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How do vessels find optimal radii? Capillaries are known to adapt their radii to maintain
the shear stress of blood flow at the vessel wall at a set point, yet models of adaptation
purely based on average shear stress have not been able to produce complex loopy
networks that resemble real microvascular systems. For narrow vessels where red blood
cells travel in a single file, the shear stress on vessel endothelium peaks sharply when
a red blood cell passes through. We show that stable shear-stress-based adaptation is
possible if vessel shear stress set points are cued to the stress peaks. Model networks that
respond to peak stresses alone can quantitatively reproduce the observed zebrafish trunk
microcirculation, including its adaptive trajectory when hematocrit changes or parts of
the network are amputated. Our work reveals the potential for mechanotransduction
alone to generate stable hydraulically tuned microvascular networks.
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Animal microvascular networks perfuse tissues with oxygen and glucose and remove
waste. Since red blood cells almost fill the finest vessels, changes in vessel radius, even
at the order of tenths of microns, can strongly alter vessel resistances and flows (1). The
distribution of blood flows between vessels depends upon vessels finding their right radii.

The development and adaptation of vessels are conditional on blood flow information.
Specifically, angiogenesis (2), specification of veins and arteries (3), and radius setting
(4) are responsive to the wall shear stress induced by blood flow across a diverse array of
animals and organs (3–11). Hydrodynamic stresses also control morphologies of many
other kinds of biological transport networks, including slime mold plasmodia (12), fungal
hyphae (13), and preferential flow paths in porous media biofilms (14).

Vascular radius regulation is achieved by endothelial cell migration (15) and changes in
shape/orientation (4, 16) in response to shear stress. In particular, experimental evidence
supports a fluid set point model, whereby endothelial cells attain a resting state only
at a critical level of shear stress. When exposed to shear stresses above or below this
set point, the endothelial cells exhibit an inflammatory response that resembles vascular
remodeling (16) causing vessel radii to change over time to achieve the wall shear stress
set point (16, 17).

Considerable theoretical work has tackled the question of how much of the complex
geometries of real vascular networks can be recreated via models of shear stress adaptation.
Shear stress adaptation can produce tree (i.e., loopless) networks that minimize the energy
cost of delivering fluid from a source to multiple sinks (18, 19). However, shear stress
set point models, as they have previously been analyzed, are incompatible with loopy
networks, tending to produce structural instabilities in which parallel vessels are pruned
down to simple paths (20).

A simple example shows the difficulty of programming robust network adaptation via
shear stress set points. Consider the radius adaptation of a single vessel linking a source
to a sink, under two scenarios: 1) The flow through the vessel is held constant, or 2)
the pressure difference between the source and sink is held constant. In case (1), if the
vessel radius increases, the shear stress will decrease. If, as is commonly assumed, vessel
radius growth is triggered when shear stresses exceed the set point (18), the vessel’s radius
will converge to a fixed value. Conversely, in case (2), increasing the vessel’s radius also
increases the flow it carries, so increasing the radius of the vessel increases the shear stress
on the vessel wall and set point triggered growth will continue without limit.

Here, we are motivated by observations of blood flow in the zebrafish embryo, for
which there is direct evidence of shear-stress-dependent vessel remodeling (4, 16).
At early stages of development, red blood cell flux is uniformly distributed across
the fish trunk (21) but not at later stages when the hematocrit decreases (22). We
focus specifically upon the narrowest and arguably, the most thoroughly studied (23)
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microvessels, the trunk intersegmental vessels. Our model de-
scribes vessels that are narrow enough that cells may pass through
them in a single file and so presents a mechanism of purely
hemodynamic adaptation that could also stabilize other loopy
networks formed by narrow vessels, such as capillary beds.

Previous mathematical models for stable network adaptation
based purely on shear stresses have added flow unsteadiness by
imposing fluctuations in the strengths of the sinks fed by the
network (24, 25) or by opening and closing individual small
vessels (18, 26). However, in the zebrafish embryo, there is no
evidence of dynamic closing of intersegmental vessels. Models
in which vessel radii respond to metabolic cues and inter-vessel
signaling (20) or simply to local oxygen availability (27) can also
stabilize loopy microvascular networks. Yet, at early stages of
development, the thickness of the embryo is less than the Krogh
length scale, so blood flow is not needed for oxygen transport,
and embryos in hypoxic environments develop vasculatures that
partition red blood cell flows as uniformly as normoxic fish (22).

The vascular system of the zebrafish trunk is a model system for
vascular development (28) and has a particularly simple topology
for study. It consists of an artery, the dorsal aorta (DA), and a
vein, the principal cardinal vein (PCV) that are parallel to each
other, connected directly by an anastomosis in the distal trunk
(circled in the Inset of Fig. 1A) and indirectly via ladder-rung-
like intersegmental vessels (Se-vessels) including intersegmental
arteries (SeAs) and veins (SeVs) Fig. 1 A and B (29). Initially, the
DA and PCV form a simple circulatory loop, from which SeAs
and SeVs start to sprout at around 1.5 d post fertilization (dpf)
(29). After extending dorsally, the sprouts form “T”s in the most
dorsal regions of the trunk that extend rostrally and caudally,
eventually anastomosing and then zippering together to form
the dorsal longitudinal anastomotic vessels (DLAV), by 3.5 to
4 dpf (29). The Se vessels sprout even without blood flow in the
DA and PCV, but in a wild-type embryo, flows are established
in the intersegmental vessels by 2.5 d (30). Once circulation
is established in the Se-vessels, hemodynamic stresses guide the
specification of Se-vessels as veins and arteries by controlling the
migration of venous endothelial cells into each nascent SeV (31).

We focus here on how the Se-arteries and veins find the right
radii to receive uniform blood flows (Results and ref. 21). To
achieve uniform blood flow between Se-vessels, vessel radii have
to increase systematically and precisely from the head to the tail of
the fish (21): Otherwise, the rostral intersegmental vessels would
effectively short-circuit the trunk network, receiving greater flow
than distal vessels (21, 32). In common with other animal
microvascular networks, the diameters of the finest vessels in the
zebrafish trunk are comparable to or smaller than the diameters of
the red blood cells transported through them. Thus, the model of
blood as a Newtonian or even, as a continuous non-Newtonian
fluid, whose viscosity depends on vessel radius (33) misses the
reality that shear stresses in real vessels are highly heterogeneous.
In time, an endothelial cell (EC) experiences its largest wall shear
stress at the moment that a red blood cell (RBC) passes. In this
paper, we build a model from the hypothesis that endothelial
cells respond to these peak shear stresses rather than average
shear stress. We first analyze the mathematical properties of a
model based on peak shear stresses, showing that peak shear
stress responsive networks are stable and able to maintain loops.
Then, we apply peak shear stress adaptation to the embryonic
zebrafish trunk microvasculature. The peak shear stress model
successfully produces uniform flows across intersegmental vessels,
and, consistent with experiments, flow uniformity is temporarily
lost during a period (7 to 14 d post fertilization) of decline in
hematocrit. Finally, our model also highlights the indispensability

A

B C

ED
Fig. 1. Tuned vessel radii produce uniform intersegmental vessel flows in
zebrafish embryos. (A and B) The trunk and tail of the zebrafish are perfused
by a ladder-like network of microvessels, with inflow along the dorsal aorta
(DA) and outflow along the posterior cardinal vein (PCV), along with a rung-
like system of intersegmental arteries (SeAs) and veins (SeVs) linking the two
vessels. (A) Composite angiogram of the trunk vessels in a 4-dpf embryo
produced from images in the Zebrafish vascular atlas (29). DA and PCV
are directly connected at the tail (Inset, shown in the circle); subtracting the
background from phase contrast images makes red blood cells in this loop
visible (Inset, red dots,Materials andMethods); superimposing 100 background
subtracted images reveals the continuity of lumen through the loop (inset,
green). (B) Simplified wiring diagram of a section of the trunk. (C and D)
Individual 4-dpf fish have variable trunk flows but exhibit no bias in perfusion
toward the rostral trunk. In (C), we plot RBC fluxes over distal, rostral, and
mid-trunk SeAs among twelve 4-dpf individuals. Fluxes are normalized so that
for each fish, the median flux across all SeAs is equal to 1. Each data point is
pooled from 4 SeAs, in blue: distal (tail), red: rostral (head), and yellow: mid-
trunk. (D) Pooling data from all fish shows no differences in fluxes between
the three trunk regions. In comparison, a simulated model of the fish in
which all SeAs are assigned the same radius (magenta dots) would have
monotonically decreasing RBC flux from head to tail, due to the pressure
gradient in the DA. (E) Flow uniformity requires tuning of vessel radii. We
took constant (red boxes) and peak shear stress-adapted (green boxes) SeA
radii (Materials and Methods), and perturbed the modeled radii of vessels by
different percentages (10, 20, and 30 percent from Left to Right, 100 replicates
of each), measuring the head to tail RBC flux ratios for each. The observed
uniformity in real 4-dpf fish (blue box) is consistent with vessel radii being
within 20% of their optimal values.

of the direct anastomosis of artery and vein (Fig. 1 A, Inset) to
allow the network to adapt to reach uniform flow, which we
confirm experimentally by measuring intersegmental vessel flows
following amputation of the anastomosis-containing distal trunk.

Materials and Methods

Measurement of Real Intersegmental RBC Flows. We measured the RBC
flow through each intersegmental artery (# / s) in 4- to 12-dpf (days post
fertilization) zebrafish embryos, by imaging with 10× phase contrast and hand
counting the number of RBCs passing pre-defined stations in each SeA. See SI
Appendix for culturing and imaging conditions.

A Peak Shear Stress Set PointModel. We built a model in which vessel radius
change is regulated by the fraction of endothelial cells (ECs) whose wall shear
stress exceeds a set point. Importantly, we make this set point comparable to the
peak wall shear stress. Blood flow in microvascular vessels is laminar (34, 35),
though unsteady, due to the changing pressure in the artery that feeds them.
We assume the Womersley number, Wo, measuring fluid acceleration, is low
in all of our modeled networks (for zebrafish we obtain Wo ∼ 10−2 in DA,
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Fig. 2. Endothelial cells (ECs) experience heterogeneous shear stresses, peaking transiently when a red blood cell passes through the vessel, motivating us
to model adaptation in response to peak shear stress (PSS). (A) Upper: RBCs deform and squeeze through the vessel, dragging on the ECs. We model a red
blood cell as a cylinder with spherical ends and with fixed lubricating layer thickness h = 0.1 μm. We divide the shear stress on the vessel wall into cell-free
(Poiseuille-profile) and cell-touching (Couette-profile) regions and assume only the cell-touching regions exceed the shear stress set point. Lower: Schematic of
PSS-adaptation. In wide vessels, RBCs are barely deformed, and a small fraction of ECs exceed the shear stress set point (red line portions of the vessel wall),
while in narrow vessels, each highly deformed RBC causes a large RBC-EC contact area. Vessels with low and high PSS activations respectively shrink and grow
(blue and orange arrows). (B) Calculated shear stresses on a single zebrafish SeA endothelial cell, based on our model of RBC-EC hydrodynamics applied to 20 s
of RBC tracking data. Sharp spikes correspond to passages of an RBC (Inset: 1.5 s of data) and troughs to cell-free intervals. Only peak shear stresses exceed a
typical threshold for shear-stress-induced EC remodeling (orange line, threshold taken from ref. 3). (C) PSS leads to a consistent decline in EC activation when
vessel radius is increased, whether the inflow to the vessel is pressure or flow controlled (orange curve). By contrast, MSS-cues decrease in the vessel if its
radius increases under constant flow (dashed blue) but increases under constant pressure (solid blue). (D) PSS activation stabilizes vessel geometries in a single
parallel loop network (Top panel, schematic). The symmetric equilibrium is a saddle point under MSS adaptation (Bottom-Left)—the network tends to evolve to
a state with one vessel pruned to flow. For PSS activation, the symmetric equilibrium is a stable node (Bottom-Right).

and Wo ∼ 10−3 in SeAs) (21), so flows respond effectively instantaneously
to pressure changes and we consider a steady cardiac pressure, equal to the
mean pressure of the real zebrafish heart. We model the hydraulic conductances
of the vessels in the absence of RBCs by the Hagen–Poiseuille law (36). The
inclusion of RBCs introduces two non-Newtonian effects to our model: 1, RBC
filling of vessels increases their flow resistance and leads to heterogeneous wall
shear stresses that peak when an RBC passes. 2, At vessel bifurcations, RBCs are
governed by the Zweifach–Fung effect; they do not divide in the ratio of the flow
rates but are more likely to enter vessels with higher blood flow (37–39).

Since RBCs move in single file in the microvessels that we model, we can
divide each vessel into segments containing RBCs or not (Fig. 2 A, Upper panel),
with respective shear stresses �PSS and �NSS (PSS stands for peak shear stress
and NSS for null shear stress). For segments without RBCs, we calculate �NSS
by assuming a Poiseuille (parabolic) velocity profile (36). RBCs become highly
deformed during their single-file passage through a vessel (Fig. 2A), but are
prevented from directly touching endothelial cells by a thin plasma lubricating
layerwiththicknesshwhichweassignedvalue0.1 μm(Resultswerenotsensitive
to the value of h, SI Appendix Fig. S2D).

The shear stresses in the two regions are related to the mean velocity of flow,
Ui, by formulae:

�NSS,i =
4�Ui
ri

, �PSS,i =
�Ui
h

, [1]

with ri the vessel radius and � = 1× 10−6 g/(μm s) the dynamic viscosity
of the plasma. From Eq. 1, and experimental measurements of Ui, we obtained
the time-varying wall shear stress at a representative point in a SeA, Fig. 2B.

For a SeA vessel i, of length L, containing ni RBCs, and with total pressure
drop ΔPi, balancing forces gives:

�PSS,ini(2�rili) + �NSS,i(2�ri(L− nili)) = ΔPi�r2i , [2]

where li is the (deformed) length of each RBC, and ni can be related to vessel
hematocrit Hti by ni = Hti · �r2i L/(4/3 · �R3) . We use R = 4 μm as
the volumetric radius of a pre-deformed RBC. Undeformed zebrafish RBCs are
ellipsoidal, with central bulges containing the nuclei. The precise shape of the
contact region will rely on the elasticity of the RBC and its orientation. We model
the salient features in a semi-quantitative way, with RBCs treated as spherical
when undeformed, stretching into cylinders with spherical caps when squeezing
through narrow vessels. Assuming ri � h, so the lubricating layer thickness
need not be considered when calculating RBC shape, the length of the cylindrical
portion becomes li =

4
3r2i

(R3
− r3i ). Assembling Eqs. 1 and 2, we calculate the

wall shear stress during RBC passage:

�PSS,i = �
Ui
h

= ΔPi/

(
2nili
ri

+
8(L− nili)h

r2i

)
[3]

while the mean shear stress of the entire vessel is:

�MSS,i =
ΔPi�r2i

2�riL
=

ΔPiri
2L

[4]

which is practically independent of the number of RBCs that it contains, given
ΔPi is insensitive in changes of hematocrit in SeAs (SI Appendix, Fig. S6).
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When SeAs’ hematocrit changes, the effect on wall shear stress is balanced by a
reciprocal change in the velocity of RBCs to maintain �MSS,i.

As with earlier works, we assume vessel radii adapt to shear stress cues. In
previous works, the shear stress cue has been assumed to be the mean shear
stress, �MSS. We use this model as a point of comparison with our model, in
which peak shear stresses, �PSS, instead regulate adaptation. Specifically, our
implementation of MSS-guided adaptation is:

dri
dt

= C
(
�MSS,i − �MSS,i

)
(ri − rmin) , [5]

whereC is a constant representing the rate of adaptation, whose sign determines
whether vessel radius increases (C > 0) or decreases (C < 0), when the shear
stress set point �MSS is exceeded. The factor ri − rmin establishes a minimum
vessel radius: rmin = R/2. We prohibit RBCs from entering vessels for which
ri = rmin (SI Appendix)).

Eq. 5 is compared with a model built for this work, in which peak shear
stress, �PSS, regulates vessel radius. Since shear stresses peak sharply during
the passage of an RBC, we assume that the shear stress set point for each EC is
exceeded when an RBC passes over it (Fig. 2B); so that a vessel’s remodeling is
regulated by the fraction of ECs that are in direct contact with RBCs. Specifically,
we hypothesize:

dri
dt

= C1(fi − f̄)(ri − rmin). [6]

C1 > 0 is the rate of adaptation, fi is the fraction of stress-activated ECs, and f̄ is
a target fraction. We assign each SeA vessel the same target activation f̄ . Since
�PSS is assumed to exceed the shear stress set point (Fig. 2B), the activation
fraction fi is related to the number and length of RBCs within the vessel:

fi =
nili
L

= Hti(1− r3i /R
3). [7]

Given the vessel radii, ri, we first calculate the equilibrium number of RBCs,
and thus the fraction of PSS-activated ECs, fi, in each vessel by numerical

relaxation. First, with an initial partitioning of RBCs between vessels, the vessel
conductance, �i ≡ �r2i Ui/ΔPi, can be obtained by combining Eqs. 1 and 2:

�i =
�r4i

�(2niliri/h + 8(L− nili))
. [8]

Using the conductance and boundary conditions, we can compute the whole
blood flow into and out of each vessel by conserving flow at each bifurcation
point. Assuming that each vessel is well mixed, and that by filling the vessel
cross-section, red blood cells travel at the mean velocity of flow in the vessel,
the flux of RBCs out of a vessel is set equal to Fi,outdt, where Fi,out = HtiQi is
the RBC flow rate, Qi is the flux of whole blood in the i-th SeA, and dt is the
relaxation time step. The flux into the vessel is Fi,indt, computed from the flows
and hematocrit of the DA vessel feeding into i-th vessel.

Compared to the outflows of RBCs for each SeA vessel, calculating the inflows
Fi,in requires more deliberate consideration. SeAs divert blood from a much
larger vessel—the dorsal aorta (DA)—and RBCs are less likely to enter the SeAs
than would be expected based on the ratio of flows, based on the Zweifach–Fung
effect. Assuming the whole blood flow into the i-th SeA is Qi, then the flow
rate (no./time) of RBCs into the vessel is Fi,in = CZF,iHti,DAQi, where Hti,DA
is the hematocrit of the upstream DA vessel directly feeding the i-th SeA, and
the variable CZF,i is the Zweifach–Fung factor for the i-th branching point. For
simplicity of computation, we use a piecewise linear model for CZF,i that is based
on measurements of mammalian (un-nucleated) RBC partitioning at branching
points (40, 41) (Fig. 3AandC). To ensure mass conservation, the piecewise linear
model is symmetric about (KQ,i, KF,i) = (0.5, 0.5) (Fig. 3A, cyan broken line),
where KQ,i = Qi/Qi,DA, KF,i = Fi,in/Fi,DA, and Qi,DA and Fi,DA are respectively
the whole blood flow and the RBC flux of the upstream DA vessel directly feeding
the i-th SeA.

To be more precise, the Zweifach–Fung factorCZF,i is decided by the fractional
blood flow KQ,i at the i-th branching point based on the following piecewise
linear equations (Fig. 3A),

A B

C

Fig. 3. Modeling the Zweifach–Fung effect (differential partitioning of RBCs from whole blood) is necessary to render flows in SeAs. (A) We assign a piecewise
linear Zweifach–Fung factor to each branching point (cyan line), based on a simplification of the empirical equations in refs. 40 and 41 (blue line). Here, the
x-axis represents the fraction of whole blood flux going into the SeAs at branching points, and the y-axis represents the fraction of RBC flux going into the
corresponding SeA. The Zweifach–Fung factor CZF,i is defined as the ratio between y and x values. (B) For 4-dpf fish with hematocrit 0.55, adaptation incorporating
the Zweifach–Fung model reduces the coefficient of variance of RBC fluxes in SeAs (sold red line: CV2, pre-adaptation, solid blue line: CV2 post-adaptation) for
a wide range of values for CZF. For comparison, we also show the pre- (dotted red) and post-adaptation (dotted blue) CV2 values under the P&S 2005 model
(40, 41). (C) A diagram of the model as a set of resistors. RDA and RSeA,i are, respectively, the flow resistance (the reciprocal of the flow conductance) for DA and
the i-th SeA segments. At each branching point (circles), a Zweifach–Fung factor is decided based on the fractional blood flow entering the flowing SeA using
the Zweifach–Fung model in A, and the total blood flow and RBC flux are conserved.
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
KF,i = CZF · KQ,i, KQ,i ∈ [0, 0.25]
KF,i = (2− CZF)KQ,i + 0.5(CZF − 1), KQ,i ∈ (0.25, 0.75]
KF,i = CZF(KQ,i − 1) + 1, KQ,i ∈ (0.75, 1]

and CZF,i is defined as the ratio KF,i/KQ,i. Here CZF is a constant Zweifach–
Fung factor when the fraction of Qi,DA diverted into the SeA is small. We set
CZF = 0.2, but different choices of CZF do not qualitatively affect our results
(Fig. 3B, blue lines). Notably, except when the tail is amputated, we find all of
our SeAs operate in the regime where CZF,i = CZF. Where possible, we show
that the empirical model of refs. 40 and 41, henceforth referred to as the P&S
2005 model, produces equivalent results (Fig. 3B).

At each time step, we update the number of RBCs, ni, in each Se vessel
based on the difference of Fi,in and Fi,out, and update the number of RBCs in DA
vessels by conserving RBC numbers at each bifurcation. We then recompute
conductances and flows using Eq. 2, continuing until all hematocrits and
pressuresatvesselbranchpointshaveconverged.Convergenceofthesevariables
is not a true steady state: The locations of peak wall shear stresses vary as RBCs
move, and wall shear stresses cycle with cardiac pressure. However, the spatial
distribution of wall stresses is not needed to evolve vessel radii, and low Wo
allows us to model time-averaged shear stresses. Additionally, since the DA has
much larger conductance than the SeAs that it feeds (cf. ref. 42), time-varying
partitioning of RBCs only weakly affects the junction pressures (SI Appendix, Fig.
S6). Once flows and hematocrits have been computed, we update vessel radii,
using an explicit discretization of Eq. 6, and then recompute all hematocrits and
flows. In the simulations shown here, we see two convergent states: fi → f̄ , or
ri → rmin (SI Appendix, Fig. S1).

For simplicity, we treat the network as symmetric, neglecting the Dorsal
Longitudinal Anastomotic Vessel (DLAV), which divides the flow out of each SeA
between two or even more SeVs. Hence, we need to model only the arteries
and connect each SeA to an outlet with pressure p0 = 0 (Fig. 3C). DA and PCV
are also directly connected at the tail (Fig. 1 A, Inset). (Complete boundary and
initial conditions are specified in SI Appendix, Table S1.) Note that f̄ and CZF,i
decide the RBC flux collectively (SI Appendix, Fig. S2). However, for a wide range
of parameters, adaptation always produces a more evenly distributed RBC flow
for 4-dpf fish (SI Appendix, Fig. S2C).

Results and Discussion
For a single vessel of radius r, with constant hematocrit, Ht =
0.1, we plot the mean shear stress �MSS according to Eq. 4 as
a function of r, if the radius is changed while holding 1. the
total flow or 2. the total pressure drop, constant. If flow rates are
constant, then �MSS decreases with the vessel radius, whereas if
the pressure drop is held constant, then the flow rate increases,
so �MSS increases in proportion to the radius (Fig. 2C, blue
dashed and solid curves respectively). Thus, no single model of
the form Eq. 5 can stabilize vessel radii under both classes of
boundary condition: For example, if C > 0, the vessel radius
would converge under constant flow boundary conditions, but
would diverge if the pressure drop were constant. Conversely,
changing the sign ofC would stabilize the fixed pressure scenario,
while destabilizing the fixed flow scenario. The same instability
occurs when two unit-length vessels are arranged in a simple
parallel network (Fig. 2 D, Top) with constant inflow into the
network. If we assign the same target MSS, �MSS, to each vessel,
there is one symmetric equilibrium with both vessels unpruned,
i.e., ri = r∗ > rmin, but this equilibrium is a saddle point under
Eq. 5, under a broad class of conductance–radius relationships.
For, if the conductance of the two vessels is �i, then each receives
a portion Q�i

�1+�2
of the total inflow, and has MSS �i = Qri

2(�1+�2)
.

Hence, at the equilibrium point, the Jacobian of Eq. 5 is:

J = C (r∗ − rmin)

[
∂�1
∂r1

∂�1
∂r2

∂�2
∂r1

∂�2
∂r2

]

=
CQ (r∗ − rmin)

2(�1 + �2)2

[
�1 + �2 − r1 d�1

dr1 −r1 d�2
dr2

−r2 d�1
dr1 �1 + �2 − r2 d�2

dr2

]
.

From which we obtain:

det J =
C2Q2(r∗ − rmin)2

4(�1 + �2)3

(
�1 − r1

d�1

dr1
+ �2 − r2

d�2

dr2

)
.

For any model in which �i is an increasing, convex function of
ri, with �(0) = 0 (including Eq. 8); �i − ri d�idri < 0, so that
det J < 0, independently of the sign of C , making the equi-
librium a saddle point. Indeed, any perturbation of the network
from the equilibrium leads to one of the two vessels being pruned
(Fig. 2D).

We calculated the shear stresses in a real zebrafish vessel (Fig. 2B
shows the inferred stress given by Eq. 1, for a representative EC).
The pulses of high shear stress mark the passage of an RBC
past the EC: We see that only during these pulses are stresses
larger than thresholds typically identified for cellular remodeling
(e.g., 5 dynes/cm2 in ref. 43). We therefore propose that vessel
remodeling is activated by the fraction of ECs at peak shear stress,
or, equivalently, the fraction of time each EC spends at peak
shear stress (Eq. 6). Setting an activation threshold that exceeds
the shear stress in normal plasma flow, we find the fraction of
PSS activated ECs, f , decreases monotonically with vessel radius,
both under conditions of constrained flow and of constrained
pressure drop (Fig. 2C, orange curve), so that vessels remodeling
according to Eq. 6 will converge in radius under both constant
pressure or constant flow boundary conditions. Pairs of parallel
vessels evolve to an equilibrium point where both of the vessels
have the same conductances and flows (Fig. 2D).

PSS-Activation Creates a Uniform Distribution of RBC Flux in
Intersegmental Vessels. For 4-dpf fish, we report the uniformity
of RBC flux in Fig. 1. Consistent with previous measurements
(21), we find that at 4-dpf, although there is significant variability
in flows between different intersegmental vessels (Fig. 1 C and
D), there is no systematic bias of flow toward either head or
tail (Fig. 1E). The RBC fluxes in this and the following figures
are normalized by the median flux in all SeA vessels, i.e., after
normalization, the median flux is 1.

By contrast, if we copy the real zebrafish trunk microvascu-
lature (Materials and Methods) but assign each SeA vessel the
same radius, we predict that the head (proximal) SeA vessels
will receive a flow that is 3.83 times greater than the tail (distal)
vessels (Fig. 1D, purple dots). The amount of flow nonuniformity
is smaller than that reported in ref. 32 because of the inclusion of
the Zweifach–Fung effect in our model but is far greater than that
observed in real zebrafish (median ratio for 12 fish: 1.0634, Fig. 1
E, boxes, C and D). To achieve a uniform RBC flow in SeAs,
SeA radii have to increase from head to tail, to compensate for
the decreasing pressure along the dorsal aorta (DA). Can Eq. 6
create a realistic zebrafish trunk vasculature? We first assigned
each SeA a random radius between 3 and 4 μm and a same
target fraction of PSS-activated ECs: f̄ , then evolved SeA vessel
radii according to Eq. 6 using a piecewise linear Zweifach–Fung
model to calculate RBC flows in each vessel. In the absence of
vessel radius adaptation, we see a 4-fold decrease in flux from
head (rostral) to tail (distal) SeAs (Fig. 4A), similar to when
vessels were assigned identical radii (Fig. 1D). Fig. 4 B and
C then show the trajectories of vessel radii and flows. When
allowed to adapt according to Eq. 6, SeA radii adapt to increase
from head to tail (Fig. 4C ). Since all RBC transits activate ECs,
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A B

C

Fig. 4. PSS adaptation can robustly generate a model zebrafish microvascular network with 12 uniformly perfused SeAs. (A) Initial RBC fluxes (normalized so
that median flux is 1) for 100 sets of random starting radii, with variance consistent with real zebrafish (Fig. 1E), give statistically decreasing RBC fluxes from
head to tail. (B) Effect of modeled adaptation in a single fish with random initial radii. With (light blue solid) or without (blue dashed) the Zweifach–Fung effect,
RBC fluxes are strongly biased toward the head. Evolving the vessel radii under Eq. 6 using either a piecewise linear or the P&S05 (40) model for the Zweifach
Fung effect, produces more uniform RBC fluxes across all vessels (red and purple lines). (C) Uniformization of RBC fluxes is due to the interplay of radius tuning
(blue curve) and the gradient of hematocrit, Ht, in the dorsal aorta that feeds each intersegmental vessel. Ht increases with distance along the DA (solid orange)
until its saturation due to plasma skimming by SeAs (Ht in SeAs is shown by the dashed orange curve). Insets show experimental images of RBCs in two DA
segments close to the head or tail. Distal SeAs respond to elevated Ht by growing wider rostral SeAs, compensating for decreasing pressure and uniformizing
flows.

vessel radii are directly regulated by hematocrit, which increases
from head to tail, due to the skimming of plasma from the DA
by rostral SeAs, and saturates (i.e., hematocrit approaches 1)
within the DA after the seventh vessel (Fig. 4C, orange curves).
We confirmed the increase in hematocrit between rostral and
distal DA in real 4-dpf zebrafish (Fig. 4 C, Inset images). Distal
vessels grow wider in response to having higher RBC contact,
compensating for the decreasing DA pressure (whose effect is
evident in the pre-adaptation RBC flux distribution, Fig. 4B, blue
line) and producing a more uniform partitioning of RBC fluxes
(Fig. 4B). For the hematocrit-saturated SeAs in the caudal region,
their radii cannot adapt in response to hematocrit changes, and
the RBC flux in the caudal region decreases due to the decreasing
DA pressure and thus a decreasing velocity of RBCs; however,
an overall increase of SeA radii from head to tail is sufficient
to balance the overall RBC flux distribution (Fig. 4B, red line).
For the parameters chosen in Fig. 4, the ratio of fluxes in the 3
head-most SeAs to fluxes in the three tail-most SeAs is 1.03 after
vessel radius adaptation, which is close to the observed value at
4 dpf (1.06).

We probed how close real SeA radii are to their optimal radii
via a perturbation analysis. First, we created two model zebrafish
trunks, one with all radii assigned equal values, and one with each

vessel assigned its optimal radius calculated using the adaptation
model. Then, we made replicate model fish, in which SeA radii
were randomly perturbed by 10, 20, or 30% from either uniform
or optimal radii (100 models each, for a total of 600 replicate
models) and calculated the head-to-tail RBC flux ratio. We found
that fluxes in real fish are consistent with all vessels being within
20% of their optimal radii (Fig. 1E).

Adaptation consistently uniformized flows across SeAs for a
wide range of piecewise linear Zweifach–Fung models (obtained
by varying the low whole blood flux value of CZF) (Fig. 3B) and
for a heuristic phenomenological model with fluctuating CZF,i
(44), SI Appendix, Fig. S5. Similarly, results were not qualitatively
changed when the piecewise linear model was replaced by an
empirical model (P&S05) (40, 41). The P&S05 model rendered
a smoother RBC flux distribution (magenta line in Fig. 4B) in
which the DA did not reach saturating hematocrit (SI Appendix,
Fig. S3), and with a slight head-to-tail decrease in fluxes (head
to tail RBC flux ratio: 1.8). We noticed that when the input
hematocrit varies, there is a shift in the location in the DA
trunk where the hematocrit is predicted to saturate (SI Appendix,
Fig. S4), changing which SeA receives the largest flow, which
could explain why, although we observed no systematic bias
of SeA flow toward the head or tail, in each fish, a different
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portion of the trunk was greater perfused than the others
(Fig. 1C ). This observation motivates another question: During
embryogenesis, hematocrit levels change by an order of magni-
tude (22): Is there a concurrent change in the partitioning of
RBC fluxes?

Uniform Perfusion Can Not Be Maintained When Hematocrit
Decreases. The stability of PSS-adaptation is conditional upon
global hematocrit (SI Appendix, Fig. S4). During normal zebrafish
development, there is a 3.5-fold decrease in hematocrit between
7 dpf and 15 dpf (22), potentially due to the transition from
short-lived primitive RBCs to mature, oxygen-carrying RBCs
(45). Concurrently, we observed a decrease of RBC flux in the
rostral region during days 4 to 9 (64) and a complete absence of
RBCs in the rostral region between days 10 and 12 (Fig. 5 A and
D). Indeed, if hematocrit in a vessel decreases, then according to
Eqs. 6 and 7 its radius will decrease to maintain the fraction, f , of
ECs in contact with RBCs. However, it may not be possible for a
vessel to reach the target value of f before the radius reaches rmin,
cutting off the flow of RBCs into the vessel. SeA #1, by having
the lowest hematocrit, is the most vulnerable to fail to achieve
f (Fig. 4C, orange dash). The hematocrit in SeA #1 is always
Ht1 = HtinflowCZF,1 after convergence (Htinflow is the inflow
hematocrit), based on our model for the Zweifach–Fung effect.
For the vessel to reach its target fraction of PSS-activated ECs,
based on Eq. 7, we must have HtinflowCZF,1(1− r3

min/R
3) > f̄ ,

which we interpret as a constraint upon Htinflow > Htmin =
0.457, using the parameters in our model. When the hematocrit
drops below this threshold, RBC flow ceases in SeA #1. Since the

SeA continues to skim plasma from the DA, the DA supply to
SeA #2 operates with higher hematocrit, but RBC flow also ceases
in SeA #2 when QinflowHtinflow

Qinflow−Q1
drops below Htmin. We validate

this analysis through numerical experiments: slowly decreasing
Htinflow in Eq. 6, with the SeAs initially assigned uniform initial
radii 3.5 μm. We initialize Htinflow = 0.55 > Htmin, for which
the activation fraction model gives near uniform flow (Fig. 5C,
blue circles). Decreasing Htinflow to 0.45 < Htmin, eliminates
RBC flows in the first SeA (Fig. 5B). Plasma skimming by the
first SeA means that the DA hematocrit reaching the second SeA
(0.475) exceeds Htmin = 0.457, so the second and subsequent
SeAs all remain perfused (Fig. 5B andC, LeftMost lines). All SeAs
narrow from 2.6 to 3.4 μm radius to around 2.0 to 3.4 μm radius
(the radii have an upper limit because of the saturation of the
hematocrit). As we continue to decrease hematocrit, more rostral
SeAs lose their RBC flux and become plasma skimmers (Fig.
5C, colored curves). Our predicted pattern is observed in real
zebrafish (Fig. 5 A and D). The P&S05 model (40, 41) similarly
produces a decreasing head-to-tail RBC flux ratio, though RBC
flows do not stop in the rostral regions until 10 dpf, 2 d after
cessation is observed in real zebrafish (Fig. 5A, purple line).

Continued PSS-remodeling is required to explain the loss of
flow uniformity that co-occurs with decreasing hematocrit: If
PSS-remodeling is stopped at 4 dpf, then, if we keep decreasing
the input hematocrit, the head-to-tail RBC flux ratio decreases
slightly and eventually converges to either 0.44 for the piecewise
linear Zweifach–Fung model or 1.17 for the P&S05 model
(Fig. 5A, dash lines), but the flow of RBCs through the rostral
vessels does not cease.

A B

C D

Fig. 5. Stable, uniform perfusion of the trunk is conditional upon hematocrit. (A) The ratio of RBC fluxes between the three most rostral and three most distal
SeAs at each of 4 to 12 dpf (N = 4 fish for each day, each SeA measured for 30 s). The median head-to-tail RBC flux ratio decreases from day 4 to day 8,
reaching 0 in 9 to 10 dpf, consistent with PSS adaptation (orange line). The P&S05 model (40, 41) produces a qualitatively similar result (purple line). If radius
adaption stops at 4 dpf, the head-to-tail RBC flux ratio will never go to zero (orange and purple dash lines). For the adaptation models, the inflow hematocrit
data are taken from ref. 22. (B) When hematocrit in the DA decreases below a critical threshold of 0.457, adaptation drives SeA #1 to its minimum radius.
Plasma skimming keeps Ht above this threshold in the distal DA (solid red) and SeAs (dashed red). Radius adaptation (blue curve) creates a rostral–caudal
gradient of radii and relatively uniform flow in the remaining perfused SeAs. (C) Simulated RBC fluxes under decreasing overall hematocrit, starting with an
initial hematocrit of Htinflow = 0.55 (blue circles), and under decreasing Htinflow = 0.45,0.40,0.35,0.30 (blue-yellow gradient). As hematocrit decreases, RBC
fluxes vanish in an increasing number of rostral SeAs. (D) We superimpose a 30-s sequence of background-subtracted phase-contrast images (captured at 20
fps) of a 5-dpf (upper) and a 9-dpf (lower) fish. RBC fluxes across RBCs are uniform at 5 dpf. At 9 dpf, fluxes are eliminated in rostral SeAs but remain uniform
in a subset of 7 caudal Se vessels.
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Likewise, loss of flow uniformity due to changing hematocrit
requires that vessel radii respond to peak rather than mean shear
stresses. The DA has a much (∼50 times) larger flow conductance
than the SeAs. Thus, although hematocrit changes affect the
absolute conductances of the vessels, blood pressures along the
DA change little, given that cardiac activity is maintained from
4 to 14 dpf (46). As a result, pressure drops across each SeA are
preserved. Changes in hematocrit do not therefore affect mean
shear stresses on SeA vessel walls, and mean shear stress–induced
remodeling does not produce the flow redistribution predicted
by our model and seen in real zebrafish (SI Appendix, Fig. S6).

Uniform Perfusion of the Trunk Is Dependent Upon Direct
Anastomosis of the Artery and Vein. Uniform perfusion of the
trunk requires that SeA hematocrits increase with distance from
the heart. Increasing hematocrit is possible because RBCs can
remain in the DA, rather than entering an SeA. RBCs can
even bypass the last SeA, since the DA and PCV are connected
directly at the zebrafish tail (Fig. 1 A, Inset). Such arteriovenous
anastomoses (also called shunts) are common in microcirculatory
systems: Previously, we found that 12 out of 27 arterioles in
a 2 mm3 volume of sensory cortex, imaged in ref. 47, were
directly connected to venules (48). Arteriovenous anastomoses
have been hypothesized to contribute to pressure regulation and
flow partitioning (49), or in the skin, in thermoregulation (50),
but the understanding of their function remains incomplete. In
the zebrafish embryo, sprouts from the DA–PCV loop develop
into intersegmental vessels at 2 dpf (29) and, later, into caudal
fin vascular plexus from 20 to 40 dpf (51), so the loop may not
have a specific function in the intermediate aged fish studied

here. Nonetheless, it diverts many (≈ 28%) of RBCs that pass
through the trunk away from intersegmental vessels. We tested
the hypothesis that the DA–PCV anastomosis contributes to
flow uniformity across SeAs, by experimentally amputating the
zebrafish tail following the methods described in ref. 52, and
by running simulations of Eq. 6 with different conductances
assigned to the DA–PCV anastomosis, including model networks
in which the anastomosis was absent.

In our numerical study, the presence of the DA–PCV
anastomosis ensured an equalized RBC flux across SeAs (Fig.
4B, purple and red lines). However, amputating the tail disrupts
flow uniformity and produces large RBC flows in the distal
unamputated SeAs. Allowing vessel radii to adapt to the new
flows actually worsens flow localization to the tail (Fig. 6A, orange
curve). Due to the Zweifach–Fung effect, SeA hematocrits are
generally much smaller than the hematocrit of the DA segments
that supply them. However, this effect can occur only when
the total blood flow going into the SeA is smaller than the
flow continuing along the DA (Fig. 3A). Without the DA–PCV
anastomosis, there is no alternate path avoiding going into the
most distal SeA, so the hematocrit in the last SeA must match the
DA. Distal SeAs, therefore, have high hematocrits and flow rates.
Radius adaptation then exacerbates flow localization since a large
fraction of the most distal SeAs are PSS activated, cueing them
to expand (e.g., from 3.36 to 3.80 μm for the last SeA), further
increasing the portion of trunk RBC flow that they receive (Fig.
6B). Experimental observations of post-amputation flow support
our quantitative predictions (64). Waiting 1 d post-amputation
to allow bleeding to end and inflammation to diminish, we
observed RBC flows far from and close to the amputation site

Fig. 6. Direct anastomosis between the dorsal artery (DA) and PCV is indispensable to ensuring uniform perfusion of intersegmental vessels. (A) Given random
initial radii, we simulate RBC fluxes (normalized to have median 1) without the DA–PCV anastomosis before and after the adaptation of vessel radii. Removal of
the tail causes a sharp spike in flux in the distal SeA (orange curve), compared with before adaptation (blue line and green dashes). (B) Following amputation,
the predicted hematocrit level in distal SeAs spikes (orange dashed), though the DA hematocrit remains close to saturation (solid orange line). SeAs respond
to increased perfusion by increasing their radii (blue line). (C) The conductance drop of the real DA–PCV loop from the DA (∼6) is close to optimal for uniform
perfusion. Here, we vary the conductance drop of the DA–PCV loop, compared to DA elements between SeAs. The head-to-tail RBC flux ratio decreases as
the conductance drop is increased and is closest to 1 when the conductance drop is ∼10. (D and E) Localization of blood flow is seen in a 5-dpf transgenic
Tg(fli1:eGFP; Gata1:ds-red) zebrafish, 1-d post-amputation (methods from ref. 53). We superimpose DsRed channel data from 60 s of images, captured at a frame
rate of 33 fps. Distal SeAs (E) have far greater RBC flux than rostral SeAs (D), due to a 1.87-fold increase in hematocrit.
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(long exposure images are shown in Fig. 6 D and E). Hematocrit
in the SeA closest to the amputation site is 3 to 10 fold larger
than in rostral SeAs.

Numerically, we explore the effect of modulation of the
conductance of the DA–PCV anastomosis by running adaptation
simulations in replicate zebrafish in which the conductance of
the DA–PCV anastomosis ranges from being equal to a segment
of DA between two SeAs to being 20-fold smaller. When the
anastomosis has the highest conductance, it diverts most RBCs
from the SeAs, and RBC fluxes decrease from head to tail. If
the anastomosis is made less conductive, the hematocrit in the
last SeA increases, so adaptation decreases the head-tail ratio
of fluxes. When the anastomosis conductance drop reaches 20
it is similar to a SeA segment. Then, similarly to amputation,
distal SeAs receive more flow than rostral vessels (Fig. 6C, blue
dash). Between these extremes, there is an optimal anastomosis
conductance drop that matches head-to-tail RBC fluxes. The
optimal conductance drop (∼7 to 10) matches what we observed
in the real zebrafish (∼ 6).

Conclusions
Our model for peak shear stress (PSS) activated vessel radius
adaptation stably converges on model networks and leads to
uniform perfusion of intersegmental vessels. PSS activation
does not require that vessels be supplied with additional (e.g.,
metabolic) information, but it does mean that vessel remodeling
is triggered in response to changes in hematocrit, consistently
with our observations in 4- to 10-dpf zebrafish. In contrast,
adaptation in response to mean shear stresses (MSS) can not
produce stable loopy networks (20). Nor can MSS models
predict the observed changes in flow partitioning that co-occur
with hematocrit changes, since mean shear stresses are only
mildly affected by the hematocrit decrease (SI Appendix, Fig.
S6). Moreover, shear stresses known to be sufficient to induce
cell remodeling, migration, and proliferation (3) greatly exceed
measured MSS (54–56), implicating PSS in the adaptation of
other animal microcirculatory networks.

We have focused exclusively upon tangential stresses: Radius-
dependent blood cell sensing could potentially also be cued by
circumferential stresses (57) or by the oxygen or ATP released by
a single cell (58). However, by showing that hemodynamics alone
can explain both network stability and adaptation dynamics, our
model enlarges the applicability of the widely used model of shear
stress points.

Large peak shear stresses occur in any narrow vessel through
which red blood cells flow in a single file, including not only
the intersegmental vessels considered here, but also capillaries.
By contrast, we have not studied the adaptation of larger vessels
such as the DA, for which hemodynamics are also known to
play a radius setting role (4), and in which time-variation of
shear stresses is dominated by blood flow pulsatility rather than
by the passage of individual RBCs. Theoretical modeling has
identified conditions under which pulsatile stresses alone may
stabilize loopy networks (59) but has not yet been tested in
real microvessels. In particular, we have not analyzed whether
PSS activation is sufficient to stabilize the DA radius, and
extending our model to DA-sized vessels would require new
data about the radius-dependent blood rheology of zebrafish
vessels (41).

In this work, we studied only how hematocrit changes affect
vessel radius finding. We note that following zebrafish tail
amputation, the altered flow in the most distal remaining SeA is a
precursor both to the expansion of that vessel, as described here,

and also to new vessel sprouting (52), implicating PSS-triggers
in angiogenesis of narrow vessels. In comparison, in larger (20 to
100 μm diameter) vessels within the embryonic mouse yolk sac,
sequestering erythrocytes prevented a hierarchical branching vas-
cular network from developing. However, injecting hetastarch to
increase plasma viscosity (60) rescued the hierarchical branching
network, suggesting a separate role for whole blood mean shear
stress in the angiogenesis of larger vessels.

In the zebrafish trunk, rostral SeAs decrease in radius and
stop carrying RBCs when the whole organism’s hematocrit is
decreased. However, no SeA is permanently pruned; in our
model, Eq. 6 enforces a minimum vessel radius, rmin. Rostral SeAs
that approach this radius cease to carry RBCs but still participate
in the circulation by plasma skimming from the DA, boosting
its hematocrit, and enabling the network to find equilibria in
which distal SeAs remain perfused by whole blood, consistent
with experiments (Fig. 5C andD). Conversely, in the embryonic
zebrafish brain, reduction in blood flow is a precursor to complete
vessel pruning (61), and wider application of our model would
be helped by an understanding of the mechanisms that enforce
minimum radii in some, but not all, vessels.

Modeling of the zebrafish trunk, confirmed by amputation
experiments, shows that a direct connection between DA and
PCV is indispensable to achieving uniform perfusion, and in
the absence of this anastomosis, flows are severely localized to
the most distal SeAs. The DA–PCV anastomosis plays roles
early (1 dpf) and late (20 to 40 dpf) in development (29). Yet,
since it diverts more than a quarter of RBCs that pass through
the trunk away from the narrowest vessels, discussion of the
anastomosis’s costs and functions from 4 to 14 dpf should
not be avoided. The presence of topologically similar vessels in
the zebrafish hindbrain may provide additional evidence that
AV anastomoses are functionally necessary during intermediate
embryogenesis. The zebrafish hindbrain vasculature has the same
ladder-rung layout as the trunk, with the basilar artery (rails)
supplying parallel vertebral arteries (rungs). Similar to the DA–
PCV loop, the basilar artery anastomoses directly with the
rostral intersegmental vessels, allowing RBCs to circumvent
the vertebral arteries (29). Interestingly, unlike the DA–PCV
loop, the anastomosis is not present early in angiogenesis and
is not needed to create a circulation-carrying loop prior to the
formation of the vertebral arteries. Instead, the basilar artery
is created by sprouts that develop from the primordial hind
brain channels.

Our model provides theoretical guidance on creating loopy
single-cell diameter networks with uniform flows via hemody-
namic cues. Though our predictions are not dependent upon
model details, data on the mechanics of RBC-vessel wall near
contacts and the mechanics of RBCs dividing at vessel branching
points (41) do not exist for the zebrafish microcirculation, and
ongoing efforts to collect them will likely lead to a revision
of the quantitative details. In particular, our model makes
definitive predictions about the role played by the rostral–
caudal gradient of hematocrit in the DA, predictions that are
qualitatively supported by our observational data (Fig. 4C ), and
in quantitative accord with hematocrit gradient measurements in
other organisms (62, 63). However, high-speed imaging of the
DA would provide a quantitative test of the role of hematocrit
differentials in uniformizing perfusion.

Finally, we note that although our model has been tested
on the zebrafish microvascular network, uniformity of perfusion
has emerged as an organizing principle in more topologically
complex networks, such as the cortical vasculature (47, 48). Are
hemodynamic cues sufficient to explain vessel organization and
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radius finding in these networks? Importantly, in constructing
our model networks, we assigned to each Se-vessel the same acti-
vation set point f̄ . In fact, shear stress set points can be minutely
controlled via VEGFR3 expression levels. Whether, where, and
how, this additional degree of freedom is used, will become clearer
when the model is applied to emerging data streams for networks
of single-cell diameter vessels.

Data,Materials, andSoftwareAvailability. Videosdatahavebeendeposited
in Zenodo (https://doi.org/10.5281/zenodo.8354953) (64).
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