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Abstract—Obstructive Sleep Apnea (OSA) is the most common
type of sleep disorder that consists of multiple episodes of par-
tial or complete closure (apnea, hypopnea) of the upper airway
during sleep and underdiagnosed problems as there is no reli-
able portable in-home sleep monitoring system. Doppler radar
system is gaining attention as an in-home sleep monitoring sys-
tem due to its non-contact and unobtrusive form of measure-
ment. Prior research on Radar-based sleep monitoring systems
mostly focused on distinguishing apnea and normal breathing pat-
terns using radar-reflected signal amplitude that can’t distinguish
accurately apnea and hypopnea events. Apnea and hypopnea events
were distinguished using effective radar cross-section (ERCS) for
short-scale study and ERCS changes with sleeping postures and
so on. In this work, we proposed a heart rate variability-based
robust feature extraction technique to distinguish different sleep
disorder events such as apnea, hypopnea, and normal breath-
ing. HRV-based feature extraction technique was employed on
ten consented OSA participants’ clinical studies to find a distin-
guishable feature known as the power of the low-frequency band
(0.04-0.15 Hz) and high-frequency band (HF) (0.15-0.4 Hz). The
extracted hyper-feature (HF and LF) was then integrated with the
traditional Machine learning classifiers (ML) including k-nearest
neighbors (KNN), support vector machine (SVM), and random
forest. SVM outperformed other classifiers with an accuracy of
97% for distinguishing different OSA events that also supersedes
other reported results (ERCS). The proposed method has several
potential applications including in-home sleep monitoring, OSA
severity detection, respiratory disorder detection, and so on.

Index Terms—Doppler radar, heart-rate variability (HRV),
machine learning (ML), sleep disorder, in-home sleep monitoring.
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I. INTRODUCTION

BSTRUCTIVE sleep apnea (OSA) is the most common

type of breathing difficulty during sleep and it is also
among the most frequently underdiagnosed health problems [1].
Studies show that OSA patients have a high risk of diabetes, hy-
pertension, atrial fibrillation, coronary artery disease, and so on
[2]. [3], [4]. OSA is characterized by repetitive airflow reduction
(hypopnea) or cessation (apnea) due to the complete or partial
obstruction of the upper airway during sleep [5]. According
to the American Academy of Sleep Medicine (AASM), apnea
episodes consist of complete cessation of breathing during sleep
for at least 10 seconds and hypopnea occurs when the airway is
partially collapsed resulting in shallow breathing during sleep
[5]. Determining the occurrence of apnea and hypopnea episodes
during sleep plays an important role in the diagnosis of the pres-
ence and severity of sleep apnea [6]. Although sleep apneas are
relatively easy to detect by analyzing breathing frequency, sleep
hypopnea, which is defined as a 30% drop in airflow lasting 10
seconds accompanied by either arousal or a 3% drop in periph-
eral capillary oxygen saturation (SpO2) can not be detected by
frequency analysis [6]. To date, Polysomnography (PSG) is the
gold standard technique for diagnosing OSA [7]. Although PSG
requires a dedicated sleep laboratory where trained technicians
need to be involved in monitoring patients, and at the same time,
patients need to wear different sensors on the body surface such
as the electrocardiogram (ECG), electroencephalogram (EEG)
and so on [8]. Patients feel uncomfortable during PSG tests
especially if it requires a whole night study and it can also
hamper the sleep behavior of patients [9]. Additionally, PSG
is an expensive medical testing procedure where a dedicated
sleep laboratory is required with a trained sleep technician [10].
Therefore, there are growing need and interest in developing
portable, non-contact, and unobtrusive sensing methods for de-
tecting OS A and its associated breathing pattern events (normal,
apnea, and hypopnea) so that patients can take this test in the
home environment without attaching any sensor to the body
surface [10], [11].

People also attempted to use video cameras for unobtru-
sive sleep apnea detection [12]. Radar technology seems more
promising than cameras as being monitored by a camera always
brings privacy concerns [13]. Radar analyzes the phase modula-
tion of the reflected signal induced by the minute movement of
the chest surface owing to cardio-respiratory activities, making
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it a promising non-contact vital signs monitoring tool that is
privacy-invasive [14]. Prior research demonstrated the feasibility
of using radar technology for diagnosing OSA using various
methods such as manual reading [15], amplitude thresholding
[16], and classical machine learning with handcrafted features
[17], [18]. All of the attempts described here mostly focused on
recognizing apnea events from the normal breathing pattern and
shows promising results. However, for detecting the severity
of OSA, distinguishing between apnea, and hypopnea from
normal breathing patterns is very critical [19]. To the best of
our knowledge, two research works have also attempted to
distinguish between apnea, hypopnea, and normal breathing
patterns using microwave Doppler radar [20], [21]. In an attempt
[20], effective radar cross-section (ERCS) has been used to
distinguish between different apnea events with an accuracy of
96.7%. However, the study was performed on a short scale with
just five participants in a clinical study and ERCS is dependent
on the transmitted signal frequency, and it changes with the
sleeping postures or torso orientation [22]. Additionally, the
reported result in [20] used was for five patients with 20 minutes
of data for each patient. In this work, we reanalyzed the ERCS
method for a large-scale ten-patient dataset consisting of 394
minutes (6 hours) of each patient and the accuracy degrades
to 78.2%. Moreover, The errors and difficulties in the center
estimation and imbalance compensation make the use of the arc
radius feature (ERCS) less accurate. Therefore, the method is
not robust and cannot be implemented in a realistic setting as
people may sleep in different postures. In another attempt [21],
60-GHz frequency-modulated continuous wave (FMCW) radar
was utilized where radar data was segmented for 30 seconds, and
segment-wise z-score normalization was performed based on
the mean and standard deviation of the signal for the automated
detection of apnea, and hypopnea events for OSA diagnosis with
an accuracy of 73.6% [21].

In [16], the amplitude threshold algorithm can isolate para-
doxical breathing (apnea or hypopnea events combined) and
normal breathing with an accuracy of 92% but can isolate
apnea, hypopnea, and normal breathing individual events with
an accuracy of 73.6% only. Additionally, this algorithm’s deci-
sion criteria based on the amplitude of the signal for isolating
apnea and hypopnea did not work accurately for 2.4 GHz and
24 GHz radar systems individually, which creates ambiguity
in isolating these two events (apnea and hypopnea). Moreover,
signal amplitude may vary based on the propagation character-
istics of the surroundings. Therefore, a robust feature extraction
technique is required for automated apnea, and hypopnea events
classification using microwave Doppler radar.

This article proposes a new and robust heart rate variability
(HRV)-based feature extraction technique and also explores the
feasibility of this technique to recognize different respiratory
disorder events from ten OSA patients’ clinical study data with
an accuracy of 97% that supersedes all the reported literature re-
sults. The core contribution of this work is to find the distinguish-
able HRY features for the reliable classification of different OSA
events. HRV is a method that represents beat-to-beat oscillations
and is considered a measure of neuro-cardiac function that also
reflects the automatic nervous system [23]. It has been found
in the literature that the magnitude of variability of the HRV is
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Fig. 1. Block diagram of the proposed system. The proposed system consists
of CW radar and then using signal processing approaches HRV features were
extracted. From the distinguishable HRV features, OSA events can be classified
by integrating ML classifiers.
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associated with the severity of OSA [24], [25]. Thus, the HRV
feature extraction method has been chosen for our work, which
shows a good correlation with OSA events and also supersedes
the accuracy. The core contribution of this work is as follows:

1) A new and robust HRV-based feature extraction technique
has been proposed and its feasibility has been tested for
clinical study OS A datasets and the accuracy of the system
supersedes other reported results.

2) We have found hyper-features known as the power of
the low-frequency band (LF) (0.04-0.15 Hz) and high-
frequency band (HF) (0.15-0.4 Hz) that show significant
variations for different respiratory patterns from the clin-
ical study of OSA patients’ data and showed superior
performance

3) Traditional machine learning (ML) approaches have been
integrated with the extracted feature set.

II. MATERIAL AND METHODS

The proposed system for OSA events classification includes
capturing physiological signals using continuous wave (CW)
Radar, extracting the HRV features from it, and then classi-
fying the OSA events using distinct features integrated with
machine learning classifiers. The dataset used in this work is
from the clinical study of ten OSA patients using 2.4 GHz and
24 GHz radar that was reported in a prior research attempt [16].
We also extracted HRV time and frequency domain features
from the radar-captured signals and then tried to find some
distinguishable features to recognize different OSA events by
integrating ML classifiers. For the verification of the different
OSA events, we also used sandman data and compared our
result with the standard sandman measurement which is used
as the gold standard method [16]. The schematic diagram of the
proposed system is shown in Fig. 1. The rest of the subsection
discusses the radar system, the procedure of sleep study, the
theory of microwave Doppler radar for the OSA study, and HRV
feature extraction validation

A. Radar System

In this work, we used a clinical dataset from prior reported
results [16] that used a 2.4 GHz and 24 GHz combined radar
system shown in Fig. 2. This system was used to acquire data
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Fig. 2. Radar module combination of 2.4 GHz and 24 GHz used for OSA
clinical study. Taken from [16].

from the OSA patients, and clinical study data was reported
in prior research efforts [16]. The 24 GHz radar was a com-
mercial K-MC1 module from an RF beam Microwave (Rfbeam
Microwave GmbH, Gallen, Switzerland) containing a 24 GHz
K-band antenna with an RF LNA and two IF preamplifiers [26].
The 2.4 GHz radar was assembled using coaxial components
[16]. Digitized data were acquired from both the outputs of
the 24 GHz and 2.4 GHz radar using the National Instrument
data acquisition module (NI-USB 6259, National Instruments,
Austin, TX, USA) and used for analysis later on [16]. The
transceiver antenna of the radars was placed above the chest
of a patient in a supine position so that the chest and abdomen
movement could be perpendicular to the plane of the antenna.
There was an approximate distance of one meter between the
antenna and the patient’s chest so that the patient’s movement
wasn’t hampered during sleep [16].

B. Sleep Study Dataset

The OSA patients’ data was acquired from a previous study
which was approved by the Institutional Review Board of the
University of Hawaii at Manoa the study was performed at
the Queen’s Medical Center, Honolulu, HI, USA [16]. Ten
known OSA patients volunteered to participate in the study at a
certified sleep study center (Queen’s Medical Center, Honolulu,
HI, USA) [16]. All the participants wore loose-fitting two-piece
sleepwear and the efficacy of Doppler radar remote respiration
sensing through clothing and other obstacles has been demon-
strated in prior studies [27], [28], [29]. Prior written consent
regarding the study was taken from the participants and it was
prohibited for them to use the Continuous Positive Airway Pres-
sure (CPAP) machine while the study was underway. The radar
system was incorporated with a PSG system (GOLD standard)
from Embla called the Sandman System [16]. A practicing
sleep technician scored the PSG data after every test. Apnea
and Hypopnea events were marked with timestamps for each
recorded data and the same time indexes from the radar data were
separated to extract HRV features from those time-segmented
data.

C. Theory of Respiratory Pattern Acquisition Using Radar

The quadrature baseband data obtained from the radar system
shown in Fig. 2 has been used to detect the apnea events from

a sleep study. The Doppler radars in this system have two
receiver output channels, one is in-phase (/) and another one
is quadrature-phase (Q). The advantage of using a quadrature
receiver is that it fixes the null point problem the single-channel
radars have [28]. The two quadrature outputs can be mathemat-
ically expressed as [29]:

By (t) = Asin (9 + 4ﬁ+{t) + Ap (t)) (1)

W 4 ag (t)) @)

Where, Br(t) is the in-phase channel signal, Bo(t) is the
quadrature-phase channel signal, x(1) is the chest displacement,
A is the signal amplitude, A is the wavelength of the transmitted
signal, A@)(t) is the residual phase noise and # is the constant
phase shift [29]. The tiny chest movements during breathing
can be found as a phase shift in the reflected radar signal [29].
1/Q imbalance of the quadrature radar data was corrected by the
Gram-Schmidt method and DC offset calibration was performed
by removing the DC offset terms in 1/Q channels [16]. Arc-
tangent demodulation technique has been used to extract the
maximum chest displacement information from the quadrature
radar shown in (3), [29].

)

o (mm ( %ﬁ&); )) =0+p (t))(3)

We also used the Matlab unwrap function to mitigate the
phase wrapping issue. This function unwraps the radian phase
angles in a vector ¢(t). Whenever the jump between consecutive
angles is greater than or equal to 7 radians, unwrap shifts the
angles by adding multiples of =27 until the jump is less than .
Here, p(t) = 4mx(t)/A. The chest displacement information can
be approximated from (4) as follows:
oy~ 28 ()
where (f) is the phase of the signal and x(f) is the chest
displacement. Prior research has demonstrated that there are
amplitude and arc of the radius changes in the radar signal during
apnea and hypopnea events [16], [20].

Bg(t) = Acos (6‘ +

D. HRYV Feature Extraction Validation

We have taken 60-second windows for HRV parameter calcu-
lation. The extracted time domain and frequency domain HRV
metrics have been enlisted in Table I shown below [30].

1) Heart Rate: Generally, we can find heart rate (HR) from
the number of cardiac cycles within a certain amount
of time [30]. Fast Fourier Transform (FFT) is another
signal-processing approach to finding the HR on the
collected respiration segment. For heart rate waveform
extraction we used a bandpass filter with a cut-off fre-
quency of 0.8-2 Hz.

2) Standard Deviation of Successive Differences (SDSD) of
RR intervals: For instance, if the recorded data has N
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TABLE1
EXTRACTED HRV METRICS
Categories  Indexes Features
1 Heart Rate
2 Standard Deviation of Successive Differences
of RR intervals (SDSD)
3 Standard deviation of IBI's (SDNN)
4 Root Mean Square of Successive Differences
Typical of IBI’s (RMSSD)
Features 5 NN50 (NN intervals that differ more than 50
ms)
6 Percentage of power in Low frequency Band
(pLF)
7 Percentage of High Frequency Band Power
(pHF)
8 LF/HF ratio
9 Threshold Voltage for R peak Detection (Vth)
Hyper- 1 Power of Low Frequency Band (LF)
Features 2 Power of High Frequency Band (HF)

3

S’

4)

heart cycles and the peaks can be denoted as R,;, then
the set of peaks can be expressed as:

Rex == [R$11 Rﬁ‘Z:RxS:Rmtlu----:RxN] (5)

The time of occurrence of each peak is denoted by py, .
The time interval between two R peaks is denoted by
Interbeat Interval (IBI). It can be expressed as:

(6)

The successive differences of the interbeat interval are
represented by the below equation

TIBH = tp:c,:_:-_ =5 tpzi

)

After acquiring a set of successive differences of R-R
peaks in a time segment, we can find the standard devia-
tion of that is known as SDSD and it can be represented
by the below equation [30]:

Tspi = TrBriv1 —TiBri

N 1
SDSD = \/ > i1 wTspir —Tspi)*  8)

Here, N is the number of beats in the segmented window
Standard deviation of IBI's (SDNN): For measuring the
standard deviation of sinus beats of a segmented window,
we need the time interval between two R peaks. R-R
interval can be extracted using (6). After finding (IBI)
within a specified window size, SDNN is calculated by
the below equation [30]:

N ]
SDNN = \/Z?;:l ﬁ(TIBIiJ,-I ~Tigri)®  9)

Here, T gy, is the interbeat interval of two R peaks.

Root Mean Square of Successive Differences of IBI's
(RMSSD): We obtain the root mean square of successive
differences between normal heartbeats by calculating
successive time differences from (7) for a time window.
Then we find the root mean square of the values of all
successive differences in that segment from the following

5)

6)

7

8)

9)

10)

11)

equation [30]:

1 N
RMSSD =/ < > Tns

NN50: NN50 is calculated by measuring the number of
adjacent interbeat intervals, which have a difference of
at least 50ms. It is easily acquired from the difference
between IBT’s.

Power of Low-Frequency Band (LF): After converting
the time domain signal into the frequency domain signal,
we calculated the power spectral density by taking the
square of the absolute value of the normalized magnitude
of the FFT. The Low-Frequency (LF) band power is mea-
sured by taking the summation of powers for frequency
components within the region of 0.04 to 0.15 Hz.
Power of High-Frequency Band (HF): The High-
Frequency (HF) band ranges from 0.15 Hz to 0.40 Hz.
Similar to LF band power, HF is measured by taking a
summation of powers in the HF region. Fig. 6 shows the
HF in the PSDs of different respiratory events.
Percentage of power in Low-frequency Band (pLF): We
can compute the overall percentage of LF band power in
the total power of the signal consisting of HF band power
and LF band power using (11).

_ EF
" LF +HF

Percentage of High-Frequency Band Power (pHF): We
can compute the overall percentage of HF band power in
the total power of the signal consisting of LF band power
and HF band power using (12).

(10)

pLF x 100 (11)

pLF x 100 (12)

_ HF

~ LF+HF
LF/HF ratio: LF/HF ratio can be computed by taking
the ratio of LF band power and HF band power in a time
window.

Threshold Voltage for R Peak Detection (Vth): The
threshold voltage (Vth) has been used to detect R peaks
in a heart signal [30]. The zero-crossing method is a
common method for detecting peaks, but it can overesti-
mate the number of peaks due to noise and harmonics of
the respiratory signal in the same frequency band [31],
[32]. To mitigate this problem, the threshold voltage is
used as a baseline for detecting peaks instead of using a
zero-voltage baseline. The threshold voltage is calculated
as the average root mean square voltage of all the peaks
detected using the zero-crossing method, divided by two.
This helps to reduce the number of false positives and
improve the accuracy of peak detection in the heart
signal. In (13), we can see that Vth is the half of average
root mean square voltage of all peaks in the zero-crossing
method.

1 Vi ()]
V;h—EET (13)
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Fig. 3. Radar heart signal in the time domain with a duration of 5 seconds
showing the R peaks, R-R intervals & threshold voltage (Vth), and its comparison
with the ECG signal from the same subject. Here, Vth is indicated by a red line,
and the RR intervals (green line) are measured using the distance between two
R peaks (orange square). The R peaks of the radar match with that of the ECG
acquired signal. The HRV time domain metrics SDSD, SDNN, RMSSD, and
NNS50 can be extracted using the R peaks and R-R intervals of the radar signal.

In the above equation, N is the number of peaks from the
zero crossing method in a time segment. Fig. 3 illustrates
the threshold voltage in the heart signal. For initial validation
purposes, we collected data from five normal healthy partic-
ipants using 24-GHz CW radar. The radar that was used in
this case was a commercial K-LCla module from RF beam
Microwave (Rfbeam Microwave GmbH, Gallen, Switzerland).
It is an 8-patch module with a 24 GHz K-band antenna [26].
It has a beam aperture of 80°/34° [26]. With the approval of
the Ethical Review Committee of the Faculty of Biological
Sciences, University of Dhaka, we collected data from five
human subjects using the K-LC1la radar module all within the
age of 21-25. For comparison purposes, we also used the ECG
reference BSL MP46 from BIOPAC Systems Inc., which is a
2-channel ECG data acquisition device. Using the RR intervals
from both the radar and ECG data, different HRV time and fre-
quency domain metrics were extracted and their accuracy with
the ECG-extracted HRV parameter was calculated. The efficacy
analysis of HRV parameter extraction using Radar and ECG has
been reported by our group recently [33]. Our analysis indicated
that the accuracy of the proposed HRV extraction was always
above 93% both for the time domain and frequency domain
parameters [33]. Fig. 4 illustrates the comparison between the
PSDs of the radar heart signal and the reference ECG signal
of a single subject. The LF and HF power of the radar closely
matches the ECG. The LF power of both the radar and the ECG
ranges from —80 dB/Hz to —85 dB/Hz. The HF power of the
radar, although goes 10 dB/Hz higher than the reference ECG
but the power decline at 0.3 Hz will compensate for it and the
overall HF band power has strongly correlated with that of the
ECG.
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Fig. 4. Heart signals recorded from a single subject using radar and ECG
(a, and c) and their respective PSDs (b, and d). The LF and HF power from
the PSD of radar heart signal correlates with that of the ECG signal. where
the LF power resides between —80 dB/Hz to —85 dB/Hz and the HF power
between —60 dB/Hz to —80 dB/Hz. The number of R peaks of the radar matches
accurately with the ECG signal as well.

III. RESULTS

This section consists of four subsections. Section I discusses
the proposed feature extraction techniques. Section II illustrates
the ML classification results and, Section III illustrates the
comparison of this work with the state of the art.

A. Proposed Feature Extraction Techniques

After acquiring and demodulating the radar data, we cal-
culated the HRV time domain and frequency domain metrics
from the observable events to use as features for machine
learning classifiers. Following the analysis of patterns, we have
categorized the features into two separate spaces (i.e., typical
and hyper-features). Hyper-features are the dominant features,
which show significant variation in different respiratory patterns.
The extracted time domain and frequency domain HRV metrics
have been enlisted in Table I according to their categories.

A single cycle of heartbeat includes two contractions, one
is atrial contraction, and another is ventricular contraction [32].
Electrocardiogram (ECG) acquisition generally represents these
contractions as a P wave for atrial contraction and a QRS
complex waveform for ventricular contraction. R wave in the
QRS wave complex is the maximum magnitude of a single heart
cycle. Heartbeat signals are depicted by electric signals whereas
the radar sensors capture the respiration patterns from the tiny
movement of the chest surfaces that causes a phase change in the
reflected signal [34], [35]. Unlike ECG signals, radar signals do
not show discernible peaks for atrial or ventricular motions [36].
However, the highest peaks in radars correspond to R waves in
ECG as illustrated in Fig. 3 and 4.

Hyper-feature Selection: The hyper-features were selected
based on the significant variations of those features during
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Fig.5. Heart signals recorded during apnea, hypopnea and normal sleep (first
column) and their respective PSDs (second column). The 0.04 to 0.15 Hz range
in the PSDs are considered as low frequency band ranges whereas 0.15 to 0.4 Hz
are high frequency band ranges. LF and HF are measured from the frequency
components of low and high band ranges respectively.

different respiratory events. In this investigation, we found LF
and HF band powers as hyper-features as this particular feature
changes significantly for different OSA events. HF power corre-
sponds to the variation of HR in coordination with the respiration
cycle [37], [38]. Heart rate increases during inhalation and de-
creases during exhalation [39]. Therefore, for different breathing
patterns, the inhalation and exhalation periods are also different.
This variation affects the HF band power. Consequently, for
different OSA events, the HF band power has discernible values.
The PSDs in Fig. 5 depict the variation of HF power for the
different OSA events. We can also see the same variation for
different subjects in Fig. 6. Hence, HF band power is referred
to as a dominant feature. An increase in LF power is observed
during slower breathing [39], [40]. Thus, apnea and hypopnea
events will have a higher LF band power compared to normal
events. The PSDs of Fig. 5 show the difference in the LF powers
for different OS A events. The LF power of normal events can be
seen as lower than that of apnea and hypopnea events. Different
subjects exhibit the same variation in LF powers for different
breathing patterns. The OSA events are perfectly distinguishable
using LF and HF band powers, which is why they have been
selected as hyper-features.

B. Machine Learning Classifiers

After extraction of HRV different features (normal and hyper-
features) we used to train machine learning classifiers. 75% of
the dataset was taken for training and 25% of the dataset was used
for testing the ML classifiers. For the OSA clinical study dataset,
we used 6 hours and 30 minutes of recorded clinical data from
ten patients which contained 4728 breathing cycles (inhaling
and exhaling), among them, the apnea cycle was almost1584
cycles, hypopnea 1560 cycles and normal breathing was 1584
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Fig. 6. PSDs of Apnea, Hypopnea and Normal breathing pattern during sleep
of three different OSA patients. The HF power is significantly different for all
the respiratory events and this variation can be seen for all the subjects as well.
LF power of Apnea and Hypopnea events are higher compared to that of Normal
events.
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Fig. 7. Confusion matrix for OSA events classification showing the true and
false-positive rates of the three events (Apnea, Hypopnea and Normal) using
(a) HRV hyper-features LF and HF and (b) ERCS method. The overall classifi-
cation accuracy for HRV and ERCS method are 97.0% and 78.2% respectively.

cycles. For the classification of events from the HRV-based
features, SVM, KNN, and Random Forest classifiers were used.
The SVM classifier achieved the highest accuracy of 97.0%
and outperformed the other classifiers. Fig. 7(a) illustrates the
confusion matrix of the SVM model to classify the OSA events
from the extracted HRV features. It is seen in the confusion
matrix that 3% of apnea events were identified as hypopnea
and 1% of data points were misclassified as normal events.
Similarly, 2.06% of actual hypopnea events were classified as
normal events. No hypopnea events were wrongly classified as
apnea events. Moreover, 2.02% of normal events were predicted
as apnea events and 1.01% as apnea events. Misclassification
occurred mainly due to some hypopnea events having desat-
uration and arousal events mixed with them, which affects the
HRYV frequency metrics. Most of the sleep events were classified
accurately with an overall accuracy of 97.0%. This underscores
the efficacy of the proposed method. Table II illustrates the
accuracy achieved by different ML classifiers for identifying
different sleep events. In Table I1, the accuracy for three different
classifiers using the hyper-features and all the typical features
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TABLE IT
ACCURACIES FOR DIFFERENT CLASSIFIERS

Accuracy
Classifiers
Hyper Feature All Features
KNN 91.9% 86.8%
Random Forest 95.6% 93.9%
SVM 97% 94.9%

are shown. The results using only hyperfeatures outperform the
results from all the features in each of the three models (KNN,
SVM, Random Forest). This indicates the hyper-features LF and
HF are unique and can clearly distinguish the events better than
the typical features.

C. Comparison With HRV vs. Non-HRV Methods

Prior research on the classification of OS A events using Radar
involved amplitude thresholding, machine learning on hand-
crafted features, and deep learning [16], [20], [21]. Effective
radar cross-section (ERCS) has been extracted from the five
OSA patients to classify different events [20]. The ERCS method
was implemented for a short-scale study with an accuracy of
96.7% [20]. Additionally, the reported results included only
the analysis of selective 30 episodes of 60 seconds of each
OSA event [20]. The IQ-imbalance and DC-offset estimation
by employing center estimation algorithms is one of the diffi-
culties with the ERCS technique using quadrature radar [39].
Numerous algorithms have been put forth, and it has been
demonstrated that when the displacement length is tiny, the
fitting error increases, and the center estimation algorithms are
not given enough information [40]-[41]. Locating the circle to
which the arc belongs and bringing its center to the origin of the
complicated I-Q plot are the functions of the center estimation
algorithm [20]. We also reanalyzed the ERCS method on the
same clinical study dataset used here in this work. But, from
Fig. 8 we can see that the arc received from the radar signals
for the 2.4 GHz and 24 GHz radars for respiratory movement
is lower than 40% of the total fitted circle which makes the
imbalance correction erratic and challenging. As seen in Fig. 8,
the arc radius for apnea, hypopnea, and normal events are
close and due to wrong estimations, they can overlap easily.
This results in misclassifications in differentiating apnea and
hypopnea events. There were a total of 1196 sets of data of
which 75% were taken for training and 25% for testing. The
SVM classifier was used for the classification of OSA events.
Fig. 6(b) illustrates the confusion matrix of the SVM model to
classify the OSA events using the ERCS method. In another
attempt [16], the signal amplitude thresholding technique was
used to classify the OSA events. They validated their proposed
method by comparing it with the results from the gold standard
technique polysomnography (PSG) and achieved an accuracy of
75% in distinguishing apnea, hypopnea, and normal breathing
patterns. A 2.4 GHz and 24 GHz radar is part of the PRMS
monitoring system that was used to achieve high sensitivity

Fitted Cirele
"""" Noisy Bassband

10 Plot for Normal (2.4 GHz] 12 Plot for Hr ea (2.4 GHz)
0.0 o
2 E s
o i = g
o o o
o o =}
0

-0.05 a 0.05
| Channal

-01 D05 0 005 O 0.1 o 01
| Channal I Channet

(a)

1Q Plot for Apnea (24 GHz,

1@ Plot for Normal {24 GHz,

=
=1
&

@ Channel
. O Channel
o

=
Q Channel

L B
2 B
gt

-0.08 o 0.05
| Channe|

01 005 0 005 04 -0 a o1
| Channe| | Channel

1

Fig. 8. Circle drawn from a radius of the arc of different OSA events (apnea,
hypopnea, and normal) for (a) 2.4 GHz and (b) 24 GHz radar using the center
estimation algorithm. The arcs of the 24 GHz radar are larger compared to the
tiny arcs of the 2.4 GHz radar, which gives a better estimation of the center and
a more accurate radius of the arc [39].

and high resolution. Previous results demonstrated the ability of
2.4 GHz to distinguish between normal and paradoxical breath-
ing [16]. The resolution, however, is insufficient to discriminate
between hypopnea and apnea. The 24 GHz radar, on the other
hand, has difficulty identifying normal breathing while being
successful in differentiating between apnea and hypopnea [16].
As a result, where paradoxical breathing was detected after
evaluating both 2.4 GHz and 24 GHz, the 24 GHz result was
used instead of the 2.4 GHz result. The success rate is increased.
We also extracted HRV features from the 2.4 GHz and 24 GHz
separately. In our investigation, we found that the LF and HF
powers of the 24 GHz radar are 10 to 20 dB/Hz higher than
the 2.4 GHz radar. For the 2.4 GHz radar, the LF power of
apnea events ranges from —65 to —70 dB/Hz and HF power
ranges from —40 to —60 dB/Hz. The LF and HF power of
hypopnea events overlap with that of the apnea events for the
2.4 GHz radar, both having LF powers ranging from —65 to
—70 dB/Hz and HF powers around —60 dB/Hz. This results
in a smaller number of misclassifications between the apnea
and hypopnea events, which is shown in Fig. 9(a). This overlap
of apnea and hypopnea events doesn’t occur for the 24 GHz
radar. This leads to lesser misclassification and higher accuracy
than the 2.4 GHz radar. For the 24 GHz radar, there are some
overlaps between the LF and HF powers of hypopnea and normal
breathing events. Both have LF powers in the —60 dB/Hz range
and HF powers from —40 to —60 dB/Hz. This causes misclas-
sification between hypopnea and normal events illustrated in
the confusion matrix of Fig. 9(b). Combining the two radars
lessens the overlap between the LF and HF powers and makes
the apnea-hypopnea events more discernible. The accuracy of
the combined frequency band dataset using the HRV method
was around 97% and using the ERCS method the accuracy was
around 78.2%. Our large-scale dataset analysis clearly illustrates
that the accuracy of the HRV method superseded the non-HRV
method (ERCS). A comparative analysis of this work with the
state of the art has been shown in Table III.
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Confusion Matrix for 2.4 GHz Radar using HRY Confusion Matrix for 24 GHz Radar using HRV
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Fig. 9. Confusion matrix of OSA events classification showing the true and
false-positive rates of the three events (apnea, hypopnea, and normal) for
(a) 2.4 GHz radar, (b) 24 GHz radar, and (c) a mixture of 2.4 GHz & 24 GHz using
the hyper-features LF and HE. The overall classification accuracy for the 2.4 GHz
and 24 GHz radar were 90.9% and 92.93% respectively. When combined, the
accuracy is 97%. These were calculated based on the average true-positive rate
of the three events.

TABLE III
COMPARISON OF THIS PAPER WITH RECENT RELEVANT WORKS

Reference P Feature No. of Accuracy
& year Extraction Participants {%a)
[21] 60 GHz Convolutional OSA Patient 73.6%
2022 FMCW  Recurrent Neural (44)
Radar  Network (CRNN)
[16] 24 Amplitude OSA Patient T5%
2020 GHz & thresholding (10)
24 GHz using PRMS
cwW integrated into
Radar Sandman
software
[20] 24 Breathing rate OSA Patient 96.7%
2020 GHz from FFT and (5) (Short
cwW Square of Radius Scale)
Radar of Arc from
ERCS using OSA Patient 78.2%
Quadratic SVM (10) (Large
scale dataset)
This work 24 HRYV features OSA Patient 97%
GHz & (Time domain (10)
24 GHz and frequency
cwW domain) using
Radar SVM classifier

IV. CONCLUSION

This article proposes a robust HRV-based feature extraction
technique to classify different respiratory events, such as ap-
nea, hypopnea, and normal breathing patterns from the sleep
study dataset of ten OSA patients. The authors also found
hyper-features that are known as HF and LF show signifi-
cant variations for different respiratory patterns. The extracted
hyper-features were integrated with the traditional machine
learning classifiers SVM, KNN, and Random Forest. The SVM
classifier outperformed the other classifiers with an overall

accuracy of 97% for the OSA patients dataset. The efficacy
of the proposed robust method has been verified for the OSA
patient’s clinical study. The proposed HRV-based method has
several potential applications including in-home respiratory dis-
ease diagnosis, health monitoring, and IoT applications.
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