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Abstract—Autonomous Unmanned Aerial Vehicles (UAV) hold
the potential to revolutionize logistics and transportation. To
become truly viable, this technology must prove its capability
to operate safely across a wide range of environments and
conditions. Factors like wind, rain, hail, birds, and the presence
of other drones in the airspace must all be considered in
the decision-making process. While traditional control systems
struggle with the complexity of this problem, machine learning
has shown promise in tackling these challenges efficiently and
effectively. This work proposes to advance independent drone
operation through object avoidance, data collection, and smart
navigation.

I. INTRODUCTION

In the rapidly evolving landscape of autonomous technol-

ogy, UAVs are leading a significant shift in logistics and

transportation. As fully autonomous operation becomes in-

creasingly feasible, the primary concern remains their ability

to navigate and operate safely within complex and dynamic

environments. This paper aims to develop an automated sys-

tem for UAV operation that prioritizes operational capability,

decision-making, and adaptability to unforeseen challenges.

Real-time object detection and avoidance are crucial compo-

nents of any autonomous vehicle navigation system. Operating

within designated air corridors, drones must swiftly react to

unexpected obstacles such as birds, other drones, and airborne

debris. Effective response demands that UAVs not only detect

and track these potential hazards but also adeptly maneuver

around them. Traditional approaches often rely on LIDAR

and the Vector Field Histogram (VFH) model for obstacle

detection and avoidance [1]. In contrast, this paper introduces a

energy-efficient alternative that utilizes millimeter-wave radar

for enhanced performance in UAV applications. This approach

provides a more efficient and lightweight solution, signifi-

cantly improving obstacle detection and avoidance capabilities

in dynamic environments.

UAVs are vulnerable to adverse weather, such as wind and

rain, which can lead to equipment loss and ground safety risks.

Weather conditions can change rapidly and vary along air

corridors, making monitoring at fixed spots insufficient. UAVs

should function as both navigators and data collectors, gath-

ering weather data for real-time analysis. This paper proposes

an on-drone system that collects weather and location data,

transmitting it to a ground station where real-time constraint

boundaries are set for conditions beyond operational limits.

This system improves navigational accuracy and helps manage

risks in autonomous aerial traffic management.

Long-range planning and navigation based on in-flight data

analysis enable an autonomous UAV to anticipate and adapt to

dynamic environmental conditions effectively. This proactive

capability allows the UAV to reroute in response to emerging

challenges such as impending storms or to avoid congested

areas, enhancing both operational efficiency and overall safety.

Such adaptability is pivotal for the reliability of autonomous

UAV logistics. Previous studies have demonstrated the ef-

fectiveness of reinforced learning models for navigation and

traffic control, as seen in the work of Hwang et al. [2], which

explored adaptive control strategies in dynamic environments,

and Kodama et al. [3], which focused on congestion man-

agement through intelligent routing algorithms. Building on

these foundations, this paper proposes integrating a Deep Q-

Network with real-time data collection to develop a more

sophisticated navigation and air corridor traffic management

system. This approach aims to improve decision-making pro-

cesses under varying aerial traffic conditions, thereby ad-

vancing the state-of-the-art in autonomous UAV operations.

Building on these foundations, this paper proposes integrating

a Deep Q-Network with real-time data collection to develop a

more sophisticated navigation and air corridor traffic manage-

ment system. This approach aims to improve decision-making

processes under varying aerial traffic conditions, providing a

state-of-the-art solution for autonomous UAV operations.

A. Main Contributions

1) Introduction of a millimeter-wave radar-based object

detection and avoidance system, enhancing UAV nav-

igation efficiency and safety.

2) Development of an on-drone weather and location data

collection system that establishes real-time constraint

boundaries, improving risk management in dynamic

weather conditions.

3) Integration of a Deep Q-Network with real-time data for

proactive navigation and traffic management, advancing

the decision-making capabilities of autonomous UAVs.

II. METHODOLOGY

A. Object Detection and Tracking

The object detection system is built around a Texas In-

struments 1843 millimeter wave radar module, equipped with

three transmit and four receive antennas. Although LIDAR has

traditionally been favored for UAV detection and ranging due

to its high accuracy and resolution, it often under-performs
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in inclement weather and is usually bulky and power-hungry.

This project prioritized energy efficiency and adverse weather

performance, making millimeter wave radar the preferred

depth sensor. Configured via the Texas Instruments MM-Wave

Visualizer tool, the module offers a 50-meter maximum range,

with adjustable settings for range, resolution, and velocity [4].

Its built-in CFAR algorithm filters out transient and reflective

signals to enhance accuracy.

Paired with a USB camera using the YOLOv4 [5] object

detection algorithm trained on the Microsoft COCO dataset

[6], bounding boxes around detected objects are mapped to

the vehicle plane and fused with RADAR data using cam-

era intrinsics calculated with MATLAB’s Camera Calibration

Toolbox.

The camera and RADAR are aligned in an over/under setup,

with the camera above the RADAR antennas. Static detections

are filtered out, and the data is merged using a DBSCAN

clustering algorithm. A Joint Probabilistic Data Association

(JPDA) algorithm assigns detections to tracks using their

probability density functions, while movements are predicted

with a constant velocity extended Kalman filter. Finally, a

Global Nearest Neighbors (GNN) tracker and Kalman filter

was applied to the YOLO bounding boxes prior to visualiza-

tion to ensure a more robust visual tracking system.

B. Object Avoidance

A key feature for RADAR sensors is that they have the

ability to use the Doppler effect to return velocity vector

information from detected objects. This project prioritized

avoidance methods that could harness this RADAR charac-

teristic. The object avoidance algorithm combines Velocity

Obstacle (VO) [7] and Artificial Potential Fields (APF) [8]

approaches. The VO algorithm identifies potential collisions

by comparing the UAV’s velocity vector to those of detected

objects. If on a collision course, a collision cone is calculated,

and the algorithm finds avoidance vectors outside this cone,

selecting the one that minimally deviates from the current

course. This minimizes significant course corrections, but the

VO algorithm has limitations when objects enter the field too

rapidly or shallowly, or when complex vectors can’t be solved.

To address these issues, the APF algorithm provides a

backup. It assigns attractive and repulsive weights to maintain

safe distances between detected objects and the UAV, while

guiding the UAV towards a target direction. Although less ef-

ficient than VO, APF effectively maintains separation. Coding

and simulation were done in MATLAB.

C. Data Collection

The Calypso Instruments Ultra-Low-Power Ultrasonic Wind

Meter (ULP STD) was selected as the wind speed and velocity

vector sensor. It uses four ultrasonic transducers for data

collection and supports various communication protocols like

MODBUS, RS485, UART, I2C, and analog 4-20mA [9]. The

UART protocol was chosen for this design due to low power

consumption (0.15mA at 38,400 baud, 0.45mA at 115,200

baud) at 5V. The anemometer was configured using the manu-

facturer’s software to transmit data at 115,200 baud and 1Hz,

aligning with the telemetry protocol. Data is collected via the

COM port and integrated with telemetry for Ground Control

Station (GCS) transmission.

D. Smart Navigation

Smart navigation uses a Deep Q-Network (DQN) reinforce-

ment learning model. The DQN processes WGS-84 coordinate

waypoints and designated weather avoidance areas from a

UAV flight plan. It translates these points into a pixel grid

maze that guides the UAV (agent) from the starting to the

final waypoint while avoiding obstacles.

Built with Python and TensorFlow, the DQN consists of six

descending dense layers, ending with a layer of size four rep-

resenting possible agent movements: left, right, up, and down.

A 2D grid serves as input, where 0 marks empty squares,

+1 is the agent, -1 is the goal, and -2 are obstacles. During

training, a Python script randomizes the agent, obstacle, and

goal positions to enhance dynamic input adaptability.

Rewards are given based on movement quality: +0.1 for

moves closer to the goal and -0.1 for each step to mini-

mize unnecessary steps. An obstacle collision earns -1, and

moving outside the grid is -0.5. Reaching the goal rewards

100 points, ending the process. Adjustments in reward values

ensure optimal outcomes. The DQN ultimately outputs a set of

movements translated back to WGS-84 coordinates to update

the UAV’s course.

III. RESULTS

A. Object Detection and Tracking

Sensor testing involved visualizing tracks and measuring

distances. A theater plot using MATLAB’s RADAR Toolbox

provided a bird’s-eye view of tracks and detections on the

right, while camera detections were shown as bounding boxes.

Tracks were projected back into the camera plane as red

circles, each with a track identifier to verify sensor alignment.

Due to the dynamic nature and many adjustable parameters

of this fused sensor system, design and testing were closely

linked.

After initial tuning of individual sensors, track-to-track,

direct detection, and clustered detection fusion methods were

explored. Track-to-track fusion was dismissed because trans-

lating successful camera tracks into the vehicle plane and

then combining them with RADAR tracks induced excessive

lag in the tracker. Thus, detections were combined earlier

through concatenation and DBSCAN clustering. GNN and

JPDA multi-object trackers were then tested and adjusted for

each sensor setup.

The RADAR paired best with JPDA, while the camera

performed best with GNN. However, when camera detections

were translated to the XY plane, distance accuracy declined

with changes in bounding box size. This was mitigated by

assigning higher noise values to camera distance data, reduc-

ing their impact on object tracking. The final fused tracker

used RADAR and XY-translated camera detections combined
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with DBSCAN clustering. A JPDA tracker with an extended

Kalman filter constant velocity model turned these clustered

detections into tracks.

For visualization, a GNN tracker and constant velocity

Kalman filter were applied to YOLO camera detections, pro-

jecting them back as bounding boxes. The final sensor model

visualization confirmed distance accuracy (shown in Fig. 4b),

and demonstrated successful multi-object tracking capabilities

(shown in Fig. 4c). While prototype testing was performed

using people as the tracked object, the sensor will be used for

anticipated in air objects (birds, drones, etc.).

(a) Tracking at Six Meters

(b) Two Object Tracking

Fig. 1: Object Detection and Tracking

B. Obstacle Avoidance

The obstacle avoidance algorithm, designed in MATLAB

and tested in a simulation environment, utilized a represen-

tative detection and tracking system. A UAV followed an

elliptical flight path at an average speed of 1.2 m/s (2.25

MPH). Multiple groups of avoidance objects moved along

randomized paths within a set range, with individual velocities

ranging from 0.83 to 4.45 m/s (1.86 to 9.95 MPH). The

simulation’s maximum avoidance velocity was 5.65 m/s (12.2

MPH). Randomized obstacle trajectories intersected the UAV’s

path at varying angles, speeds, and group formations, allowing

for diverse testing scenarios.

Design and testing were blended for algorithm tuning. In

Fig. 2, the simulation UAV (green) picks up an object with col-

lision potential that is approaching quickly at a perpendicular

angle (Fig. 4a). The VO algorithm starts making small smooth

direction changes. An imaginary solution is calculated and

discarded (Fig. 4b). Finally, the object hits the safety radius

and the APF algorithm finishes the avoidance maneuver (Fig.

4c) and successfully evades the object (Fig. 4d).

C. Data Collection

The anemometer was calibrated using the approved man-

ufacturer software and communication protocols were tested.

Data from the wind sensor was successfully transmitted to the

GCS in real time. A CesiumJS web application was developed

to visualize the wind constraints based on the transmitted data.

The wind data was combined with location data, and as wind

is simulated from the sensor, constraints are visualized in the

Cesium environment based on preset polygon size values.

D. Deep Q-Network

Training the Deep Q-Network (DQN) was an incremental

process, with navigational complexity increasing as the model

improved. Initially, training began on an empty grid with only

the agent and the goal to fine-tune the reward system. The

initial reward system gave positive points for progress toward

the goal and reaching it, while a -1 penalty was assigned

for moving away. This setup worked for simple navigation

but hindered exploration as the environment became more

complex.

After the DQN consistently reached the goal, an obstacle

was added for complexity. However, the DQN exploited a

loophole where moving onto an obstacle only incurred a

standard penalty and then vacated the spot, allowing it to

ignore obstacles later. This flaw was fixed by reinstating the

obstacle in its original position. The reward system was also

adjusted, reducing rewards for movement and imposing stricter

penalties for collisions.

The model then learned to handle multiple obstacles but

achieved lower scores because it didn’t prioritize minimizing

steps. A negative reward for each step, balanced with positive

feedback for effective moves, helped the DQN improve navi-

gation through more complex paths. The final score earned

for each episode evaluates the performance of the model,

where lower scores are representative of an efficient route

to the endpoint. In Fig. 3a the model performance for the

initial rewards structure is consistently below zero and has

an erratic training graph. After tuning, model performance is

much more efficient and consistent as shown in Fig. 3b. Due

to the random generation of obstacles, instances of the agent

becoming trapped within the grid occasionally occurred and

are characterized by the sharp drops seen in Fig. 3b.

E. Drone Software Integration and Visualization

Due to safety concerns, this project’s initial scope was

confined to simulation. A Software-In-The-Loop (SITL) drone

was created using PX4 software within the Gazebo simulator

to test the interaction between the avoidance algorithm and

UAV flight control. The drone’s flight plan was visualized

using Q-Ground Control (QGC).

The avoidance sensor and algorithm were simulated in

MATLAB. A Python-based Euclidean velocity vector algo-

rithm smoothed the transition between MATLAB and the

SITL drone. With MATLAB, Gazebo, and QGC linked, the

MATLAB simulation ran the avoidance scenario, providing

vectors to the Gazebo environment for real-time monitoring
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(a) Object Identified on Collision Path (b) Imaginary Solution Calculated

(c) Object in Safety Radius (d) Successful Avoidance

Fig. 2: VO/ APF Avoidance Simulation - Green (UAV), Red (Object)

(a) Initial Reward Structure

(b) Final Reward Structure

Fig. 3: Model Final Score Performance Comparison

and adjustment of the SITL drone’s movements. Full devia-

tions from the flight plan could then be observed and modified

as needed.

The QGC simulation visualized constraints from the

weather station and flight path redirection by the DQN. Way-

point and constraint data were sent to the DQN for analysis and

redirection, resulting in a new route in the WGS-84 coordinate

system, which was applied to the simulated drone.

In Fig. 4a, the initial flight plan is shown in orange,

with weather constraints visualized as red polygons along

the projected course. The DQN then calculates a new set

of waypoints to avoid these constraints, plotting the revised

route in white. In Fig. 4b, additional constraints from the wind

sensor and a simulated location along the updated route are

incorporated. The DQN receives this real-time information and

further updates the route, as seen in Fig. 4c. Finally, in Fig.

4d additional constraints are generated by the weather sensor

to simulate increasing wind volatility.

IV. CONCLUSION

The autonomous drone landscape is evolving rapidly, driv-

ing the integration of machine learning technologies for

enhanced real-time operational capabilities. To ensure their

safe operation within complex and dynamic environments,

this paper has proposed an automated system that prioritizes

operational capability, decision-making, and adaptability. By

emphasizing real-time object detection and avoidance using

millimeter wave radar rather than traditional LIDAR systems,

UAVs can effectively identify and circumvent obstacles while

maintaining lightweight, low-power requirements.
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(a) Initial Redirection (White) from Flight Plan (Orange) (b) Constraints Generated from Wind Sensor

(c) Redirection (White) from Flight Plan (Orange) (d) Additional Constraints Generated from Wind Sensor Data

Fig. 4: Wind Constraints Creation and DQN Flight Redirection

In addition, recognizing a UAV’s susceptibility to adverse

weather conditions, this paper presented an on-drone sys-

tem for weather and location data collection that transmits

information to a ground station. Here, real-time constraint

boundaries are established to mitigate risks effectively. This

data collection and transmission process plays a critical role

in enhancing navigational accuracy and contributing to broader

aerial traffic management.

Furthermore, this paper has highlighted the importance of

proactive navigation and long-range planning through in-flight

data analysis. By proposing the use of a Deep Q-Network

(DQN) for intelligent navigation and air corridor traffic man-

agement, the system can anticipate and adapt to changing

conditions, ensuring that UAVs can navigate efficiently and

safely. This proactive approach enhances operational efficiency

and reliability, providing a promising framework for the future

of autonomous UAV logistics and transportation.

Future work will focus on expanding the DQN model to

support multiple UAV routes and linking additional weather

sensors to refine the constrained airspace areas. Additionally,

real-world tests are planned to validate its effectiveness. These

future developments aim to create a more robust and scalable

solution for UAV traffic management, ultimately leading to

safer and more efficient airspace utilization. As the technol-

ogy matures, integrating more sophisticated machine learning

algorithms and advanced sensor networks will be crucial in

addressing emerging challenges and further enhancing the

operational capabilities of autonomous UAVs.
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