vectors through (e) spatial encoding and (f) temporal encoding. g, Usage of the 
associative memory (AM) from prototype calculation and storage for training (left) to Hamming distance calculation for inference (right). 
Reproduced with permission from ref 149. Copyright 2020 Springer Nature. h, Principles of sensor signal processing and unsupervised time- 
dependent contrastive (TD-C) learning with unlabeled signals. MFS stands for motion feature space. i, Transfer learning and real-time 
inference mechanism with the provided few-shot labeled data set. Dim 16 and MIPS stand for a dimension of 16 and maximum inner 
product search, respectively. j,k, Demonstration of two-handed keyboard typing recognition with nanomesh printed on both hands via (j) a 
picture of the user interface and (k) illustration. Reproduced with permission from ref 102. Copyright 2022 Springer Nature. 

 

 

assistance of ML, the collected signals were merged into a 
matrix and analyzed by using principal component analysis 
(PCA) to extract the main features of each gesture and 
eliminate redundant information (Figure 4a). The extracted 
features were then classified using a multiclass support vector 
machine (SVM) algorithm to create a real-time sign-to-speech 
translation system. To demonstrate the efficacy of the device, 
11 sign language hand gestures were selected from ASL to 
represent numbers, words, and phrases (Figure 4b). Four deaf 
signers repeated each gesture 15 times, resulting in 660 gesture 
recognition patterns that were randomly split into a training set 
of 440 and a test set of 220. The confusion matrix showed an 
overall accuracy of 98.63% and an average recognition time of 
less than 1 s. To enhance the user experience, a mobile 
application was developed to convert the translated text to 
speech via a third-party platform. The study underscores the 
transformative impact of ML algorithms on the ability of 
wearable sensors for more accurate detection and recognition. 
The result is a real-time interpretation of human gestures, 

fostering enhanced communication not only between humans 
and machines but also among individuals. 

Another area where ML algorithms find valuable applica- 
tions is in the development of personalized gesture recognition 
systems. By analyzing data from sensors, ML algorithms can 
identify individual differences in gesture patterns, enabling 
machines to respond to the distinct gestures of each user. This 
approach offers a noteworthy advantage. ensuring machines 
can quickly and accurately interpret human input. While the 
indisputable power of ML in wearable technology has been 
demonstrated in numerous studies, most commercialized 
devices cannot update their ML models during usage, leading 
to lower performance under practical conditions.147,148 
Addressing this challenge, recent research has introduced a 
wearable biosensing system incorporating hyperdimensional 
computing for in-sensor adaptive learning and real-time hand 
gesture classification.149 The proposed wearable biosensing 
system features a screen-printed electrode array affixed on the 
human arm to continuously monitor muscle activity for hand 
gesture recognition (Figure 4c). Hyperdimensional computing 
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Figure 5. ML-assisted wearable sensors for environment perception. a−d, The self-supervised calibration network removes artifacts and 
enhances the smoothness of the sensors. The color bar indicates the relative pressure in each sensing point. e, Correlations between the 
tactile response and the scale reading: “Raw” indicates the correction of the original, unprocessed tactile signal; “Manual” indicates the 
correlation of manual-adjusted data where all saturated tactile signals were clipped; and “Self-supervised” indicates the correlation obtained 
after self-supervised correction. f, Photographs and tactile frames of pressing letters “M”, “I”, and “T” on the tactile vest. g, Confusion matrix 
of the letters and the orientation classification. Reproduced with permission from ref 150. Copyright 2021 Springer Nature. h, Convolutional 
neural network (CNN) architecture used for identifying and weighing objects from tactile information. “ReLU” stands for rectified linear 
units. i, Accuracy of object identification when using a diverse set of tactile maps from N distinct clusters as input and a random choice of 

inputs. The results are averaged over ten training runs (mean ± s.d.). j,k, A representative set of tactile maps during single-hand 
manipulation of objects. Tactile maps, (j) corresponding visual images, and (k) the classification vectors from single tactile map inputs are 
shown�the ground-truth object labels are marked in black. Reproduced with permission from ref 151. Copyright 2019 Springer Nature. 

 

 

is an inventive computational approach known for its quick 
learning and resistance to noise and errors. This method 
processes high-dimensional hyper-vectors and simplifies 
complex tasks like classification and reasoning (Figure 4e). 
Consequently, it permits the reuse of the same hardware 
modules for both sensor training and classification. The 
process involves the sliding window approach, extracting five 
feature segments in total (each being 50 ms long), with the 
mean absolute value of the feature calculated for each channel 
in each segment. The feature vector for each segment is 
projected into a hyper-vector representing spatial information 
by scaling and summing unique, pseudorandom bipolar hyper- 
vectors representing electrode channels. The resultant spatial 
hyper-vector is transformed into a spatiotemporal hyper-vector 
by encoding the order in which the five vectors occur through 
a bitwise rotation (Figure 4f). The rotated hyper-vectors are 
multiplied together elementwise, resulting in a single 1,000D 
bipolar hyper-vector that represents the entire 250 ms window 
(Figure 4g). The encoded hyper-vectors that represent both 
space and time can serve as either training examples or search 
queries. This research introduced a prototype hyper-vector i 
for each category, calculated by determining the centroid of 
that category. These prototypes were then saved in associative 
memory for subsequent use in classification. In contrast to 
other neural network methods, this process is simple and one- 
pass, helping the studied wearable sensor to improve sensing 
accuracy and reliability by updating the ML model in response 

to changing conditions in real time without needing an external 
device. 

Besides updating and simplifying the process of ML 
algorithms, an alternative approach to improve the function- 
ality of ML in wearable sensors involves optimizing the data 
volume or calibration processes. Researchers at Stanford 
University described the creation of a nanomesh artificial 
mechanoreceptor capable of recognizing different hand tasks 
without the need for extensive data or individual calibration.102 
The system could analyze signal patterns from skin stretches by 
extracting proprioception information similar to that from 
cutaneous receptors. The system required only a single sensor 
to decode complex proprioceptive signals and could 
reconstruct multijoint proprioceptive information from low- 
dimensional data (Figure 4h). The authors developed a time- 
dependent contrastive learning framework that uses unlabeled 
random finger motions to furnish prior motion representation 
knowledge, which allows the system to learn task-specific signal 
patterns from unlabeled signals collected from multiple users 
(Figure 4i). The pre-trained model exhibited quick adaptation 
to different daily tasks using minimal hand signals, exemplified 
by its proficiency in recognizing two-handed keyboard typing 
(Figure 4j,k). 

Environment perception is a critical research area that 
enables machines to interpret and understand their surround- 
ings. It concentrates on recognizing hand posture and delving 
into touch-based environmental interpretation rather than 
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Figure 6. Perspective toward future development of ML-aided wearable sensors. a, Integration of ML in personalized healthcare. b, Future 
developments in ML for wearable sensors, including the integration with next-generation wearable devices, existing biomonitoring 
technologies, and personalized health interventions. 

 

 

simply analyzing finger movements. The combined help of ML 
algorithms and wearable sensors has led to innovative 
methodologies in environment perception, promising im- 
proved accuracy, and robustness. One of the key areas of 
research in environmental perception is the development of 
tactile sensors that can simulate the sense of touch. This is 
achieved by integrating a variety of sensors onto the surface of 
a wearable sensor that can detect different types of pressure, 
friction, and temperature. These sensors can then provide 
information about the texture, shape, and material properties 
of an object upon touch, promoting a more profound 
understanding of the object and its environment. Exploiting 
ML algorithms to analyze the data generated by these sensors 
is a common practice, allowing the devices to undergo a 
learning process in which they become adept at recognizing 
and interpreting different types of objects and environments. 
The model is trained on an extensive data set, enabling it to 
distinguish between different types of objects and environ- 
ments and to precisely predict the properties of encountered 
objects. 

Researchers at the Massachusetts Institute of Technology 
developed a tactile learning platform employing textile 
materials crafted from piezoresistive fibers to record and 
learn human−environment interactions (Figure 5a,b).150 To 
ensure its sensing accuracy, ML techniques were equipped for 
correction and calibration (Figure 5c,d). By utilization of a self- 
supervised learning framework, the correlation between 
responses significantly increased, ensuring more uniform and 
continuous responses that were robust against variation and 
disruption among individual elements. Moreover, the data set 
was collected by pressing three letter cutouts against the back 
of a manikin dressed in a vest made of functional fibers in 
various orientations. The type and orientation of the letter 
were predicted using a classification network that took a small 
window of tactile responses. The accuracy of prediction was 
63.76%, and the effective resolution influenced the accuracy, as 
depicted by the decrease in accuracy as resolution decreases 
(Figure 5e). The platform successfully captured diverse 
human−environment interactions and showcased promising 
results for classifying various poses and motions. The results 

underscore the possibility of the proposed self-supervised 
sensing correction to normalize sensor responses and correct 
malfunctioning sensors in the array. The demonstrated 
applications highlight the value of the developed system for 
various human−environment interaction learning scenarios. 

Another work introduced a cost-effective method of 
constructing a tactile glove with 548 sensors that cover the 
entire hand.151 The glove not only generates tactile maps with 
high resolution but also measures normal forces ranging from 
30 mN to 0.5 N with a quantization of approximately 150 
levels and a peak hysteresis of about 17.5%. It also captured 
tactile videos with a frame rate of about 7.3 Hz. Furthermore, 
the authors also introduced a large data set of tactile maps 
consisting of 135,000 frames recorded using the tactile glove 
while manipulating objects with a single hand. The tactile 
maps’ spatial correlations and finger regions’ correspondence 
revealed the human grasping strategy’s tactile signatures. A 
convolutional neural network (CNN) was trained to identify 
objects using filtered frames, which were 32 × 32 arrays in 
sensor coordinates (Figure 5f). The classification accuracy of 
the CNN improved with the number of input frames and 
reached its maximal performance with about seven random 
input frames, as shown in Figure 5g. Along with the 
corresponding tactile frames shown in Figure 5h, the output 
classification vectors of eight example tactile frames are shown 
in Figure 5i. 

 

CONCLUSION AND PERSPECTIVE 

Wearable sensors have witnessed significant advances in recent 
years, prominently marked by the integration of ML playing a 
crucial role in enhancing its capabilities (Figure 6a). This 
includes the ability to make accurate predictions and detect 
patterns in large and complex sets of biometric data, leading to 
a better understanding of human physiology and providing 
insights into various health conditions. The application of 
supervised learning algorithms has notably resulted in the 
development of personalized health models, enabling wearable 
sensors to forecast the likelihood of certain health conditions 
based on individual data. In parallel, unsupervised learning 
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Algorithm Advantages Effects on Wearable Sensors 

Table 1. Comparison of Different Machine-Learning Algorithms 
 

Decision Trees - Simple to understand and interpret - Can handle large feature spaces, useful for multisensor data 

- Requires little data preprocessing - Prone to overfitting, affecting sensor data reliability 

Random Forest - Reduces overfitting - Enhances sensor data accuracy through ensemble learning 

- Handles large data sets well - Requires more computational resources 

Support Vector Machines (SVMs) - Effective in high-dimensional spaces - High accuracy for sensor data classification 

- Robust to overfitting (especially in high- 
dimensional space) 

- Computationally intensive, may affect real-time processing 

K-Nearest Neighbors (KNNs) - Simple and easy to implement - Effective for real-time applications with wearable sensors 

- No training phase - Performance decreases with large data sets 

Naive Bayes - Fast and efficient - Quick to adapt to new data 

- Performs well with small data sets - Assumes independence of features, which may not always be the case 

Neural Networks - High accuracy - Suitable for complex, multisensor data integration 

- Can model complex relationships - Requires significant computational power and large training data sets 

Convolutional Neural Networks 
(CNNs) 

 
Recurrent Neural Networks 

(RNNs) 

- Excellent for image and spatial data - Highly effective for sensor data with spatial dependencies (e.g., 
motion sensors) 

- High computational cost 

- Good for sequential data - Ideal for time-series sensor data (e.g., heart rate, temperature) 

- Computationally expensive and can suffer from vanishing gradients 
 

 

algorithms have been employed to detect hidden patterns in 
biometric data, providing a more holistic comprehension of 
underlying biological processes. The increasing availability of 
large and diverse data sets propelled the adoption of deep 
learning techniques in the field of wearable biomonitoring. 
CNNs and Recurrent Neural Networks (RNNs) have proven 
effective in extracting features from raw biometric signals and 
classifying different physiological states, thereby leading to 
improved accuracy in detecting physiological states and 
predicting health outcomes. Table 1 provides an overview of 
how different machine-learning algorithms can be applied to 
wearable sensor data, highlighting their advantages and 
potential effects on the performance and reliability of the 
sensors. The integration of ML in wearable biomonitoring has 
also enabled the development of real-time monitoring systems. 
Wearable sensors can now provide continuous monitoring of 
critical health parameters and alert the user in the case of any 
deviations, promoting timely interventions and reducing the 
risk of adverse health outcomes. 

The wearable sensor market is expected to continue to 
expand, driven by an aging population, increasing chronic 
disease burden, and a growing focus on preventative 
healthcare.152−156 As wearable sensors become more wide- 
spread, ML algorithms will play a critical role in analyzing the 
vast amounts of data generated by these sensors. One of the 
prominent trends in the field of ML for wearable 
biomonitoring involves the development of personalized health 
algorithms. These algorithms leverage ML to analyze data from 
wearable sensors and other sources to generate personalized 
health profiles, which can help guide health decision-making 
and treatment planning.157 Another area of growth for ML in 
wearable biomonitoring is the development of predictive 
models. These models harness ML algorithms to analyze data 
from wearable sensors and other sources to predict future 
health outcomes such as disease progression or hospitalization. 
Such models stand poised to transform healthcare manage- 
ment by enabling early identification of health risks and 
interventions to prevent negative outcomes. Finally, ML is 
assuming an increasingly important role in advancing our 
understanding of complex health conditions such as mental 
illness and sleep disorders. By analyzing data from wearable 

sensors and other sources, ML algorithms can help identify 
patterns and correlations in health data that may be missed by 
traditional methods, advancing our understanding of these 
conditions and treatments. 

The future of ML for wearable sensors holds significant 
promise, with several areas of development being envisioned 
on the horizon. One such area is the integration of ML with 
next-generation wearable sensors.158,159 These sensors will 
likely be smaller, thinner, more flexible, and capable of 
capturing a wider range of physiological data. Another 
promising avenue for development is the integration of ML 
with existing wearable biomonitoring technologies, such as 
electrocardiograms and sleep monitoring sensors, to provide 
more accurate and comprehensive health assessments. For 
example, AI algorithms can be used to optimize the power 
consumption of wearable sensors, by reducing the amount of 
data transmitted and stored and by improving the efficiency of 
the algorithms that process the data. This can help extend the 
battery life in wearable sensors and make them more 
convenient and user-friendly. 

Personalized healthcare is a growing expanding field 
dedicated to delivering individualized medical treatment 
based on an individual’s unique health profile.160−168 This 
approach recognizes that each person’s health is influenced by 
a variety of factors, including genetics, lifestyle, and environ- 
mental factors.169−176 Wearable sensors offer a powerful tool 
for collecting data on these factors, supplying healthcare 
providers with a more comprehensive understanding of an 
individual’s health status.177−185 In tandem, ML algorithms 
serve as a robust means for analyzing this data, identifying 
patterns and relationships that may not be immediately 
apparent to human analysts. By combining wearable sensors 
with ML algorithms, personalized healthcare providers can 
develop tailored treatment plans that consider an individual’s 
unique health profile. 

Disease tracking and prediction is an important area of 
research in healthcare, as it can help clinicians identify and 
respond to health risks before they become more seri- 
ous.186−188 By combining ML algorithms with wearable 
sensors, researchers have developed approaches for disease 
tracking and prediction that hold significant potential to 
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improve the accuracy and effectiveness of these systems.189−191 
Additionally, an increasing interest centers on using ML to 
personalize health interventions based on an individual’s 
unique physiological profile (Figure 6b). Fiber bioelectronics 
is a compelling platform for developing advanced wearable 
sensors, as it enables the integration of sensors into textiles, 
enhancing flexibility, comfort, and wearability.192−200 VR 
interactions represent a cutting-edge application area where 
wearable sensors can significantly enhance user experience and 
provide immersive, real-time data visualization and anal- 
ysis.201,202 Combining ML and wearable sensors encompasses 
tailoring recommendations for physical activity, nutrition, and 
stress management based on real-time data derived from 
wearable sensors.203−208 ML algorithms may also be used to 
detect early signs of disease and predict future health 
outcomes, helping to inform preventative strategies and 
improve health outcomes.123,209−211 Finally, there exists a 
need to enhance the interpretability and transparency of ML 
models in the wearable biomonitoring domain. This under- 
taking will help ensure the reliability of predictions and 
decisions made by these models, garnering trust from medical 
professionals and patients alike. 
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VOCABULARY 

Machine Learning (ML):A subset of artificial intelligence 
that involves the use of statistical models and algorithms to 
enable computers to perform specific tasks without explicit 
programming, focusing on making predictions or decisions 
based on data. 
Wearable Sensors:Devices worn on the body that con- 
tinuously measure and transmit information about bodily 
functions and external environment, commonly used in 
healthcare and fitness monitoring. 
Supervised Learning:A type of machine learning where the 
model is trained on labeled data, i.e., data that includes the 
correct answer, to predict outcomes for new, unseen data. 
Unsupervised Learning:A machine-learning technique used 
to find hidden patterns or intrinsic structures in input data 
that is not labeled, often used for clustering or association 
tasks. 
Human−Machine Interaction (HMI):The study and design 
of systems and environments that involve interaction 
between humans and machines, enhancing user interface 
and experience through responsive technology. 
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