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Synaptic-like plasticity in 2D nanofluidic memristor
from competitive bicationic transport

h 1,2,3

Yechan No and Alex Smolyanitsky**

Synaptic plasticity, the dynamic tuning of signal transmission strength between neurons, serves as a fundamental
basis for memory and learning in biological organisms. This adaptive nature of synapses is considered one of the
key features contributing to the superior energy efficiency of the brain. Here, we use molecular dynamics simula-
tions to demonstrate synaptic-like plasticity in a subnanoporous two-dimensional membrane. We show that a
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train of voltage spikes dynamically modifies the membrane’s ionic permeability in a process involving competitive
bicationic transport. This process is shown to be repeatable after a given resting period. Because of a combination
of subnanometer pore size and the atomic thinness of the membrane, this system exhibits energy dissipation of
0.1 to 100 aJ per voltage spike, which is several orders of magnitude lower than 0.1 to 10 fJ per spike in the human
synapse. We reveal the underlying physical mechanisms at molecular detail and investigate the local energetics

underlying this apparent synaptic-like behavior.

INTRODUCTION
Synapses are junctions that enable chemo-electrical signaling between
neurons. In a typical synapse, the signal transmission strength is dy-
namically modulated in response to previous neural activity, a fea-
ture referred to as synaptic plasticity (1, 2). This adaptive alteration of
synaptic strength plays a fundamental role in memory and learning
functions in living organisms. Moreover, it enables biological neural
networks to concurrently perform both processing and storage of in-
formation in a sparse manner, a feature believed to be central to their
superior energy efficiency. Inspired by these biological functional-
ities, artificial electrical elements with synaptic-like plasticity have
been studied extensively (3-8), aimed at building analog artificial neu-
ral networks with substantially enhanced energy efficiency compared
to emulations based on the von Neumann computing architecture.
Memristors (9) comprise an area of extensive research due to their
potential promise as artificial synaptic elements for neuromorphic
computing. Physically, a memristor is an electrical conductor capable
of modulating its conductivity in response to previous voltage inputs
and maintaining the modulated state without a continuous source
of power. This internal gating enables memristor networks to perform
information processing and storage simultaneously. Over the past
decade, solid-state neuromorphic chips featuring memristor networks
have been demonstrated to perform analog machine learning tasks
at a fraction of the energy cost of their von Neumann counterparts
(5, 10-12). More recently, there has been a spike of interest in nanoflu-
idic memristors to directly mimic biological neural networks (13-25),
with two recent works notably reporting long-term memory effects
along with basic Hebbian learning (18) as well as operating voltage
comparable to that of biological synapses and yielding subpicojoule
energy consumption per spike (17). In nanofluidic memristors, aqueous
ions serve as the charge carriers instead of electrons, in resemblance to
the human brain. One noteworthy difference between electrons and
ions as charge carriers is the rich diversity of the latter, which can
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coexist within a given system. In particular, the competitive interplay
between the ionic species leads to interesting phenomena, including
ion sieving (26) and memristive ion transport (22). It is well known
that biological systems readily harness the diversity of ion species for
their functions, as most notably exemplified by the generation of action
potentials in neurons (27). Therefore, exploring ways to harness ionic
diversity in artificial nanofluidic systems to achieve neuromorphic
functions may represent a crucial research direction in nanofluidics.

Among fluidic ion conductors, nanoporous two-dimensional (2D)
membranes represent a class of materials with high energy efficiency of
ion transport. The primary reason for this efficiency is the atomic thin-
ness, which, combined with subnanometer pore dimensions, enables
relatively low, highly localized, and ion-selective permeation barriers,
as described earlier (26, 28-30). Unsurprisingly, this class of materials
has been considered for a range of applications, including water desali-
nation (31-34), molecular separation (31, 35, 36), and osmotic energy
harvesting (37, 38). Combined with high permeation selectivity and
the prospect of high-density pore array fabrication (39-41), subnano-
porous 2D membranes appear to be excellent candidates for artificial
synaptic devices. Achieving reliable memory functionality, however, is
neither trivial nor necessarily intuitive. Here, we demonstrate synaptic-
like plasticity of aqueous ion transport through a subnanoporous 2D
membrane. We demonstrate that it arises from the adsorption/
desorption and transport of two cation species with markedly different
ion-pore affinities. Finally, we provide a comprehensive molecular-
level insight into the underlying mechanisms.

RESULTS AND DISCUSSION

We used all-atom molecular dynamics (MD) simulations to investi-
gate dynamic ion transport across a 2D porous membrane under a
sequence of rectangular voltage pulses. Figure 1A shows a sketch of
ion transport in a biological electrical synapse, where ions are trans-
ported between the ion channels across the gap junction between the
presynaptic neuron and the postsynaptic neuron. The plasticity of
such synapses typically arises from the dynamic changes in conduc-
tance of the voltage-gated channels, as well as the gap region (42, 43).
Here, we considered a subnanoporous 2D membrane mimicking a
simplified artificial synapse. Figure 1B illustrates bicationic (Na* and
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Fig. 1. Sketch of the system and characteristics of ion transport across a subnanoporous hBN monolayer. (A) lllustration of biological electrical synapse and (B) 2D
porous membrane involving bicationic ion transport driven by spiking voltage, which causes desorption of Na* ions from the pores and activating K* transport. (C) En-
ergy profile for K* and Na* ions along the transport coordinate for a binary salt mixture containing 1.0 M KCl and 0.1 M NaCl. (D) Membrane conductance versus weight
at 1.0 MK*. The insets in (C) show Na* trapping states at the corresponding weight values.

K*) ion transport through an array of subnanometer pores hosted by
a 2D membrane. In this case, the membrane material is a hexagonal
boron nitride (hBN) monolayer with a total of 16 regularly spaced
B;N triangular multivacancy pores within an area of approximately
7 nm X 7 nm. The B3N pore is a defect commonly found in mono-
layer hBN (44) and its effects on wettability (45), water slippage (46),
as well as ion trapping and mechanosensitive ion transport (47) have
been studied. The membrane is suspended in the middle of a simula-
tion box and immersed in a binary mixture of water-dissociated
1.0 M KCl and 0.1 M NaCl, unless the concentrations are stated other-
wise. Dynamic transport response in this system is initiated by a se-
quence of rectangular electric field pulses externally applied in the Z
direction, as shown in Fig. 1B. Further details on the simulation pro-
cedures can be found in Methods.

The permeation properties of B;N vacancies in hBN are worth in-
troducing first. These electrically neutral subnanometer pores feature
dipolar electrostatics with negatively charged dipole components lo-
cated at the edge nitrogen atoms, enabling selective transport. More
specifically, anions are outright rejected, while K™ ions permeate rela-
tively rapidly and Na* ions hardly permeate as they become stably
trapped in the pores (47). Figure 1C shows the corresponding free en-
ergy landscapes in the form of potentials of mean force (PMF) along
the transport coordinate (Z) for both ion species. For Na*, the energy
profile features a barrier of #10kpT at Z = 0 (kg is the Boltzmann con-
stant and T'= 300 K is the system temperature). The K* ions, however,
experience a much shallower energy well, 5.5k T deep, resulting in
relatively weak trapping of K* ions. As described earlier (26, 28, 29),
the rate of ion transport through these barrier-limited pores is of the
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_ar
Arrhenius type, i.e., I e *7, where AE is the rate-setting peak-to-

peak free energy barrier. Unsurprisingly, given an energy barrier dif-
ference of ~4.5kpT, the rate of K* permeation is nearly two orders of
magnitude higher than that of Na* in a single-salt scenario. Following
from the same argument, Na™ ions spend substantially more time
trapped inside the pores, compared to K*, which overall is similar to
18-crown-6 ether pores in graphene, except that the ion-pore affinity is
reversed for the same cation pair (26, 28). Given that a pore of this size
becomes impermeable when a cation is trapped inside, the number of
available conductive paths is the total number of pores unoccupied by
Na™. The effective membrane conductance for a salt mixture can thus
be written as a simple linearly weighted function proposed earlier (22),
directly evaluated in Fig. 1D
G =wG, (1)
where Gy is the conductance of a membrane completely deoccupied
by Na*. The corresponding weight w is the time-dependent fraction
of empty pores: w(t) = 1 — N(£)/Nio, where N(f) is the number of pores
“plugged” by Na* and Ny is the total number of pores in the array.
The results for synaptic-like plasticity exhibited by the aqueous ion
transport through an array of BsN vacancies in a 2D hBN monolayer
under a pulsed bias are shown in Fig. 2. In the context of this work,
plasticity refers to the dynamic alteration of the membrane’s ionic
permeability in response to voltage bias history. We first applied ten
3-ns-long, 0.5-V voltage pulses with an interval of 0.1 ps (results ob-
tained for different intervals can be found in fig. S1). Before the first
voltage pulse, none of the pores were activated, i.e., all 16 pores were
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Fig. 2. Synaptic-like plasticity in ion transport across an hBN monolayer membrane. (A) lon current potentiation by rectangular voltage pulses. In the resting cycle,
the system is unbiased. The subfigures illustrate trapped Na* ions at selected times. The probability distribution of (B) pulse-induced weight increments and (C) current
peaks obtained from 100 independent simulations with a 0.5-V voltage pulse of T = 3 ns. Writing and reading operations using a write pulse of (D) 0.5V and (E) 0.8V, fol-
lowed by a 0.2-V read pulse. All read and write pulses were 5 ns long. The interval between writing and reading operations is 50 ns. Mechanisms associated with the
synaptic-like plasticity: (F) Inactivated state: the trapped Na™ blocks K* transport. (G) Activation or learning process: bias-induced desorption of Na*. (H) Inactivation or

forgetting process: readsorption of Na* ions.

occupied by the trapped Na™ ions. The pore activation dynamics as a
function of subsequent voltage pulses is shown in Fig. 2A, with the first
pulse activating two pores and the second pulse activating three more
pores, corresponding to w = 2/16 = 0.125 and w = 5/16 = 0.3125,
respectively—and so forth. At a finite temperature, the individual Aw
increments are of course stochastic and thus the analytical discussions
provided later in the text correspond to the statistically significant Aw
values, i.e., those obtainable from repeated identical pulse trains ap-
plied to a system initially at w = 0. The distributions of weight change
and peak current (Ieqi) resulting from a 3-ns-long 0.5-V pulse are
shown in Fig. 2, B and C, respectively. The corresponding average
weight change is 0.256 with an SD of 0.108 for a membrane featuring
16 pores. This type of stochasticity introduces a degree of inherent ran-
domness, which results in natural diversity in conductance switching.
In principle, intrinsic stochasticity is commonly found in solid-state
memristors (10) and the human brain (4). Specifically for the present-
ed system, the degree of randomness should decrease with increasing
array size. As successive voltage pulses are applied, these spikes expect-
edly exhibit an increasing trend with a clear asymptote corresponding
to the maximum weight w = 1 (at the end of the first 10-pulse se-
quence, the value of w increased to 0.94, corresponding to only one
trapped Na™ ion). The information about the previous history of
voltage pulses is stored in the form of cumulatively added deoccu-
pancy of Na*. This gradual potentiation of ion permeability arises
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due to the competitive transport between K* and Na*, and thus, the
potentiation effects do not take place with a monocationic electrolyte
(see fig. S2). As expected for a system symmetric with respect to the
membrane, the potentiation occurs regardless of bias reversal, result-
ing in bidirectional memristive behavior described in fig. S3. Once the
pulse train stops, the system undergoes resting, during which the Na*
ions are slowly re-trapped, volatilizing the previously gained memory.
After approximately 6 ps of rest, 11 additional Na* ions are re-trapped,
leaving only four pores empty and corresponding to w = 4/16 = 0.25.
After that, the system underwent another learning cycle with the same
sequence of voltage pulses, exhibiting ion current potentiation similar
to that observed in the first cycle, except with a different initial value
of w. As demonstrated, the conductance state of the device is switch-
able by voltage pulses a few nanoseconds in duration, resulting in a
switching resolution at the scale of order 0.1 GHz. The relaxation
time of a few microseconds, on the other hand, corresponds to the
effective memory retention time, tunable by the local association
barriers, as well as the ion concentrations, as discussed in greater
detail further in the text. These timing ranges may therefore be
of specific interest for implementing devices that aim to combine
gigahertz-scale state switching with megahertz-scale state retention.

Given the discussion above, the high-magnitude component of
the bias pulse can be viewed as the write operation performed on
a membrane, while a measurement of the ion current during the
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lower-magnitude pulse is the read operation aimed at probing the
membrane’s ionic permeability. For writing, we used 5-ns-long
pulses of relatively high magnitude (0.5 V and higher), which enable
rapid removal of some of the Na* ions from the pores. For reading,
pulses of lower magnitude (0.2 V) were used, allowing to merely
probe the membrane permeability in its Na*-occupancy state with-
out modifying the latter. Figure 2 (D and E) shows the correspond-
ing results for write pulses of 0.5 and 0.8 V, followed by a read pulse
after 50 ns. As expected, permeability potentiation is stronger with a
write pulse of higher magnitude: Aw = 0.50 and Aw = 0.94 for 0.5
and 0.8 V pulse, respectively. The corresponding dissipated energy
expenditure is quite low. We define the energy dissipated in a given
pulse as AE = JOT I(t)Vdt, where I(t) is the ion current and Vi is the
pulse height, integrated for the pulse duration 7. As shown in Fig. 2,
(D and E), the energy dissipation per voltage spike in this 2D nano-
fluidic memristor is on the attojoule scale, attributed to the relatively
low ion currents and the nanosecond-scale pulse. These energy es-
timates are several orders of magnitude lower than those of human
synapses, which have an energy expenditure of roughly 0.1 to 10 fJ
per synaptic event (6, 8, 48). Note that the attojoule-scale dissipation
estimate given above should only be viewed as an idealized lower
bound. In a more realistic scenario, especially given the current
state-of-the art fabrication techniques, parasitic effects in the form
of ion current leakage and other sources would certainly increase
dissipative losses. At the same time, this lower bound may serve as a
suitable objective in terms of device design and fabrication.

The main mechanism underlying the simple potentiating-forgetting
cycle described above is dynamic adsorption/desorption of Na* ions
by the pores, with inactivated and activated states of pores as sketched
in Fig. 2, F and G, respectively. When a write pulse is applied, a signifi-
cant probability of Na* desorption arises, as set by the write-pulse volt-
age peak and the desorption barrier Eq4 (see Fig. 2G for the definition).
Upon forgetting, adsorption occurs with a considerably lower proba-
bility, as set by the adsorption barrier E, (see Fig. 2H) and the low con-
centration of Na* ions. In particular, to achieve low memory volatility
(i-e., in the form of a long forgetting time in Fig. 2A), a combination of
relatively high E, and sufficiently low Na* concentration is essential,
because the corresponding adsorption rate that describes the sponta-

neous “forgetting” process is o cy,+exp <— or ), where ¢y, is the so-
. . B
dium concentration.

A simple analytical model describing the entire process presented
above is possible. For an individual pore, the effective desorption rate in

the presence of external bias is given by rq = fycosh < % )exp <— kEB—“T ),

where fj is the attempt frequency associated with thermal fluctuations,
¢ « V() is the bias-induced local shift of the ion’s electrostatic poten-
tial, and g is the electric charge of the ion. As mentioned earlier, the
E«)
kT
Fig. 2H for the definition of E,), where ¢, + is the concentration of Na* ions
and x is a suitable transmission coefficient such that kcn,* is the cor-
responding adsorption attempt frequency. In general, r, is bias depen-
dent, but we posit that the dependence here is considerably weaker
than for desorption. For a pore array, let us consider the system state
determined by the number of Na* ions trapped in the pores as a func-
tion of time, in response to a voltage pulse. We note that despite the fact
that the ability to observe time delays in the form of ion currents
requires at least two cation species with markedly different ion-pore

concentration-dependent adsorption rate is 7, = K¢y,+€Xp <— ) (see
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affinities (22), the time-delayed state dynamics itself can be described
in a single-cation scenario. The number of trapped Na* ions N(#) satis-

tot
constant bias (e.g., during a rectangular voltage pulse), the analytical so-
lution is then N(t) = Noe‘(’a“d)t + f\]‘T‘; <1 —e‘(’a’"’d)t), where N
a d
is the initial state. The corresponding weight is then given by
w=w,+ ( - :r - W0> (1 - e_(’a”d)t),whenew(): 1—Ny/Niois the initial
aTld

weight. Given that r4 is an exponential function of the external bias,
two distinct processes are possible, depending on the relative strengths
of r, and ry.

As shown earlier, the system “learns” from a train of “writing”
pulses when rq > r, during each pulse and the interval between the
pulses is insufficiently long for significant memory loss to occur. A
necessary requirement here is that the bias magnitude is sufficiently
high for a pulse lasting only a few nanoseconds to remove a consid-
erable number of sodium ions from the pores. The learning process
is then cumulative, i.e., the state after the nth pulse remembers the
sum of w changes caused by the previous pulses, until all pores are
deoccupied by Na*. After nth pulse of duration t

4 ( —(r+r)‘r)
w, =w, ;+ -W,_ 1—e o™
n n—1 (G‘H'd n1>

where w,,_; and w, are the weight before and after the pulse, respec-
tively. At rq>> r,, wy = 0, and assuming no appreciable re-adsorption
between the equation pulses, the difference equation above yields a
geometric series w, =1 — e~ (atra)mn, asymptotically convergent to
unity, in accord with the results in Fig. 2A. Of potential interest, for
a train of voltage pulses of constant magnitude and duration, the
w,—Ww,_; increments are statistically numerically unique. In principle,
this suggests the possibility of implicitly “encoding” information about
the number of pulses that preceded a given unsaturated value of w in
the case of large pore arrays. The r4’s sensitivity to the bias magnitude is
worth considering in greater detail. The results of simulated potentia-
tion by a single 5-ns-long voltage pulse of height V, applied to a mem-
brane initially fully inactivated (w = 0), are shown in Fig. 3A. Both the
current spike height and Aw are marked by a threshold in the
amount of 0.3 V, consistent with the definition of 4. Sensitive depen-
dence on the pulse duration 7 at a fixed V; (see 0.5- and 0.8-V cases in
Fig. 3B) above the threshold is also shown in Fig. 3B, causing the cor-
responding current peak and Aw to increase rapidly when 7 increases.
In addition, there is reasonable agreement between Aw given by Eq. 2
and the simulated data (see the dashed curves in Fig. 3, A and B). Note
that the resulting energy expenditure for various values of Vs shown in
Fig. 3C exhibits a rapid increase above the V; threshold. In particular,
Fig. 3D shows that energy consumption increases nonlinearly with
the weight increment, naturally following the corresponding rapid
increase in I (compare the top panels in Fig. 3, A and C).

The second important process that can occur is the loss of mem-
ory in the longer-term absence of external bias, which manifests as
spontaneous gradual decrease in w. The unbiased dynamics is de-
scribed identically to Eq. 2, except now r, and rq are more comparable

7 —(r.trq
v (rafrd‘%)(l-e o) )

where wy > 0 is the state before the start of memory loss and ¢ is the
elapsed time. The decay rate is a sensitive function of cx,+ via r, «
CNat» consistent with the results in Fig. 4A, which shows spontaneous

fies a simple differential equation: ‘Z—Ij =—14N +7, (N -N ) For a

)
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decay of w at several concentrations of NaCl. The final state of the
membrane is also concentration dependent, because regardless of

wo, at t — o, Eq. 3 yieldsw = —— =
0 » £Q- Y Ty Moot +1

also consistent with the results in Fig. 4A. An important factor affect-
ing the forgetting process omitted in the discussion above is the
presence of K* ions, which are expected to interfere with Na*-pore
binding. As shown in Fig. 4B, the presence of K™ ions slows down the
rate of w decay (also see section S2). The effects of potassium are
deeper than the level of interference captured by our analytical model.
Shown in Fig. 4 (C and D) is the effect of K* on the barrier heights,
because K* ions contribute short-range steric and longer-range elec-
trostatic cation-cation repulsion through their presence in the direct
vicinity of the pores and near the membrane surfaces, respectively.
These observations suggest that the concentration of the main con-
ducting ion species can also be used as a tuning parameter for con-
trolling the system dynamics. The possible influence of spurious
defects essentially guaranteed to be present in realistic postfabrica-
ton hBN membranes is worth noting briefly. Smaller defects (e.g., in
the form of single-atom or B,N vacancies) are expected to be en-
tirely impermeable to K™ and Na* ions, because the B3N vacancy is

, where A is a constant—

A B
Current 91
. —_ ®
E 6 [ * 7 ns )
06V % 34 °® 5ns.
[
05V ° ) 3ns,
0.4V 0-eeee <|[1ns
e v Z
"5ns 0.2V 1.0 oo ;.—.3;- 5ns
. of T,
_ i ’ Dl
3 0.5 /6/
Ve 0.0 Teo*
Voltage 0.0 0.5 1.0 Voltage
Vs (V)

essentially the smallest permeable pore for these cation species. At
the same time, smaller cations, such as Li* and protons, may still be
able to permeate through smaller defects. Larger multivacancies, on
the other hand, are not expected to trap ions, and thus, the trans-
port contributions from those pores would likely manifest as base-
line leakage current. Although fabrication of large uniform arrays
of B3N vacancies remains a challenge, a new fabrication method
reported recently shows substantial promise in achieving increased
control over pore size and shape distribution in an array of multi-
vacancies (49, 50).

To summarize, we have demonstrated synaptic-like plasticity of
aqueous ion transport through a subnanoporous 2D membrane made
of a monolayer hBN featuring an array of B3N vacancies in a binary
aqueous salt. The ion conductance of this nanofluidic memristor can
be dynamically modulated by few-nanoseconds-long transmem-
brane voltage pulses, resulting in a switching speed of approximately
0.1 GHz. The resulting energy dissipation per voltage spike is very
low, roughly 0.1 to 100 aJ per spike, which is several orders of magni-
tude lower than that of the human brain, 0.1 to 10 {]J per spike. Nota-
bly, this synaptic-like plasticity arises from the dynamic interplay
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Fig. 3. Synaptic potentiation and energy consumption during a single voltage pulse of varying magnitude and duration. Peak current and weight change for
(A) varying V; at fixed T = 5 ns and (B) varying t at fixed V. (C) Dissipated energy as a function of V, with a fixed t = 5 ns (D) Dissipated energy versus weight change. As shown,
lpeaks Aw, and AE are averages from four independent simulations. The error bars are the corresponding SDs.
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Fig. 4. Effect of Na* concentration and Na™-K* interplay in the forgetting process. (A) Effect of Na* concentration on weight decay. (B) Effect of K™ ions on weight
decay. Sketches of the forgetting process for (C) monocationic electrolyte featuring only Na*™ and (D) bicationic electrolyte containing Na* and K* at the stated ion con-

centrations, along with the corresponding energy profiles directly below.
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between two cationic species (Na* and K*), exemplifying an illustra-
tive approach to leveraging ionic diversity for achieving neuromor-
phic functionality. The conductive state of the membrane is shown to
be governed by the adsorption/desorption dynamics of Na* trapped
in the pores, while K* ions permeate through the empty pores. We
derived a set of illustrative analytical expressions associated with the
apparent synaptic-like potentiation and memory volatility. Further
experimentation is needed to demonstrate the predicted behaviors
for various subnanoporous 2D membranes, as well as ionic perme-
ants. It is our hope to stimulate further work aimed at a better under-
standing of the effects of ionic diversity, including at the system level,
i.e,, in the case of interconnected nanofluidic memristive elements.

METHODS

For the MD simulations of ion transport, we used a rectangular box
with dimension Ly = 6.998 nm X Ly = 6.926 nm X Lz = 10 nm, pe-
riodic in all directions. The subnanoporous hBN monolayer was
placed in the XY plane at Z = L;/2 with the pore array consisting of
16 triangular B3N vacancies. To prevent the membrane from drift-
ing, its edge atoms were tethered to their initial positions by spring
restraints. The system was filled with aqueous salt mixtures consist-
ing of explicitly simulated K*, Na*, and Cl™ ions. As the system was
periodic in all directions, the time- and ensemble-averaged salt con-
centration on each side of the membrane was identical under zero
bias. The membrane was simulated using parameters developed ear-
lier (51) within the all-atom optimized potentials for liquid simula-
tions (OPLS-AA) forcefield framework (52). The partial charges of
the nitrogen atoms at the edges of B3N vacancies were set at 2/3 of
their bulk values [obtained earlier from quantum-chemical calcula-
tions (51)], ensuring electrical neutrality of the membrane. Explicitly
simulated water molecules were simulated using the TIP4P model (53).
All of the nonbonded interactions were simulated using the OPLS-AA
forcefield framework (52). A particle-particle-particle-mesh scheme
was used to simulate the electrostatic interactions. A 1.2-nm cutoff radius
was used for all short-range interactions, including short-range Coulomb
interactions and the Lennard-Jones interactions. To initialize the con-
ductive weight of the membrane to zero in all of our simulations, we
placed Na* ions inside the B;N vacancies. The system first underwent
static energy minimization and then dynamic relaxation in the NPT
ensemble at 7= 300 K and P =1 bar, using a 1-fs time step, with the
Parrinello-Rahman barostat modifying simulation box dimensions
only in the Z direction. Relaxed systems underwent ion transport
simulations under rectangular pulses of external electric field ap-
plied in the Z direction, using a 2-fs time step. The corresponding
pulse magnitudes were calculated as the electric field magnitude,
multiplied by Lz. To obtain the ion currents, we first calculated the
cumulative ionic fluxes as a function of time N(¢). The flux data were
recorded every 10 ps, corresponding to a 100-GHz sampling rate.
The raw N(t) data were then filtered using a Chebyshev low-pass
digital filter with a 200-MHz cutoff frequency. Finally, time deriva-
tives of the filtered flux data were obtained using an eighth-order
central difference method, yielding the time-dependent ionic current

I(t) = qdz\;‘:t), where N(t) is the filtered cumulative flux and q is the
ionic charge. Further details can be found in the supplementary ma-
terials of our previous work (22). The PMF data were obtained using
the weighted histogram analysis method (54) applied to a total

of 60 umbrella samples of the ion’s position along the Z coordinate
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incremented by 0.05 nm; each umbrella sample was obtained from a
20-ns-long simulation. All MD simulations were performed using graph-
ics processing unit (GPU)-accelerated GROMACS (55, 56), and the mo-
lecular visualization tasks were carried using the OVITO software (57).

Supplementary Materials
This PDF file includes:

Sections S1and S2

Figs. S1 to S6
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