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Abstract—Autonomous Unmanned Aerial Vehicles (UAV) hold
the potential to revolutionize logistics and transportation. To
become truly viable, this technology must prove its capability
to operate safely across a wide range of environments and
conditions. Factors like wind, rain, hail, birds, and the presence
of other drones in the airspace must all be considered in
the decision-making process. While traditional control systems
struggle with the complexity of this problem, machine learning
has shown promise in tackling these challenges efficiently and
effectively. This work proposes to advance independent drone
operation through object avoidance, data collection, and smart
navigation.

I. INTRODUCTION

In the rapidly evolving landscape of autonomous technol-
ogy, UAVs are leading a significant shift in logistics and
transportation. As fully autonomous operation becomes in-
creasingly feasible, the primary concern remains their ability
to navigate and operate safely within complex and dynamic
environments. This paper aims to develop an automated sys-
tem for UAV operation that prioritizes operational capability,
decision-making, and adaptability to unforeseen challenges.

Real-time object detection and avoidance are crucial compo-
nents of any autonomous vehicle navigation system. Operating
within designated air corridors, drones must swiftly react to
unexpected obstacles such as birds, other drones, and airborne
debris. Effective response demands that UAV's not only detect
and track these potential hazards but also adeptly maneuver
around them. Traditional approaches often rely on LIDAR
and the Vector Field Histogram (VFH) model for obstacle
detection and avoidance [1]. In contrast, this paper introduces a
energy-efficient alternative that utilizes millimeter-wave radar
for enhanced performance in UAV applications. This approach
provides a more efficient and lightweight solution, signifi-
cantly improving obstacle detection and avoidance capabilities
in dynamic environments.

UAVs are vulnerable to adverse weather, such as wind and
rain, which can lead to equipment loss and ground safety risks.
Weather conditions can change rapidly and vary along air
corridors, making monitoring at fixed spots insufficient. UAVs
should function as both navigators and data collectors, gath-
ering weather data for real-time analysis. This paper proposes
an on-drone system that collects weather and location data,
transmitting it to a ground station where real-time constraint
boundaries are set for conditions beyond operational limits.
This system improves navigational accuracy and helps manage
risks in autonomous aerial traffic management.

Long-range planning and navigation based on in-flight data
analysis enable an autonomous UAV to anticipate and adapt to
dynamic environmental conditions effectively. This proactive
capability allows the UAV to reroute in response to emerging
challenges such as impending storms or to avoid congested
areas, enhancing both operational efficiency and overall safety.

Such adaptability is pivotal for the reliability of autonomous
UAV logistics. Previous studies have demonstrated the ef-
fectiveness of reinforced learning models for navigation and
traffic control, as seen in the work of Hwang et al. [2], which
explored adaptive control strategies in dynamic environments,
and Kodama et al. [3], which focused on congestion man-
agement through intelligent routing algorithms. Building on
these foundations, this paper proposes integrating a Deep Q-
Network with real-time data collection to develop a more
sophisticated navigation and air corridor traffic management
system. This approach aims to improve decision-making pro-
cesses under varying aerial traffic conditions, thereby ad-
vancing the state-of-the-art in autonomous UAV operations.
Building on these foundations, this paper proposes integrating
a Deep Q-Network with real-time data collection to develop a
more sophisticated navigation and air corridor traffic manage-
ment system. This approach aims to improve decision-making
processes under varying aerial traffic conditions, providing a
state-of-the-art solution for autonomous UAV operations.

A. Main Contributions

1) Introduction of a millimeter-wave radar-based object
detection and avoidance system, enhancing UAV nav-
igation efficiency and safety.

2) Development of an on-drone weather and location data
collection system that establishes real-time constraint
boundaries, improving risk management in dynamic
weather conditions.

3) Integration of a Deep Q-Network with real-time data for
proactive navigation and traffic management, advancing
the decision-making capabilities of autonomous UAVs.

II. METHODOLOGY
A. Object Detection and Tracking

The object detection system is built around a Texas In-
struments 1843 millimeter wave radar module, equipped with
three transmit and four receive antennas. Although LIDAR has
traditionally been favored for UAV detection and ranging due
to its high accuracy and resolution, it often under-performs
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in inclement weather and is usually bulky and power-hungry.
This project prioritized energy efficiency and adverse weather
performance, making millimeter wave radar the preferred
depth sensor. Configured via the Texas Instruments MM-Wave
Visualizer tool, the module offers a 50-meter maximum range,
with adjustable settings for range, resolution, and velocity [4].
Its built-in CFAR algorithm filters out transient and reflective
signals to enhance accuracy.

Paired with a USB camera using the YOLOv4 [5] object
detection algorithm trained on the Microsoft COCO dataset
[6], bounding boxes around detected objects are mapped to
the vehicle plane and fused with RADAR data using cam-
era intrinsics calculated with MATLAB’s Camera Calibration
Toolbox.

The camera and RADAR are aligned in an over/under setup,
with the camera above the RADAR antennas. Static detections
are filtered out, and the data is merged using a DBSCAN
clustering algorithm. A Joint Probabilistic Data Association
(JPDA) algorithm assigns detections to tracks using their
probability density functions, while movements are predicted
with a constant velocity extended Kalman filter. Finally, a
Global Nearest Neighbors (GNN) tracker and Kalman filter
was applied to the YOLO bounding boxes prior to visualiza-
tion to ensure a more robust visual tracking system.

B. Object Avoidance

A key feature for RADAR sensors is that they have the
ability to use the Doppler effect to return velocity vector
information from detected objects. This project prioritized
avoidance methods that could harness this RADAR charac-
teristic. The object avoidance algorithm combines Velocity
Obstacle (VO) [7] and Artificial Potential Fields (APF) [8]
approaches. The VO algorithm identifies potential collisions
by comparing the UAV’s velocity vector to those of detected
objects. If on a collision course, a collision cone is calculated,
and the algorithm finds avoidance vectors outside this cone,
selecting the one that minimally deviates from the current
course. This minimizes significant course corrections, but the
VO algorithm has limitations when objects enter the field too
rapidly or shallowly, or when complex vectors can’t be solved.

To address these issues, the APF algorithm provides a
backup. It assigns attractive and repulsive weights to maintain
safe distances between detected objects and the UAV, while
guiding the UAV towards a target direction. Although less ef-
ficient than VO, APF effectively maintains separation. Coding
and simulation were done in MATLAB.

C. Data Collection

The Calypso Instruments Ultra-Low-Power Ultrasonic Wind
Meter (ULP STD) was selected as the wind speed and velocity
vector sensor. It uses four ultrasonic transducers for data
collection and supports various communication protocols like
MODBUS, RS485, UART, 12C, and analog 4-20mA [9]. The
UART protocol was chosen for this design due to low power
consumption (0.15mA at 38,400 baud, 0.45mA at 115,200

baud) at 5V. The anemometer was configured using the manu-
facturer’s software to transmit data at 115,200 baud and 1Hz,
aligning with the telemetry protocol. Data is collected via the
COM port and integrated with telemetry for Ground Control
Station (GCS) transmission.

D. Smart Navigation

Smart navigation uses a Deep Q-Network (DQN) reinforce-
ment learning model. The DQN processes WGS-84 coordinate
waypoints and designated weather avoidance areas from a
UAV flight plan. It translates these points into a pixel grid
maze that guides the UAV (agent) from the starting to the
final waypoint while avoiding obstacles.

Built with Python and TensorFlow, the DQN consists of six
descending dense layers, ending with a layer of size four rep-
resenting possible agent movements: left, right, up, and down.
A 2D grid serves as input, where 0 marks empty squares,
+1 is the agent, -1 is the goal, and -2 are obstacles. During
training, a Python script randomizes the agent, obstacle, and
goal positions to enhance dynamic input adaptability.

Rewards are given based on movement quality: +0.1 for
moves closer to the goal and -0.1 for each step to mini-
mize unnecessary steps. An obstacle collision earns -1, and
moving outside the grid is -0.5. Reaching the goal rewards
100 points, ending the process. Adjustments in reward values
ensure optimal outcomes. The DQN ultimately outputs a set of
movements translated back to WGS-84 coordinates to update
the UAV’s course.

ITI. RESULTS
A. Object Detection and Tracking

Sensor testing involved visualizing tracks and measuring
distances. A theater plot using MATLAB’s RADAR Toolbox
provided a bird’s-eye view of tracks and detections on the
right, while camera detections were shown as bounding boxes.
Tracks were projected back into the camera plane as red
circles, each with a track identifier to verify sensor alignment.
Due to the dynamic nature and many adjustable parameters
of this fused sensor system, design and testing were closely
linked.

After initial tuning of individual sensors, track-to-track,
direct detection, and clustered detection fusion methods were
explored. Track-to-track fusion was dismissed because trans-
lating successful camera tracks into the vehicle plane and
then combining them with RADAR tracks induced excessive
lag in the tracker. Thus, detections were combined earlier
through concatenation and DBSCAN clustering. GNN and
JPDA multi-object trackers were then tested and adjusted for
each sensor setup.

The RADAR paired best with JPDA, while the camera
performed best with GNN. However, when camera detections
were translated to the XY plane, distance accuracy declined
with changes in bounding box size. This was mitigated by
assigning higher noise values to camera distance data, reduc-
ing their impact on object tracking. The final fused tracker
used RADAR and XY-translated camera detections combined
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with DBSCAN clustering. A JPDA tracker with an extended
Kalman filter constant velocity model turned these clustered
detections into tracks.

For visualization, a GNN tracker and constant velocity
Kalman filter were applied to YOLO camera detections, pro-
jecting them back as bounding boxes. The final sensor model
visualization confirmed distance accuracy (shown in Fig. 4b),
and demonstrated successful multi-object tracking capabilities
(shown in Fig. 4c). While prototype testing was performed
using people as the tracked object, the sensor will be used for
anticipated in air objects (birds, drones, etc.).

X(m)

X

(b) Two Object Tracking

Fig. 1: Object Detection and Tracking

B. Obstacle Avoidance

The obstacle avoidance algorithm, designed in MATLAB
and tested in a simulation environment, utilized a represen-
tative detection and tracking system. A UAV followed an
elliptical flight path at an average speed of 1.2 m/s (2.25
MPH). Multiple groups of avoidance objects moved along
randomized paths within a set range, with individual velocities
ranging from 0.83 to 4.45 m/s (1.86 to 9.95 MPH). The
simulation’s maximum avoidance velocity was 5.65 m/s (12.2
MPH). Randomized obstacle trajectories intersected the UAV’s
path at varying angles, speeds, and group formations, allowing
for diverse testing scenarios.

Design and testing were blended for algorithm tuning. In
Fig. 2, the simulation UAV (green) picks up an object with col-
lision potential that is approaching quickly at a perpendicular
angle (Fig. 4a). The VO algorithm starts making small smooth
direction changes. An imaginary solution is calculated and
discarded (Fig. 4b). Finally, the object hits the safety radius
and the APF algorithm finishes the avoidance maneuver (Fig.
4c) and successfully evades the object (Fig. 4d).

C. Data Collection

The anemometer was calibrated using the approved man-
ufacturer software and communication protocols were tested.
Data from the wind sensor was successfully transmitted to the
GCS in real time. A CesiumJS web application was developed
to visualize the wind constraints based on the transmitted data.
The wind data was combined with location data, and as wind
is simulated from the sensor, constraints are visualized in the
Cesium environment based on preset polygon size values.

D. Deep Q-Network

Training the Deep Q-Network (DQN) was an incremental
process, with navigational complexity increasing as the model
improved. Initially, training began on an empty grid with only
the agent and the goal to fine-tune the reward system. The
initial reward system gave positive points for progress toward
the goal and reaching it, while a -1 penalty was assigned
for moving away. This setup worked for simple navigation
but hindered exploration as the environment became more
complex.

After the DQN consistently reached the goal, an obstacle
was added for complexity. However, the DQN exploited a
loophole where moving onto an obstacle only incurred a
standard penalty and then vacated the spot, allowing it to
ignore obstacles later. This flaw was fixed by reinstating the
obstacle in its original position. The reward system was also
adjusted, reducing rewards for movement and imposing stricter
penalties for collisions.

The model then learned to handle multiple obstacles but
achieved lower scores because it didn’t prioritize minimizing
steps. A negative reward for each step, balanced with positive
feedback for effective moves, helped the DQN improve navi-
gation through more complex paths. The final score earned
for each episode evaluates the performance of the model,
where lower scores are representative of an efficient route
to the endpoint. In Fig. 3a the model performance for the
initial rewards structure is consistently below zero and has
an erratic training graph. After tuning, model performance is
much more efficient and consistent as shown in Fig. 3b. Due
to the random generation of obstacles, instances of the agent
becoming trapped within the grid occasionally occurred and
are characterized by the sharp drops seen in Fig. 3b.

E. Drone Software Integration and Visualization

Due to safety concerns, this project’s initial scope was
confined to simulation. A Software-In-The-Loop (SITL) drone
was created using PX4 software within the Gazebo simulator
to test the interaction between the avoidance algorithm and
UAV flight control. The drone’s flight plan was visualized
using Q-Ground Control (QGC).

The avoidance sensor and algorithm were simulated in
MATLAB. A Python-based Euclidean velocity vector algo-
rithm smoothed the transition between MATLAB and the
SITL drone. With MATLAB, Gazebo, and QGC linked, the
MATLAB simulation ran the avoidance scenario, providing
vectors to the Gazebo environment for real-time monitoring
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Fig. 3: Model Final Score Performance Comparison

and adjustment of the SITL drone’s movements. Full devia-
tions from the flight plan could then be observed and modified
as needed.

The QGC simulation visualized constraints from the
weather station and flight path redirection by the DQN. Way-
point and constraint data were sent to the DQN for analysis and
redirection, resulting in a new route in the WGS-84 coordinate
system, which was applied to the simulated drone.

In Fig. 4a, the initial flight plan is shown in orange,
with weather constraints visualized as red polygons along
the projected course. The DQN then calculates a new set
of waypoints to avoid these constraints, plotting the revised
route in white. In Fig. 4b, additional constraints from the wind
sensor and a simulated location along the updated route are
incorporated. The DQN receives this real-time information and
further updates the route, as seen in Fig. 4c. Finally, in Fig.
4d additional constraints are generated by the weather sensor
to simulate increasing wind volatility.

IV. CONCLUSION

The autonomous drone landscape is evolving rapidly, driv-
ing the integration of machine learning technologies for
enhanced real-time operational capabilities. To ensure their
safe operation within complex and dynamic environments,
this paper has proposed an automated system that prioritizes
operational capability, decision-making, and adaptability. By
emphasizing real-time object detection and avoidance using
millimeter wave radar rather than traditional LIDAR systems,
UAVs can effectively identify and circumvent obstacles while
maintaining lightweight, low-power requirements.
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Fig. 4: Wind Constraints Creation and DQN Flight Redirection

In addition, recognizing a UAV’s susceptibility to adverse
weather conditions, this paper presented an on-drone sys-
tem for weather and location data collection that transmits
information to a ground station. Here, real-time constraint
boundaries are established to mitigate risks effectively. This
data collection and transmission process plays a critical role
in enhancing navigational accuracy and contributing to broader
aerial traffic management.

(1]
(2]
[3]

[4]

Furthermore, this paper has highlighted the importance of
proactive navigation and long-range planning through in-flight
data analysis. By proposing the use of a Deep Q-Network
(DQN) for intelligent navigation and air corridor traffic man-
agement, the system can anticipate and adapt to changing
conditions, ensuring that UAVs can navigate efficiently and
safely. This proactive approach enhances operational efficiency
and reliability, providing a promising framework for the future
of autonomous UAV logistics and transportation.

(5]
(6]

(71

[8

[t}

Future work will focus on expanding the DQN model to
support multiple UAV routes and linking additional weather
sensors to refine the constrained airspace areas. Additionally,
real-world tests are planned to validate its effectiveness. These
future developments aim to create a more robust and scalable
solution for UAV traffic management, ultimately leading to
safer and more efficient airspace utilization. As the technol-
ogy matures, integrating more sophisticated machine learning
algorithms and advanced sensor networks will be crucial in
addressing emerging challenges and further enhancing the
operational capabilities of autonomous UAVs.

[9

—
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