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The P =W conjecture for GL,

By DAVESH MAULIK and JUNLIANG SHEN

Abstract

We prove the P = W conjecture for GL,, for all ranks n and curves of
arbitrary genus g > 2. The proof combines a strong perversity result on
tautological classes with the curious Hard Lefschetz theorem of Mellit. For
the perversity statement, we apply the vanishing cycles constructions in
our earlier work to global Springer theory in the sense of Yun, and prove a
parabolic support theorem.
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0. Introduction
Throughout, we work over the complex numbers C.

0.1. The P = W conjecture. The purpose of this paper is to present a
proof of the P = W conjecture by de Cataldo-Hausel-Migliorini [8] for arbi-
trary rank n and genus g > 2.

Let C' be a non-singular irreducible projective curve of genus g > 2. For
two coprime integers n € Z>1 and d € Z, there are two moduli spaces Mp
and Mg, called the Dolbeault and the Betti moduli spaces, attached to C,n,
and d.

The Dolbeault moduli space parametrizes stable Higgs bundles (£, 60) on C,
where £ is a vector bundle on C of rank n and degree d, 8 : £ — £ ® Q}]
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530 D. MAULIK and J. SHEN

is a Higgs field, and stability is defined with respect to the slope u(€,0) =
deg(€)/rk(€). The moduli space Mp, admits the structure of a completely
integrable system

n
h:Mpe — A:= @HO(C, Q};@), (€,0) — char.polynomial(),
i=1
which is referred to as the Hitchin system [20], [21]. The Hitchin map h
is surjective and proper; it is also Lagrangian with respect to the canonical
holomorphic symplectic form on Mp, induced by the hyper-Ké&hler metric.
The perverse filtration is an increasing filtration

PoH*(Mpo1,Q) C PLH*(Mpe1, Q) C --- C H*(Mpor, Q)

on the (singular) cohomology of Mpe governed by the topology of the Hitchin
system h; see Section 1.1 for a brief review.

The Betti moduli space Mp is the (twisted) character variety associated
with GL,(C) and degree d. It parametrizes isomorphism classes of irreducible
local systems

p:m(C\{p}) = GL,(C),

. 2my/—1d
where p sends a loop around a chosen point p to e » 1Id,. Concretely, we

have
g
My = {ag, by € GLo(C), k=1,2,...,g: []laj.b] = eLFdIdn}//GLn(C).
7j=1

It is an affine variety whose mixed Hodge structure admits a non-trivial weight
filtration

W()H*(MB,Q) C WlH*(MB,Q) c.---C H*(MB,Q).

Non-abelian Hodge theory [34], [35] gives a diffeomorphism between the
two very different algebraic varieties Mp, and Mp, which canonically identifies
their cohomology:

(1) H*(Mpo1, Q) = H*(Mp, Q).

The P = W conjecture by de Cataldo—Hausel-Migliorini [8] refines the identi-
fication (1); it predicts that the perverse filtration associated with the Hitchin
system is matched with the (double-indexed) weight filtration associated with
the Betti moduli space. This establishes a surprising connection between topol-
ogy of Hitchin systems and Hodge theory of character varieties.

CONJECTURE 0.1 (The P = W conjecture for GL,, [8]). For any k,m €
Lo, we have

Py H™(Mpol, Q) = W H™ (Mp, Q) = Wop1 H™(Mp, Q).
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Conjecture 0.1 has previously been proven for n = 2 and arbitrary genus
g > 2 by de Cataldo-Hausel-Migliorini [8], and recently for arbitrary rank
n and genus 2 by de Cataldo-Maulik—Shen [11]. The compatibility between
the P = W conjecture and Galois conjugation on the Betti side was proven
in [13], which implies that P = W does not depend on the degree d as long
as it is coprime to n. We refer to [8, §1] and the paragraphs following [11,
Th. 0.2] for discussions concerning connections between Conjecture 0.1 and
other directions. In particular, by [3] and [27, §9.3], Conjecture 0.1 implies
the correspondence between Gopakumar—Vafa invariants and Pandharipande—
Thomas invariants [27, Conj. 3.13] for the local Calabi-Yau 3-fold 7*C x C in
any curve class n[C].

The main result of this paper is a full proof of Conjecture 0.1.

THEOREM 0.2. Conjecture 0.1 holds.

Conjecture 0.1 has several variants which, to the best of our knowledge, are
still open. These include the version formulated for possibly singular moduli
spaces, intersection cohomology, and general reductive groups [8], [10], [15], and
the version formulated for moduli stacks [5]. There also exist parabolic versions
of Conjecture 0.1, and we expect that our argument applies to these settings
using parabolic variants of the ingredients here [29], [31]. We refer to [4], [17],
[37], [41] and references therein for the P = W phenomenon in other settings.

For the case of type A,_1 (GL,, PGL,, SL,) and a degree d coprime to n,
Conjecture 0.1 (i.e., the P = W conjecture for GL,) is equivalent to the P = W
conjecture for PGL,; see the paragraph after [11, Th. 0.2]. The case of SL,, is
more subtle — it is closely related to the endoscopic decomposition of the SL,,
Hitchin moduli spaces. A systematic discussion on this aspect can be found
in [24, §5]. In the special case when n = p is a prime number, [12, Th. 0.2]
implies that the P = W conjecture for GL,, SL,, and PGL,, are all equivalent.
In particular, we have the following immediate consequence of Theorem 0.2,
which generalizes the result of [8] for SLs.

THEOREM 0.3. The P =W conjecture holds for a curve C' of any genus
at least two and SL, with p a prime number.

0.2. Idea of the proof. Our proof of Conjecture 0.1 has four major steps.

Step 1: Strong perversity of Chern classes. Using work of Markman [23],
Shende [33], and Mellit [29], we may reduce the P = W conjecture to a state-
ment about the interaction between Chern classes of the universal family and
the perverse filtration. This allows us to reduce the P = W conjecture to a
sheaf-theoretic statement which concerns strong perversity of Chern classes.

Step 2: Vanishing cycle techniques. We apply the formalism of vanishing
cycles to reduce the sheaf-theoretic formulation of Step 1 for the Hitchin system
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to the case of twisted Hitchin systems associated with meromorphic Higgs bun-
dles. Our motivation is from the key observation by Ngo6 [30] and Chaudouard-
Laumon [2], that the decomposition theorem for such twisted Hitchin systems
is more manageable.

Steps 1 and 2 are carried out in Sections 1 and 2.

Step 3: Global Springer theory. The global Springer theory of Yun [39],
[40], [38] produces rich symmetries for certain Hitchin moduli spaces; this
proves the sheaf-theoretic formulation of Step 1 over the elliptic locus. For our
purpose, we need a version of global Springer theory for the stable locus over
the total Hitchin base. This is described in Section 3.

Step 4: A support theorem. Lastly, in order to extend part of Yun’s sym-
metries induced by Chern classes from the elliptic locus to the total Hitchin
base, we prove a support theorem parallel to [2] for certain parabolic Hitchin
moduli spaces. This is completed in Section 4.

The idea of combining vanishing cycle functors and support theorems
was also applied in [24] to give a proof of the topological mirror symmetry
conjecture of Hausel-Thaddeus [18], [16].

0.3. Acknowledgements. We would like to thank Mark Andrea de Cataldo,
Bhargav Bhatt, Ben Davison, Jochen Heinloth, and Max Lieblich for various
discussions. We are especially grateful to Zhiwei Yun for explaining his thesis
to us, both in his office and at the playground. We also thank the anonymous

referee for careful reading and useful suggestions on the exposition. J.S. was
supported by the NSF grants DMS-2134315 and DMS-2301474.

1. Perverse filtrations and vanishing cycles

In this section, we introduce the notion of strong perversity and show its
compatibility with vanishing cycle functors (Proposition 1.5). This plays a
crucial role in Section 2 in lifting the P = W conjecture sheaf-theoretically
and reduce it to the twisted case.

1.1. Perverse filtrations. Let f : X — Y be a proper morphism between
irreducible non-singular quasi-projective varieties (or Deligne-Mumford stacks)
with dimX = a and dimY = b. Let r be the defect of semismallness of f:

r:=dimX xy X — dimX.

In particular, we have »r = a — b when f has equi-dimensional fibers. The
perverse filtration

PyH™(X,Q) C PLH™(X,Q) C --- C H™(X,Q)
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is an increasing filtration on the cohomology of X governed by the topology of
the morphism f; it is defined to be

PH™(X,Q) :=Im {H™ “*"(Y,P7<;(Rf.Qx[a — r])) = H™(X,Q)},
where P7<, is the perverse truncation functor [1].

LEMMA 1.1. If f has equi-dimensional fibers, the perverse filtration on
H™(X,Q) terminates at P, H™(X,Q), i.e.,

P,H™(X,Q) = H™(X,Q).
In particular, we have 1 € PyHY(X, Q).

Proof. By definition and the decomposition theorem [1], the dimensions
of the graded pieces of the perverse filtration are given by

(2)  dimGrlH™(X,Q) = dimH™ =) (Y, *H!(Rf.Qxa — r])).

Since a perverse sheaf, as a complex of constructible sheaves, is concentrated
in degrees [—b,0], it only has non-trivial cohomology in degrees > —b. In
particular, the right-hand side of (2) is non-trivial only if

m—i—(a—r1)>—b.
Since r = a — b, this inequality is equivalent to m > 1. O

A cohomology class v € H'(X,Q) can be viewed as a morphism v : Qx —
Qx/l], which naturally induces

3) v: Rf.Qx = RAEQx([l]

after pushing forward along f. For an integer ¢ > 0, we say that v € H'(X, Q)
has strong perversity ¢ with respect to f if its induced morphism (3) satisfies

(4) v (Pr<iRf:Qx) CPreip ey (REQx[l]) Vi

more precisely, condition (4) says that the composition

Pro;Rf.Qx — Rf.Qx 5 Rf.Qx|l]

factors through Pre;y—y (Rf<Qx[l]) — Rf.Qx]l] for any i. Notice that
automatically has strong perversity [, so this condition is interesting only when
¢ < l. Combining Lemma 1.1 and the following lemma, we see that if f has
equi-dimensional fibers and ~ has strong perversity ¢, then v € P.H*(X, Q).

LEMMA 1.2. If v € HY(X,Q) has strong perversity ¢ with respect to f,
then taking cup-product with v satisfies

yU—: H™X,Q) - H"(X,Q), PH™(X,Q)+ Pi.H""(X,Q).
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Proof. This follows from taking global cohomology for (4) and noticing
that

H™ (Y, Preyy ooty (RAEQx [l 4+ a — 1))
= H (Y, Py (RE.Qx[a—1])). D
In general, the perverse filtration P, H*(X,Q) may not be multiplicative,
ie., for v; € P, H*(X,Q) (j = 1,2,...,s), it may not be true that
IUyU---U~ys € Pcl-i-“'-l—csH*(X?Q);

see [6, Exer. 5.6.8]. In fact, it was proven in [11, Th. 0.6] that Conjecture 0.1
is equivalent to the multiplicativity of the perverse filtration associated with
the Hitchin system. The following easy observation illustrates the advantage
of considering strong perversity in view of the multiplicativity issue.

LEMMA 1.3. If the class v; € HY(X,Q) (j = 1,2,...,5) has strong per-
versity c; with respect to f, then the cup product

YUY U--- Uy, € HYPH (X, Q)
has strong perversity ; c;.

1.2. Vanishing cycles. Throughout Section 1.2, we let ¢ : X — Al be a
morphism such that X is non-singular and irreducible with Xo = g=*(0) the
closed fiber over 0 € A'. We consider the vanishing cycle functor

g = De(X) — Dg(Xo)
which preserves the perverse t-structures,
@g : Perv(X) — Perv(X).
Here Perv(—) stands for the abelian category of perverse sheaves. We denote
by
g = g(ICx) = ¢4(Qx[dimX]) € Perv(Xy)

the perverse sheaf of vanishing cycles. We use X’ C X to denote the support
of the vanishing cycle complex ¢4 so that ¢4 € Perv(X’).

Recall that for any bounded constructible object K € DY(X), a class
v € H(X,Q) induces a morphism

~v: K = K[l]

via taking the tensor product with v : Qx — Qx[l]. The following lemma
shows the compatibility between the vanishing cycle functor and restriction of
cohomology classes.
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LEMMA 1.4. With the same notation as above, let i : X' — X be the
closed embedding. The morphism

iy 1 pg = pgll] € DYUX')
induced by the class i*y (applied to the object K = ¢g4) coincides with
0g(7) : g = oll] € DYX")
obtained by applying the functor ¢4 to v : Qx — Qx[I].

Proof. Let 1 : Xg — X be the closed embedding of the closed fiber over 0.
By [22, Def. 8.6.2], the vanishing cycle functor can be written as

(5) ¢g(—) = t*RHom(C, —) € D}(Xo)

with C a fixed complex of sheaves. The morphism obtained by applying
RHom(C,—) to v : Qx — Qx][l] is equivalent to the morphism induced by
applying v to RHom(C,Qx). Similarly, the functor ¢:* sends the morphism
induced by 7 to the morphism induced by ¢*~.

Therefore, if we denote by «/ : X' < X the closed embedding and view
¢4 as a perverse sheaf on X', we have an equivalent morphism
(6) (1) = "y : dpg = dipgll] € DUXo).

Finally, after applying ¢"* : D%(Xq) — D2(X’) to (6) and noticing /*¢. =id,
/*L*

we obtain that the class ¢*y = ¢"*¢*y induces

g(7) : pg = wgll] € DYUX).
This completes the proof. [l

PROPOSITION 1.5. Let g : X — A' and X' be as above. Assume that X'
18 non-singular and

(7) g~ ICx, = Qx/[dimX'] € Perv(X").
Assume further that we have the commutative diagram
X 5 X
lf’ lf
Y — Y

such that f is proper and ¢ = fov with v : Y — A'. Then if a class
v € H(X,Q) has strong perversity c with respect to f, its restriction i*y €
HY X', Q) has strong perversity c with respect to f'.

Proof. By definition, the morphism
(8) 7: RfQx — RfQx(l] € DY)
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induced by -y satisfies

9) v (Pr<iRfQx) CPreipe—)(RAQx([l]) Vi

Now we apply the vanishing cycle functor ¢, to (8). On the one hand, we have
the base change Rf,opg =~ ¢, 0R f, and the fact that the vanishing cycle functor
preserves the perverse t-structures. Therefore (9) implies that the morphism

(1) : Rfipg — Rflpgll] € DY)
satisfies
0g(7) (Pr<iRfipg) C Preip(c—n(Rfupgll]) Vi
On the other hand, using the isomorphism (7) and Lemma 1.4, the above
equation means precisely that the morphism i*y : Qx» — Qx[l] satisfies

(i*y) (Pr<iRfiQx) C Prcip(c—ty(RAQx[I]) Vi
that is, the class i*v has strong perversity ¢ with respect to f. O

2. Strong perversity for Chern classes

In this section, we fix the rank n and the degree d with (n,d) = 1. In
Theorem 2.6, we rephrase and then enhance Conjecture 0.1 to a statement
involving L-twisted Hitchin systems and strong perversity of Chern classes. It
will be proven in Sections 3 and 4.

2.1. Tautological classes. As discussed in [11, §0.3], the P = W conjecture
for GL,, can be reduced to a statement involving tautological classes on Mp,)
and the perverse filtration associated with h : Mp, — A, without reference to
the Betti moduli space Mp. In this subsection, we recall this reduction step.

For convenience, we work with the PGL,, Dolbeault moduli space to avoid
normalization of a universal family as in [11]; we refer to [33] for a detailed
discussion concerning the formulation of the P = W conjecture in terms of
tautological classes for the PGL,, Dolbeault moduli space.

Fix N € Pic?(C). Let Mpo be the moduli stack of stable Higgs bundles
(€,0) with det(€) ~ N and trace(f) = 0, rigidified with respect to the generic
ln-stabilizer; this is the same as taking its coarse moduli space. We refer to
this (non-singular) variety as the SL,, Dolbeault moduli space of degree d. The
finite group T' := Pic(C)[n] acts naturally on ]\\/[/Dol via tensor product. The
PGL,, Dolbeault moduli space of degree d is recovered by taking the quotient
stack

(10) Mpor := Mpol /T
which is a non-singular Deligne-Mumford stack. The PGL,, Hitchin system

/f; : ]/\ZDOI — A\ = @HO(C, Qlc®z)
=2
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is induced by the Hitchin map associated with M/Dol as the I'-action is fiberwise
with respect to h. Analogous to the GL,, case, we have the perverse ﬁltratlon

pP.H* (MDOl Q) associated with h. The universal PGL,-bundle U/ on C x MDOl
induces Chern characters

chy(U) € H*(C x Mpot, Q), k> 2.

The tautological classes ci(7y) are defined to be
k(7)== /Chk(u) = qur(giy U chp(U)) € H*(Mpot,Q), v € H*(C,Q),
gl

where g(_y are the projections from C x ]\/4\]301.
Now we consider the PGL,, Betti moduli space of degree d with the isomor-
phism on cohomology provided by non-abelian Hodge theory (cf. [8, Th. 1.2.4)):

(11) H*(Mpo1,Q) = H* (Mg, Q).
Define the Hodge sub-vector space
FHdg™ (Mp) := Wor H™ (M, Q) N F*H™(Mp,C) C H™(Mp, Q).

The following theorem, collecting results of Markman and Shende, pro-
vides a complete description of H*(Mp, Q) in terms of the Chern classes chy (i)
and the weight filtration.

THEOREM 2.1 ([23, 33]). We use the same notation as above.

(i) The tautological classes ci(y) € H*(]/W\Dol,(@) generate H*(]/W\Dol,(@) as a
Q-algebra.

(ii) The class ck(vy), passing through the non-abelian Hodge correspondence
(11), lies in *Hdg*(Mp). In particular, we have a canonical decomposi-
tion

H*(Mgp,Q) = P *Hdg™ (Mp).
m,k
Proof. The first part was proven in [23], and the second part was proven
in [33)]. 0

Theorem 2.1 (ii) yields immediately that
WarH™ (Mp, Q) = Way 1 H™ (Mp, Q).

Moreover, by Theorem 2.1, the P = W conjecture implies that each class
[1i=1 ck; (i) lies in the perverse piece Py, H*(Mpol, Q); the latter is in fact
equivalent to the P = W conjecture. Indeed, suppose we have

(12) H ¢k (1) € Peyi H* (Mpot, Q)
i=1
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for any product of tautological classes. Then we know that Wor H* (]/\4\ B,Q) C
P.H* (]/\/[\Dol,(@). The curious hard Lefschetz theorem proven by Mellit [29]
forces the two filtrations P, and Wae to coincide as long as one contains the
other. This was mentioned in the last paragraph of [29, §1]; we include its
proof here for the reader’s convenience.

LEMMA 2.2. We denote by V' the Q-vector space (11) with the perverse
and the weight filtrations Py and Woe. If Wop, C Py for all k, then Wy, = Py
for all k.

Proof. Assume r = dim M ; both filtrations terminate at the r-th pieces,
i.e., Wo, = P, = V. We first show that

W() - PO, WQ(T*l) = P’,”_l-
In fact, since W, C P,, we have
dimW() < dlmpo = dimV/PT_l S dimV/WQ(r_l);

moreover, by the curious hard Lefschetz theorem, each inequality has to be an
equality. So our claim follows.

We proceed by applying the same argument to Wi, Py and Wy, _ay, Pr—1.
The lemma follows by a simple induction. ([l

In conclusion, we have reduced the P = W conjecture to the following:

CONJECTURE 2.3 (Equivalent version of P = W). Condition (12) holds
for all products of tautological classes.

2.2. Strong perversity for Chern classes for L-twisted Hitchin systems.
For our purposes, it is important to consider Dolbeault moduli spaces of Higgs
bundles, twisted by an effective line bundle £ (i.e., H°(C,L£) # 0). These
moduli spaces have already appeared in [2], [19], [18], [39], [40]; we review the
construction here briefly.

Set €1 to be the line bundle Q}J ® L on the curve C'. We denote by MSOI
the moduli space of stable twisted Higgs bundles

(&,0), 0:&—=E®Qe, 1k(€)=mn, deg(&) =d,

with respect to the slope stability condition. The corresponding Hitchin map

n
he: Mfy — A =@ H® (C,9,:%"), (E,6) ~ char.polynomial(f),
i=1
is still proper as in the untwisted case; but it fails to be a Lagrangian fibration
when deg(L£) > 0. The L-twisted SL,, and PGL,, Dolbeault moduli spaces
M]SOI and M]%ol can be constructed similarly. The moduli space

ME., = {(€,0) € ME,,| det(€) ~ N € Pic?(C), trace(d) = 0}
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admits a Hitchin map
n
he s Mf, — AC = H (C, %)
i=2

and a fiberwise I' = Pic®(C)[n] action by tensor product. Taking the T-quotient
recovers the L-twisted PGL,, Hitchin map

hE . ME, = M5, /T — A~

An observation in [24, §4] is that, for a fixed closed point p € C, the
L-twisted and L(p)-twisted SL,, Dolbeault moduli spaces can be related via
critical loci and vanishing cycles, which we recall in the following.

By viewing a L-twisted Higgs bundle naturally as a L£(p)-twisted Higgs

bundle, we have the natural embedding 7 : MS | = MD(I) which induces the

commutative diagram

Mg, s MEY
(13) \LEL l}jc(p)
AL« ALD),

We recall the following theorem from [24]:

THEOREM 2.4 ([24, Th. 4.5]). There exists a regular function g : Mﬁ(p)
Al factorized as g = v o hE®) with v AL®) —5 AL such that

Since the embedding i : M/]Sol — MDg ) is T"-equivariant, taking I'-quotients
in the diagram (13) yields the following commutative diagram:

L . L(p)
MDOI MDol

(14) lﬁzj ﬁc(m
AL ALD),

PROPOSITION 2.5. The wvanishing cycle complex g associated with the
reqular function

§i=voht® . ]\/4\3(()11)) — Al

satisfies
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Proof. We reduce Proposition 2.5 to Theorem 2.4. Consider the I'-quotient

map 7 : M/Sg)) — ]\/4\5(()?). The direct image T*QMQ(Z;) admits a natural I'-equi-
Dol

variant structure, whose invariant part recovers
r
(15) (Crgp) =z
Since g = gor, we have
. asL
r
. 7L
~ 5 (T*Qﬁé(? [dlmMDgf)D
r
~ (Txpg)
s ATk
~ QJ/\Z]%OI [dlmMDOJ .

Here the first equation follows by definition, the second uses (15), the third
follows from the base change, and the last is given by Theorem 2.4. O

Now we formulate a sheaf-theoretic enhancement of Conjecture 2.3.
THEOREM 2.6. There exists an effective line bundle L such that the class
chy, (UE) € H**(C x ME,;, Q)
has strong perversity k with respect to
h? :=id x W% : C x ME,; — C x A~
Here U~ is the universal PGL,,-bundle over C' x M\Sol.

Notice that the perversity bound here is stronger than the trivial one
of 2k. In the rest of this section we prove that Theorem 2.6 indeed implies
Conjecture 2.3; therefore it implies Conjecture 0.1. We prove Theorem 2.6 in
Sections 3 and 4.

2.3. Theorem 2.6 implies Conjecture 2.3. We start with the following
claim:

CrAaM. For a point p € C, if the class
chi(UEW) e H*(C x MEW Q)

has strong perversity k with respect to hf® : C x ]\//Eggf) — C x Eﬁ(p), then
the class

chy (UL) € H2H(C x ME.;, Q)

has strong perversity k with respect to h* : C x J\//.Tlgo1 — O x A~
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Proof of claim. We consider the commutative diagram obtained from (14):

C x J/\/[\IgOl <1, 0ox ]/W\égl’)
(16) J’hz: lhap)
C x AL 5 O x ALD),

Here i = id x i. By definition, we have i*U{/~(®) = U/*. Therefore
i*chy (UEP)) = chy(UF).

We know from Proposition 2.5 that the vanishing cycle complex associated
with the regular function

~ 7L 7L
g:=gopry :C X MD(()f) — MDgf) — Al

satisfies
[dim (C x M,)] -

ve =100, qie = Qo gic

Our claim then follows from Proposition 1.5 (applied to the diagram (16), the
class chy(U*P), and the map g). O

As a consequence of the claim, the statement of Theorem 2.6 holds for
L ~ Oc¢; i.e., the class

chy(U) € H*(C x Mpe), Q)
has strong perversity k with respect to
h::idxﬁ:Cx]\?DolaCxﬁ.

Finally, to deduce the cohomological statement, we note that since h is the
identity map restricting to C, its induced perverse filtration can be described
as

(17) PH*(C x Mpe1,Q) = H*(C,Q) ® PoH* (Mpe1, Q).
Choose a homogeneous basis of H*(C,Q),
¥ = {oo,01, .. -,0’2g+2},
with Poincaré-dual basis {oy,...,05,,}.
We may express chy(U) as
(18) chp(U) =D 0¥ @ ci(0) € H*(C,Q) ® H* (Mpo1, Q).

[

Since chy (i) has strong perversity k, Lemma 1.2 implies that
chy,(U) U — : P,H*(C x Mpoy, Q) = Pyyy, H*(C x Mpey, Q).
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Applying this operator to o @ PsH* (]/W\Dol, Q) Cc H*(C x ]/V[\Doh Q) with o € X,
we obtain from (17) and (18) that

cr(0) U — : PsH* (Mpel, Q) — Pyy . H* (Mpgl, Q).
In particular, for any class v € H*(C,Q), we have

cx(7) : PoH*(Mpo, Q) — Poy i H* (Mpel, Q),

which further yields
Hckl (71) = (H Clky (7’5)) ule PEikiH*(J/\J\DOb Q)

Here we used 1 € PyH 0(]\//.71)01,@) in the last equation, which is given by
Lemma 1.1.
This completes the proof that Theorem 2.6 implies Conjecture 2.3. (]

3. Global Springer theory

In this section, we review Yun’s global Springer theory [39], [40], [38] and
use it to deduce Theorem 2.6, assuming a support theorem (Theorem 3.2).
Global Springer theory was previously used to study perverse filtrations for
affine Springer fibers in terms of Chern classes [31], [32]. In our setting, we
require a partial extension of Yun’s results from the elliptic locus to the entire
Hitchin base.

3.1. Notation. We fix L to be an effective line bundle of sufficiently large
degree (deg (L) > 2g is enough for us). Since from now on we only concern the
L-twisted moduli spaces, we will use M, M , and M to denote the L-twisted
GL,, SL,, and PGL,, Dolbeault moduli spaces M]SOI, ]\\/.7601, and ]\7601 respec-
tively. For the same reason, we will uniformly use the term Higgs bundles to
call L-twisted Higgs bundles.

From now on we let G = PGL,, . We let g be its Lie algebra, B C G the
Borel subgroup induced by upper triangular matrices with b the Lie algebra,
T C B the maximal torus given by diagonal matrices, and W ~ G,, the Weyl
group. We denote by X*(T) the character group of T}; it is isomorphic to Z"~!
as an abelian group.

3.2. Parabolic moduli stacks. Let 9% be the moduli stack of G-Higgs bun-
dles on C'; we do not impose any stability condition on M so that it is only
a (singular) algebraic stack. The stable locus of M is a non-singular Deligne—
Mumford substack

—_—

M — 9.
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Yun’s global Springer theory [39] constructs an algebraic stack MPAT over
C x M,
(19) T M s O x M,
which is a global analog of the Grothendieck simultaneous resolution. There
are two equivalent constructions of 9P*" given in [39, §2.1].

The first is to construct 9P as the moduli stack of parabolic Higgs
bundles, which are quadruples (x,&,0,EP), with (£,6) is a G-Higgs bundle,
x € C a closed point, and £Z a B-reduction of £ at z, satisfying the constraint

that 0 is compatible with EB ; see [39, Def. 2.1.1]. Then the morphism  is
given by forgetting the B-reduction:

m(x,E,0,EP) = (z,(£,0)) € C x M.

The second construction is via the Grothendieck simultaneous resolution

G : [6/B] — [g/G]. More precisely, let pg be the G,,-torsor over C' associated

with the line bundle Q,. Denote by [g/G]z (resp. [b/B]z) the family of [g/G]

(resp. [b/B]) over the curve C' twisted by the torsor p.. We have a tautological
evaluation map

CxM— [0/G]c
(20) \ /

which is a natural C-morphism; after base change to a closed point = € C,
the map ev sends a G-Higgs bundle to the evaluation of its Higgs field at .
The morphism (19) is then induced by the base change of the Grothendieck
simultaneous resolution along the evaluation map (see [39, Lemma 2.1.2]):

mear " 15 /B,
I [
CxM— [g/C]c.
The parabolic Hitchin system
R Ty € x A
is the composition of 7 : PP — C'x M and the morphism h : C' x M- CxA
induced by the standard (stacky) Hitchin map h : 9 — A.!
In general the moduli stack 9P?" is singular, and the parabolic Hitchin

map is not proper. In the next section we will impose a stability condition and
then restrict to the stable locus.

'Recall that we always use the L£-twisted version.
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3.3. Stable loci. We define the stable locus of the moduli of parabolic
G-Higgs bundles to be
MPar = (C x ]\7) X i ar

equivalently, it fits into the Cartesian diagrams

]\/Zpar c . ﬁpar evP [b/B]L
(21) lw lﬁ Jﬂc
CxM——s CxM—s [g/G,.

We use the same notation as for the stacky case to denote the parabolic
Hitchin map restricted to the stable locus:

(22) v AT O x AL

PROPOSITION 3.1.
(i) The moduli stack MPar g non-singular and Deligne—Mumford; and
(ii) the parabolic Hitchin map (22) is proper.

Proof. The Deligne-Mumford part of (i) follows from the proof of [39,
Prop. 2.5.1 (3)]. Indeed, the left vertical arrow in the diagram (21) is the
pullback of 7, therefore it is schematic and of finite type. This implies that
MPar s Deligne-Mumford since C x M is Deligne-Mumford.

To prove the smoothness part of (i), we use the evaluation map (20).
Recall that [24, Prop. 4.1] (which was proven via deformation theory) shows
that the C-morphism ev is smooth after restricting over the stable locus C x M.
Hence by the Cartesian diagrams of (21), the evaluation map

ev: MP — [b/B],

is also smooth. Since the target is a non-singular algebraic stack, so is the
source.
(ii) follows directly from (21) and that h : M — A is proper. O

As a consequence of Proposition 3.1, the direct image complex
~ b “
RAY™ Qjpar € D(C x A)
satisfies the decomposition theorem [1].

THEOREM 3.2 (Support theorem for parabolic Hitchin map). The decom-
position for the parabolic Hitchin map hP?" has full support; i.e., any non-trivial
simple perverse summand of

P (RRE™ Q) Vi€Z

has support C x A.
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We will postpone the proof of Theorem 3.2 to Section 4.

3.4. Proof of Theorem 2.6. We first prove Theorem 2.6 assuming Theo-
rem 3.2.
There are three ingredients of global Springer theory

7 MP 5 O x M
which are important in the proof of Theorem 2.6. We summarize them as
follows.

(A) (Splitting of the universal G-bundle). As explained in the second bullet
point of [39, Construction 6.1.4], each Chern root of 7*U is of the form
c1(L(§)), where £ is an element in X*(T") and L(§) is the tautological line
bundle on MP associated with £.

More precisely, 7*U is the universal G-bundle on MPa whose fiber over
(z,€,0,EB) is &;; the B-reduction £F yields a T-torsor over MPr which
induces for each £ € X*(T) a line bundle L(¢).

(B) (Strong perversity for ci1(L(§))). By [40, Lemma 3.2.3|, there exists a
Zariski dense open subset of C' x A over which the operator

a1 (L(§)) + RRZ" Qgrpar = RAYY Qe [2]
has strong perversity 1 for any & € X*(T"). Since ¢1(L(§)) automatically
has strong perversity 2, showing it has strong perversity 1 is equivalent to
showing that the induced morphism of perverse cohomology sheaves
PH(RRE Qs ) = PHY (RRE Qi (2])

vanishes for each i. Once we have Theorem 3.2, these sheaves have full
support over the entire base, so this vanishing (and thus strong perver-
sity 1) extends over the total base C' x A as well. In fact, [40, Lemma
3.2.3] was proven in exactly this way using a support theorem [40, §4.6.2]
for the elliptic locus.

(C) (Springer’s Weyl group action). By the Cartesian diagrams (21), we may
pullback Springer’s sheaf-theoretic Weyl group action from the Grothen-
dieck simultaneous resolution; in particular, the object Rm.Qg7,.. admits
a canonical W-action whose invariant part recovers the trivial local system

(RmQpar)” = Qi
By taking global cohomology we have
H*(MP™ Q) = H*(C x M,Q) @ (variant part of W).
Now we prove Theorem 2.6. We first prove its parabolic version.
CramM. The class
chy, (7*U) € H?*(MP™, Q)
has strong perversity k with respect to the parabolic Hitchin system (22).
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Proof of claim. By (A), the Chern character chy(7m*U) can be expressed
in terms of ¢;(L(€)). Hence the claim follows from Lemma 1.3 and the strong
perversity of ¢1(L(&)) given by (B). O

Next, we reduce Theorem 2.6 to the claim above via the following lemma.

LEMMA 3.3. For a class v € H'(C x ]/\4\,@), if m*y € Hl(]\//jparj(@) has
strong perversity k with respect to hP* : MP* — C x A, then =y has strong
perversity k with respect toh: C' x M — C x A.

Proof. This is a consequence of (C). We write the class v as a map

(23) v Qusar — Qesazll]s

whose pullback

recovers the class 1y € HZ(M\par,Q). By the projection formula m,7m*y =
|W| - ~, we may recover the morphism (23) from (24) by derived pushing
forward to C' x M and taking the W-invariant part.

Now by the assumption we know that the action of 7*v on the object
R/l\zlfar(@ﬁpar satisfies

(25) Ty pTgiRﬁfar@ﬁpar = Tt (k) (Rﬁfar@ﬂpar [l])
Since we have
Rh}:arQM\par = Rh* (Rﬂ*@ﬁpar) 5

the ingredient (C) produces a natural W-action on this object whose invariant
part recovers Rh*(@oX 1j> the operator

(26) 7 Bh.Qq, 7 = RhuQpy 7l

is then recovered from the W-invariant part of the action of 7%~ on Rﬁﬁfar(@ﬁpar.
In particular, the desired property concerning (26) follows from the W-invariant
part of (25). O

Thus we have completed the proof of Theorem 2.6. O

4. Parabolic support theorem

In the last section, we prove Theorem 3.2. This is the parabolic version
of the Chaudouard-Laumon support theorem [2]. For the proof, we ultimately
reduce it to a relative dimension bound which we establish in Section 4.4.
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4.1. Review of support theorems. We start with a review of support the-
orems for Hitchin systems.

For a proper morphism f : X — Y with XY non-singular Deligne—
Mumford stacks, the decomposition theorem [1] yields

RfQx =~ P H (R.Qx)[~]

with PH!(Rf.Qx) semisimple perverse sheaves on Y; we say that a closed
Z C Y is a support of f if it is a support of a simple summand of some
PHY(Rf.Qx). A particularly interesting case is that f has full support, that
is, Y is the only support of f; in this case the cohomology of any closed fiber
of f is governed by the non-singular fibers.

The study of supports for Hitchin systems was initiated by B. C. Ngo and
is crucial in his proof of the fundamental lemma of the Langlands program [30)].
He determines all the supports for the Hitchin system (including the £-twisted
cases) after restricting to the elliptic locus of the Hitchin base; that is the
subset formed by integral spectral curves.

After Ng6’s work, Chaudouard—-Laumon [2] observed that, if we consider
the moduli space of L-twisted GL,, stable Higgs bundles with deg(L) > 0,
then Ngo’s support theorem can be extended to the total Hitchin base; in par-
ticular they showed that the L-twisted GL, Hitchin system has full support.
Chaudouard-Laumon’s idea was extended to the SL,, case [7], the endoscopic
moduli spaces [24], and singular cases involving strictly semistable Higgs bun-
dles [26], [25]. See also [9], [28] concerning the supports over the open subset
of reduced spectral curves for the untwisted (i.e., £ = 0) Hitchin system.

The idea of Chaudouard-Laumon [2] is to show that each support of the
L-twisted Hitchin system has generic point lying in the elliptic locus; this is
achieved by combining two constraints: (I) the support inequality for a weak
abelian fibration, and (II) §-regularity for spectral curves. We describe them
in more detail.

(I) (Support inequaltiy). The Hitchin system admits the structure of a
weak abelian fibration; that is, there is a commutative group scheme P
over the Hitchin base acting on the moduli space which satisfies certain
properties. Then an argument generalizing the Goresky—MacPherson
inequality leads to a codimension estimate for the supports. More con-
cretely, it says that any support Z has codimension bounded above by
the d-function of the group P. This part was already carried out in Ngo
[30, §7]; see [26, §1] for a summary.

(IT) (d-regularity). In the case of type A and for the stable locus, the group
scheme is obtained from the multi-degree 0 relative Picard (or, for SL,,,
Prym) variety associated with the family of spectral curves. Then we
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have the Severi inequality, referred to as §-reqularity, for the spectral
curves. We refer to [7, Th. 5.4.4] for the precise statement.

Using (I) and (II), one can deduce that no support is allowed to have a
generic point lying outside the open subset of integral curves; this was explained
in [2, §11] for GL,,, in [7, §6.2] for SL,,, and in [26, §4.5] for a general complete
linear system in a del Pezzo surface. The argument is to combine the two
inequalities above to deduce a numerical contradiction if there is a support
that appears outside the elliptic locus.

4.2. Parabolic Hitchin systems. Now we focus on the L-twisted parabolic
Hitchin system (22). Let Al ¢ A be the open subset parametrizing inte-
gral spectral curves (the elliptic locus). Following Ngo’s method, Yun [40],
[38] proved a parabolic support theorem over C' x Al and determined all the
supports of (22) in C x Ael. More precisely, by [38, §2] any strict subset of
C x ;4\6“, which is a support of /ﬁpar| Ox Aol
loci governed by the endoscopic theory of G. As we only consider the special

is a component of the endoscopic

case G = PGL,, there are no non-trivial endoscopic loci and the restricted
Hitchin map ?Lpar\ o aen has full support.

To prove Theorem 3.2, it suffices to show that there is no support of (22)
whose generic point is lying outside C' x Aell,

Since stability for a PGL,, Higgs bundle is described by its corresponding
vector bundle (see (10)), it is more convenient to work with the SL,, moduli
spaces. We consider the following Cartesian diagram:

Mpar (=)/r Mpar

& ol

Cx]\\Z%CxZ\/Z.

Here the horizontal maps are given by the natural quotient maps by I' =
Pic’(C)[n]. To describe the map 7’ on the left side of the diagram (see [39,
Exam. 2.2.5]), we recall that M parametrizes traceless Higgs bundles with fixed
determinant

(&,0), 0:&E—=E@Q, tk(€)=n, det(£) =~ N, trace(d) =0

with respect to slope stability. Similarly MP&
(l‘,g =26 D--D&, = 50(—1‘),9),

where x € C, (£,0) € M/, each & in the flag is of rank n with & /&1 a
length 1 skyscraper sheaf supported at x, the Higgs field preserves the flag

parametrizes

0(&;) C & @8, and the map 7’ in the diagram is the forgetful map. We note
that the stability condition for a parabolic Higgs bundle is determined by the
stability of the underlying Higgs bundle.
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Following [39, Exam. 2.2.5] we may also describe MP via spectral curves.
If we present a point in M as a 1-dimensional sheaf Fo supported on a spectral
curve Cy, C Tot(Qr) with p, : C,, — C the projection, then for any = € C, a
closed point in the fiber 7'~(x, F,) is represented by

Foa=FoDF1D-DFy=Fo@p,0c(—x), lengh(F;/Fit1)=1;

see [39, (2.4)].
Now we consider the SL,, parabolic Hitchin system

(28) RPN O x M — C x A.

From the diagram (27), it recovers the PGL,, Hitchin system ppar . jpear
C x A by taking the quotient of the source by I'. In particular, we have

—~ - r —~
Rh2™ Qe = (RRX™ Qi) € DE(C x A).

Hence in order to prove Theorem 3.2, it suffices to show that there is no support

of (28) with generic point lying outside C' x A®!. In the next two sections, we

adapt the strategy of Chaudouard-Laumon [2] and de Cataldo [7] (for the

SL,-version) to this parabolic setting, and verify the parabolic analogs of (I)
and (II) of Section 4.1.

4.3. Weak abelian fibrations and d-regularity. A general approach for prov-
ing support theorems was given in [26, Th. 1.8]. We apply it here for the
parabolic Hitchin system (28). In this section, we explain how existing results
allow us to reduce Theorem 3.2 to a relative dimension bound (30). Then in
the next section we prove this bound.

For the reader’s convenience, we first recall some of the necessary ingre-
dients. As mentioned in (I) of Section 4.1, the notion of weak abelian fibration
introduced by Ngb [30] plays a key role. A weak abelian fibration is a triple
(P, M, A) with morphisms

f-M—=A g:P— A

such that all P, M, A are non-singular, f is proper, g : P — A is a smooth
group scheme, and P acts on M relatively over A; they satisfy the following
conditions:

(i) every closed fiber of the P — A has dimension = dimM — dimA;

(ii) the action of P on M has affine stabilizers; and

(iii) the Tate module associated with P — A is polarizable.
We refer to [26, §1.1] for more details.

Now we show that (28) is naturally enhanced into a weak abelian fibration.

We first construct the (C' x E)—group scheme P which acts on MP®. Recall
that in [7] de Cataldo showed that M admits a weak abelian fibration structure
(]5, M , E) Here the g—group scheme P which acts on M is given by the identity
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component of the relative Prym variety associated with the spectral curves [7,
(43)]. For a spectral curve p, : C, — C with a Higgs bundle given by F,
supported on C,, the Prym action is induced by tensor product

Q- Fu=Q®F, QcPrym’(C,/C)= [C,] € A.

c«}

We denote by P the (Cx A) -group Scheme obtained by the pullback of P. The
P-action on C x M can be lifted to MP2:

Q (2, Fa=FoDF1D--DF)
=(2,Q00F,=Q0FpD2QRF1 DD AR F),

since the stability condition does not rely on the flag.

PROPOSITION 4.1. The triple (P, M/par, ng) forms a weak abelian fibra-
tion; i.e., it satisfies (i), (ii), and (iii) above.

Proof. (i) only concerns the dimension of M which is clear from (21), and
(iii) only depends on the group scheme P which follows from the corresponding
property for P proved in [7, Th. 4.7.2). _To prove (ii): since the P-action on
MPo is a lifting of the P-action on C x M and the latter has affine stabilizers
by [7], we obtain that the P-stabilizer for any point z € MP? is contained in
the (affine) P-stabilizer for m(z) € C x M. This proves (ii). O

Next, we consider the d-function on the base C' x A. The group scheme
P endows C' x A with an upper semi-continuous function

§:Cx AN

calculating the dimension of the affine part of the commutative group scheme
given by each closed fiber. For a closed subset Z C C x ﬁ, we define dz to be
the minimal value of the function § on Z.

We say that the weak abelian fibration (P, M par (f x A\) given by Propo-
sition 4.1 satisfies the support inequality ((I) of Section 4.1) if the inequality

(29) codim,, 77 < oz

holds for any irreducible support Z C C'x A associated with (28). Furthermore,
by [26, Th. 1.8], the support inequality (29) follows from the relative dimension
bound

(30) 7o2d (RRP" Qe ) =0, d:= dimIP — dim(C x A)

with 7, the standard truncation functor.
Once we have (30), we can combine the support inequality (29) with
d-regularity of P [7, Cor. 5.4.4] to prove Theorem 3.2 as follows. If Z C C'x A
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is an irreducible support of }/Lpar, the projection W = prE(Z ) C A also satisfies
the support inequality

codimZW < codimCXZZ < bz = dw.

Here, in the second inequality we used the support inequality (29) for }/Lpar,
and in the last equality we used that the d-function on C x A is pulled back
from A. The argument of [7, §6.2] then shows that the generic point of W lies
in A°!. Hence the generic point of Z lies in C' x ge“, as desired.

In conclusion, this reduces Theorem 3.2 to (30).

4.4. Proof of the relative dimension bound (30). We need to show that
each closed fiber of the morphism

LPar . AP O x A
has dimension
- ~ -1
d = dimMP* — dim(C x A) = n(nz) deg(L) + (n? —1)(g —1).

Here the last equation is obtained by the dimension formula of [7, Prop. 2.4.6]
directly:

- N —1
d = dimM — dimA = ”(”2) deg(L) + (n* —1)(g — 1).

Flrst we note that the morphism hpar g surJectlve since the usual Hitchin
map hiM— Ais surjective. Furthermore, as RPar i equivariant with respect
to the scaling G,,-action on the Higgs fields, it suffices to bound from above
the dimension of the fiber over (z,0) € C' x A for each point z € C by d, since
upper semicontinuity will force all other fibers to have the same dimension
upper-bound.? We fix the point p from now on.

Using the assumption deg(L£) > 2g, we may express £ as Oc(D) with
D =2z9y+ x4+ - -+ 2 an effective reduced divisor containing x = zg. In
particular, a Higgs bundle (£,6 : £ — £®Q,) can be viewed as a meromorphic
(un-twisted) Higgs bundles with at most simple poles along D:

(£,0), 0:€—E@QLD).

We will control the fiber dimension using an analogous bound for the nilpotent
cone for strongly parabolic Higgs bundles for the pair (C, D).

Recall that given D as above, a strongly parabolic Higgs bundle consists
of an SL,, Higgs bundle of degree d,

(£,0), 0:&—=ERQL(D), 1k(€) = n, det(£) ~ N, trace() =0,

2Furthermore, we actually show that each fiber has the same dimension. But the dimension
bound is enough for our purpose.
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along with a flag at each point x; € D,
£’$i = Fp0 D Foj1 D Fyy2,D -+ D Fpyp =0, dimin,j/Fx—i7j+1 =1,

such that the Higgs field satisfies 0(Fy, ;) C Fy, j+1.°

Let M spar( D) denote the moduli space of strongly parabolic Higgs bundles
associated with the pair (C, D), such that the underlying twisted Higgs bundle
is stable. Let

n
AD) =P H(C.OQF(-D) c A
=2
denote the linear subspace consisting of sections which vanish along the points
of D. There is a Hitchin map for the strongly parabolic Higgs moduli space

h3P2T . NP2 (D) — A(D)

which is proper, surjective, and Lagrangian with respect to a natural holo-
morphic symplectic form [14]. In particular, the dimension of the zero fiber is
given by
- n
dim M™(D)o = dim A(D) = Y ((j — 1)(deg(1)) + ¢ — 1)
=2
n(n —1)

= =5 deg(L) + (n* ~ 1)(g ~ 1).

See also [36, Th. 6.9] for a direct proof of the above dimension formula.*
We now consider the following diagram relating the two types of parabolic
Higgs moduli spaces M*P* (D) and MP?":

Mspar(D)O ] Mspar(D)

I b

(31) FIP s B0 gy o TP

{(2,0)} —— 2 x A(D) — C x A,

where all squares are Cartesian.
We first claim that the natural map ¢ (sending a strong parabolic Higgs
bundle to a parabolic Higgs bundle) is surjective. Indeed, given a point z €

30ne may compare this with the (non-strong) parabolic condition 8(F ;) C Fi ; we used
earlier in this paper for the global Springer theory.

4The formula above has g less than the dimension formula obtained in [36, Th. 6.9], since
we consider the SL,, case where we fixed the determinant on C.
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MPar lying over C x A(D), choosing a point in its preimage ¢~ *(z) only consists
of fixing a flag at each point of x; with ¢ > 0, preserved by the Higgs field;
since the characteristic polynomial already has zero roots at all points of D,
the Higgs field is automatically strongly parabolic.

By base change, this implies that qg is surjective as well, so we get the
desired dimension upper bound
n(n —1)

dim AP < dim M*P*" (D) = =g deg(L) + (n* = 1)(g — 1),

which completes the proof. [l

Remark 4.2. Combining Sections 3 and 4 proves that Theorem 2.6 holds
for a line bundle £ of sufficiently large degree. Then the argument of Section 2.3
implies that it actually holds for any effective L.
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