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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Synaptic- like plasticity in 2D nanofluidic memristor 
from competitive bicationic transport
Yechan Noh1,2,3 and Alex Smolyanitsky2*

Synaptic plasticity, the dynamic tuning of signal transmission strength between neurons, serves as a fundamental 
basis for memory and learning in biological organisms. This adaptive nature of synapses is considered one of the 
key features contributing to the superior energy e!ciency of the brain. Here, we use molecular dynamics simula-
tions to demonstrate synaptic- like plasticity in a subnanoporous two- dimensional membrane. We show that a 
train of voltage spikes dynamically modi"es the membrane’s ionic permeability in a process involving competitive 
bicationic transport. This process is shown to be repeatable after a given resting period. Because of a combination 
of subnanometer pore size and the atomic thinness of the membrane, this system exhibits energy dissipation of 
0.1 to 100 aJ per voltage spike, which is several orders of magnitude lower than 0.1 to 10 fJ per spike in the human 
synapse. We reveal the underlying physical mechanisms at molecular detail and investigate the local energetics 
underlying this apparent synaptic- like behavior.

INTRODUCTION
Synapses are junctions that enable chemo- electrical signaling between 
neurons. In a typical synapse, the signal transmission strength is dy-
namically modulated in response to previous neural activity, a fea-
ture referred to as synaptic plasticity (1, 2). "is adaptive alteration of 
synaptic strength plays a fundamental role in memory and learning 
functions in living organisms. Moreover, it enables biological neural 
networks to concurrently perform both processing and storage of in-
formation in a sparse manner, a feature believed to be central to their 
superior energy e#ciency. Inspired by these biological functional-
ities, arti$cial electrical elements with synaptic- like plasticity have 
been studied extensively (3–8), aimed at building analog arti$cial neu-
ral networks with substantially enhanced energy e#ciency compared 
to emulations based on the von Neumann computing architecture.

Memristors (9) comprise an area of extensive research due to their 
potential promise as arti$cial synaptic elements for neuromorphic 
computing. Physically, a memristor is an electrical conductor capable 
of modulating its conductivity in response to previous voltage inputs 
and maintaining the modulated state without a continuous source 
of power. "is internal gating enables memristor networks to perform 
information processing and storage simultaneously. Over the past 
decade, solid- state neuromorphic chips featuring memristor networks 
have been demonstrated to perform analog machine learning tasks 
at a fraction of the energy cost of their von Neumann counterparts 
(5, 10–12). More recently, there has been a spike of interest in nano%u-
idic memristors to directly mimic biological neural networks (13–25), 
with two recent works notably reporting long- term memory e&ects 
along with basic Hebbian learning (18) as well as operating voltage 
comparable to that of biological synapses and yielding subpicojoule 
energy consumption per spike (17). In nano%uidic memristors, aqueous 
ions serve as the charge carriers instead of electrons, in resemblance to 
the human brain. One noteworthy di&erence between electrons and 
ions as charge carriers is the rich diversity of the latter, which can 

coexist within a given system. In particular, the competitive interplay 
between the ionic species leads to interesting phenomena, including 
ion sieving (26) and memristive ion transport (22). It is well known 
that biological systems readily harness the diversity of ion species for 
their functions, as most notably exempli$ed by the generation of action 
potentials in neurons (27). "erefore, exploring ways to harness ionic 
diversity in arti$cial nano%uidic systems to achieve neuromorphic 
functions may represent a crucial research direction in nano%uidics.

Among %uidic ion conductors, nanoporous two- dimensional (2D) 
membranes represent a class of materials with high energy e#ciency of 
ion transport. "e primary reason for this e#ciency is the atomic thin-
ness, which, combined with subnanometer pore dimensions, enables 
relatively low, highly localized, and ion- selective permeation barriers, 
as described earlier (26, 28–30). Unsurprisingly, this class of materials 
has been considered for a range of applications, including water desali-
nation (31–34), molecular separation (31, 35, 36), and osmotic energy 
harvesting (37, 38). Combined with high permeation selectivity and 
the prospect of high- density pore array fabrication (39–41), subnano-
porous 2D membranes appear to be excellent candidates for arti$cial 
synaptic devices. Achieving reliable memory functionality, however, is 
neither trivial nor necessarily intuitive. Here, we demonstrate synaptic- 
like plasticity of aqueous ion transport through a subnanoporous 2D 
membrane. We demonstrate that it arises from the adsorption/
desorption and transport of two cation species with markedly di&erent 
ion- pore a#nities. Finally, we provide a comprehensive molecular- 
level insight into the underlying mechanisms.

RESULTS AND DISCUSSION
We used all- atom molecular dynamics (MD) simulations to investi-
gate dynamic ion transport across a 2D porous membrane under a 
sequence of rectangular voltage pulses. Figure 1A shows a sketch of 
ion transport in a biological electrical synapse, where ions are trans-
ported between the ion channels across the gap junction between the 
presynaptic neuron and the postsynaptic neuron. "e plasticity of 
such synapses typically arises from the dynamic changes in conduc-
tance of the voltage- gated channels, as well as the gap region (42, 43). 
Here, we considered a subnanoporous 2D membrane mimicking a 
simpli$ed arti$cial synapse. Figure 1B illustrates bicationic (Na+ and 
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K+) ion transport through an array of subnanometer pores hosted by 
a 2D membrane. In this case, the membrane material is a hexagonal 
boron nitride (hBN) monolayer with a total of 16 regularly spaced 
B3N triangular multivacancy pores within an area of approximately 
7 nm × 7 nm. "e B3N pore is a defect commonly found in mono-
layer hBN (44) and its e&ects on wettability (45), water slippage (46), 
as well as ion trapping and mechanosensitive ion transport (47) have 
been studied. "e membrane is suspended in the middle of a simula-
tion box and immersed in a binary mixture of water- dissociated 
1.0 M KCl and 0.1 M NaCl, unless the concentrations are stated other-
wise. Dynamic transport response in this system is initiated by a se-
quence of rectangular electric $eld pulses externally applied in the Z 
direction, as shown in Fig. 1B. Further details on the simulation pro-
cedures can be found in Methods.

"e permeation properties of B3N vacancies in hBN are worth in-
troducing $rst. "ese electrically neutral subnanometer pores feature 
dipolar electrostatics with negatively charged dipole components lo-
cated at the edge nitrogen atoms, enabling selective transport. More 
speci$cally, anions are outright rejected, while K+ ions permeate rela-
tively rapidly and Na+ ions hardly permeate as they become stably 
trapped in the pores (47). Figure 1C shows the corresponding free en-
ergy landscapes in the form of potentials of mean force (PMF) along 
the transport coordinate (Z) for both ion species. For Na+, the energy 
pro$le features a barrier of ≈10kBT at Z = 0 (kB is the Boltzmann con-
stant and T = 300 K is the system temperature). "e K+ ions, however, 
experience a much shallower energy well, ≈5.5kBT deep, resulting in 
relatively weak trapping of K+ ions. As described earlier (26, 28, 29), 
the rate of ion transport through these barrier- limited pores is of the 

Arrhenius type, i.e., I ∝ e
− ΔE

kBT, where ΔE is the rate- setting peak- to- 
peak free energy barrier. Unsurprisingly, given an energy barrier dif-
ference of ≈4.5kBT, the rate of K+ permeation is nearly two orders of 
magnitude higher than that of Na+ in a single- salt scenario. Following 
from the same argument, Na+ ions spend substantially more time 
trapped inside the pores, compared to K+, which overall is similar to 
18- crown- 6 ether pores in graphene, except that the ion- pore a#nity is 
reversed for the same cation pair (26, 28). Given that a pore of this size 
becomes impermeable when a cation is trapped inside, the number of 
available conductive paths is the total number of pores unoccupied by 
Na+. "e e&ective membrane conductance for a salt mixture can thus 
be written as a simple linearly weighted function proposed earlier (22), 
directly evaluated in Fig. 1D

where G0 is the conductance of a membrane completely deoccupied 
by Na+. "e corresponding weight w is the time- dependent fraction 
of empty pores: w(t) = 1 − N(t)/Ntot, where N(t) is the number of pores 
“plugged” by Na+ and Ntot is the total number of pores in the array.

"e results for synaptic- like plasticity exhibited by the aqueous ion 
transport through an array of B3N vacancies in a 2D hBN monolayer 
under a pulsed bias are shown in Fig. 2. In the context of this work, 
plasticity refers to the dynamic alteration of the membrane’s ionic 
permeability in response to voltage bias history. We $rst applied ten 
3- ns- long, 0.5- V voltage pulses with an interval of 0.1 μs (results ob-
tained for di&erent intervals can be found in $g. S1). Before the $rst 
voltage pulse, none of the pores were activated, i.e., all 16 pores were 

G = wG0 (1)

Fig. 1. Sketch of the system and characteristics of ion transport across a subnanoporous hBN monolayer. (A) Illustration of biological electrical synapse and (B) 2D 
porous membrane involving bicationic ion transport driven by spiking voltage, which causes desorption of Na+ ions from the pores and activating K+ transport. (C) En-
ergy pro!le for K+ and Na+ ions along the transport coordinate for a binary salt mixture containing 1.0 M KCl and 0.1 M NaCl. (D) Membrane conductance versus weight 
at 1.0 M K+. The insets in (C) show Na+ trapping states at the corresponding weight values.

D
ow

nloaded from
 https://w

w
w

.science.org on M
ay 05, 2025



Noh and Smolyanitsky , Sci. Adv. 10, eadr1531 (2024)     6 November 2024

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 7

occupied by the trapped Na+ ions. "e pore activation dynamics as a 
function of subsequent voltage pulses is shown in Fig. 2A, with the $rst 
pulse activating two pores and the second pulse activating three more 
pores, corresponding to w = 2/16 = 0.125 and w = 5/16 = 0.3125, 
respectively—and so forth. At a $nite temperature, the individual Δw 
increments are of course stochastic and thus the analytical discussions 
provided later in the text correspond to the statistically signi$cant Δw 
values, i.e., those obtainable from repeated identical pulse trains ap-
plied to a system initially at w = 0. "e distributions of weight change 
and peak current (Ipeak) resulting from a 3- ns- long 0.5- V pulse are 
shown in Fig. 2, B and C, respectively. "e corresponding average 
weight change is 0.256 with an SD of 0.108 for a membrane featuring 
16 pores. "is type of stochasticity introduces a degree of inherent ran-
domness, which results in natural diversity in conductance switching. 
In principle, intrinsic stochasticity is commonly found in solid- state 
memristors (10) and the human brain (4). Speci$cally for the present-
ed system, the degree of randomness should decrease with increasing 
array size. As successive voltage pulses are applied, these spikes expect-
edly exhibit an increasing trend with a clear asymptote corresponding 
to the maximum weight w = 1 (at the end of the $rst 10- pulse se-
quence, the value of w increased to 0.94, corresponding to only one 
trapped Na+ ion). "e information about the previous history of 
voltage pulses is stored in the form of cumulatively added deoccu-
pancy of Na+. "is gradual potentiation of ion permeability arises 

due to the competitive transport between K+ and Na+, and thus, the 
potentiation e&ects do not take place with a monocationic electrolyte 
(see $g. S2). As expected for a system symmetric with respect to the 
membrane, the potentiation occurs regardless of bias reversal, result-
ing in bidirectional memristive behavior described in $g. S3. Once the 
pulse train stops, the system undergoes resting, during which the Na+ 
ions are slowly re- trapped, volatilizing the previously gained memory. 
A'er approximately 6 μs of rest, 11 additional Na+ ions are re- trapped, 
leaving only four pores empty and corresponding to w = 4/16 = 0.25. 
A'er that, the system underwent another learning cycle with the same 
sequence of voltage pulses, exhibiting ion current potentiation similar 
to that observed in the $rst cycle, except with a di&erent initial value 
of w. As demonstrated, the conductance state of the device is switch-
able by voltage pulses a few nanoseconds in duration, resulting in a 
switching resolution at the scale of order 0.1 GHz. "e relaxation 
time of a few microseconds, on the other hand, corresponds to the 
e&ective memory retention time, tunable by the local association 
barriers, as well as the ion concentrations, as discussed in greater 
detail further in the text. These timing ranges may therefore be 
of speci$c interest for implementing devices that aim to combine 
gigahertz- scale state switching with megahertz- scale state retention.

Given the discussion above, the high- magnitude component of 
the bias pulse can be viewed as the write operation performed on 
a membrane, while a measurement of the ion current during the 

Fig. 2. Synaptic- like plasticity in ion transport across an hBN monolayer membrane. (A) Ion current potentiation by rectangular voltage pulses. In the resting cycle, 
the system is unbiased. The sub!gures illustrate trapped Na+ ions at selected times. The probability distribution of (B) pulse- induced weight increments and (C) current 
peaks obtained from 100 independent simulations with a 0.5- V voltage pulse of τ = 3 ns. Writing and reading operations using a write pulse of (D) 0.5 V and (E) 0.8 V, fol-
lowed by a 0.2- V read pulse. All read and write pulses were 5 ns long. The interval between writing and reading operations is 50 ns. Mechanisms associated with the 
synaptic- like plasticity: (F) Inactivated state: the trapped Na+ blocks K+ transport. (G) Activation or learning process: bias- induced desorption of Na+. (H) Inactivation or 
forgetting process: readsorption of Na+ ions.
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lower- magnitude pulse is the read operation aimed at probing the 
membrane’s ionic permeability. For writing, we used 5- ns- long 
pulses of relatively high magnitude (0.5 V and higher), which enable 
rapid removal of some of the Na+ ions from the pores. For reading, 
pulses of lower magnitude (0.2 V) were used, allowing to merely 
probe the membrane permeability in its Na+- occupancy state with-
out modifying the latter. Figure 2 (D and E) shows the correspond-
ing results for write pulses of 0.5 and 0.8 V, followed by a read pulse 
a'er 50 ns. As expected, permeability potentiation is stronger with a 
write pulse of higher magnitude: Δw = 0.50 and Δw = 0.94 for 0.5 
and 0.8 V pulse, respectively. "e corresponding dissipated energy 
expenditure is quite low. We de$ne the energy dissipated in a given 
pulse as ΔE = ∫ τ

0
I(t)Vsdt, where I(t) is the ion current and Vs is the 

pulse height, integrated for the pulse duration τ. As shown in Fig. 2, 
(D and E), the energy dissipation per voltage spike in this 2D nano-
%uidic memristor is on the attojoule scale, attributed to the relatively 
low ion currents and the nanosecond- scale pulse. "ese energy es-
timates are several orders of magnitude lower than those of human 
synapses, which have an energy expenditure of roughly 0.1 to 10 fJ 
per synaptic event (6, 8, 48). Note that the attojoule- scale dissipation 
estimate given above should only be viewed as an idealized lower 
bound. In a more realistic scenario, especially given the current 
state- of- the art fabrication techniques, parasitic e&ects in the form 
of ion current leakage and other sources would certainly increase 
dissipative losses. At the same time, this lower bound may serve as a 
suitable objective in terms of device design and fabrication.

"e main mechanism underlying the simple potentiating- forgetting 
cycle described above is dynamic adsorption/desorption of Na+ ions 
by the pores, with inactivated and activated states of pores as sketched 
in Fig. 2, F and G, respectively. When a write pulse is applied, a signi$-
cant probability of Na+ desorption arises, as set by the write- pulse volt-
age peak and the desorption barrier Ed (see Fig. 2G for the de$nition). 
Upon forgetting, adsorption occurs with a considerably lower proba-
bility, as set by the adsorption barrier Ea (see Fig. 2H) and the low con-
centration of Na+ ions. In particular, to achieve low memory volatility 
(i.e., in the form of a long forgetting time in Fig. 2A), a combination of 
relatively high Ea and su#ciently low Na+ concentration is essential, 
because the corresponding adsorption rate that describes the sponta-
neous “forgetting” process is ∝ cNa+exp

(

−
Ea

kBT

)

, where cNa+ is the so-
dium concentration.

A simple analytical model describing the entire process presented 
above is possible. For an individual pore, the e&ective desorption rate in 
the presence of external bias is given by rd = fdcosh

(

qϕ

2kBT

)

exp
(

−
Ed
kBT

)

, 
where fd is the attempt frequency associated with thermal %uctuations, 
ϕ ∝ V(t) is the bias- induced local shi' of the ion’s electrostatic poten-
tial, and q is the electric charge of the ion. As mentioned earlier, the 
concentration- dependent adsorption rate is ra = κcNa+exp

(

−
Ea

kBT

)

 (see 

Fig. 2H for the de$nition of Ea), where cNa+ is the concentration of Na+ ions 
and κ is a suitable transmission coe#cient such that κcNa+ is the cor-
responding adsorption attempt frequency. In general, ra is bias depen-
dent, but we posit that the dependence here is considerably weaker 
than for desorption. For a pore array, let us consider the system state 
determined by the number of Na+ ions trapped in the pores as a func-
tion of time, in response to a voltage pulse. We note that despite the fact 
that the ability to observe time delays in the form of ion currents 
requires at least two cation species with markedly di&erent ion- pore 

a#nities (22), the time- delayed state dynamics itself can be described 
in a single- cation scenario. "e number of trapped Na+ ions N(t) satis-
$es a simple di&erential equation: dN

dt
= −rdN + ra

(

Ntot−N
)

. For a 
constant bias (e.g., during a rectangular voltage pulse), the analytical so-
lution is then N(t) = N0e

−(ra+rd)t +
Ntotra
ra + rd

(

1−e−(ra+rd)t
)

, where N0 
is the initial state. The corresponding weight is then given by 
w = w0 +

(

rd
ra+rd

−w0

)(

1−e−(ra+rd)t
)

 , where w0 = 1−N0/Ntot is the initial 
weight. Given that rd is an exponential function of the external bias, 
two distinct processes are possible, depending on the relative strengths 
of ra and rd.

As shown earlier, the system “learns” from a train of “writing” 
pulses when rd ≫ ra during each pulse and the interval between the 
pulses is insu#ciently long for signi$cant memory loss to occur. A 
necessary requirement here is that the bias magnitude is su#ciently 
high for a pulse lasting only a few nanoseconds to remove a consid-
erable number of sodium ions from the pores. "e learning process 
is then cumulative, i.e., the state a'er the nth pulse remembers the 
sum of w changes caused by the previous pulses, until all pores are 
deoccupied by Na+. A'er nth pulse of duration τ

where wn−1 and wn are the weight before and a'er the pulse, respec-
tively. At rd ≫ ra, w0 = 0, and assuming no appreciable re- adsorption 
between the equation pulses, the di&erence equation above yields a 
geometric series wn = 1 − e−(ra+rd)τn, asymptotically convergent to 
unity, in accord with the results in Fig. 2A. Of potential interest, for 
a train of voltage pulses of constant magnitude and duration, the 
wn−wn−1 increments are statistically numerically unique. In principle, 
this suggests the possibility of implicitly “encoding” information about 
the number of pulses that preceded a given unsaturated value of w in 
the case of large pore arrays. "e rd’s sensitivity to the bias magnitude is 
worth considering in greater detail. "e results of simulated potentia-
tion by a single 5- ns- long voltage pulse of height Vs, applied to a mem-
brane initially fully inactivated (w = 0), are shown in Fig. 3A. Both the 
current spike height and Δw are marked by a threshold in the 
amount of ≈0.3 V, consistent with the de$nition of rd. Sensitive depen-
dence on the pulse duration τ at a $xed Vs (see 0.5-  and 0.8- V cases in 
Fig. 3B) above the threshold is also shown in Fig. 3B, causing the cor-
responding current peak and Δw to increase rapidly when τ increases. 
In addition, there is reasonable agreement between Δw given by Eq. 2 
and the simulated data (see the dashed curves in Fig. 3, A and B). Note 
that the resulting energy expenditure for various values of Vs shown in 
Fig. 3C exhibits a rapid increase above the Vs threshold. In particular, 
Fig. 3D shows that energy consumption increases nonlinearly with 
the weight increment, naturally following the corresponding rapid 
increase in Is (compare the top panels in Fig. 3, A and C).

"e second important process that can occur is the loss of mem-
ory in the longer- term absence of external bias, which manifests as 
spontaneous gradual decrease in w. "e unbiased dynamics is de-
scribed identically to Eq. 2, except now ra and rd are more comparable

where w0 > 0 is the state before the start of memory loss and t is the 
elapsed time. "e decay rate is a sensitive function of cNa+ via ra ∝ 
cNa+, consistent with the results in Fig. 4A, which shows spontaneous 

wn = wn−1 +

(

rd
ra+ rd

−wn−1

)

(

1−e−(ra+rd)τ
)

(2)

w = w0 +

(

rd
ra+ rd

−w0

)

(

1−e−(ra+rd)t
)

(3)
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decay of w at several concentrations of NaCl. "e $nal state of the 
membrane is also concentration dependent, because regardless of 
w0, at t → ∞, Eq. 3 yields w =

rd
ra + rd

= 1

λcNa+ + 1
, where + is a constant—

also consistent with the results in Fig. 4A. An important factor a&ect-
ing the forgetting process omitted in the discussion above is the 
presence of K+ ions, which are expected to interfere with Na+- pore 
binding. As shown in Fig. 4B, the presence of K+ ions slows down the 
rate of w decay (also see section S2). "e e&ects of potassium are 
deeper than the level of interference captured by our analytical model. 
Shown in Fig. 4 (C and D) is the e&ect of K+ on the barrier heights, 
because K+ ions contribute short- range steric and longer- range elec-
trostatic cation- cation repulsion through their presence in the direct 
vicinity of the pores and near the membrane surfaces, respectively. 
"ese observations suggest that the concentration of the main con-
ducting ion species can also be used as a tuning parameter for con-
trolling the system dynamics. The possible influence of spurious 
defects essentially guaranteed to be present in realistic postfabrica-
ton hBN membranes is worth noting brie%y. Smaller defects (e.g., in 
the form of single- atom or B2N vacancies) are expected to be en-
tirely impermeable to K+ and Na+ ions, because the B3N vacancy is 

essentially the smallest permeable pore for these cation species. At 
the same time, smaller cations, such as Li+ and protons, may still be 
able to permeate through smaller defects. Larger multivacancies, on 
the other hand, are not expected to trap ions, and thus, the trans-
port contributions from those pores would likely manifest as base-
line leakage current. Although fabrication of large uniform arrays 
of B3N vacancies remains a challenge, a new fabrication method 
reported recently shows substantial promise in achieving increased 
control over pore size and shape distribution in an array of multi-
vacancies (49, 50).

To summarize, we have demonstrated synaptic- like plasticity of 
aqueous ion transport through a subnanoporous 2D membrane made 
of a monolayer hBN featuring an array of B3N vacancies in a binary 
aqueous salt. "e ion conductance of this nano%uidic memristor can 
be dynamically modulated by few- nanoseconds- long transmem-
brane voltage pulses, resulting in a switching speed of approximately 
0.1 GHz. "e resulting energy dissipation per voltage spike is very 
low, roughly 0.1 to 100 aJ per spike, which is several orders of magni-
tude lower than that of the human brain, 0.1 to 10 fJ per spike. Nota-
bly, this synaptic- like plasticity arises from the dynamic interplay 

Fig. 3. Synaptic potentiation and energy consumption during a single voltage pulse of varying magnitude and duration. Peak current and weight change for 
(A) varying Vs at !xed τ = 5 ns and (B) varying τ at !xed Vs. (C) Dissipated energy as a function of Vs with a !xed τ = 5 ns (D) Dissipated energy versus weight change. As shown, 
Ipeak, Δw, and ΔE are averages from four independent simulations. The error bars are the corresponding SDs.

Fig. 4. E!ect of Na+ concentration and Na+- K+ interplay in the forgetting process. (A) E"ect of Na+ concentration on weight decay. (B) E"ect of K+ ions on weight 
decay. Sketches of the forgetting process for (C) monocationic electrolyte featuring only Na+ and (D) bicationic electrolyte containing Na+ and K+ at the stated ion con-
centrations, along with the corresponding energy pro!les directly below.
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between two cationic species (Na+ and K+), exemplifying an illustra-
tive approach to leveraging ionic diversity for achieving neuromor-
phic functionality. "e conductive state of the membrane is shown to 
be governed by the adsorption/desorption dynamics of Na+ trapped 
in the pores, while K+ ions permeate through the empty pores. We 
derived a set of illustrative analytical expressions associated with the 
apparent synaptic- like potentiation and memory volatility. Further 
experimentation is needed to demonstrate the predicted behaviors 
for various subnanoporous 2D membranes, as well as ionic perme-
ants. It is our hope to stimulate further work aimed at a better under-
standing of the e&ects of ionic diversity, including at the system level, 
i.e., in the case of interconnected nano%uidic memristive elements.

METHODS
For the MD simulations of ion transport, we used a rectangular box 
with dimension LX = 6.998 nm × LY = 6.926 nm × LZ = 10 nm, pe-
riodic in all directions. "e subnanoporous hBN monolayer was 
placed in the XY plane at Z = LZ/2 with the pore array consisting of 
16 triangular B3N vacancies. To prevent the membrane from dri'-
ing, its edge atoms were tethered to their initial positions by spring 
restraints. "e system was $lled with aqueous salt mixtures consist-
ing of explicitly simulated K+, Na+, and Cl− ions. As the system was 
periodic in all directions, the time-  and ensemble- averaged salt con-
centration on each side of the membrane was identical under zero 
bias. "e membrane was simulated using parameters developed ear-
lier (51) within the all- atom optimized potentials for liquid simula-
tions (OPLS- AA) force$eld framework (52). "e partial charges of 
the nitrogen atoms at the edges of B3N vacancies were set at 2/3 of 
their bulk values [obtained earlier from quantum- chemical calcula-
tions (51)], ensuring electrical neutrality of the membrane. Explicitly 
simulated water molecules were simulated using the TIP4P model (53). 
All of the nonbonded interactions were simulated using the OPLS- AA 
force$eld framework (52). A particle- particle–particle- mesh scheme 
was used to simulate the electrostatic interactions. A 1.2- nm cuto& radius 
was used for all short- range interactions, including short- range Coulomb 
interactions and the Lennard- Jones interactions. To initialize the con-
ductive weight of the membrane to zero in all of our simulations, we 
placed Na+ ions inside the B3N vacancies. "e system $rst underwent 
static energy minimization and then dynamic relaxation in the NPT 
ensemble at T = 300 K and P = 1 bar, using a 1- fs time step, with the 
Parrinello- Rahman barostat modifying simulation box dimensions 
only in the Z direction. Relaxed systems underwent ion transport 
simulations under rectangular pulses of external electric $eld ap-
plied in the Z direction, using a 2- fs time step. "e corresponding 
pulse magnitudes were calculated as the electric $eld magnitude, 
multiplied by LZ. To obtain the ion currents, we $rst calculated the 
cumulative ionic %uxes as a function of time N(t). "e %ux data were 
recorded every 10 ps, corresponding to a 100- GHz sampling rate. 
"e raw N(t) data were then $ltered using a Chebyshev low- pass 
digital $lter with a 200- MHz cuto& frequency. Finally, time deriva-
tives of the $ltered %ux data were obtained using an eighth- order 
central di&erence method, yielding the time- dependent ionic current 
I(t) = q

dNf(t)

dt
, where Nf(t) is the $ltered cumulative %ux and q is the 

ionic charge. Further details can be found in the supplementary ma-
terials of our previous work (22). "e PMF data were obtained using 
the weighted histogram analysis method (54) applied to a total 
of 60 umbrella samples of the ion’s position along the Z coordinate 

incremented by 0.05 nm; each umbrella sample was obtained from a 
20- ns- long simulation. All MD simulations were performed using graph-
ics processing unit (GPU)–accelerated GROMACS (55, 56), and the mo-
lecular visualization tasks were carried using the OVITO so'ware (57).

Supplementary Materials
This PDF "le includes:
Sections S1 and S2
Figs. S1 to S6
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