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ABSTRACT

In this paper, we present a pioneering diagnostic system that uti-
lizes resting state Functional Magnetic Resonance Imaging (fMRI)
and Machine Learning (ML) to effectively evaluate individuals with
autism spectrum disorder (ASD). Our system’s primary objective is
to assess the severity of autism by accurately identifying specific
brain regions that demonstrate robust correlations with the behav-
ioral patterns observed in autistic subjects. The proposed system
involves several essential steps: i) It begins by preprocessing fMRI
data to correct head motion, reduce susceptibility distortion in the
reconstructed BOLD signal, and align the subject’s fMRI with their
structural MRI, thereby improving fMRI resolution. ii) Following
this, the brain cortex is extracted from the aligned fMRI using its
sMRI. iii) The brain is then divided into 76 areas per hemisphere
using MNI152 standard space. To identify brain areas associated
with ASD, fMRI radiomics employs estimating the correlation ma-
trix, outlining the mutual synchronization between each pair of brain
regions. v) Areas significantly correlated with ASD, at a 95% con-
fidence interval, are pinpointed using the Recursive Feature Elim-
ination (RFE) algorithm. vi) Lastly, the final step involves using
the Linear support vector machine (LSVM) to diagnose each subject
as normal or autistic, determining their respective severity levels,
and identifying abnormal brain regions crucial in detecting abnormal
neurocircuits that play a pivotal role in managing autism. The pro-
posed approach was tested on 344 with ASD and 374 typically de-
veloping individuals from the Autism Brain Imaging Data Exchange
IT (ABIDE II). Through 5-fold cross-validation, the proposed system
attained 97% accuracy, 90% sensitivity and 0.99% specificity.

Index Terms— Autism, resting state fMRI, sMRI, ML.

1. INTRODUCTION

Autism Spectrum Disorder (ASD) represents an inherited neurode-
velopmental condition characterized by various cognitive, social,
and communication challenges, often accompanied by related dis-
orders [1]. Typically, ASD manifests in infancy or within the initial
three years of childhood [2]. Researchers have explored multiple
imaging modalities, such as functional Magnetic Resonance Imag-
ing (fMRI) [3, 4, 5], structural MRI (sMRI) [6, 7], and Diffusion
Tensor Imaging (DTI) [8, 9]. This paper concentrates specifically on
utilizing fMRI to aid in the objective diagnosis of autism due to its
close correlation with individual behavior. fMRI serves as a crucial
modality because it accurately assesses synchronization between

brain regions within and across hemispheres, pivotal features for
potentially facilitating early and objective autism diagnosis. The
aforementioned attributes of fMRI form the primary motivation for
its utilization within this research. Numerous studies have delved
into examining functional connectivity through resting-state fMRI
combined with machine learning techniques. In this paper, we will
reference the most relevant work to our proposed system due to
space constraints. For instance, Nielsen et al. [3] used a leave-one-
out linear model classifier to evaluate fMRI data from 396 ASD and
426 typical development patients from ABIDE. They were able to
distinguish between autism and typical development with 60% ac-
curacy. Unfortunately, their study did not examine autism severity,
which led to relatively low accuracy. Dekhil et al. [4] used resting-
state fMRI data from 160 normally developing children and 123
ASD youngsters from NDAR to construct a CAD system for autism
diagnosis. Their method used machine learning approaches to at-
tain sensitivity, specificity, and accuracy of about 90%. In a related
study [10], employed deep learning on fMRI data from 78 with ASD
and 78 with typical development in NDAR, the research was able
to obtain an impressive 93% diagnosis accuracy. However, a small
sample size and the lack of an assessment of autism severity limit
its value. Yang et al. [5] Yang et al. [5] used ABIDE II resting-state
fMRI characteristics to differentiate ASD from normally developing
people using various machine learning algorithms. They achieved
the highest accuracy of 71.98% by combining the Ridge classifier
with grid search cross-validation and the CC400 atlas. They, like
Nielsen et al., had constraints due to the lack of an assessment of
autism severity, resulting in limited accuracy results. Elnakieb et
al. [11] presented a method that uses data from 408 ASD and 476
typically developing patients from ABIDEII to diagnose ASD us-
ing a combination of resting state-fMRI connectivity analysis and
machine learning. One drawback, though, is that precise neurocir-
cuit identification in ASD is hampered by the inability to identify
anomalies in recognized brain regions.

Given the aforementioned constraints in analyzing resting-state
fMRI in published works, we have developed a diagnostic system
with several key capabilities. Firstly, it can distinguish between nor-
mally developed brains and those affected by ASD. Secondly, it can
determine the severity level of autism in a subject, aiding in classify-
ing their position within the ASD spectrum. Finally, it can identify
specific brain regions that demonstrate correlations with ASD, serv-
ing as an initial investigation into the abnormal neurocircuits associ-
ated with the condition.
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Fig. 1. General Al-based pipeline for processing brain imaging Data for ASD diagnosis

2. MATERIALS & METHODS

The proposed framwork, shown in Fig 1, consists of four main steps:
(1) Preprocessing (2) Extracting the functional markers and com-
bining them with SRS scores, (3) Selection of the most significant
features relevent to autism, (4) Diagnosis of autism using machine
learning.

Material and Subjects: This study involved a cohort of 344 in-
dividuals diagnosed with ASD and 374 Typically developing (TD)
participants from a total of 13 neurological institutes obtained from
a ABIDE II dataset [12] screened utilizing a 3T MRI scanner. For
autistic subjects, there are 288 males, and 56 females with mean age
of 13.67 and standard deviation of 9.30, for TD subjects, there are
267 males , and 267 females with mean age of 13.71 and standard
deviation of 8.73.

Preprocessing: The fMRI preprocessing involved the utilization of
FastSurfer [13] and fMRIPrep [14]. This process included various
steps: aligning fMRI with sMRI to enhance the localization of func-
tional activations by augmenting fMRI resolution, employing head-
motion estimation to strengthen data quality by detecting and rec-
tifying movement-related artifacts and distortions that might com-
promise subsequent analyses, conducting slice time correction to
align slices from different time points and mitigate temporal discrep-
ancies, implementing susceptibility distortion correction to rectify
fMRI distortions stemming from magnetic susceptibility variations,
and ultimately performing preprocessing of BOLD signals in native
space to enhance the BOLD signal data within its original acquisi-
tion space.

Brain Extraction: The next step involves the precise extraction of
the brain and cortex from the aligned fMRI data. This is accom-
plished by leveraging spatial information derived from the structural
MRI (sMRI), utilizing a probabilistic brain atlas, and considering
the visual characteristics of brain tissues. The information obtained
from these sources is then input into a Bayesian classifier, which
aids in distinguishing between brain tissues and the skull, as shown

(b)

Fig. 2. Illustration depicting the brain extraction step from fMRI: (a)
original images and (b) Extracted brain.

Brain Parcellation: To segment the extracted brain into anatomi-
cally similar regions and establish correlations with ASD, enabling
the discrimination between ASD and typically developed brains, we
employed the MNI152 standard space [15]. This space subdivides
the brain cortex into 76 regions per hemisphere, resulting in a total
of 152 regions for the entire cortex. To execute this process, we uti-
lized 3D-based affine registration, aligning the extracted brain with
the MNI152 standard space, as depicted in Fig 3.

(b)

Fig. 3. Illustration depicting the brain parcellation step from fMRI:
(a) standard space and (b) Parcellation.
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Connectivity Markers Extraction:The literature [16] reports dis-
ruptions in synchronization among different brain regions in indi-
viduals with ASD. To precisely identify this abnormal synchroniza-
tion across brain regions, we devised a novel method to calculate
synchronization among all interconnected regions within the same
hemisphere, as well as between the hemispheres. This approach
aims to detect any potential correlations with ASD across a wide
range of brain regions. Utilizing normalized cross as an image ra-
diomic, we represented the synchronization between each pair of
interconnected brain regions, shown in Figure 4(a).

Connectivity Markers Selection To pinpoint the brain regions
associated with ASD, we employed Recursive Feature Elimina-
tion (RFE) in tandem with 5 k-fold cross-validation. This method
ensured a thorough and robust selection of markers, maximizing
the predictive and diagnostic accuracy of our proposed system. Fig-
ure 4(b) illustrates the identified brain regions that exhibit correlation

with ASD.
(b)

Fig. 4. Illustration of detected brain regions associated with ASD:
(a) The estimated synchronization among all potential mutual brain
regions, and (b) the identified brain regions linked to ASD.

(a)

3. DIAGNOSIS & MACHINE LEARNING

To identify the most effective classifier that attains the highest ac-
curacy, we conducted experiments using various machine learning
models such as logistic regression (LR), linear support vector ma-
chine (LSVM), k-nearest neighbors (KNN), gradient boosting (GB),
and LightGBM (LGBM). Our aim was to ascertain the classifier that
could accurately predict the severity levels of Autism Spectrum Dis-
order (ASD) including mild, moderate, or severe, as well as distin-
guish Normal developed brains. The ground truth for these clas-
sifications was determined using The Social Responsiveness Scale
(SRS) assessment administered by autism experts. As detailed in the
experimental section, LSVM emerged as the classifier achieving the
highest accuracy. To refine the LSVM model, we utilized Bayesian
optimization for fine-tuning its hyperparameters. The hyperparam-
eters of LSVM encompass crucial elements such as regularization
parameters, kernel types, and kernel-specific settings, all of which
exert a substantial influence on its predictive accuracy. Bayesian
optimization simplifies this optimization procedure by employing
probabilistic models and iterative decision-making, thereby facili-
tating a more effective quest for optimal hyperparameters. Through
iterative evaluation of LSVM’s performance using various hyperpa-
rameter combinations, Bayesian optimization strives to enhance the
model’s predictive capabilities while minimizing the computational
resources necessary for hyperparameter tuning.

4. EXPERIMENTAL RESULTS

In this section, we assess the performance of the proposed system
on ABIDE II datasets. To ensure robustness and reproducibility, we
conducted 40 trials on five folds, as depicted in Table 1. This table

illustrates the mean accuracy and standard deviation resulting from
these experiments for each severity level, along with the count of
connectivity features utilized in each level’s experiments. Addition-
ally, Table 2 presents the mean and standard deviation of Sensitiv-
ity, Specificity, and Accuracy for each classifier used across feature
selection attempts in our experiments. LSVM emerged as the top
performer, demonstrating superior results when employed for both
feature selection and classification, showcasing its efficacy. Further-
more, logistic regression exhibited commendable performance when
utilized simultaneously for feature selection and as a classifier.

Table 1. Mean + Std. of across all experiments for each severity
level with the best classifier’s highest accuracy.

Severity Level | # Features | Accuracy
Mild, TD 1414 0.78 £ 0.21
Moderate, TD 1176 0.80 £0.18
Severe, TD 1411 0.78 £ 0.17

Table 2. Mean + Std. of Sensitivity, Specificity, and Accuracy across
all experiments for feature selection and each classifier using its op-
timal hyperparameters.

RFE ML Acc Sens Spec
gboost | 0.68 £0.22 | 0.41 £0.23 | 0.74 £0.29
knn 0.83 £0.06 | 0.254+0.19 | 0.94 £0.05
Igbm Ir 0.84 £0.06 | 0.38 £0.24 | 0.93 £ 0.05
Isvm | 0.84 £0.06 | 0.34 £0.25 | 0.94 +£0.05
gboost | 0.64 +0.24 | 0.39 £0.29 | 0.70 £ 0.33
knn 0.83 £0.08 | 0.35+0.21 | 0.93 £0.10
Ir Ir 0.94 +£0.05 | 0.80 £0.20 | 0.98 £ 0.02
Isvm | 0.95£0.04 | 0.83 £0.18 | 0.98 £ 0.03
gbhoost | 0.65+0.23 | 0.37+£0.29 | 0.71 £0.33
lsvm knn 0.824+0.09 | 0.36 £0.21 | 0.92 £0.12
Ir 095+0.05 | 0.82 +£0.20 | 0.98 £0.02
Isvm | 0.97 £0.04 | 0.90 &+ 0.16 | 0.99 + 0.02

5. CONCLUSION

This study highlights the importance of brain imaging techniques,
specifically resting-state fMRI, in the diagnosis of ASD. We sug-
gested a CAD system for autism diagnosis based on functional con-
nectivity obtained from people with autism and typically developing
(TD) people from the ABIDEII dataset. By incorporating the Social
Responsiveness Scale behavioral report, we were able to categorized
autism into 4 levels of (TD, Mild, Moderate, Severe). We executed
40 experiments for each severity level, using Recursive Features Se-
lection and machine learning approaches. Our framework achieved
mean accuracy, sensitivity, and specificity of 97%, 90%, and 99%,
respectively using 5-fold cross-validation. Future study should in-
vestigate the integration of other imaging modalities, such as SMRI
and DTI, to provide a deeper understanding of the anatomical ab-
normalities, functional connectivity, and brain connectivity abnor-
malities that may have significant effects on autism. Furthermore,
combining data from different sources, including genetics, may pro-
vide useful insights into the genes that are active in particular people,
leading to a better understanding of the core causes driving autism.

6. COMPLIANCE WITH ETHICAL STANDARDS

This study was conducted retrospectively using human subject data
made accessible for free by (Autism Brain Imaging Data Exchange
II). According to the license attached to the open access data, no
ethical approval was required.
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Fig. 5. Connectivity for 3 cases for each level of severity including: typical development, mild, moderate, severe
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