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ABSTRACT Buildings consume about 30% of the world’s energy, and produce 37% of global energy-related
CO; emissions. Building energy efficiency is becoming even more critical as climate change related events
take a toll on human life, and further increase building energy consumption due to higher cooling needs.
Reducing building energy consumption is imperative to break this detrimental cycle of harmful emissions
creating more energy demand. Occupancy sensors play a crucial role in building energy efficiency by
optimizing the operation of lighting, heating, ventilation, air conditioning (HVAC) and other systems based
on the presence or absence of people. Microwave radar-based occupancy sensors offer improved accuracy,
versatility, and coverage range over other occupancy sensors, while remaining non-intrusive and low-cost.
However, building energy savings from usage of radar-based occupancy sensors has not been widely
documented. Here, we show that microwave occupancy sensors, installed in an academic office building in
Hawai’i can be used to manage HVAC schedules, ultimately providing energy savings of over 6 kWh/yr/sf,
about 20% reduction in energy usage for this building. These results demonstrate how controlling energy
consumption based on microwave occupancy sensing can greatly reduce building energy consumption which
is crucial for controlling climate change.

INDEX TERMS Occupancy sensing, HVAC, Doppler radar, building energy, microwaves in climate change.

due to higher population density [5].
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Climate change related events take a significant toll on human
life, estimated to result in 83 million excess deaths between
2020 and 2100 [1], making climate change the most important
global challenge of this century [2]. Buildings account for
about one third of global energy consumption and related
emissions contributing to climate change [3], and their impact
is rising with increasing cooling needs, especially in urban
areas in the developing world [4]. While climate change is
reducing heating demand in some geographic areas, increased
cooling demand in warmer climates is much more significant

demand of air-conditioning (AC) systems, typically met by
burning fossil fuels, and refrigerant related greenhouse gas
(GHG) emissions, contribute to climate change [4]. Thus, re-
ducing building AC use is imperative to break this detrimental
cycle of harmful emissions creating more energy demand.
Improving energy efficiency, together with fossil fuel re-
duction and carbon capture, is a critical strategy for addressing
climate change [6]. In the building operations sector, occu-
pancy based controls are a promising approach for improving
energy efficiency. Occupancy data can be a valuable tool in
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optimizing energy consumption in buildings through smart
lighting control, heating, ventilation, and air conditioning
(HVAC) systems optimization, energy-efficient equipment
activation, plug load control, predictive maintenance, space
utilization optimization, demand response programs, data-
driven decision-making, and integration with building au-
tomation systems. By leveraging occupancy data in these
ways, building owners and operators can significantly reduce
energy consumption, lower utility costs, and contribute to
environmental sustainability.

Inaccurate assumptions of building occupancy can result
in wasted energy on plug loads, lighting, and HVAC. HVAC
systems can consume a significant amount of energy, ac-
counting from 40% to over 70% of a building’s total energy
consumption, depending on building use and geographic lo-
cation [7]. The potential energy-savings of occupancy-based
control of HVAC has been studied [8], but this technology is
not widely adopted. Even though occupancy sensing lighting
controls are relatively common, approximately only 17% of
commercial buildings in the United States had a functional
occupancy sensing system installed as of 2018 [9]. HVAC
control is mostly implemented through temperature set points
and scheduling, providing modest energy savings.

Passive infrared (PIR) and ultrasonic (US) occupancy sen-
sors are most commonly used for lighting controls, however
they both have limited accuracy and are subject to place-
ment restrictions [10]. To overcome these limitations, other
technologies including hybrid PIR and US, video, CO,, and
radar have been investigated [10], [11], [12]. Radar occupancy
sensors have emerged as dominant technology for in-cabin
automotive applications, due to their reliability and privacy
preserving features [13], [14]. This technology has also been
demonstrated effective for building occupancy sensing [15],
[16], [17], [18], including occupant count [19]. A Doppler
radar sensor can provide a wide coverage area while main-
taining high enough sensitivity to resolve motion as small
as that caused by a heartbeat. Furthermore, Doppler radar
is not subject to interference from light, heat, ventilation, or
sound.

This paper describes microwave radar-based occupancy
sensing system implemented to save building energy by in-
forming HVAC scheduling. The sensing system consists of
multiple sensors and data user interface used to track and
display office space use over a designated time period (Fig. 1).
Six Doppler radar-based occupancy sensors were installed
in three separate office spaces in an office building on the
University of Hawai’i at Manoa campus [20]. The data was
recorded over an eight-month period and analyzed to make
recommendations for modifications to the HVAC schedule.
This paper describes sensor system design and implemen-
tation, occupancy data analysis, and calculations of energy
savings achieved based on occupancy data. This is the first
long term occupancy study using microwave sensors, demon-
strating significant energy savings benefit of over 20%, with
a potential to help break the detrimental cycle of harmful
emissions contributing to climate change.
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FIGURE 1. Overview diagram of microwave occupancy system used in the
occupancy study.

FIGURE 2. Photograph of one of the deployed microwave occupancy
sensors.

Il. MICROWAVE OCCUPANCY SENSING SYSTEM

The occupancy sensing system used in this work consisted
of six microwave sensors with integrated digital recording
and wireless communications that plugged directly into wall
power outlets, signal processing software for detecting pres-
ence events, and a graphical data user interface for identifying
trends in the data. Fig. 2 shows a photograph of one of
the deployed sensors. The entire sensor was adapted to be
completely contained in a standard outdoor single-outlet re-
ceptacle cover in order to conform to the requirements that the
device be unobtrusive, minimally affect existing infrastruc-
ture, and use a standard UL-listed connection to an existing
AC power outlet. While the sensors support Wi-Fi-based
wireless communications for data transfer, this particular de-
ployment imposed restrictions which resulted in the data
being collected manually on a weekly or monthly basis using
the built in Secure Digital (SD) card flash-drive recording
capability. The system included a custom Web-based user data
platform which provided various means to analyze the results
including logs, plots, heat-maps, etc., which could compara-
tively display occupancy data over specified time periods. The
design and optimization of the displays were also part of the
occupancy study project.

The radar-based occupancy sensors used in this work were
developed based on the Adnoviv TruePODS sensor [18], [21].
The sensor uses radar technology to recognize human physio-
logical motion in the vicinity, and is intended to effectively
sense both moving and sedentary occupants. Sedentary oc-
cupants are often not detected by the commonly used PIR
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FIGURE 3. Block diagram and specifications for the microwave occupancy
sensor.

and US occupancy sensors, such that occupants need to
wave at the sensors to get the lights to turn back on [10].
This often leads to complete disuse of these sensors which
makes such technologies particularly problematic. Further-
more, radar based sensors can be used for greater range and
coverage, with a single TruePODS sensor designed to cover
rooms up to 100 m? and demonstrated for vital signs sensing
throughout a 3.4 m x 8.5 m conference room [18]. Radar
based sensors are also better suited to detecting the submi-
cron displacements associated with cardiopulmonary activity,
particularly at millimeter wavelengths [22].

A. HARDWARE

Fig. 3 shows the block diagram of microwave occupancy
sensor. The sensor is implemented with an integrated 2.4-GHz
radio and microcontroller, which generates the RF signal nec-
essary for radar transmission and demodulation of the return
signal. A portion of the generated RF signal is amplified and
sent to the air-gap antenna that is integrated within the sen-
sor enclosure. This continuous wave (unmodulated) signal is
transmitted into the coverage area. The custom air-gap patch
antenna has a full-width half-maximum of approximately 60°
x 80°. The signal reflects off objects in the coverage area,
and the return signal is thus modulated by any motion in the
area, including occupant ambulatory motion and the respira-
tory motion of sedentary occupants. The reflected signal is
received by the same antenna, and directed to a radio mixer,
which demodulates the signal. Following baseband filtering
and amplification the signal amplitude is roughly proportional
to the motion in the space. This signal is digitized by the
integrated radio and microcontroller. Processing to determine
occupancy vs. vacancy can be performed by the microcon-
troller, but in this case, the raw data was recorded to enable
testing of multiple processing approaches. The resulting data
is then logged to an SD card or transmitted via the integrated
Wi-Fi Module. The processed data is then uploaded to a cus-
tom data service platform for further analysis.

B. SIGNAL PROCESSING

The algorithm used to determine occupancy vs. vacancy
from the microwave occupancy sensor data makes use of the
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FIGURE 4. Flow chart for algorithm used for occupant presence
determination.

Riemann integral of the radar output. The flow chart for the
algorithm is shown in Fig. 4.

The baseband output signal from radar sensor can be ex-
pressed as:

X (t) = Acos (2% (2dy +2d (t))) , (1)

where A is the wavelength of the transmitted signal, dy is the
static distance of radar antenna to the human subject, d(z)
represents cardiopulmonary or other displacement, and A is
the amplitude of the received signal. The displacement relates
to the phase in the equation above in the form of:

S@t) = 47”dz. (2)

An energy spectrum method is used to recognize body
movements. Using a sampling rate of 100 Hz for the demod-
ulated signal, S(?) is diveded into continuous non-overlapping
windows Sk of 60 seconds. In the k-th window, the Riemann
integral Ay(i) of S, with respect to the 10-second period is
defined as:

tr—(i—1)%1000

2

t=t—i%1000

A (i) = ISk dt, 3)

where #; denotes the time of Sp. Ax(i), with i = 1:6, is
calculated every ten seconds. The algorithm reports body
movement and activity if there is a change of more than a
preset threshold of Ax(i).

Since body movements vary in both amplitude and fre-
quency, amplitude difference accumulation (ADA) of the
motion is used to confirm the Riemann integral, and threshold
crossing to decide between occupied and empty room states.
The ADA in every minute is defined as:

n
ADA (k) =)

i=1

Py = P )

1

where P;* denotes the i peak point of the Riemann integral
in the ™ minute, and # is the total number of peak points in
the A" minute.
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Additionally, adaptive threshold-setting based on a level-
crossing algorithm was also used for the determination. Based
on the signal’s local maximum values, a threshold crossing
was established and adaptively updated. If a point had a max-
imum value and was preceded by a value that was lower than
the threshold, it was recognized as the maximum peak. Data
was filtered after collection by the DAQ, and local maxima
were computed and compared to a threshold for level cross-
ings. The adaptive threshold was used to aid in accounting
for changes in measurement equipment over time as well as
temperature variations and other environmental factors. The
baseline for the threshold was established via calibration at
the beginning of the installation, and later adjusted based on
the data average and standard deviation. In practice, this was
basically a one-time set-up calibration that remained stable
as long as the sensors were not swapped out or moved to
a new location. However, the threshold could be reset for
processing if an unusual change in the sensor performance or
environmental noise were to be observed.

While the method used here to detect occupant presence
works both for large-scale ambulatory motion and small-scale
respiration and heartbeat motion, this particular use scenario
involved hallway monitoring which was dominated by large-
scale motion. A description of the use of this technology
focused mainly on small-scale motion sensing, along with the
extraction of heart and respiratory rates for sedentary subjects
in the frequency domain, can be found in [18].

Once the radar dataset was collected, the signal was low-
pass filtered with a 10-Hz cut-off frequency, as the motion of
interest typically falls within this band. Median filtering was
also used to remove the spikes that came from the SD-card
current draw surge which occurred during the data writing.
The average peak amplitude accumulation of the Riemann
integral within a 30-second window was calculated, and if
the value was greater than one or equal to zero, the system
registered no presence of any occupants. If the value remained
between zero and one, this indicated the presence of occu-
pants.

The adaptive threshold value was initially set upon place-
ment of the sensor and updated after the first data collection.
For example, for one microwave occupancy sensor (labeled
SWN) the threshold value was updated to 0.05 and this setting
was used to accurately determine the presence of occupants
for a period of almost eight months. Fig. 5 provides two
examples of 8-hour data segments for data collected from two
different sensors on two different days. The threshold for the
data in Fig. 5(a) used a value of 0.05 to determine presence,
while the data show in Fig. 5(b) used a value of 0.03.

Ill. INSTALLATION SITE INFORMATION

Six microwave occupancy sensors were placed in three wings
on the fourth floor of Sakamaki Hall at the University of
Hawai’i at Manoa (UHM), a four-floor building with two
atria and four wings on each floor. Each sensor was housed
completely in a wall-outlet cover-box due to the strict limita-
tions on form-factor and power supply imposed by the project.
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FIGURE 5. Recorded data for two different sensors (on different days)
shown as (a) and (b). Raw data was low-pass filtered at 10 Hz, and a
median filter was used to remove extraneous noise. The Riemann integral
was calculated and peaks found (asterisk, red: positive, green: negative),
and the amplitude difference accumulation (ADA) for a window of 30
seconds was used to determine occupant presence.
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FIGURE 6. Sakamaki Hall fourth floor map. Purple areas indicate sensor
placement.

Fortunately, the sensors used provide very wide coverage area
and range even when used on floor level outlets, thus it was
determined that the use of two sensors per wing would pro-
vide adequate coverage. The ground floor of Sakamaki Hall
consists of classrooms, and the three floors above are offices
used by several different departments. The locations are la-
beled as SWF, SEF, NEF, NEN, SEN, and SWN, indicating
the Southeast, Southwest, and Northeast wings and nearer or
farther from the elevator (Fig. 6). Sakamaki Hall has 4 wings
per floor and an air handling unit (AHU) in each wing, for a
total of 16AHUs. Each AHU is its own control zone.

The University of Hawai’i at Manoa (UHM) has a chilled
water system that uses water pipes to connect buildings to a
central chiller plant, or "Anchor Plant." This system is called
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FIGURE 7. Map of district cooling loop system at UH Manoa. Sakamaki
Hall is on Loop A.

a district cooling loop, and it offers an efficient way to pro-
vide heating and cooling to large facilities. The University of
Hawai’i has four major district cooling loops on the Manoa
Campus. Sakamaki Hall is one of six buildings on cooling
loop A, which uses chilled water from a plant in Holmes Hall,
as illustrated in Fig. 7.

Hawai’ian Electric has deployed an energy data collection
system within the Upper Campus of the University of Hawai’i
at Manoa. This system enables collection of data at the entry
point for incoming electric power to eight buildings at the
campus, one of which is Sakamaki Hall. The data is col-
lected in 15-minute intervals including total building electrical
energy usage (kWh) and power (kW). Sakamaki Hall’s air
conditioning uses a chiller plant that is shared with other
buildings. The plant and chilled water loop electrical usage
(kWh) and power (kW) as well as chilled water energy rate
(tons) and chilled water usages (ton-Hrs) are collected at 15-
minute intervals. The system also collects the chilled water
energy rate in BTU for each building on the chilled water loop.

IV. RESULTS

A. WEEKEND VS. WEEKDAY OCCUPANCY DATA

Occupancy data was collected over an 8-month period, and
was stored and displayed on the data user interface. The heat
map view in Fig. 6 shows the locations of the sensors, which
areas were occupied, and displays the number of occupancy
events for each sensor.

The calendar view shows the timeline for each sensor in
a different row for each day, with a line representing each
occupancy event (Fig. 8(a)). The user can click on a day to see
that day’s data with more detail (Fig. 8(b)). In the monthly cal-
endar view, it becomes clear that occupancy is much greater
on weekdays than it is on weekends.

To further analyze that, the comparative view offers the
ability to select a time period and to look at the occupancy
patterns on specific days, with user-selected bin sizes. In Fig. 9
, week days (a) and weekend days (b) have been selected for
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FIGURE 8. Screenshots of data user interface calendar view of occupancy
events, shown monthly (a) and daily (b).
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FIGURE 9. Screenshots of data user interface comparative view for
occupancy vents for on weekend (a) and one work week (b).
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(b)

FIGURE 10. Weekday and weekend energy and occupancy (a) and
weekend to weekday ratio (b).

different views. Note that the y-axes auto-scale for each view
and do not have the same scale between the two plots.

B. OCCUPANCY AND ENERGY CONSUMPTION DATA

The energy used by Sakamaki Hall at any time includes the
incoming electric power to the building and a portion of the
power used to chill water in Holmes Hall. Because the elec-
tricity information is provided in total KW on the electric
meter readings every 15 minutes, the value is converted to
kWh by multiplying the value by the number of hours, 0.25 to
provide the number of kWh used in each 15-minute span. The
chilled water usage data is provided in BTU for each building
using the chilled water. The percentage of chilled water energy
used by Sakamaki Hall was calculated as the amount used
in Sakamaki Hall divided by the sum of the amount used in
all the buildings cooled by that chilled water plant: Sakamaki
Hall, Holmes Hall, Watanabe Hall, Marine Science Building,
and Art Building. The chilled water energy use by Sakamaki
Hall was calculated for each 15-minute interval as the chilled
water energy use for the whole chilled water plant, multiplied
by the percentage of the chilled water energy used by Saka-
maki Hall.

The Sakamaki Hall building energy usage (other than the
share of the chilled water energy) was calculated from the
energy meter data (in kWh), by subtracting successive electric
meter readings. Then the total Sakamaki Hall energy usage
was calculated by adding this value to the share of the electric-
ity from the chilled water plant that. The chilled water plant
electricity was found to be about 50% of the total Sakamaki
Hall energy consumption, bringing the HVAC portion to about
70% of the total energy. The University of Hawai’i at Manoa
Office of Sustainability was most interested in determining
and adjusting the HVAC used based on the occupancy on
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FIGURE 11. Weekday and weekend energy consumption (a) and weekend
to weekday energy consumption ratio (b).

weekends, so the energy usage was classified by weekday vs.
weekend. Over various periods discussed in the results, the
average daily energy usage was determined on weekdays and
on weekends.

Fig. 10(a) plots both the average number of occupancy
events per day on weekdays and weekends, and the aver-
age energy use per day on weekdays and weekends, for
each month. Fig. 10(b) plots the ratio of the values from
weekend:weekday over the months for which occupancy was
measured. Although weekend occupancy events were about
a third of those on weekdays, building energy consumption
remained high, at 62-81% of weekday values.

C. ENERGY SAVINGS ESTIMATES
The University of Hawai’i at Manoa Office of Sustainability
made a decision based on the occupancy data, to turn off air
conditioning on the weekends on the fourth floor of Saka-
maki Hall, where the occupancy sensors had been installed.
On February 10, 2022, the air conditioning was stopped on
weekends in three of the wings on the 4th floor of the building
(wings B, C, and D), totaling 10467 square feet. On August
12, 2022, Air Conditioning was turned back on for B wing.
The energy used was analyzed for the periods from February
10 to August 11, 2022, and from August 13 to December
31, 2022. Fig. 11(a) shows the weekday and weekend energy
consumption from July 2021 through February 2023.

Because the original occupancy analysis was performed in
2021, when occupancy and energy usage was lower due to
COVID restrictions, and modifications to the HVAC schedule
were made in 2022 when occupancy was more typical, and
because variations in weather impact daily HVAC energy us-
age, we also looked into the weekend: weekday ratio of energy
consumption.

Fig. 11(b) shows the ratio of weekend:weekday energy
consumption by month from August 2020 through February
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2023, with the values obtained while the air conditioning
was turned on shown in shades of gray, and values obtained
when at least some wings of the 4th floor had air conditioning
turned off on weekends in shades of blue. Note that although
Fig. 11 shows that the absolute levels of energy consump-
tion on weekends did not drop significantly following the air
conditioning being turned off, the ratio of weekend:weekday
energy consumption had a significant drop. Seasonal variation
in the weekend:weekday ratio of energy consumption can also
be seen in this data.

Because of the seasonal variation in building usage and
HVAC needs, and because of the year-to-year variation in
building occupancy during the COVID epidemic, energy sav-
ings were estimated by determining what weekend energy
usage would have been had the ratio of weekend:weekday
energy usage remained the same as it was prior to HVAC
schedule modification, and then subtracting the actual week-
end energy usage from that number over the same date range.
For each month the previous year’s weekend: weekday en-
ergy ratio was multiplied by the average weekday energy
consumption during that month, to provide an estimate of
weekend energy consumption had the HVAC change not been
implemented. The actual average daily energy consumption
on weekdays and weekends and the estimated daily weekend
energy savings is plotted in Fig. 12.

To estimate the total annual energy savings, for each month,
the average daily weekend energy savings was multiplied by
the number of weekend days, and these were summed from
March 2022 to February 2023, providing a total estimated
annual savings of 65,787 kWh. Sakamaki Hall was 47319
square feet of conditioned space, so the annual energy savings
is 1.29 kWh/sf.

Wings B-D of the 4th floor of Sakamaki Hall are comprised
of 10467 square feet, so this is an estimated savings of 6.3
kWh/sf/year. In Hawai’i, electricity cost is about $0.39/kWh,
so this provides an annual savings of $2.45/square foot, or a
total cost savings of $25657 for wings B-D, and is projected
to save $115931 annually for the whole building.

In 2022, the building’s total energy use was 970,242 kWh.
Thus, the annual energy usage is 21.1 kWh/sf of conditioned
space. We estimate that the energy saved is approximately 6%
of what we estimate that the annual usage for wings B-D
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whole building.

V. CONCLUSION

Improving energy efficiency is a critical strategy for address-
ing climate change. Microwave occupancy sensors for HVAC
control are a promising approach for improving energy effi-
ciency. This paper presented the application of a microwave
occupancy sensing system for the monitoring of occupancy
patterns at an office building on University of Hawai’i at
Manoa campus over a period of eight months. Occupancy
data was used to inform HVAC scheduling, and it was demon-
strated that as a result of scheduling changes overall building
energy consumption was reduced by about 20%. In buildings
like Sakamaki Hall, where HVAC accounts for over 70% of
energy use, even modest reductions in HVAC operation can
results in significant energy savings, which is critical for con-
trolling climate change.
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