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The P = W conjecture for GLn

By Davesh Maulik and Junliang Shen

Abstract

We prove the P = W conjecture for GLn for all ranks n and curves of

arbitrary genus g ≥ 2. The proof combines a strong perversity result on

tautological classes with the curious Hard Lefschetz theorem of Mellit. For

the perversity statement, we apply the vanishing cycles constructions in

our earlier work to global Springer theory in the sense of Yun, and prove a

parabolic support theorem.

Contents

0. Introduction 529

1. Perverse filtrations and vanishing cycles 532

2. Strong perversity for Chern classes 536

3. Global Springer theory 542

4. Parabolic support theorem 546

References 553

0. Introduction

Throughout, we work over the complex numbers C.

0.1. The P = W conjecture. The purpose of this paper is to present a

proof of the P = W conjecture by de Cataldo–Hausel–Migliorini [8] for arbi-

trary rank n and genus g g 2.

Let C be a non-singular irreducible projective curve of genus g g 2. For

two coprime integers n ∈ Zg1 and d ∈ Z, there are two moduli spaces MDol

and MB, called the Dolbeault and the Betti moduli spaces, attached to C, n,

and d.

The Dolbeault moduli space parametrizes stable Higgs bundles (E , ¹) on C,

where E is a vector bundle on C of rank n and degree d, ¹ : E → E ¹ Ω1
C
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is a Higgs field, and stability is defined with respect to the slope µ(E , ¹) =

deg(E)/rk(E). The moduli space MDol admits the structure of a completely

integrable system

h : MDol → A :=
n⊕

i=1

H0(C,Ω1
C
¹i
), (E , ¹) 7→ char.polynomial(¹),

which is referred to as the Hitchin system [20], [21]. The Hitchin map h

is surjective and proper; it is also Lagrangian with respect to the canonical

holomorphic symplectic form on MDol induced by the hyper-Kähler metric.

The perverse filtration is an increasing filtration

P0H
∗(MDol,Q) ¢ P1H

∗(MDol,Q) ¢ · · · ¢ H∗(MDol,Q)

on the (singular) cohomology of MDol governed by the topology of the Hitchin

system h; see Section 1.1 for a brief review.

The Betti moduli space MB is the (twisted) character variety associated

with GLn(C) and degree d. It parametrizes isomorphism classes of irreducible

local systems

Ä : Ã1(C\{p}) → GLn(C),

where Ä sends a loop around a chosen point p to e
2π

√
−1d
n Idn. Concretely, we

have

MB :=
{
ak, bk ∈ GLn(C), k = 1, 2, . . . , g :

g∏

j=1

[aj , bj ] = e
2π

√
−1d
n Idn

}
//GLn(C).

It is an affine variety whose mixed Hodge structure admits a non-trivial weight

filtration

W0H
∗(MB,Q) ¢ W1H

∗(MB,Q) ¢ · · · ¢ H∗(MB,Q).

Non-abelian Hodge theory [34], [35] gives a diffeomorphism between the

two very different algebraic varietiesMDol andMB, which canonically identifies

their cohomology:

(1) H∗(MDol,Q) = H∗(MB,Q).

The P = W conjecture by de Cataldo–Hausel–Migliorini [8] refines the identi-

fication (1); it predicts that the perverse filtration associated with the Hitchin

system is matched with the (double-indexed) weight filtration associated with

the Betti moduli space. This establishes a surprising connection between topol-

ogy of Hitchin systems and Hodge theory of character varieties.

Conjecture 0.1 (The P = W conjecture for GLn [8]). For any k,m ∈
Zg0, we have

PkH
m(MDol,Q) = W2kH

m(MB,Q) = W2k+1H
m(MB,Q).
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Conjecture 0.1 has previously been proven for n = 2 and arbitrary genus

g g 2 by de Cataldo–Hausel–Migliorini [8], and recently for arbitrary rank

n and genus 2 by de Cataldo–Maulik–Shen [11]. The compatibility between

the P = W conjecture and Galois conjugation on the Betti side was proven

in [13], which implies that P = W does not depend on the degree d as long

as it is coprime to n. We refer to [8, §1] and the paragraphs following [11,

Th. 0.2] for discussions concerning connections between Conjecture 0.1 and

other directions. In particular, by [3] and [27, §9.3], Conjecture 0.1 implies

the correspondence between Gopakumar–Vafa invariants and Pandharipande–

Thomas invariants [27, Conj. 3.13] for the local Calabi–Yau 3-fold T ∗C ×C in

any curve class n[C].

The main result of this paper is a full proof of Conjecture 0.1.

Theorem 0.2. Conjecture 0.1 holds.

Conjecture 0.1 has several variants which, to the best of our knowledge, are

still open. These include the version formulated for possibly singular moduli

spaces, intersection cohomology, and general reductive groups [8], [10], [15], and

the version formulated for moduli stacks [5]. There also exist parabolic versions

of Conjecture 0.1, and we expect that our argument applies to these settings

using parabolic variants of the ingredients here [29], [31]. We refer to [4], [17],

[37], [41] and references therein for the P = W phenomenon in other settings.

For the case of type An−1 (GLn,PGLn, SLn) and a degree d coprime to n,

Conjecture 0.1 (i.e., the P = W conjecture for GLn) is equivalent to the P = W

conjecture for PGLn; see the paragraph after [11, Th. 0.2]. The case of SLn is

more subtle — it is closely related to the endoscopic decomposition of the SLn

Hitchin moduli spaces. A systematic discussion on this aspect can be found

in [24, §5]. In the special case when n = p is a prime number, [12, Th. 0.2]

implies that the P = W conjecture for GLp, SLp, and PGLp are all equivalent.

In particular, we have the following immediate consequence of Theorem 0.2,

which generalizes the result of [8] for SL2.

Theorem 0.3. The P = W conjecture holds for a curve C of any genus

at least two and SLp with p a prime number.

0.2. Idea of the proof. Our proof of Conjecture 0.1 has four major steps.

Step 1: Strong perversity of Chern classes. Using work of Markman [23],

Shende [33], and Mellit [29], we may reduce the P = W conjecture to a state-

ment about the interaction between Chern classes of the universal family and

the perverse filtration. This allows us to reduce the P = W conjecture to a

sheaf-theoretic statement which concerns strong perversity of Chern classes.

Step 2: Vanishing cycle techniques. We apply the formalism of vanishing

cycles to reduce the sheaf-theoretic formulation of Step 1 for the Hitchin system
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to the case of twisted Hitchin systems associated with meromorphic Higgs bun-

dles. Our motivation is from the key observation by Ngô [30] and Chaudouard-

Laumon [2], that the decomposition theorem for such twisted Hitchin systems

is more manageable.

Steps 1 and 2 are carried out in Sections 1 and 2.

Step 3: Global Springer theory. The global Springer theory of Yun [39],

[40], [38] produces rich symmetries for certain Hitchin moduli spaces; this

proves the sheaf-theoretic formulation of Step 1 over the elliptic locus. For our

purpose, we need a version of global Springer theory for the stable locus over

the total Hitchin base. This is described in Section 3.

Step 4: A support theorem. Lastly, in order to extend part of Yun’s sym-

metries induced by Chern classes from the elliptic locus to the total Hitchin

base, we prove a support theorem parallel to [2] for certain parabolic Hitchin

moduli spaces. This is completed in Section 4.

The idea of combining vanishing cycle functors and support theorems

was also applied in [24] to give a proof of the topological mirror symmetry

conjecture of Hausel–Thaddeus [18], [16].

0.3. Acknowledgements. We would like to thank Mark Andrea de Cataldo,

Bhargav Bhatt, Ben Davison, Jochen Heinloth, and Max Lieblich for various

discussions. We are especially grateful to Zhiwei Yun for explaining his thesis

to us, both in his office and at the playground. We also thank the anonymous

referee for careful reading and useful suggestions on the exposition. J.S. was

supported by the NSF grants DMS-2134315 and DMS-2301474.

1. Perverse filtrations and vanishing cycles

In this section, we introduce the notion of strong perversity and show its

compatibility with vanishing cycle functors (Proposition 1.5). This plays a

crucial role in Section 2 in lifting the P = W conjecture sheaf-theoretically

and reduce it to the twisted case.

1.1. Perverse filtrations. Let f : X → Y be a proper morphism between

irreducible non-singular quasi-projective varieties (or Deligne–Mumford stacks)

with dimX = a and dimY = b. Let r be the defect of semismallness of f :

r := dimX ×Y X − dimX.

In particular, we have r = a − b when f has equi-dimensional fibers. The

perverse filtration

P0H
m(X,Q) ¢ P1H

m(X,Q) ¢ · · · ¢ Hm(X,Q)
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is an increasing filtration on the cohomology of X governed by the topology of

the morphism f ; it is defined to be

PiH
m(X,Q) := Im

{
Hm−a+r(Y, pÄfi(Rf∗QX [a− r])) → Hm(X,Q)

}
,

where pÄf∗ is the perverse truncation functor [1].

Lemma 1.1. If f has equi-dimensional fibers, the perverse filtration on

Hm(X,Q) terminates at PmHm(X,Q), i.e.,

PmHm(X,Q) = Hm(X,Q).

In particular, we have 1 ∈ P0H
0(X,Q).

Proof. By definition and the decomposition theorem [1], the dimensions

of the graded pieces of the perverse filtration are given by

(2) dimGrPi H
m(X,Q) = dimHm−i−(a−r)

(
Y, pHi(Rf∗QX [a− r])

)
.

Since a perverse sheaf, as a complex of constructible sheaves, is concentrated

in degrees [−b, 0], it only has non-trivial cohomology in degrees g −b. In

particular, the right-hand side of (2) is non-trivial only if

m− i− (a− r) g −b.

Since r = a− b, this inequality is equivalent to m g i. □

A cohomology class µ ∈ H l(X,Q) can be viewed as a morphism µ : QX →
QX [l], which naturally induces

(3) µ : Rf∗QX → Rf∗QX [l]

after pushing forward along f . For an integer c g 0, we say that µ ∈ H l(X,Q)

has strong perversity c with respect to f if its induced morphism (3) satisfies

(4) µ (pÄfiRf∗QX) ¢ pÄfi+(c−l) (Rf∗QX [l]) ∀i;

more precisely, condition (4) says that the composition

pÄfiRf∗QX ↪→ Rf∗QX
γ
−→ Rf∗QX [l]

factors through pÄfi+(c−l) (Rf∗QX [l]) ↪→ Rf∗QX [l] for any i. Notice that µ

automatically has strong perversity l, so this condition is interesting only when

c < l. Combining Lemma 1.1 and the following lemma, we see that if f has

equi-dimensional fibers and µ has strong perversity c, then µ ∈ PcH
∗(X,Q).

Lemma 1.2. If µ ∈ H l(X,Q) has strong perversity c with respect to f ,

then taking cup-product with µ satisfies

µ ∪ − : Hm(X,Q) → Hm+l(X,Q), PiH
m(X,Q) 7→ Pi+cH

m+l(X,Q).
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Proof. This follows from taking global cohomology for (4) and noticing

that

Hm−a+r
(
Y, pÄfi+(c−l) (Rf∗QX [l + a− r])

)

= H(m−a+r)+l (Y, pÄfi+c (Rf∗QX [a− r])). □

In general, the perverse filtration P•H
∗(X,Q) may not be multiplicative,

i.e., for µj ∈ PcjH
∗(X,Q) (j = 1, 2, . . . , s), it may not be true that

µ1 ∪ µ2 ∪ · · · ∪ µs ∈ Pc1+···+csH
∗(X,Q);

see [6, Exer. 5.6.8]. In fact, it was proven in [11, Th. 0.6] that Conjecture 0.1

is equivalent to the multiplicativity of the perverse filtration associated with

the Hitchin system. The following easy observation illustrates the advantage

of considering strong perversity in view of the multiplicativity issue.

Lemma 1.3. If the class µj ∈ H lj (X,Q) (j = 1, 2, . . . , s) has strong per-

versity cj with respect to f , then the cup product

µ1 ∪ µ2 ∪ · · · ∪ µs ∈ H l1+···+ls(X,Q)

has strong perversity
∑

j cj .

1.2. Vanishing cycles. Throughout Section 1.2, we let g : X → A1 be a

morphism such that X is non-singular and irreducible with X0 = g−1(0) the

closed fiber over 0 ∈ A1. We consider the vanishing cycle functor

φg : Db
c(X) → Db

c(X0)

which preserves the perverse t-structures,

φg : Perv(X) → Perv(X0).

Here Perv(−) stands for the abelian category of perverse sheaves. We denote

by

φg := φg(ICX) = φg(QX [dimX]) ∈ Perv(X0)

the perverse sheaf of vanishing cycles. We use X ′ ¢ X to denote the support

of the vanishing cycle complex φg so that φg ∈ Perv(X ′).

Recall that for any bounded constructible object K ∈ Db
c(X), a class

µ ∈ H l(X,Q) induces a morphism

µ : K → K[l]

via taking the tensor product with µ : QX → QX [l]. The following lemma

shows the compatibility between the vanishing cycle functor and restriction of

cohomology classes.
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Lemma 1.4. With the same notation as above, let i : X ′ ↪→ X be the

closed embedding. The morphism

i∗µ : φg → φg[l] ∈ Db
c(X

′)

induced by the class i∗µ (applied to the object K = φg) coincides with

φg(µ) : φg → φg[l] ∈ Db
c(X

′)

obtained by applying the functor φg to µ : QX → QX [l].

Proof. Let º : X0 ↪→ X be the closed embedding of the closed fiber over 0.

By [22, Def. 8.6.2], the vanishing cycle functor can be written as

(5) φg(−) = º∗RHom(C,−) ∈ Db
c(X0)

with C a fixed complex of sheaves. The morphism obtained by applying

RHom(C,−) to µ : QX → QX [l] is equivalent to the morphism induced by

applying µ to RHom(C,QX). Similarly, the functor º∗ sends the morphism

induced by µ to the morphism induced by º∗µ.

Therefore, if we denote by º′ : X ′ ↪→ X0 the closed embedding and view

φg as a perverse sheaf on X ′, we have an equivalent morphism

(6) φg(µ) = º∗µ : º′∗φg → º′∗φg[l] ∈ Db
c(X0).

Finally, after applying º′∗ : Db
c(X0)→Db

c(X
′) to (6) and noticing º′∗º′∗=id,

we obtain that the class i∗µ = º′∗º∗µ induces

φg(µ) : φg → φg[l] ∈ Db
c(X

′).

This completes the proof. □

Proposition 1.5. Let g : X → A1 and X ′ be as above. Assume that X ′

is non-singular and

(7) φg ≃ ICX′ = QX′ [dimX ′] ∈ Perv(X ′).

Assume further that we have the commutative diagram

X ′ X

Y ′ Y

i

f ′ f

such that f is proper and g = f ◦ ¿ with ¿ : Y → A1. Then if a class

µ ∈ H l(X,Q) has strong perversity c with respect to f , its restriction i∗µ ∈
H l(X ′,Q) has strong perversity c with respect to f ′.

Proof. By definition, the morphism

(8) µ : Rf∗QX → Rf∗QX [l] ∈ Db
c(Y )
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induced by µ satisfies

(9) µ (pÄfiRf∗QX) ¢ pÄfi+(c−l)(Rf∗QX [l]) ∀i.

Now we apply the vanishing cycle functor φν to (8). On the one hand, we have

the base change Rf ′
∗◦φg ≃ φν◦Rf∗ and the fact that the vanishing cycle functor

preserves the perverse t-structures. Therefore (9) implies that the morphism

φg(µ) : Rf ′
∗φg → Rf ′

∗φg[l] ∈ Db
c(Y

′)

satisfies

φg(µ)
(
pÄfiRf ′

∗φg

)
¢ pÄfi+(c−l)(Rf ′

∗φg[l]) ∀i.

On the other hand, using the isomorphism (7) and Lemma 1.4, the above

equation means precisely that the morphism i∗µ : QX′ → QX′ [l] satisfies

(i∗µ)
(
pÄfiRf ′

∗QX′
)
¢ pÄfi+(c−l)(Rf ′

∗QX′ [l]) ∀i;

that is, the class i∗µ has strong perversity c with respect to f ′. □

2. Strong perversity for Chern classes

In this section, we fix the rank n and the degree d with (n, d) = 1. In

Theorem 2.6, we rephrase and then enhance Conjecture 0.1 to a statement

involving L-twisted Hitchin systems and strong perversity of Chern classes. It

will be proven in Sections 3 and 4.

2.1. Tautological classes. As discussed in [11, §0.3], the P = W conjecture

for GLn can be reduced to a statement involving tautological classes on MDol

and the perverse filtration associated with h : MDol → A, without reference to

the Betti moduli space MB. In this subsection, we recall this reduction step.

For convenience, we work with the PGLn Dolbeault moduli space to avoid

normalization of a universal family as in [11]; we refer to [33] for a detailed

discussion concerning the formulation of the P = W conjecture in terms of

tautological classes for the PGLn Dolbeault moduli space.

Fix N ∈ Picd(C). Let |MDol be the moduli stack of stable Higgs bundles

(E , ¹) with det(E) ≃ N and trace(¹) = 0, rigidified with respect to the generic

µn-stabilizer; this is the same as taking its coarse moduli space. We refer to

this (non-singular) variety as the SLn Dolbeault moduli space of degree d. The

finite group Γ := Pic0(C)[n] acts naturally on |MDol via tensor product. The

PGLn Dolbeault moduli space of degree d is recovered by taking the quotient

stack

(10) M̂Dol := |MDol/Γ

which is a non-singular Deligne–Mumford stack. The PGLn Hitchin system

ĥ : M̂Dol → Â :=
n⊕

i=2

H0(C,Ω1
C
¹i
)
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is induced by the Hitchin map associated with |MDol as the Γ-action is fiberwise

with respect to h. Analogous to the GLn case, we have the perverse filtration

P∗H
∗(M̂Dol,Q) associated with ĥ. The universal PGLn-bundle U on C×M̂Dol

induces Chern characters

chk(U) ∈ H2k(C × M̂Dol,Q), k g 2.

The tautological classes ck(µ) are defined to be

ck(µ) :=

∫

γ

chk(U) = qM∗(q
∗
Cµ ∪ chk(U)) ∈ H∗(M̂Dol,Q), µ ∈ H∗(C,Q),

where q(−) are the projections from C × M̂Dol.

Now we consider the PGLn Betti moduli space of degree d with the isomor-

phism on cohomology provided by non-abelian Hodge theory (cf. [8, Th. 1.2.4]):

(11) H∗(M̂Dol,Q) = H∗(M̂B,Q).

Define the Hodge sub-vector space

kHdgm(M̂B) := W2kH
m(MB,Q) ∩ F kHm(MB,C) ¢ Hm(M̂B,Q).

The following theorem, collecting results of Markman and Shende, pro-

vides a complete description ofH∗(M̂B,Q) in terms of the Chern classes chk(U)
and the weight filtration.

Theorem 2.1 ([23, 33]). We use the same notation as above.

(i) The tautological classes ck(µ) ∈ H∗(M̂Dol,Q) generate H∗(M̂Dol,Q) as a

Q-algebra.

(ii) The class ck(µ), passing through the non-abelian Hodge correspondence

(11), lies in kHdg∗(M̂B). In particular, we have a canonical decomposi-

tion

H∗(M̂B,Q) =
⊕

m,k

kHdgm(M̂B).

Proof. The first part was proven in [23], and the second part was proven

in [33]. □

Theorem 2.1 (ii) yields immediately that

W2kH
m(M̂B,Q) = W2k+1H

m(M̂B,Q).

Moreover, by Theorem 2.1, the P = W conjecture implies that each class∏s
i=1 cki(µi) lies in the perverse piece PΣikiH

∗(M̂Dol,Q); the latter is in fact

equivalent to the P = W conjecture. Indeed, suppose we have

(12)
s∏

i=1

cki(µi) ∈ PΣikiH
∗(M̂Dol,Q)
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for any product of tautological classes. Then we know that W2kH
∗(M̂B,Q) ¢

PkH
∗(M̂Dol,Q). The curious hard Lefschetz theorem proven by Mellit [29]

forces the two filtrations P• and W2• to coincide as long as one contains the

other. This was mentioned in the last paragraph of [29, §1]; we include its

proof here for the reader’s convenience.

Lemma 2.2. We denote by V the Q-vector space (11) with the perverse

and the weight filtrations P• and W2•. If W2k ¢ Pk for all k, then W2k = Pk

for all k.

Proof. Assume r = dimM̂ ; both filtrations terminate at the r-th pieces,

i.e., W2r = Pr = V . We first show that

W0 = P0, W2(r−1) = Pr−1.

In fact, since W• ¢ P•, we have

dimW0 f dimP0 = dimV/Pr−1 f dimV/W2(r−1);

moreover, by the curious hard Lefschetz theorem, each inequality has to be an

equality. So our claim follows.

We proceed by applying the same argument to W1, P1 and W2(r−2), Pr−1.

The lemma follows by a simple induction. □

In conclusion, we have reduced the P = W conjecture to the following:

Conjecture 2.3 (Equivalent version of P = W ). Condition (12) holds

for all products of tautological classes.

2.2. Strong perversity for Chern classes for L-twisted Hitchin systems.

For our purposes, it is important to consider Dolbeault moduli spaces of Higgs

bundles, twisted by an effective line bundle L (i.e., H0(C,L) ̸= 0). These

moduli spaces have already appeared in [2], [19], [18], [39], [40]; we review the

construction here briefly.

Set ΩL to be the line bundle Ω1
C ¹L on the curve C. We denote by ML

Dol

the moduli space of stable twisted Higgs bundles

(E , ¹), ¹ : E → E ¹ ΩL, rk(E) = n, deg(E) = d,

with respect to the slope stability condition. The corresponding Hitchin map

hL : ML
Dol → AL :=

n⊕

i=1

H0
(
C,ΩL

¹i
)
, (E , ¹) 7→ char.polynomial(¹),

is still proper as in the untwisted case; but it fails to be a Lagrangian fibration

when deg(L) > 0. The L-twisted SLn and PGLn Dolbeault moduli spaces
|ML

Dol and M̂L
Dol can be constructed similarly. The moduli space

|ML
Dol := {(E , ¹) ∈ ML

Dol| det(E) ≃ N ∈ Picd(C), trace(¹) = 0}
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admits a Hitchin map

qhL : |ML
Dol → ÂL :=

n⊕

i=2

H0
(
C,ΩL

¹i
)

and a fiberwise Γ = Pic0(C)[n] action by tensor product. Taking the Γ-quotient

recovers the L-twisted PGLn Hitchin map

ĥL : M̂L
Dol =

|ML
Dol/Γ → ÂL.

An observation in [24, §4] is that, for a fixed closed point p ∈ C, the

L-twisted and L(p)-twisted SLn Dolbeault moduli spaces can be related via

critical loci and vanishing cycles, which we recall in the following.

By viewing a L-twisted Higgs bundle naturally as a L(p)-twisted Higgs

bundle, we have the natural embedding i : |ML
Dol ↪→

|M
L(p)
Dol which induces the

commutative diagram

(13)

|ML
Dol

|M
L(p)
Dol

ÂL ÂL(p).

i

qhL qhL(p)

We recall the following theorem from [24]:

Theorem 2.4 ([24, Th. 4.5]). There exists a regular function g : |M
L(p)
Dol →

A1 factorized as g = ¿ ◦ qhL(p) with ¿ : ÂL(p) → A1 such that

φg ≃ IC|ML
Dol

= Q|ML
Dol

[dim|ML
Dol].

Since the embedding i : |ML
Dol ↪→

|M
L(p)
Dol is Γ-equivariant, taking Γ-quotients

in the diagram (13) yields the following commutative diagram:

(14)

M̂L
Dol M̂

L(p)
Dol

ÂL ÂL(p).

î

ĥL ĥL(p)

Proposition 2.5. The vanishing cycle complex φĝ associated with the

regular function

ĝ := ¿ ◦ ĥL(p) : M̂
L(p)
Dol → A1

satisfies

φĝ ≃ IC
M̂L

Dol
= Q

M̂L
Dol

î
dimM̂L

Dol

ó
.



540 D. MAULIK and J. SHEN

Proof. We reduce Proposition 2.5 to Theorem 2.4. Consider the Γ-quotient

map r : |M
L(p)
Dol → M̂

L(p)
Dol . The direct image r∗Q|M

L(p)
Dol

admits a natural Γ-equi-

variant structure, whose invariant part recovers

(15)
(
r∗Q|M

L(p)
Dol

)Γ
≃ Q

M̂
L(p)
Dol

.

Since g = ĝ ◦ r, we have

φĝ = φĝ

(
Q

M̂
L(p)
Dol

î
dimM̂

L(p)
Dol

ó)

≃ φĝ

(
r∗Q|M

L(p)
Dol

î
dim|M

L(p)
Dol

ó)Γ

≃ (r∗φg)
Γ

≃ Q
M̂L

Dol

î
dimM̂L

Dol

ó
.

Here the first equation follows by definition, the second uses (15), the third

follows from the base change, and the last is given by Theorem 2.4. □

Now we formulate a sheaf-theoretic enhancement of Conjecture 2.3.

Theorem 2.6. There exists an effective line bundle L such that the class

chk(U
L) ∈ H2k(C × M̂L

Dol,Q)

has strong perversity k with respect to

hL := id× ĥL : C × M̂L
Dol → C × ÂL.

Here UL is the universal PGLn-bundle over C × M̂L
Dol.

Notice that the perversity bound here is stronger than the trivial one

of 2k. In the rest of this section we prove that Theorem 2.6 indeed implies

Conjecture 2.3; therefore it implies Conjecture 0.1. We prove Theorem 2.6 in

Sections 3 and 4.

2.3. Theorem 2.6 implies Conjecture 2.3. We start with the following

claim:

Claim. For a point p ∈ C , if the class

chk(U
L(p)) ∈ H2k(C × M̂

L(p)
Dol ,Q)

has strong perversity k with respect to hL(p) : C × M̂
L(p)
Dol → C × ÂL(p), then

the class

chk(U
L) ∈ H2k(C × M̂L

Dol,Q)

has strong perversity k with respect to hL : C × M̂L
Dol → C × ÂL.
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Proof of claim. We consider the commutative diagram obtained from (14):

(16)

C × M̂L
Dol C × M̂

L(p)
Dol

C × ÂL C × ÂL(p).

i

hL hL(p)

Here i = id× î. By definition, we have i∗UL(p) = UL. Therefore

i∗chk(U
L(p)) = chk(U

L).

We know from Proposition 2.5 that the vanishing cycle complex associated

with the regular function

g := ĝ ◦ prM : C × M̂
L(p)
Dol → M̂

L(p)
Dol → A1

satisfies

φg ≃ IC
C×M̂L

Dol
= Q

C×M̂L
Dol

î
dim (C × M̂L

Dol)
ó
.

Our claim then follows from Proposition 1.5 (applied to the diagram (16), the

class chk(U
L(p)), and the map g). □

As a consequence of the claim, the statement of Theorem 2.6 holds for

L ≃ OC ; i.e., the class

chk(U) ∈ H2k(C × M̂Dol,Q)

has strong perversity k with respect to

h := id× ĥ : C × M̂Dol → C × Â.

Finally, to deduce the cohomological statement, we note that since h is the

identity map restricting to C, its induced perverse filtration can be described

as

(17) PkH
∗(C × M̂Dol,Q) = H∗(C,Q)¹ PkH

∗(M̂Dol,Q).

Choose a homogeneous basis of H∗(C,Q),

Σ = {Ã0, Ã1, . . . , Ã2g+2},

with Poincaré-dual basis {Ã(
0 , . . . , Ã

(
2g+2}.

We may express chk(U) as

(18) chk(U) =
∑

σ∈Σ

Ã( ¹ ck(Ã) ∈ H∗(C,Q)¹H∗(M̂Dol,Q).

Since chk(U) has strong perversity k, Lemma 1.2 implies that

chk(U) ∪ − : PsH
∗(C × M̂Dol,Q) → Ps+kH

∗(C × M̂Dol,Q).
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Applying this operator to Ã¹PsH
∗(M̂Dol,Q) ¢ H∗(C × M̂Dol,Q) with Ã ∈ Σ,

we obtain from (17) and (18) that

ck(Ã) ∪ − : PsH
∗(M̂Dol,Q) → Ps+kH

∗(M̂Dol,Q).

In particular, for any class µ ∈ H∗(C,Q), we have

ck(µ) : PsH
∗(M̂Dol,Q) → Ps+kH

∗(M̂Dol,Q),

which further yields

∏

i

ck1(µi) =

(∏

i

ck1(µi)

)
∪ 1 ∈ PΣikiH

∗(M̂Dol,Q).

Here we used 1 ∈ P0H
0(M̂Dol,Q) in the last equation, which is given by

Lemma 1.1.

This completes the proof that Theorem 2.6 implies Conjecture 2.3. □

3. Global Springer theory

In this section, we review Yun’s global Springer theory [39], [40], [38] and

use it to deduce Theorem 2.6, assuming a support theorem (Theorem 3.2).

Global Springer theory was previously used to study perverse filtrations for

affine Springer fibers in terms of Chern classes [31], [32]. In our setting, we

require a partial extension of Yun’s results from the elliptic locus to the entire

Hitchin base.

3.1. Notation. We fix L to be an effective line bundle of sufficiently large

degree (deg (L) > 2g is enough for us). Since from now on we only concern the

L-twisted moduli spaces, we will use M, |M , and M̂ to denote the L-twisted

GLn, SLn, and PGLn Dolbeault moduli spaces ML
Dol,

|ML
Dol, and M̂L

Dol respec-

tively. For the same reason, we will uniformly use the term Higgs bundles to

call L-twisted Higgs bundles.

From now on we let G = PGLn . We let g be its Lie algebra, B ¢ G the

Borel subgroup induced by upper triangular matrices with b the Lie algebra,

T ¢ B the maximal torus given by diagonal matrices, and W ≃ Sn the Weyl

group. We denote by X∗(T ) the character group of T ; it is isomorphic to Zn−1

as an abelian group.

3.2. Parabolic moduli stacks. Let M̂ be the moduli stack of G-Higgs bun-

dles on C; we do not impose any stability condition on M̂ so that it is only

a (singular) algebraic stack. The stable locus of M̂ is a non-singular Deligne–

Mumford substack

M̂ ↪→ M̂.
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Yun’s global Springer theory [39] constructs an algebraic stack M̂par over

C × M̂,

(19) Ã : M̂par → C × M̂,

which is a global analog of the Grothendieck simultaneous resolution. There

are two equivalent constructions of M̂par given in [39, §2.1].

The first is to construct M̂par as the moduli stack of parabolic Higgs

bundles, which are quadruples (x, E , ¹, EB
x ), with (E , ¹) is a G-Higgs bundle,

x ∈ C a closed point, and EB
x a B-reduction of E at x, satisfying the constraint

that ¹ is compatible with EB
x ; see [39, Def. 2.1.1]. Then the morphism Ã is

given by forgetting the B-reduction:

Ã(x, E , ¹, EB
x ) = (x, (E , ¹)) ∈ C × M̂.

The second construction is via the Grothendieck simultaneous resolution

ÃG : [b/B] → [g/G]. More precisely, let ÄL be the Gm-torsor over C associated

with the line bundle ΩL. Denote by [g/G]L (resp. [b/B]L) the family of [g/G]

(resp. [b/B]) over the curve C twisted by the torsor ÄL. We have a tautological

evaluation map

(20)
C × M̂ [g/G]L

C

ev

which is a natural C-morphism; after base change to a closed point x ∈ C,

the map ev sends a G-Higgs bundle to the evaluation of its Higgs field at x.

The morphism (19) is then induced by the base change of the Grothendieck

simultaneous resolution along the evaluation map (see [39, Lemma 2.1.2]):

M̂par [b/B]L

C × M̂ [g/G]L.

evp

π πG

ev

The parabolic Hitchin system

ĥpar : M̂par → C × Â

is the composition of Ã : M̂par → C×M̂ and the morphism h : C×M̂ → C×Â

induced by the standard (stacky) Hitchin map ĥ : M̂ → Â.1

In general the moduli stack M̂par is singular, and the parabolic Hitchin

map is not proper. In the next section we will impose a stability condition and

then restrict to the stable locus.

1Recall that we always use the L-twisted version.
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3.3. Stable loci. We define the stable locus of the moduli of parabolic

G-Higgs bundles to be

M̂par := (C × M̂)×
C×M̂

M̂par;

equivalently, it fits into the Cartesian diagrams

(21)

M̂par M̂par [b/B]L

C × M̂ C × M̂ [g/G]L.

π

evp

π πG

ev

We use the same notation as for the stacky case to denote the parabolic

Hitchin map restricted to the stable locus:

(22) ĥpar : M̂par → C × Â.

Proposition 3.1.

(i) The moduli stack M̂par is non-singular and Deligne–Mumford ; and

(ii) the parabolic Hitchin map (22) is proper.

Proof. The Deligne–Mumford part of (i) follows from the proof of [39,

Prop. 2.5.1 (3)]. Indeed, the left vertical arrow in the diagram (21) is the

pullback of ÃG, therefore it is schematic and of finite type. This implies that

M̂par is Deligne–Mumford since C × M̂ is Deligne–Mumford.

To prove the smoothness part of (i), we use the evaluation map (20).

Recall that [24, Prop. 4.1] (which was proven via deformation theory) shows

that the C-morphism ev is smooth after restricting over the stable locus C×M̂ .

Hence by the Cartesian diagrams of (21), the evaluation map

ev : M̂par → [b/B]L

is also smooth. Since the target is a non-singular algebraic stack, so is the

source.

(ii) follows directly from (21) and that ĥ : M̂ → Â is proper. □

As a consequence of Proposition 3.1, the direct image complex

Rĥpar∗ Q
M̂par ∈ Db

c(C × Â)

satisfies the decomposition theorem [1].

Theorem 3.2 (Support theorem for parabolic Hitchin map). The decom-

position for the parabolic Hitchin map ĥpar has full support ; i.e., any non-trivial

simple perverse summand of

pHi
Ä
Rĥpar∗ Q

M̂par

ä
∀i ∈ Z

has support C × Â.
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We will postpone the proof of Theorem 3.2 to Section 4.

3.4. Proof of Theorem 2.6. We first prove Theorem 2.6 assuming Theo-

rem 3.2.

There are three ingredients of global Springer theory

Ã : M̂par → C × M̂

which are important in the proof of Theorem 2.6. We summarize them as

follows.

(A) (Splitting of the universal G-bundle). As explained in the second bullet

point of [39, Construction 6.1.4], each Chern root of Ã∗U is of the form

c1(L(À)), where À is an element in X∗(T ) and L(À) is the tautological line

bundle on M̂par associated with À.

More precisely, Ã∗U is the universal G-bundle on M̂par whose fiber over

(x, E , ¹, EB
x ) is Ex; the B-reduction EB

x yields a T -torsor over M̂par which

induces for each À ∈ X∗(T ) a line bundle L(À).

(B) (Strong perversity for c1(L(À))). By [40, Lemma 3.2.3], there exists a

Zariski dense open subset of C × Â over which the operator

c1(L(À)) : Rĥpar∗ Q
M̂par → Rĥpar∗ Q

M̂par [2]

has strong perversity 1 for any À ∈ X∗(T ). Since c1(L(À)) automatically

has strong perversity 2, showing it has strong perversity 1 is equivalent to

showing that the induced morphism of perverse cohomology sheaves
pHi
Ä
Rĥpar∗ Q

M̂par

ä
→ pHi

Ä
Rĥpar∗ Q

M̂par [2]
ä

vanishes for each i. Once we have Theorem 3.2, these sheaves have full

support over the entire base, so this vanishing (and thus strong perver-

sity 1) extends over the total base C × Â as well. In fact, [40, Lemma

3.2.3] was proven in exactly this way using a support theorem [40, §4.6.2]

for the elliptic locus.

(C) (Springer ’s Weyl group action). By the Cartesian diagrams (21), we may

pullback Springer’s sheaf-theoretic Weyl group action from the Grothen-

dieck simultaneous resolution; in particular, the object RÃ∗QM̂par admits

a canonicalW -action whose invariant part recovers the trivial local system
(
RÃ∗QM̂par

)W
= Q

C×M̂
.

By taking global cohomology we have

H∗(M̂par,Q) = H∗(C × M̂,Q)· (variant part of W ).

Now we prove Theorem 2.6. We first prove its parabolic version.

Claim. The class

chk (Ã
∗U) ∈ H2k(M̂par,Q)

has strong perversity k with respect to the parabolic Hitchin system (22).
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Proof of claim. By (A), the Chern character chk(Ã
∗U) can be expressed

in terms of c1(L(À)). Hence the claim follows from Lemma 1.3 and the strong

perversity of c1(L(À)) given by (B). □

Next, we reduce Theorem 2.6 to the claim above via the following lemma.

Lemma 3.3. For a class µ ∈ H l(C × M̂,Q), if Ã∗µ ∈ H l(M̂par,Q) has

strong perversity k with respect to ĥpar : M̂par → C × Â, then µ has strong

perversity k with respect to h : C × M̂ → C × Â.

Proof. This is a consequence of (C). We write the class µ as a map

(23) µ : Q
C×M̂

→ Q
C×M̂

[l],

whose pullback

(24) Ã∗µ : Q
M̂par → Q

M̂par [l]

recovers the class Ã∗µ ∈ H l(M̂par,Q). By the projection formula Ã∗Ã
∗µ =

|W | · µ, we may recover the morphism (23) from (24) by derived pushing

forward to C × M̂ and taking the W -invariant part.

Now by the assumption we know that the action of Ã∗µ on the object

Rĥpar∗ Q
M̂par satisfies

(25) Ã∗µ : pÄfiRĥpar∗ Q
M̂par →

pÄfi+(k−l)

Ä
Rĥpar∗ Q

M̂par [l]
ä
.

Since we have

Rĥpar∗ Q
M̂par = Rh∗

(
RÃ∗QM̂par

)
,

the ingredient (C) produces a natural W -action on this object whose invariant

part recovers Rh∗QC×M̂
; the operator

(26) µ : Rh∗QC×M̂
→ Rh∗QC×M̂

[l]

is then recovered from theW -invariant part of the action of Ã∗µ onRĥpar∗ Q
M̂par .

In particular, the desired property concerning (26) follows from theW -invariant

part of (25). □

Thus we have completed the proof of Theorem 2.6. □

4. Parabolic support theorem

In the last section, we prove Theorem 3.2. This is the parabolic version

of the Chaudouard–Laumon support theorem [2]. For the proof, we ultimately

reduce it to a relative dimension bound which we establish in Section 4.4.
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4.1. Review of support theorems. We start with a review of support the-

orems for Hitchin systems.

For a proper morphism f : X → Y with X,Y non-singular Deligne–

Mumford stacks, the decomposition theorem [1] yields

Rf∗QX ≃
⊕

i

pHi(Rf∗QX)[−i]

with pHi(Rf∗QX) semisimple perverse sheaves on Y ; we say that a closed

Z ¢ Y is a support of f if it is a support of a simple summand of some
pHi(Rf∗QX). A particularly interesting case is that f has full support, that

is, Y is the only support of f ; in this case the cohomology of any closed fiber

of f is governed by the non-singular fibers.

The study of supports for Hitchin systems was initiated by B. C. Ngô and

is crucial in his proof of the fundamental lemma of the Langlands program [30].

He determines all the supports for the Hitchin system (including the L-twisted
cases) after restricting to the elliptic locus of the Hitchin base; that is the

subset formed by integral spectral curves.

After Ngô’s work, Chaudouard–Laumon [2] observed that, if we consider

the moduli space of L-twisted GLn stable Higgs bundles with deg(L) > 0,

then Ngô’s support theorem can be extended to the total Hitchin base; in par-

ticular they showed that the L-twisted GLn Hitchin system has full support.

Chaudouard–Laumon’s idea was extended to the SLn case [7], the endoscopic

moduli spaces [24], and singular cases involving strictly semistable Higgs bun-

dles [26], [25]. See also [9], [28] concerning the supports over the open subset

of reduced spectral curves for the untwisted (i.e., L = 0) Hitchin system.

The idea of Chaudouard–Laumon [2] is to show that each support of the

L-twisted Hitchin system has generic point lying in the elliptic locus; this is

achieved by combining two constraints: (I) the support inequality for a weak

abelian fibration, and (II) ¶-regularity for spectral curves. We describe them

in more detail.

(I) (Support inequaltiy). The Hitchin system admits the structure of a

weak abelian fibration; that is, there is a commutative group scheme P

over the Hitchin base acting on the moduli space which satisfies certain

properties. Then an argument generalizing the Goresky–MacPherson

inequality leads to a codimension estimate for the supports. More con-

cretely, it says that any support Z has codimension bounded above by

the ¶-function of the group P . This part was already carried out in Ngô

[30, §7]; see [26, §1] for a summary.

(II) (¶-regularity). In the case of type A and for the stable locus, the group

scheme is obtained from the multi-degree 0 relative Picard (or, for SLn,

Prym) variety associated with the family of spectral curves. Then we
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have the Severi inequality, referred to as ¶-regularity, for the spectral

curves. We refer to [7, Th. 5.4.4] for the precise statement.

Using (I) and (II), one can deduce that no support is allowed to have a

generic point lying outside the open subset of integral curves; this was explained

in [2, §11] for GLn, in [7, §6.2] for SLn, and in [26, §4.5] for a general complete

linear system in a del Pezzo surface. The argument is to combine the two

inequalities above to deduce a numerical contradiction if there is a support

that appears outside the elliptic locus.

4.2. Parabolic Hitchin systems. Now we focus on the L-twisted parabolic

Hitchin system (22). Let Âell ¢ Â be the open subset parametrizing inte-

gral spectral curves (the elliptic locus). Following Ngô’s method, Yun [40],

[38] proved a parabolic support theorem over C × Âell and determined all the

supports of (22) in C × Âell. More precisely, by [38, §2] any strict subset of

C × Âell, which is a support of ĥpar|
C×“Aell , is a component of the endoscopic

loci governed by the endoscopic theory of G. As we only consider the special

case G = PGLn, there are no non-trivial endoscopic loci and the restricted

Hitchin map ĥpar|
C×“Aell has full support.

To prove Theorem 3.2, it suffices to show that there is no support of (22)

whose generic point is lying outside C × Âell.

Since stability for a PGLn Higgs bundle is described by its corresponding

vector bundle (see (10)), it is more convenient to work with the SLn moduli

spaces. We consider the following Cartesian diagram:

(27)

|Mpar M̂par

C × |M C × M̂.

(−)/Γ

π′ π

(−)/Γ

Here the horizontal maps are given by the natural quotient maps by Γ =

Pic0(C)[n]. To describe the map Ã′ on the left side of the diagram (see [39,

Exam. 2.2.5]), we recall that |M parametrizes traceless Higgs bundles with fixed

determinant

(E , ¹), ¹ : E → E ¹ ΩL, rk(E) = n, det(E) ≃ N , trace(¹) = 0

with respect to slope stability. Similarly |Mpar parametrizes

(x, E = E0 £ E1 £ · · · £ En = E0(−x), ¹),

where x ∈ C, (E , ¹) ∈ |M , each Ei in the flag is of rank n with Ei/Ei+1 a

length 1 skyscraper sheaf supported at x, the Higgs field preserves the flag

¹(Ei) ¢ Ei ¹ΩL, and the map Ã′ in the diagram is the forgetful map. We note

that the stability condition for a parabolic Higgs bundle is determined by the

stability of the underlying Higgs bundle.



THE P = W CONJECTURE FOR GLn 549

Following [39, Exam. 2.2.5] we may also describe |Mpar via spectral curves.

If we present a point in |M as a 1-dimensional sheaf Fα supported on a spectral

curve Cα ¢ Tot(ΩL) with pα : Cα → C the projection, then for any x ∈ C, a

closed point in the fiber Ã′−1(x,Fα) is represented by

Fα = F0 £ F1 £ · · · £ Fn = F0 ¹ p∗αOC(−x), lengh(Fi/Fi+1) = 1;

see [39, (2.4)].

Now we consider the SLn parabolic Hitchin system

(28) qhpar : |Mpar → C × |M → C × Â.

From the diagram (27), it recovers the PGLn Hitchin system ĥpar : M̂par →

C × Â by taking the quotient of the source by Γ. In particular, we have

Rĥpar∗ Q
M̂par =

Ä
Rqhpar∗ Q|Mpar

äΓ
∈ Db

c(C × Â).

Hence in order to prove Theorem 3.2, it suffices to show that there is no support

of (28) with generic point lying outside C × Âell. In the next two sections, we

adapt the strategy of Chaudouard–Laumon [2] and de Cataldo [7] (for the

SLn-version) to this parabolic setting, and verify the parabolic analogs of (I)

and (II) of Section 4.1.

4.3. Weak abelian fibrations and ¶-regularity. A general approach for prov-

ing support theorems was given in [26, Th. 1.8]. We apply it here for the

parabolic Hitchin system (28). In this section, we explain how existing results

allow us to reduce Theorem 3.2 to a relative dimension bound (30). Then in

the next section we prove this bound.

For the reader’s convenience, we first recall some of the necessary ingre-

dients. As mentioned in (I) of Section 4.1, the notion of weak abelian fibration

introduced by Ngô [30] plays a key role. A weak abelian fibration is a triple

(P,M,A) with morphisms

f : M → A, g : P → A,

such that all P,M,A are non-singular, f is proper, g : P → A is a smooth

group scheme, and P acts on M relatively over A; they satisfy the following

conditions:

(i) every closed fiber of the P → A has dimension = dimM− dimA;

(ii) the action of P on M has affine stabilizers; and

(iii) the Tate module associated with P → A is polarizable.

We refer to [26, §1.1] for more details.

Now we show that (28) is naturally enhanced into a weak abelian fibration.

We first construct the (C × Â)-group scheme P which acts on |Mpar. Recall

that in [7] de Cataldo showed that |M admits a weak abelian fibration structure

( qP , |M, Â). Here the Â-group scheme qP which acts on |M is given by the identity
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component of the relative Prym variety associated with the spectral curves [7,

(43)]. For a spectral curve pα : Cα → C with a Higgs bundle given by Fα

supported on Cα, the Prym action is induced by tensor product

Q · Fα = Q¹Fα, Q ∈ Prym0(Cα/C) = qP[Cα], [Cα] ∈ Â.

We denote by P the (C×Â)-group scheme obtained by the pullback of qP . The

P -action on C × |M can be lifted to |Mpar:

Q · (x,Fα = F0 £ F1 £ · · · £ Fn)

= (x,Q¹Fα = Q¹F0 £ Q¹F1 £ · · · £ Q ¹ Fn),

since the stability condition does not rely on the flag.

Proposition 4.1. The triple (P, |Mpar, C×Â) forms a weak abelian fibra-

tion ; i.e., it satisfies (i), (ii), and (iii) above.

Proof. (i) only concerns the dimension of |M which is clear from (21), and

(iii) only depends on the group scheme P which follows from the corresponding

property for qP proved in [7, Th. 4.7.2]. To prove (ii): since the P -action on
|Mpar is a lifting of the P -action on C× |M , and the latter has affine stabilizers

by [7], we obtain that the P -stabilizer for any point z ∈ |Mpar is contained in

the (affine) P -stabilizer for Ã(z) ∈ C × |M . This proves (ii). □

Next, we consider the ¶-function on the base C × Â. The group scheme

P endows C × Â with an upper semi-continuous function

¶ : C × Â → N

calculating the dimension of the affine part of the commutative group scheme

given by each closed fiber. For a closed subset Z ¢ C × Â, we define ¶Z to be

the minimal value of the function ¶ on Z.

We say that the weak abelian fibration (P, |Mpar, C × Â) given by Propo-

sition 4.1 satisfies the support inequality ((I) of Section 4.1) if the inequality

(29) codim
C×“AZ f ¶Z

holds for any irreducible support Z ¢ C×Â associated with (28). Furthermore,

by [26, Th. 1.8], the support inequality (29) follows from the relative dimension

bound

(30) Ä>2d

Ä
Rqhpar∗ Q|Mpar

ä
= 0, d := dim|Mpar − dim(C × Â)

with Ä>∗ the standard truncation functor.

Once we have (30), we can combine the support inequality (29) with

¶-regularity of qP [7, Cor. 5.4.4] to prove Theorem 3.2 as follows. If Z ¢ C × Â
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is an irreducible support of qhpar, the projection W = pr“A(Z) ¢ Â also satisfies

the support inequality

codim“AW f codim
C×“AZ f ¶Z = ¶W .

Here, in the second inequality we used the support inequality (29) for qhpar,

and in the last equality we used that the ¶-function on C × Â is pulled back

from Â. The argument of [7, §6.2] then shows that the generic point of W lies

in Âell. Hence the generic point of Z lies in C × Âell, as desired.

In conclusion, this reduces Theorem 3.2 to (30).

4.4. Proof of the relative dimension bound (30). We need to show that

each closed fiber of the morphism

qhpar : |Mpar → C × Â

has dimension

d = dim|Mpar − dim(C × Â) =
n(n− 1)

2
deg(L) + (n2 − 1)(g − 1).

Here the last equation is obtained by the dimension formula of [7, Prop. 2.4.6]

directly:

d = dim|M − dimÂ =
n(n− 1)

2
deg(L) + (n2 − 1)(g − 1).

First, we note that the morphism qhpar is surjective since the usual Hitchin

map qh : |M → Â is surjective. Furthermore, as qhpar is equivariant with respect

to the scaling Gm-action on the Higgs fields, it suffices to bound from above

the dimension of the fiber over (x, 0) ∈ C × Â for each point x ∈ C by d, since

upper semicontinuity will force all other fibers to have the same dimension

upper-bound.2 We fix the point p from now on.

Using the assumption deg(L) > 2g, we may express L as OC(D) with

D = x0 + x1 + · · · + xt an effective reduced divisor containing x = x0. In

particular, a Higgs bundle (E , ¹ : E → E¹ΩL) can be viewed as a meromorphic

(un-twisted) Higgs bundles with at most simple poles along D:

(E , ¹), ¹ : E → E ¹ Ω1
C(D).

We will control the fiber dimension using an analogous bound for the nilpotent

cone for strongly parabolic Higgs bundles for the pair (C,D).

Recall that given D as above, a strongly parabolic Higgs bundle consists

of an SLn Higgs bundle of degree d,

(E , ¹), ¹ : E → E ¹ Ω1
C(D), rk(E) = n, det(E) ≃ N , trace(¹) = 0,

2Furthermore, we actually show that each fiber has the same dimension. But the dimension

bound is enough for our purpose.
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along with a flag at each point xi ∈ D,

E|xi
= Fxi,0 £ Fxi,1 £ Fxi,2,£ · · · £ Fxi,n = 0, dimFxi,j/Fx−i,j+1 = 1,

such that the Higgs field satisfies ¹(Fxi,j) ¢ Fxi,j+1.
3

Let |M spar(D) denote the moduli space of strongly parabolic Higgs bundles

associated with the pair (C,D), such that the underlying twisted Higgs bundle

is stable. Let

A(D) =
n⊕

i=2

H0(C,Ω¹i
L (−D)) ¢ Â

denote the linear subspace consisting of sections which vanish along the points

of D. There is a Hitchin map for the strongly parabolic Higgs moduli space

qhspar : |M spar(D) → A(D)

which is proper, surjective, and Lagrangian with respect to a natural holo-

morphic symplectic form [14]. In particular, the dimension of the zero fiber is

given by

dim |M spar(D)0 = dimA(D) =
n∑

j=2

((j − 1)(deg(ΩL)) + g − 1)

=
n(n− 1)

2
deg(L) + (n2 − 1)(g − 1).

See also [36, Th. 6.9] for a direct proof of the above dimension formula.4

We now consider the following diagram relating the two types of parabolic

Higgs moduli spaces |M spar(D) and |Mpar:

(31)

|M spar(D)0 |M spar(D)

|Mpar
(x,0)

|Mpar|x×A(D)
|Mpar

{(x, 0)} x×A(D) C × Â,

q0 q

qhpar

where all squares are Cartesian.

We first claim that the natural map q (sending a strong parabolic Higgs

bundle to a parabolic Higgs bundle) is surjective. Indeed, given a point z ∈

3One may compare this with the (non-strong) parabolic condition θ(Fx,j) ⊂ Fx,j we used

earlier in this paper for the global Springer theory.
4The formula above has g less than the dimension formula obtained in [36, Th. 6.9], since

we consider the SLn case where we fixed the determinant on C.
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|Mpar lying over C×A(D), choosing a point in its preimage q−1(z) only consists

of fixing a flag at each point of xi with i > 0, preserved by the Higgs field;

since the characteristic polynomial already has zero roots at all points of D,

the Higgs field is automatically strongly parabolic.

By base change, this implies that q0 is surjective as well, so we get the

desired dimension upper bound

dim |Mpar
(x,0) f dim |M spar(D)0 =

n(n− 1)

2
deg(L) + (n2 − 1)(g − 1),

which completes the proof. □

Remark 4.2. Combining Sections 3 and 4 proves that Theorem 2.6 holds

for a line bundle L of sufficiently large degree. Then the argument of Section 2.3

implies that it actually holds for any effective L.

References
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