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Exploring the complexity of the epithelial-to-mesenchymal transition (EMT) unveils
a diversity of potential cell fates; however, the exact timing and mechanisms by which
early cell states diverge into distinct EMT trajectories remain unclear. Studying
these EMT trajectories through single-cell RNA sequencing is challenging due to
the necessity of sacrificing cells for each measurement. In this study, we employed
optimal-transport analysis to reconstruct the past trajectories of different cell fates
during TGF-beta-induced EMT in the MCF10A cell line. Our analysis revealed three
distinct trajectories leading to low EMT, partial EMT, and high EMT states. Cells
along the partial EMT trajectory showed substantial variations in the EMT signature
and exhibited pronounced stemness. Throughout this EMT trajectory, we observed a
consistent downregulation of the EED and EZH?2 genes. This finding was validated by
recent inhibitor screens of EMT regulators and CRISPR screen studies. Moreover, we
applied our analysis of early-phase differential gene expression to gene sets associated
with stemness and proliferation, pinpointing /7GB4, LAMA3, and LAMB3 as genes
differentially expressed in the initial stages of the partial versus high EMT trajectories.
We also found that CENPF, CKS1B, and MKI67 showed significant upregulation in the
high EMT trajectory. While the first group of genes aligns with findings from previous
studies, our work uniquely pinpoints the precise timing of these upregulations. Finally,
the identification of the latter group of genes sheds light on potential cell cycle targets
for modulating EMT trajectories.

EMT | cell fate | scRNA-seq

The epithelial-mesenchymal transition (EMT) is a pivotal process underpinning a range
of biological phenomena from embryonic development and wound healing to tumor
metastasis (1-5). During EMT, epithelial cells lose their apical-basal polarity and adhesion
to other cells and acquire mesenchymal traits such as invasiveness and migratory capabil-
ities (3-5). At the molecular level, this process is accompanied by the downregulation of
epithelial markers such as E-cadherin (CDH1) and a concurrent upregulation of mesen-
chymal markers like N-cadherin (CDH2), vimentin (VIM), and fibronectin (FN) (6, 7).
Importantly, EMT is not merely a binary transition from an epithelial (E) to a mesenchy-
mal (M) state. Recent findings redefine EMT as a continuum, with cells capable of
occupying intermediate states, often referred to as “partial” EMT (8, 9). Progression along
this spectrum is tightly regulated by a set of key transcription factors, including members
of the Snail, Zeb, and Twist families (10, 11). The expression and activities of these tran-
scriptional factors are governed by a complex network of several epigenetic regulators and
signaling pathways, encompassing TGF-beta, Wnt, EGE, FGE PI3K/Akt/mTOR,
IL-6/JAK/STAT3, and NOTCH (5, 12-16).

Cells in a syngeneic, phenotypically homogeneous population have been observed to
adopt distinct fates upon treatment with an EMT inducer (17, 18). However, the intricate
mechanisms that drive early cell states to branch into unique EMT trajectories are yet to
be fully understood. The idea of divergent trajectories, through a developmental Waddington
landscape (19), is well accepted in stem cell biology (20). Given the close association
between EMT and stemness (21, 22), we aimed to investigate whether the heterogeneous
response to EMT inducers extends beyond mere temporal variations and involves multiple
distinct trajectories. To this end, we analyzed previously published time series scRNAseq
data from MCF10A cells treated with TGF-beta (18) (Fig. 1A).

While scRNAseq data offer a wealth of insights into the heterogeneity of cellular
states (23, 24), the inherent need to sacrifice cells at each time point precludes the ability
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Significance

In our study, optimal-transport
analysis was used to infer
cell-to-cell connections from
scRNAseq data, allowing us to
predict cell linkages and
overcome limitations of
sequencing such as the need to
sacrifice cells for each
measurement. This approach led
us to identify diverse EMT
responses under uniform
treatment, a significant
advancement over previous
studies limited by the static
nature of scRNAseq data. Our
analysis identified a broad set of
genes involved in the EMT
process, uncovering insights such
as the upregulation of cell cycle
genes in cells predisposed to a
high EMT state and the
enhancement of cell adhesion
marker genes in cells veering
toward a partial EMT state.
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Fig. 1. Optimal transport analysis of sScRNAseq time course data of the EMT. (A) Schematic representation of the experiments performed to induce EMT in
MCF10A cells, accompanied by a time series of scRNA-seq data visualized using force-directed layout embedding (FLE). Cells are depicted as gray dots, with
brown dots highlighting the cells for each day. This figure was adapted from Deshmukh et al. (17) (B-F) General framework of optimal-transport analysis of EMT
single-cell RNA sequencing data: (B) OT analysis was employed to identify the transition probability of cell-to-cell connections. (C) From the entire consecutive
time-series sScRNAseq data, transition probabilities were integrated to determine the likelihood of each early cell state acting as an ancestor for the three fate
subpopulations. (D-F) Three downstream analyses: (D) reconstruction of diverse cellular signature trajectories, (E) exploration of cellular heterogeneity across
these trajectories, and (F) differential analysis of early gene expression in ancestral cells associated with each distinct cell fate.

to trace individual cell lineages over time. This restriction poses  velocity, utilizes additional information from unspliced and
a challenge to reconstructing trajectories from time-series scR-  spliced RNA to predict the direction of movement across
NAseq data (25). To address this challenge, we employed a RNAseq space of individual cells (31, 32). This method deepens
method based on OT analysis (26, 27), known as Waddington our insight into the velocity field and short-term cellular changes.

OT (WOT) (28). This method stands in contrast to other widely However, the applications of the RNA velocity method have
used trajectory tools such as pseudotime analysis, which infers ~ sometimes been found to lack precision and can yield ambiguous
a temporal sequence within a cell population but cannot deduce  results, particularly due to assumptions of constant kinetic rate

direct cell-to-cell transitions (29, 30). Another method, RNA parameters (33). To address these challenges, Qiu et al. developed,
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a method that precisely infers the vector field from time-resolved,
metabolically labeled scRNA-seq data (34). In contrast, our study
utilizes conventional, daily-collected scRNA-seq data. We employ
WOT specifically for its ability to analyze direct cell-to-cell tran-
sitions within scRNA-seq data at discrete, predetermined time
points. This approach avoids the complexities and potential noise
associated with velocity field inference, ensuring that our analysis
remains precise and directly interpretable.

Utilizing the WOT technique, we reconstructed lineage trajec-
tories at single-cell resolution using the time series scRNAseq data
from MCF10A cells undergoing EMT stimulated by TGF-beta
(18), enabling identification of diverse trajectories leading to dis-
tinct EMT fates. In this study, we extend previous EMT research
by not only examining state heterogeneity at various time points
within a single EMT process but also by uncovering the diversity
of EMT responses as unique, distinct processes under the same
treatment. We delved into the roles of stemness, proliferation, and
cellular hypoxic response signatures. While these signatures have
known associations with EMT (5, 21, 35), their variations across
different EMT trajectories have not been extensively explored.

Furthermore, our trajectory analysis at the single gene level
enabled us to predict differentially expressed genes (DEGs) in the
carly phases of each fate. Early gene expression changes linked to
a specific fate were then partially validated through methods such
as inhibitor screens of EMT regulators and CRISPR-associated
gene knockout screens (1, 15, 16, 36), highlighting the robustness
of our predictions. We then included a wider array of genes
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implicated in EMT regulation but not yet fully examined. This
approach led to several insights, notably that cell cycle-related
genes are up-regulated in the ancestors of cells entering the high
EMT state. Additionally, we found that genes linked to cell surface
markers that play a critical role in cell-matrix and cell-cell adhe-
sion are markedly up-regulated in the ancestors of cells transition-
ing to the partial EMT state. An overview of the general framework
is provided in Fig. 1 B-F.

Results

Uncovering Three Distinct EMT Trajectories via Optimal Transport
Analysis. Given that scRNAseq data cannot be obtained from
individual cells at multiple time points of lineage tracing experiments,
due to the assay’s destructive nature, we set out to computationally
infer likely ancestor cell states for different EMT fates. In the study by
Deshmukh et al. (18), an immortalized human mammary epithelial
cell line, MCF10A, was treated with TGF-beta for 1, 2, 3, 4, or 8 d
(Fig. 1A4), and scRNAseq data were obtained from populations
sacrificed at each time point. Through cluster analysis of the scRNAseq
data at day 8, we identified three subpopulations representing three
significantly different cell fates (Materials and Methods). These fates
were categorized as low, medium, and high EMT by utilizing the
76GS and KS scoring metrics to compute the average EMT scores
(37—40), for each subpopulation (Fig. 24, day 8). For instance, using
the 76GS method, we derived average EMT scores of -0.63, 0.23, and
0.32 for the low; medium, and high EMT categories, respectively, with
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Fig. 2. Optimal transport recovers diverse trajectories of EMT. (A) The colormap presents the inferred ATF distributions, showcasing the probability of early cell
states (from day O to day 4) serving as ancestors for the three fate subpopulations by day 8. (B) Barycentric coordinate projection visualizes ATF distributions.
For each time point, every individual cell is associated with a three-dimensional probability vector, as determined by that specific time point's ATF distributions
of the three fates (each column in A). This vector is then mapped onto an equilateral triangle (S/ Appendix, S3). A position at one of the triangle's vertices indicates

a 100% commitment of the cell state to the corresponding fate.
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significant p-values (#test, P < 0.005) for each pairwise comparison
(SI Appendix, Table S1, day 8). Use of the KS method yielded
consistent results (S Appendix, Table S2, day 8).

To infer the trajectories of individual cell states across the
sequential scRNAseq dataset, we utilized WOT (28). The dataset
consists of six distinct batches, each sourced from a uniformly
mixed single culture of around 10,000 cells. This setup provides
a consistent starting point for each batch before the application of
TGF-beta, allowing us to assume uniform initial conditions across
the batches. Leveraging this baseline, the WOT method predicts
a unique transition probability (i.e., the likelihood that one cellular
state is the ancestor and the other the descendant) between two
adjacent scRNAseq time points. The WOT approach assumes that
cellular states navigate the gene expression space using the shortest
overall distance (SI Appendix, Fig. S1 and Materials and Methods).
By multiplying the inferred transition probabilities from initial to
subsequent time points within our scRNAseq data series, we com-
puted the probability of each early cell state, termed “ancestors”,
transitioning into a final cell state at day 8 or “fate” (Fig. 24). We
refer to these transition probabilities as “ancestor-to-fate (ATF)
distributions.” To validate our inferred distributions, we followed
an approach of omitting data of a specific time point, designated
as test data, and comparing our estimated cell state distribution
to the actual data of this time point. The results showed minimal
deviations between predictions and actual data, confirming our
predictions’ reliability when contrasted with other intrinsic cellular
variations and unbiased interpolations (SI Appendix, S1). Note
that in the main text, both the inference and the validation of ATF
distributions were confined to the first 30 PCA dimensions of the
gene expression space, as validated in the original WOT paper to
accurately predict cell states in the test data at held-out time points
(37). Additionally, to broaden our analysis, we expanded the
dimensional range up to 3,000 and repeated our analysis for com-
parative purposes. Our results demonstrated consistency in all
main conclusions of the inferred ATF distributions across various
dimensionalities (S/ Appendix, S2).

To identify cellular origins leading to various fates, we categorized
cells with over 75% probability of transitioning to specific fates as
“top ancestors” (SI Appendix, S3). Notably, prior to treatment, the
percentage of top ancestors for the low EMT fate constituted double
the combined percentage of the other two fates (5.52% vs. 2.85%
at day 0). By the second day of treatment, the proportions of top
ancestors across all three fates converged, with values of 13.57%,
12.35%, and 13.31% for low, medium, and high EMT (Fig. 28
and ST Appendix, Fig. S2 and Table S3). This temporal shift in pro-
portions indicates a delayed inclination toward the medium and
high EMT fates, induced by TGF-beta. Additionally, cells falling
below the probability threshold for any EMT fate were classified
as “undetermined ancestors.” With ongoing TGF-beta treatment,
the portion of the undetermined ancestors decreased sharply from
91.62% on day 0 to 15.95% on day 4 (SI Appendix, Fig. S2 and
Table S3). This trend may suggest that initially, a high percentage
of undetermined ancestors indicates a high level of cell plasticity
before treatment; however, following treatment initiation, this plas-
ticity might reduce as more cells advance toward predetermined
fates. Consistently, these interpretations are supported across alter-
native probability thresholds for defining top ancestors, ranging
from 75% to 90% (SI Appendix, S4).

Upon inspection of the full trajectories, we observed that the
ancestors of the three fates were dispersed without clear boundaries,
unlike the three distinct, well-outlined regions for the three fates
seen at day 8 (Fig. 24 and ST Appendix, Fig. S3). This observation,

combined with the profound reduction in the percentage of

https://doi.org/10.1073/pnas.2406842121

undetermined ancestors posttreatment (75% decrease, Fig. 2B)
suggests that over time, cells exhibit decreased plasticity and
increasingly tend toward more determined states. This trend indi-
cates a divergence in EMT phenotypes. To quantify this divergence,
we computed the total variation-distance (41) between the cell
state distributions of each pair of trajectories at every time point
(Materials and Methods). Our analysis revealed a marked divergence
between every pair among the three trajectories: by day 8, the
distance had increased 2.67 times from its day 0 measurement for
both the low vs. medium and low vs. high EMT trajectories, and
2.17 times for the high vs. medium EMT trajectory. Notably, this
divergence was most pronounced before day 4, accounting for 90%
of the total increase. The divergence then leveled off, with only a
10% increase observed afterward, indicating that the divergence
between trajectories increases most significantly during early stages

of TGF-beta treatment (SI Appendix, Fig. S4).

Deciphering Unique Gene Signatures Across Trajectories of
Distinct EMT States. To trace the EMT characteristics of the three
fate subpopulations to their origins, we first determined the EMT
score for each cellular state, from day 0 to day 8, using the 76GS
and KS EMT scoring methods (Fig. 34 and Materials and Methods).
For each time point, we integrated the EMT scores across all cell
states, each weighted by their likelihood of being the ancestor
for a particular fate subpopulation as determined by the ATF
distributions (S/ Appendix, S5 and Fig. S5). This approach unveiled
three distinct trajectories, each showing unique average EMT score
trajectories with nonoverlapping 95% CI, throughout the course
of TGF-beta treatment (Fig. 3B and SI Appendix, Fig. S6A). The
clear separation into low, medium, and high EMT trajectories was
consistently observed using both the 76GS and KS EMT scoring
methods (87 Appendix, Fig. S6A and Materials and Methods).

Notably, the separation of trajectories was observed even before
the initiation of TGF-beta treatment on day 0, implying that early
EMT hallmarks could predestine cellular EMT fates (Fig. 3B). In
light of this finding, we limited our WOT analysis to the gene
expression space encompassing genes associated with the EMT
signaling pathway (42, 43), and repeated the computation of ATF
distributions and gene signature dynamics across the three trajec-
tories. We found that the three trajectories remained profoundly
divergent, similar to the ATF computations using the full gene
space. However, when examining early time point (before day 3),
we observed that the ancestral cell populations were less separable
when analyzed using the EMT gene set compared to the full gene
set (ST Appendix, S6).

Furthermore, we analyzed stemness, hypoxia response, and pro-
liferation signatures among cells belonging to the three fates. For
each cell, we computed those signatures using single-sample gene
set enrichment analysis, ssGSEA (Fig. 34 and Materials and
Methods). All trajectories showed an over 1.9 z-score increase in
both stemness and hypoxia response (Fig. 3B and SI Appendix,
Fig. S6A). This trend aligns with prior research that links hypoxia
to enhanced stemness in EMT (44, 45). Like the EMT signature,
these three trajectories stood out with their nonoverlapping 95%
CIl when characterized by these two signatures (Fig. 38 and
SI Appendix, Fig. S6A). Of particular interest was that by day 8, the
medium EMT trajectory exhibited the highest levels of stemness
and hypoxia response, with enrichment scores of 1.7 for both. In
comparison, the low and high EMT trajectories displayed scores of
1.4 and 1.2, respectively (Fig. 3B and S/ Appendix, Fig. S6A). These
findings resonate with earlier studies identifying an intermediate
EMT stage characterized by heightened stemness and a pronounced
response to hypoxia (4, 35, 40).
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Fig. 3. OT analysis reveals unique cellular signatures across distinct EMT trajectories. (A) Color maps illustrate the EMT signature score (using the 76GS method),
stemness signature score (via ssGSEA), and proliferation signature score (via ssGSEA) for all cellular states gathered from day 0 to day 8. (B) The panels depict the
time progression of average cellular signature scores (left to right: EMT, stemness, and proliferation) across the three distinct EMT trajectories. Shaded regions
denote the 95% ClI. (C-F) Temporal evolution of mean gene expression across the three EMT trajectories. Shaded regions denote the 95% Cl (C) for CDH7 and
CDH2 genes, (D) for POSTN and KRT8 genes, and (E) for HIF1A and SNAIT genes. (F) Two-dimensional plots illustrate the time-course progression of average cellular
signature scores for paired signaling pathways. Lines connect daily average scores for each signature pair, with arrows highlighting the directional flow of time.

Upon analyzing the proliferation signature trajectories, we noted
enrichment z-score declines from day 0 to day 1 (low EMT: -0.12 to
-0.84, medium EMT: -0.26 to -1.04, high EMT: -0.11 w -0.8,
Fig. 3B). A similar trend was observed in the G2M checkpoint and
mitotic spindle hallmarks (S7 Appendix, Fig. S6A). This decrease reflects
the known role of TGF-beta in inhibiting cell division (47-49).
From day 1 through day 8, cells regain their proliferative capacity,
evidenced by enrichment score of proliferation rebounds of 2.0 for

PNAS 2024 Vol. 121 No.32 2406842121

low, 1.8 for medium, and 2.1 for high EMT (Fig. 3Band SI Appendix,
Fig. S6A). Based on these changes, we concluded that the medium
EMT trajectory was distinctive, exhibiting the most pronounced
decline and the least recovery in proliferation signatures. This unique
trend in the medium EMT cells corresponds with their pronounced
response to the TGF-beta inducer, evident by TGFBI (a TGF-
beta-induced gene) showing more elevated expression in this trajec-

tory than in the other two (SI Appendix, Fig. S7).
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We then further analyzed the dynamics of individual genes
pivotal to EMT, such as CDHI and CDH2. We found that the
medium EMT trajectory initially displays high CDHI expression
that diminished toward the end of treatment, shifting from a
z-score of 0.09 on day 0 to -0.17 on day 8 (Fig. 3C). This down-
ward trend aligns with previous findings indicating that CDH1
downregulation triggers partial EMT (50). Conversely, CDH2
expression notably increased in the medium EMT trajectory,
diverging from the patterns seen in the high and low EMT tra-
jectories (Fig. 3C). Furthermore, these gene expression patterns
are markedly distinct, underscored by their nonoverlapping 95%
CL. This finding aligns with a previous study showing elevated
expression of CDH2 in partial EMT using the same cell line and
treatment type (36). Beyond CDH2, Zhang et al. (36) highlighted
elevated expression of POSTN and KRT8 expressions as indicators
of the partial EMT phase. In our study, the medium EMT trajec-
tory mirrored this finding, with POSTN and KRT8 expression
levels surpassing those in the high and low trajectories (Fig. 3D).
Additionally, we detected a pronounced rise in HIF-1A and Snail
expression within the medium trajectory compared to the others
(Fig. 3E). This finding further supports the classification of the
medium EMT as partial EMT, given the known roles of these
genes in hypoxia and partial EMT fates (35, 51).

To investigate whether TGF-beta treatment correlates with
other essential EMT-related signaling pathways, we further con-
ducted pairwise comparisons of various cellular signatures over
time (S/ Appendix, Fig. S8 and Materials and Methods). Across all
trajectories, we found positive correlations between TGF-beta
signaling and the IL6-JAK-STAT?3, Wnt, and PI3K-AKT-mTOR
pathways, with Pearson correlation coefficients ranging across
trajectories from 0.95 to 0.97, 0.92 to 0.96, and 0.76 to 0.92,
respectively (Fig. 3F). These observations are consistent with pre-
vious findings regarding the concurrent regulation of these path-
ways throughout the EMT process (9, 52, 53). Particularly, the
intricate interplay between TGF-beta and PI3K signaling path-
ways, which includes both antagonistic and cooperative interac-
tions, has been discussed previously (9). In our study, while the
TGEF-beta pathway activity increased from day 0 to day 8 across
all three EMT trajectories, the PI3K pathway interestingly showed
a decline in the partial EMT trajectory by the end of treatment.
In contrast, the enrichment scores for the other two trajectories
remained relatively stable (Fig. 3F). With PI3K signaling recog-
nized as a prominent driver of cell growth and proliferation (54),
this observed decline aligns with the lower proliferation scores and
G2M checkpoint pathway activity levels noted along the partial
EMT trajectory (Fig. 3B and SI Appendix, Fig. S6A).

Note that the signature trajectories calculated in this section
represent only the mean scores for cells on a specific path. The
nonoverlapping CI clearly confirm the distinct separations of these
mean dynamics. Indeed, variations in these signature scores exist
within the entire cell population, as illustrated in SI Appendix,
Fig. S6B. In the next section, we further expand our analysis to
encompass the full distribution of scores. Furthermore, to explore
the potential variations in lineage trajectories across different EMT
models, we applied the WOT method to an additional dataset
(17). Our findings confirm that variations in lineage trajectories
indeed exist across different cell lines, even under the same EMT

inducer, TGF-beta (S Appendix, S7).

Unveiling Increased EMT Heterogeneity Within the Partial EMT
Trajectory. To deepen our understanding of cellular heterogeneity
across EMT trajectories, we studied the temporal evolution of
EMT signature distributions along the three identified paths. We
employed several methodologies to evaluate the within-trajectory

https://doi.org/10.1073/pnas.2406842121

distributions. First, we incorporated chronological sequences of
triangle plots (Fig. 2B) with time-ordered individual cellular EMT
signature scores (Fig. 4 A and B and SI Appendix, Fig. S9). This
integration elucidated the relationship between ancestral cell
EMT states and their potential to transition into a specific fate
(Materials and Methods). The triangle plots demonstrate that the
top ancestors, showing over 75% commitment to the high/low
EMT fate, consistently exhibited high/low EMT signatures during
the initial stages of the treatment process (Fig. 4B). Conversely,
for the top ancestors of the partial EMT fate, EMT scores were
notably heterogeneous, encompassing the full spectrum from low
to high EMT cell types (Fig. 4B SI Appendix, Fig. S9). This pattern
is discernible throughout days 0-3 (Fig. 4B SI Appendix, Fig. S9),
suggesting that this early phase of the partial EMT trajectory
displays a greater degree of variability in EMT expression scores
compared to the early phases of the other EMT trajectories.

To explore the variability within the three EMT trajectories,
we assessed the distributions of EMT, stemness, proliferation, and
hypoxia scores among the top ancestors of the three identified
EMT fates (SI Appendix, S8). We found that one distinguishing
feature of the partial EMT trajectory was its broad variation in
the EMT signature, paired with consistent stemness, proliferation,
and hypoxia signatures (Fig. 4 Cand D and SI Appendix, Fig. S10).
We used Levene’s test for equality of variances to determine
whether any population had a significantly different variance from
the others. For instance, the top ancestors of the partial EMT
trajectory exhibited a more pronounced variance in the EMT
scores compared to those of the high EMT trajectory (Levene’s
test, P-value < le-10 in days 1 to 8, Fig. 4C and S/ Appendix,
Table S1). In contrast, the partial EMT trajectory exhibited a
stemness score variance similar to, or even less than, that of the
high EMT trajectory (Levene’s test, 2> 0.05 on days 1, 4, and 8).
On days when significant differences did occur (Levene’s test, P
< le-5 on days 2 and 3), the variances were more significant in
the high than the partial EMT trajectory (Fig. 4D and SI Appendix,
Table S4).

To further characterize the extent of heterogeneity within the
partial EMT trajectory, we calculated pairwise cell state distances
(55) (SI Appendix, S9), focusing on the differences between the
partial and high EMT trajectories. The low EMT trajectory was
excluded due to the high number of outliers (for details, see
SI Appendix, Table S5). To determine whether the high variability
was uniquely tied to the EMT signature, we computed cell state
distances across three gene expression spaces: the full gene set, the
EMT signature gene set, and genes differentially expressed between
the partial and high EMT fates (S Appendix, S10 and Table S6).
Our findings reveal that, within the EMT gene expression space,
variability in cell states was substantially greater in the partial EMT
trajectory compared to the high EMT trajectory, as supported by
statistically significant differences (¢ test, P < 1e-9) with fold
changes of 1.11, 1.09, 1.10, and 1.09 for days 1 through 4, respec-
tively (Fig. 4F and ST Appendix, Table S7). Conversely, during this
period, these differences were not significant when cell state het-
erogeneity was analyzed using either the full gene set or the DEG
set (Fig. 4F and SI Appendix, Table S7). This specific variability
of the EMT score in the partial EMT trajectory aligns with prior
research suggesting a lack of association between core EMT tran-
scription factors and the partial EMT state (56).

To further explore the interplay between EMT and stemness
signatures, we examined the joint distributions of these signatures
at various time points (S/ Appendix, S8). Our analysis revealed
that the three trajectories during days 2 to 8 occupied different
regions in the two-dimensional EMT and stemness score space.
Specifically, the EMT signature predominantly distinguished
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Fig. 4. Tracing cellular signature variations across three EMT trajectories. (A) EMT signature scores for cell states from days 1 and 2 (for the complete time course
see Sl Appendix, Fig. S6). (B) EMT signature scores from (A) are paired with ATF distributions and plotted within a triangle using barycentric coordinates. As in
Fig. 2C, a point's location represents its ATF distribution. Concurrently, the color map showcases the EMT score. Dashed lines demarcate a 75% commitment to
the fate linked to the corresponding triangle vertex. (C and D) Violin plots depict the distribution of each cellular signature score for the top ancestors of each fate:
(C) for EMT score (via 76GS method) and (D) for stemness score (via SSGSEA). (E) The error bar plots depict the mean of weighted pairwise distances in cellular
transcriptomics (indicated at the center of each bar), and the SD errors of these pairwise distances (symbolized by the length of the error bars). Significance
levels are denoted by asterisks: one star for o = 1e-4, two stars for « = 1e-8, and three stars for « = 1e-12. (F) Scatter plots display paired cellular signature scores
for days 2, 4, and 8. Color codes designate the top ancestors for each trajectory.
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between the low and high EMT trajectories, whereas a pronounced
stemness signature demarcated the partial EMT trajectory from
the other two (Fig. 4F). Additionally, within the low EMT subset,
a consistent positive correlation between EMT and stemness sig-
natures was observed from days 1 to 8 (Pearson coeflicients rang-
ing from 0.22 to 0.44). In contrast, the high EMT subset presented
a negative correlation between EMT and stemness signatures
(Pearson coeflicients ranging from -0.3 to -0.6) (S Appendix,
Table S8). This analysis reveals that cells with marked EMT sig-
natures, whether extremely low or high, display reduced stemness.
This trend is in line with earlier research suggesting that cells
moving toward a distinctly differentiated state, whether closer to
a pure E or M state along the EMT continuum, tend to exhibit
less stemness (22).

Leveraging CRISPR Screening for Validation of Key Early
Predicted Genes in EMT. To validate our identified trajectories,
we compared our findings with a recent study that reported a
substantial induction of the partial EMT fate following TGEF-
beta treatment in a background of PRC2 dysfunction, which
was conducted across various epithelial cell lines including
HMLER and MCF10A cells (36). The 2D gene expression maps
showed that the levels of EED and EZH2—key constituents of
PRC2—were notably diminished in areas aligning with the high-
probability regions for the partial EMT trajectory (Fig. 54 and
SI Appendix, Fig. S11A). To validate this observation, we quantified
the expressions of these genes across the three trajectories. Both
genes exhibited distinct average expression trends, each distinctly

Partial EMT

trajectory EED gene

Probability

Early DEGs in the proliferation gene set (Ben-Porath et al)

KI67

demarcated by nonoverlapping 95% CI. Importantly, there was a
noticeable decline in £ED and EZH?2 expressions, predominantly
within the partial EMT trajectory (Fig. 5B and SI Appendix,
Fig. S11B). Concurrently, within the top ancestors of the partial
EMT, there was a discernible contraction in the distribution of
EED expression, marked by a decrease in the number of cells
exhibiting high gene expression, which is evidenced by a shift
in the mean of the distribution (SI Appendix, Fig. S11C and
Table S9). Similar patterns were observed for the EZH2 gene
(SI Appendix, Fig. S11C and Table S10).

In line with these findings, the CRISPR screen study revealed
that knocking out £ED and EZH2 promotes a partial EMT state
with increased stemness (36). This study was performed using the
HMLER cell line, which, like MCF10A, is an immortalized
human mammary epithelial cell line and exhibits similar changes
in gene expression during TGF-beta-induced EMT as the
MCF10A cell line (36, 57). Therefore, we curated an EMT-related
gene list from both the time course data (18) and the CRISPR
screen study (36) (Materials and Methods). Two mesenchymal states
were identified in the CRISPR study: C1-sgEED-Mes (partial
EMT with EED gene knockout) retained some epithelial traits,
while C1-sgKMT2D-Mes (high EMT with KM 72D knockout)
lacked them. We then examined the differential expression of the
curated gene set between the partial and high EMT fates in our
datasetonday8,andbetween the C1-sgEED-Mesand C1-sgKMT2D-
Mes cells in the CRISPR screen data (S Appendix, S10 and
Fig. S12). Remarkably, three out of the top four ranked genes—7G-
FBI, POSTN, and KRT8—were significantly up-regulated in the
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Fig. 5. Early predictors of EMT fate through early DEG analysis and CRISPR knock-out screening. (A and B) EED gene expression analysis: (A) color maps display
the ATF distributions for the partial EMT trajectory alongside the expression levels of the EED gene across all cellular states from day O to day 8. In the trajectory
map, the color gradient signifies probability, while in the gene expression map, it indicates the level of gene expression. (B) Line plots illustrate the average
dynamics of EED gene expression over. Shaded regions denote the 95% Cl. (C and D) Early DEGs of proliferation-related genes (C) and stemness-related genes
(D). Distinct color codes showcase the differential gene expressions in cell states from a specific trajectory when contrasted with the combined cell states of
the remaining two trajectories.
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partial EMT state in both datasets (¢ test, P < le-10; fold changes
in S/ Appendix, Table S11). This analysis further supports our
characterization of the partial and high EMT fates within our
dataset.

We then evaluated early differential gene expression patterns
between each pair of cellular states in our data, weighted according
to their ancestral distributions on day 2. We compared our find-
ings with a standard differential gene expression analysis con-
ducted on two groups of CRISPR knockout epithelial cells,
Cl-sgEED-Epi and Cl-sgKMT2D-Epi (S Appendix, S10 and
Fig. S12). These two groups of epithelial cells were the ancestral
cells for their respective EMT fates: the Cl-sgEED-Mes and
Cl-sgKMT2D-Mes cells, respectively (36). Notably, four of the
top five ranked genes overlapped between our and the CRISPR
study— TGFBI, KRT8, and CDH1 were significantly up-regulated,
while PHF19 was significantly down-regulated in the partial EMT
trajectory (¢ test, P < le-9; fold changes are in S/ Appendix,
Table S12). The concordance observed between our predictions
and the results from the CRISPR screen study partially validates
our inference approach of predicting early key genes in EMT.

Our methodology leverages the inherent heterogeneity of cel-
lular states that culminate in diverse cell fates under a single EMT
inducer. This approach enables the identification of crucial
carly-stage genes that govern specific cell destinies, effectively cir-
cumventing the necessity for extensive preexisting biological
knowledge when selecting a specific EMT inducer or applying
CRISPR to knock out a specific gene for a corresponding cell fate.
We further applied our early DEG analysis to two comprehensive
gene sets—the ones that we employed to delineate stemness and
proliferation patterns (58, 59). Our results highlighted that in the
early phase of TGF-beta-induced EMT, genes such as CENPF,
CKS1B, and MKI67 were significantly up-regulated in the ances-
tors of the high EMT state on day 2 (7 test, P < 1le-10 and fold
changes 2.16, 1.80, and 1.76, respectively) (Fig. 5C). Similar pat-
terns were observed on days 1 and 3 (S/ Appendix, Fig. S13). In
contrast, in the early cellular states of the partial EMT state, genes
like LAMA3, LAMB3, and ITGB4 were prominently expressed
on day 2 (¢ test, P < le-10 and fold changes 1.66, 1.55, and 1.50,
respectively) (Fig. 5D). Again, similar trends were observed on
days 1 and 3 (8] Appendix, Fig. S13). Our findings concerning
the increased expression of LAMA3, LAMB3, and ITGB4 align
with prior research that identified their role in demarcating cancer
stem cell-enriched populations in a partially mesenchymal state
(60, 61). Our methodology provides insights by enabling the
identification of DEGs across a temporal spectrum (S Appendix,
Fig. S7). For instance, our time-resolved analysis reveals that the
differential expression of /7GB4 in the partial EMT state, when
compared to the high EMT state, is more pronounced during the
early stages than it is in the later phases of EMT. When comparing
day 2 to day 8, the fold changes were 1.50 vs. 1.09, respectively.
These findings potentially underscore crucial moments for timely
interventions to influence the direction of EMT evolution.

Discussion

In chis study, we utilized WOT to infer EMT trajectories as a
data-driven model; however, the underlying mechanisms remain
unidentified. Existing work in the field employs computational
single-cell approaches to model EMT, utilizing mechanistic meth-
ods such as bifurcation and stability analysis from dynamical sys-
tems theory. These methods illustrate varying EMT responses to
TGF-beta, corroborating our findings from data-driven models
and further elucidating the underlying mechanisms of these diverse
responses (62, 63). Moreover, another mechanistic approach

PNAS 2024 Vol. 121 No.32 2406842121

involves constructing gene regulatory network circuits through a
combination of transcriptomics data and network modeling. This
approach helps identify the context-specific activity dynamics of
common EMT transcription factors (64), and the activity dynam-
ics of common EMT transcription factors in varying contexts (65).
Therefore, future work should consider integrating these mecha-
nistic models with OT analysis to enhance the predictions and
uncover the underlying mechanisms driving these predictions.

Furthermore, WOT is based on optimal transport theory, which
assumes that cells traverse the gene expression space via the short-
est overall distance (26, 27). This foundational assumption serves
as an unbiased starting point for cell state transitions (28). Future
refinements could integrate prior knowledge of specific gene
expression changes, adjusting gene distances based on this knowl-
edge. This approach would allow us to leverage WOT more adap-
tively, inferring unknown system parts from existing biological
understanding. Additionally, WOT employs an unbalanced opti-
mal transport method, accommodating the effects of cell prolif-
eration and death in the transport of cell states. However, the
estimation of cell proliferation and death depends on our selection
of gene sets from the literature. A recently published tool, TIGON
(66), addresses this limitation by simultaneously reconstructing
dynamic trajectories and population growth directly from the data.

Despite these caveats, the use of WOT has uncovered several
insights into individual EMT trajectories. These insights, when
integrated with existing EMT research, can offer a more compre-
hensive view of the EMT landscape. First, we found that the low
EMT trajectory is determined early on, within a day of treatment.
This result suggests that the initial state of these cells renders them
resistant to TGF-beta, providing insights into two prior studies
on EMT resistance: one study identified a subpopulation of epi-
thelial cells with similar capabilities to receive and process
TGF-beta signals but exhibited a notably weaker downstream
response compared to more sensitive cell populations (36).
Another study revealed that sustained EPCAM expression acts as
a marker for epithelial clones in metastatic breast cancer that resist
EMT induction, a trait shaped by the interplay between human
ZEBI and its target, GRHL2 (67).

Additionally, we observed that the expression of the ZED and
EZH?2 genes was down-regulated from day 0 to day 1 following
TGF-beta treatment in the MCF10A cell line (Fig. 5B and
SI Appendix, Fig. S11B). Although there is no established mechanism
for this effect, we hypothesize that the TGF-beta-induced cytostatic
effect is associated with decreased expression of PRC2 components.
PRC2 components, particularly EZH2, are well-documented targets
of cell cycle transcriptional regulation, which is up-regulated in pro-
liferating stem cells and cancer cells (68, 69). Consequently, from
day 0 to day 1, MCF10A cells show sensitivity to the TGF-beta-
induced reduction in cell proliferation (Fig. 38 and S/ Appendix,
Fig. S6A), likely contributing to the reduced expression of EED and
EZH?2. Furthermore, after day 1, the dynamics of EED and EZH2
expression diverged across the three trajectories. As shown previously
(36), either a stable or transient loss of PRC2 function is sufficient to
activate an EMT trajectory and generate a partial mesenchymal cell
state. As depicted in Fig. 5B and ST Appendix, Fig. S11B, after day 1,
EED and EZH2 maintained a low expression level in the partial EMT
trajectory, suggesting a functional reduction of PRC2, which aligns
with the previous findings (36). In contrast, the low and high EMT
trajectories showed a restoration of EED and EZH2 levels to pretreat-
ment levels, indicating that PRC2 remains functional.

Last, leveraging the heterogeneity of cellular responses to
TGF-beta-induced EMT, our method effectively pinpoints early
differentially expressed genes across distinct EMT trajectories from
a broad set of candidates. For instance, we distinguished /7GB4,
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LAMA3, and LAMB3 due to their pronounced differential expres-
sions in the early stages of the partial versus high EMT trajectories.
As previously highlighted, 77GB4 serves as an integrin subunit that
interacts with specific matrix proteins, while LAMB3 and LAMA3
engage with different integrin subunits than does /7GB4 (70, 71).
Future validation of our findings could employ cell surface markers
encoded by these genes to isolate early-phase cells and observe their
responses under a consistent TGF-beta treatment timeline.

Materials and Methods

scRNA-seq Data Analysis. The single-cell RNA-seq datasets analyzed here
were obtained from published studies (18, 36). For the dataset from Deshmukh
et al., we used the processed sequencing data made available by the authors;
the raw sequencing reads are available from the NCBI Sequence Read Archive
(72)(BioProject Accession No. PRINA698642). From the dataset from Zhang etal.,
processed single-cell RNA-seq profiles of HMLER cells subjected to EED/EZH?2
knockout were downloaded from the Gene Expression Omnibus (GEO) database
(73) (GEO Accession No. GSE158115). The procedures for quality control, data
normalization, batch correction, and other steps for this dataset were performed
asinthe original paper(36). Detailed descriptions of the scRNA-seq data dimen-
sionality reduction and clustering analysis are available in S/ Appendix, S11.

Inferring Trajectories with WOT. We employed the WOT(28) method to ana-
lyze cell state transition probabilities over time in the scRNA-seq data, using
normalized expression matrices and day annotations. Cell growth rates were
determined using a logistic function based on cells' proliferation and apoptosis
signatures from MsigDB gene sets (42, 43). These rates were then incorporated
into an unbalanced transport optimization to model transitions over consecutive
days, with parameters previously validated (28). This methodology enabled the
prediction of transition maps following TGF-beta treatment and facilitated the
computation of ATF distributions, which quantify the likelihood of each cell differ-
entiating into specific fate subpopulations at early time points (S/Appendix, S12).

Assessing EMT Scores: The 76GS and KS Methods. EMT scores were calculated
using two distinct methodologies, each employing different gene sets and met-
rics. The consistency between these methods has been verified through a com-
parative study involving multiple individual samples (40). In the 76GS method
(37,39), we computed the EMT score as a weighted sum of the expression levels
of 76 EMT-related genes. The weight assigned to each gene was determined
by its correlation with the CDHT (E-cadherin) expression level. The scores were
subsequently adjusted such that the mean is 0. As a result, a negative score
signifies that a cell's EMT state is closer to the epithelial (E) state than the mes-
enchymal (M) state. We then rescaled the scores by taking their negatives, thus
aligning the direction of the scores with the progression from the E to M state.
The second method, known as the KS method, was initially established based
on a comparison between the cumulative distribution functions (CDFs) of the E
and M signatures (38). According to this method, the EMT score is computed as
the maximum difference between the two CDFs, i.e., the CDF of the M signature
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minus the CDF of the E signature. Therefore, a positive score fora sample indicates
its closeness to the M state, and vice versa.

Computation of Cellular Signature Scores by ssGSEA. For determining
the expression level of the stemness signature, we adopted gene sets from Lim
etal.(58), specifically designed to distinguish between stemness and mature cell
signatures by investigating mammary stem and luminal cells. For the hypoxia
response signature, we employed gene sets from MSigDB (42, 43). The prolif-
eration signature was determined using a gene set from Ben-Porath et al. (59)
This set was compiled by merging three distinct gene groups: those that are
functionally involved in proliferation, those with cyclical expression within the
cell cycle, and those that were instrumental in the clustering of proliferative
subpopulations within human breast tumor expression data. Additionally, we
calculated the proliferation signature using two other gene sets associated with
specific proliferation signaling pathways, G2M and mitotic spindle, from MSigDB
(43). Details of the gene sets used for stemness, proliferation, hypoxia, and G2M
signatures are provided in S/ Appendix, Tables S13-S17. For further signaling
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Wnt, and IL6-JAK-STAT3 hallmarks from MSigDB (42, 43). We performed single-
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Data, Materials, and Software Availability. All code used to process data
and generate figures is available on a public GitHub repository at https://github.
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