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Abstract. Let K be a field and V be a set of rank one valuations of K. The corresponding Tate-Shafarevich
group of a K-torus T is II(T, V) = ker(H1 (K, T)—=TIlpev Hl (Ky, T)). We prove that if K = k(X) is the function
field of a smooth geometrically integral quasi-projective variety over a field k of characteristic 0 and V is the
set of discrete valuations of K associated with prime divisors on X, then for any torus T defined over the base
field k, the group III(T, V) is finite in the following situations: (1) k is finitely generated and X (k) # @; (2) kis
anumber field.

Résumé. Soit K un corps et V un ensemble de valuations de rang un de K. Le groupe de Tate-Shafarevich
d'un K-tore T est III(T,V) = ker(H1 (K, T) — Ilyev H! (Ky, T)). Nous montrons que si K = k(X) est le
corps de fonctions d'une variété lisse géométriquement intégre quasi-projective définie sur un corps k de
caractéristique 0 et que V est’ensemble des valuations discrétes de K associées aux diviseurs irréductibles de
X, alors pour tout tore T défini sur le corps de base k, le groupe I1I(T, V) est fini dans les situations suivantes :
(1) k est de type fini sur le corps premier et X (k) # @; (2) k est un corps de nombres.
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1. Introduction

Let K be a field equipped with a set V of rank one valuations. Given a K-torus T, one defines the
corresponding Tate-Shafarevich group as follows:

II(T, V) :=ker| H'(K,T) — [] H'(K,, 1) |.
veV
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A classical result states that if K is a global field and V consists of all valuations of K, then ITI(7, V)
is finite. The standard proofs available in the literature deduce this fact from the Nakayama-
Tate duality theorem from global class field theory (cf., for example, [16, Proposition 6.9] or [24,
§11.3]). However, it was pointed out in [19, Remark 4.5] that the finiteness can be easily derived
from the finiteness of the class number and the finite generation of the unit group of K. In
fact, this approach (which we briefly summarize below in Section 2) applies in a much more
general situation and, in particular, yields the finiteness of III(T, V) for any torus T defined over
an arbitrary finitely generated field K when V is a divisorial set of places, i.e. the set of discrete
valuations of K associated with prime divisors on a normal scheme X of finite type over Z with
function field K (we will call such an X a model of K). Furthermore, in [18, 20], we showed that if
k is a field of characteristic zero satisfying Serre’s condition (F) (see [22, Ch. III, §4.1]) and X is a
geometrically integral normal k-defined variety, then for the function field K = k(X) and the set
V of discrete valuations of K corresponding to the prime divisors on X (“geometric places”), the
Tate-Shafarevich group I11(T, V) is again finite for any K-defined torus 7.

In a related direction, Harari and Szamuely [8] observed that if one considers only tori T
defined over the base field k, then the finiteness of I11(7, V) can be established for the function
field K = k(C) of a smooth geometrically integral k-defined curve C when

(1) kis finitely generated and C(k) # @; or
(2) kisanumber field

with respect to the set V of geometric places of K (as opposed to the divisorial sets that can be
considered in this case). The goal of this note is to show that a minor adaptation of the approach
developed in [18, 20], in conjunction with some observations made in [8], enables one to extend
the result of [8] to function fields of varieties of arbitrary dimension. The precise statement is as
follows.

Theorem 1. Let X be a smooth geometrically integral variety over a field k of characteristic 0, and
let V be the set of discrete valuations of the function field K = k(X) associated with codimension
one points of X. Then for any k-defined torus T, the Tate-Shafarevich group II1(T, V) is finite in
the following situations:

(1) k is finitely generated and X (k) # @;
(2) k is a number field.

Remark 2.

(i) If T is not assumed to be defined over the base field k, then, to the best of our knowledge,
the question about the finiteness of I11(7, V) in this situation remains open, even when
X is a curve.

(ii) For our purposes, we may (and will) assume that the variety X is affine — this can
always be achieved by replacing X with a suitable affine open k-subvariety, which will
only shrink the corresponding set V of valuations of K = k(X). While the affineness
assumption is not essential for the argument, it will help us to avoid certain technicalities,
while still yielding the required finiteness statement. By the same token, we can avoid the
smoothness assumption, although then we need to require in item (1) of the theorem that
X has a smooth k-rational point.

The paper is organized as follows. In Section 2, we provide a short summary of our adelic
approach to the finiteness of Tate-Shafarevich groups of tori over finitely generated fields with
respect to divisorial sets of valuations. We then turn to the proof of Theorem 1 in Section 3.
Finally, in Section 4, we make some brief remarks on higher Tate-Shafarevich groups.
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Notation 3. Suppose T is a torus over a field K. For a Galois extension L/K, we follow
the usual practice (cf. [22, Ch. III]) and denote by H {(L/IK,T) the Galois cohomology group
Hi(Gal(L/K), T(L)); if L = K°¢P is a separable closure of K, we denote the latter group simply
by H (K, T). For extra clarity, we will occasionally write H?(L/K, T(L)).

2. A brief review of adeles and the method from [18-20]

We will now quickly recall some of the relevant terminology pertaining to adele groups and
summarize several important points of our approach to the finiteness of Tate-Shafarevich groups
with respect to divisorial sets, which we will also use below in the function field case — we refer
the reader to [19, §§3—4] for the full details.

So, suppose K is a field equipped with a set V of discrete valuations. As usual, one defines the
ring of adeles Ak (V) as the restricted product of the completions K, for v € V with respect to the
valuation rings @, < K,. The group of invertible elements of Ax (V) is the group of ideles Ix (V).
In the sequel, we will assume that V satisfies the following condition (which holds automatically
for the divisorial and geometric sets of places that we consider below):

(%) forany ae K™, theset V(a) ={ve V| v(a) # 0} is finite.

We then have diagonal embeddings K — Ag(V) and K* — Ig(V). In particular, Ag(V) has a
natural structure of a K-algebra. Next, let
ARWV)=[] 6, and I¥(V)=[] 05
veV veV
be the subring of integral adeles and the subgroup of integral ideles, respectively. We recall that
the quotient Ix (V)/ (I]‘I’<o (V)-K™) can be identified with the Picard group Pic(K, V), which is defined
as the quotient of the group of divisors Div(K, V), i.e. the free abelian group on V, by the subgroup
of principal divisors P(K, V), where the principal divisor correspondingto ae€ K™ is ), ey v(a) - v.
Furthermore, suppose L/K is a finite Galois extension with Galois group § = Gal(L/K), and
let V be the set of all extensions of valuations from V to L. We then have an isomorphism
Ag(V)eg L = AL (V) of topological rings. This, in particular, enables us to define an action of
G on A (V) with the property that
AL(V)9 = Ag(V).

Next, let T be a K-torus. Since Ak (V) is a K-algebra, we can consider the adelic group
T(Ak(V)). For each v € V, let T(0),) be the unique maximal bounded subgroup of T(K,). (The
notation is justified by the fact that this subgroup is indeed obtained as the group of @, -points of
asuitable 0,-model 9 of T x g K,,.) One can show that T'(Ak (V) is simply the restricted product
of the T(K,) for v € V with respect to the subgroups T(0,) (see, for example, [24, §11.1] for the
number field case). We define the subgroup of integral adeles to be

TARW) =[] T@.
veV

Furthermore, the diagonal embedding K — Ak (V) yields an embedding T(K) — T(Ag(V)),
which is also often referred to as the diagonal embedding. For a field extension L/K, the
corresponding groups T'(A(V)) and T(A$°(V)) are defined analogously. Moreover, if, as above,
L/K is a finite Galois extension with Galois group G, then the action of § on A (V) naturally
induces a G-action on T(A(V)). In this case, the diagonal embedding gives rise to the group
homomorphism

Aux: HU(LIK, T) — H' (L/K,T(AL(V))).

Also, we set E(T,V,L) = T(L)n T(A‘L’O(V)). With these preliminaries, we have the following
statement.
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Proposition 4. Let T be a K-torus that splits over a finite Galois extension L/ K. Then

(i) We haveE_I(T, V)= keriLL/K.
(i) If T(AL(V)) = T(AT(V)) - T(L), then III(T,V) is contained in the image of the map
v: HY(L/K,E(T,V,L)) — H'(L/K, T).

Proof. These facts were basically established in [19, §4], so we will just give a sketch of the
argument. Let us define

HUI(L/K, T,V) =ker| H'(LIK, T) — [] H' (Ls/Ky, T)|,
vev

where, in the product on the right, we choose, for each v € V, a single extension 7|y in V.
First, it follows from Hilbert's Theorem 90 and the inflation-restriction exact sequence that
III(T, V) =I(L/K, T, V). Second, one easily shows (cf. the argument on [18, pp. 244-245]) that if
the extension Lj;/ K, is unramified, then the map

w: H (Ly/ Ky, T (Or,)) — H* (Ly/ Ky, T (L7))

is injective. (We note that the injectivity of ¢, can also be seen in the more general framework of
results on the Grothendieck-Serre conjecture over discrete valuation rings — cf. [6, 15].) These
two facts together, combined with Shapiro’s Lemma, yield (i) (cf. loc. cit. for the details).

Next, suppose that an element ¢ € H 1 (LIK, T), represented by a cocycle {{;} (0 € Gal(L/K)),
lies in ker A ;. Then there exists a € T(A(V)) such that

éo=0(a)- a ! forall oe Gal(L/K).

The assumption made in (ii) implies that one can write a = b-c, with b € T(A‘ZO(V)) and ce T(L).
Then for any o € Gal(L/K), we have

to:=ég-(0(0)c) =0 (b)b™ € E(T, V, I).

Thus, {e4} is a cocycle on Gal(L/K) with values in E(7, V, L), and the previous equation shows that
for the corresponding cohomology class € € H'(L/K,E(T,V, L)), we have ¢ = v(¢), proving (ii).
(We note that this argument is a simplified version of the proof of [19, Proposition 4.4] as due
to the assumption made in the statement of (ii) above, the group H in loc. cit. coincides with
T(A(L, V1)) in the notations used there.) O

Suppose now that K is a finitely generated field and V is a divisorial set of places of K
associated with a model X. Let T be a K-torus, L/K be a finite Galois extension that splits T,
and V be the set of all extensions of valuations from V to L. Then the Picard group Pic(L, V)
coincides with the Picard group of the normalization X of X in L, hence is finitely generated
(see [10, Corollaire 1]). Consequently, there exists a subset V' c V with finite complement such
that Pic(L, V') is trivial, and therefore [ L(W) = I]‘z"(ﬁ) -L* (see, for example, [19, Proposition 3.1]).
Since T is split over L, the latter implies that T'(A (V) = T(AZO(W)) - T(L). Then according to
Proposition 4 (ii), the group ITI(T, V') (hence also ITI(T, V)) is contained in the image of the map
v': HY(L/K,E(T,V',1)) — H'(L/K, T). But in this situation, we show that the group E(T,V’,L)
is finitely generated (see the proof of [19, Proposition 3.2]), and therefore H' (L/K,E(T, V', L)) is
finite. In summary, we obtain the following finiteness result.
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Proposition 5 ([19, Theorem 1.2]). Let K be a finitely generated field and V be a divisorial set of
places of K associated to a model X. Then for any algebraic K -torus T, the Tate-Shafarevich group

II(T, V) =ker | H (K, T) — [] H'(K,, T)
veV

is finite.

3. Tate-Shafarevich groups over function fields

In this section, we will discuss how minor adaptations of the method reviewed above, together
with several additional observations (some of which were already present in [8]) lead to a proof
of Theorem 1.

Our set-up is as follows. Suppose X is a smooth geometrically integral affine variety over a
field k. Let K = k(X) be the corresponding function field and V be the set of discrete valuations
of K associated with the prime divisors on X. Also, let T be a torus defined over the base field k
that splits over a finite Galois extension ¢/k with § = Gal(¢/k). Set L= ¢- K and let V be the set of
all extensions of the valuations from V to L.

Now, let us assume in addition that k is a finitely generated field. Then, as above, Pic(L, V) is
finitely generated (see [10, Corollaire 2] or [7, Proposition 6.1]), so there exists a subset V'  V with
finite complement such that [ L(W) = l]‘z"(ﬁ) -L*, and hence also T(A L(W)) = T(A‘EO(W)) -T(L).
Note that we may assume that V' is the set of discrete valuations of K associated with the prime
divisors on an open affine subvariety X’ c X (see, for example, the discussion in [17, §5.3]). From
Proposition 4 (ii), we conclude that ITI(T, V') (hence also ITI(T, V)) is contained in the image of
the map

v': H' (LIK,E(T,V',L)) — H'(LIK, T),
where, as before, E(T,V',L) = T(L) N T(Aio(W)). However, in contrast to the case of divisorial
sets of valuations reviewed above, the group E(T,V’, L) does not have to be finitely generated.
Nevertheless, we have the following. For the statement, we note that we have an inclusion
T() < E(T,V',L).

Lemma 6. With notations as above, the quotient E(T,V',L)I T (£) is a finitely generated abelian
group.

Proof. Since, by assumption, T splits over /, it suffices to consider the case of a 1-dimensional
¢-split torus T = G,,. Then E(T, V', L) coincides with

U(L,W):{aELX v(a)=0 forall veﬁ}.

Let X’ be the normalization of X’ in L. Since X' is affine, we can embed it as a dense open
subset into a projective ¢-variety Y (of course, this fits into the general framework of Nagata’s
compactification theorem — see [2] and [13] for proofs written in scheme-theoretic language).
Furthermore, since X' is normal, and it is well-known that the normalization of a projective
variety is projective (see, for example, [23, Tag 0BXQ, Lemma 33.27.2]), we can assume that Y
is normal as well. We have ¢(Y) =¢ (5(7) = L, and we denote by V" the set of discrete valuations
of L associated with prime divisors on Y. Then V"' \ V' consists of finitely many valuations, say,
V1, ..., Uy (which correspond to the prime divisors on Y not contained in X’). Consider the group
homomorphism
: UL V)—=Z", 1(a)= (v1(a), -, vr(a).

Since Y is normal and complete, any function a € L that satisfies v(a) = 0 for all v € V" belongs
to ¢ (see, for example, [5, Theorem 6.45] or [9, Proposition 6.3A]). It follows that

kert={aeL*|v(a)=0 forall veV"}
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reduces to £*. So, being isomorphic to a subgroup of Z", the quotient U(L, V')/¢* is a finitely
generated group, as required. g

Thus, we have a short exact sequence of modules over § = Gal(¢/k) = Gal(L/K):
1-TW¢)—E(T,V,L) —T—1,

where T’ is finitely generated as an abelian group. We then have the following exact sequence of
cohomology groups

H'(¢1k, T) -2 H' (LIK,E(T,V', L)) — H'(LIK,T).
Since the group HY(L/K,T) is finite (see, for example, [14, Ch. II, Corollary 1.32]), we see that the
intersection I1I(7, V) n (im(v' 0 §)) has finite index in I11(7T, V). We now define
I (T, V) =ker| H' (¢/k, T) — [] H' (L7/Ky, T)|,
veV

where, as in the proof of Proposition 4, we fix a single extension v|v in V. Clearly, we have
III(T, V) n (im(v' 0 §)) = (v' 0 §) (ITTp(T, V)). So, we obtain the following.

Proposition 7. With notations as above, if 111 (T, V) is finite, then I11(T, V) is also finite.

Thus, in order to prove Theorem 1, it is enough to show in the situations described in the
items (1) and (2), the group Iy (T, V) is finite. For this, we will consider two cases.

The case dim X = 1. This case was studied by Harari and Szamuely in [8], and we will now review
the relevant parts of their argument to put the general case in the appropriate context.
First, we have the following observation.

Lemma 8. Let X be a smooth geometrically integral curve over an arbitrary field k. Suppose
x € X(k) is a k-rational point and let v be the discrete valuation of K = k(X) associated with x.
Then for any k-torus T that splits over a finite Galois extension ¢/ k, the map

wp: H' 01k, T) — H'(L3/K,,T),  where L=¢-K and vy,
is injective.
Proof. Let us consider the following diagram

! 1"

H'(01k, T) 2 H' (Ly/K,, T(61,)) ——= H' (L3/K,, T (L)) (n)
o > lpv
id ~ N
H'(1k, T)

where the top row represents a natural factorization of u,, and p, is induced by the reduction
map modulo the valuation ideal 3, of the valuation ring 0, (we note that the residue fields
of L; and K, are ¢ and k, respectively). Since the extension Lj;/K, is unramified, the map y, is
injective (see the proof of Proposition 4), so ker i, = ker i, On the other hand, the composition
pyo 1, is the identity map, and hence ker ), is trivial. U

It follows immediately from the lemma that if X (k) # @, then Il (T, V) is trivial. Now suppose
that k is a number field and denote by ka the set of all finite places of k. By the Lang-Weil
estimates [12] and Hensel’s lemma, we can find a subset U c V¥ with finite complement Vf’f \U
such that for any u € U, there exists a point x € X whose residue field k(x) is contained in the
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completion k;, (cf. [8, Lemma 2.1]). Furthermore, it is well-known (and follows, for example,
from Proposition 5) that the group

I (T,U) :=ker| H' (k, T) — [] H' (ky, T)
uelU

is finite. Thus, to prove the finiteness of 11y (7, V), it is enough to show that there is an inclusion
Iy (T, V) c (T, U). (2)

For this, fix u € U, pick x € X such that k(x) c k,, and let v be the discrete valuation of K = k(X)
corresponding to x. Set X, = X x k. Then x lifts to a point x,, € X,,(k,), and we denote by v, the
discrete valuation of K* = k,(X,,) associated with x,,. We then have the following commutative
diagram

H'(¢1k, T) ——> H'(Ly/K,,T)

N N

H (0alky, T) 22 HY (LY, (KY),,, T)

where L¥ = ¢- K" and v,|v,. Suppose now that ¢ € [Ty (T, V). Then
Ay (py(©) =1 =y, (A4(S)).

Since x, € X(k,), the map p,, is injective by Lemma 8, and therefore A,({) = 1. As u € U was
arbitrary, we obtain (2), which completes the consideration of the case where dim X = 1.

The case dim X = 2. We begin the argument with the following upgrade of Lemma 8.

Lemma 9. Ler X be a smooth geometrically integral variety over an arbitrary field k, let Y ¢ X
be a smooth geometrically integral k-defined subvariety of codimension 1, and let v be the discrete
valuation of the function field K = k(X) associated with Y. If Y (k) # @, then for any k-torus T that
splits over finite Galois extension ¢/ k, the map

Wy HY(01k, T) — H'(Ly/K,,T),  whereL={¢ K and v|v,
is injective.
Proof. We start with a diagram similar to (1):

HY(0/k, T) == HY (Ly/K,, T(01,)) > H' (Ly/Ky, T (Ly))

~
~
~
v
VU\ ~ N

H! (L(m/K(V), T)

where L) and K denote the corresponding residue fields. Again, ! is injective, so we
conclude that kery, is contained in the kernel of v, = p, o /,. In the case at hand, we have
KW = k(Y) and L) = £(Y,), where Y; = Y x £. Thus, we need to prove the injectivity of

vy: H' (0/k, T) — H' (C(Y)/k(Y),T).
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Fix y € Y (k) < Y,(¢) and consider the local rings Oy y and Oy,,, = ¢ - Oy, with maximal ideals m
and m,. The residue fields Oy, y/mand Oy, y/m, coincide with k and ¢, respectively, and we have
another diagram analogous to (1):

1

HY(C1k, T) —= H' (£(Yp) [K(Y), T (O, ,)) — H' (¢(Y,) 1 K(Y), T)

~
i~ |
s

HY\(¢/k, T)

~

where again the top row is a factorization of vy and py, y is induced by the residue map modulo
my. Since Y is smooth, by [1, Theorem 4.1] (or also by [3, Theorem 1]), the map v’l’, is injective.
But the composition py,,, o v/, is the identity map, so v/, is injective, and therefore vy is injective,
as required. 0

We will use this statement in conjunction with the following consequence of Bertini-type
theorems.

Proposition 10. Let X be a smooth geometrically integral quasi-projective variety of dimension
> 2 over a field k of characteristic 0. Then X contains a smooth geometrically integral k-defined
subvariety Y of codimension 1. Moreover, given x € X(k), one can choose such a Y so that it
contains x.

This follows immediately from [4, Theorem 3.6] (see also [11] for various related results).

We can now complete the proof of Theorem 1. First, suppose X contains a k-rational point x.
According to Proposition 10, there exists a geometrically integral smooth k-defined subvariety
Y < X of codimension 1 such that Y (k) # @. Let v be the discrete valuation of K = k(X) associated
with Y. Then according to Lemma 9, the map u,: H'(¢/k, T) — H'(L;/K,, T) is injective, hence
Iy (T, V) is trivial.

Now assume that k is a number field. By Proposition 10, we can find a geometrically integral
smooth k-defined subvariety Y < X of codimension 1. Let again v be the discrete valuation of
K = k(X) associated with Y. It follows from the Lang-Weil estimates (cf. [12]) and Hensel’s lemma
that there exists a subset U V;( with finite complement VfK \U such that Y (k,) #Z@ forallue U.
We claim that

IM1(T, V) < II(T, U) :=ker(H1(€/k, T — [ H (¢alku, T]). 3)
uelU

Since again 11 (7, U) is finite, this will yield the desired finiteness of I11y(T, V).
Fix ue U. Set X, = X x; k, and Y,, = Y xi ky, and let v, denote the discrete valuation of
K" := k,(X,) associated with Y;,. We then have the following commutative diagram

H(¢1k, T) ——> H'(Ly/K,, T)

N N

H (0alky, T) 22 HY (LY, (KY),,, T)

where L¥ = ¢- K% and v,|v,. Suppose now that ¢ € IT1y(7, V). Then
Ay (uy(©) =1=py, (Au(d).

Since Y (k) # @, by Lemma 9, the map u,, is injective, and therefore 1,(§) = 1. Since u € U was
arbitrary, this establishes the inclusion (3) and completes the proof of Theorem 1.
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4. Extensions

So far, we have worked only with Tate-Shafarevich groups in degree 1. However, one can also
consider higher Tate-Shafarevich groups. More precisely, suppose K is a field equipped with a
set V of rank one valuations. Then for a K-torus T, a (finite) Galois extension L/K, and any i = 1
one can consider the ith Tate-Shafarevich group

T (L/K, T,V) :=ker| H'(LIK,T) — [] H' (L;/K,, T)],
veV
where as before, in the product on the right, we choose a single extension v of v to L.

We showed in [19, Proposition 4.2] that if K is a finitely generated field and V is a divisorial set
of places, then [T (L/K, T, V) is finite for any K-torus T, any finite Galois extension L/K, and all
i = 1. Furthermore, in [21], the second-named author modified the techniques used in the proof
of this result to establish the finiteness of III! (L/K, T, V) for all i = 2 in the case where K = k(X) is
the function field of a smooth geometrically integral variety X defined over a field k of type (F) in
the sense of Serre, V consists of the discrete valuations of K associated with prime divisors on X,
and T is an arbitrary K-torus (for i = 1 this result was obtained earlier in [19, 20]).

We will now briefly discuss results of this kind in the set-up considered in Theorem 1. Thus,
we take K = k(X) to be a function field of a smooth geometrically integral variety X over a finitely
generated field k, let V be the set of discrete valuations associated with the divisors on X, but
now we assume that 7T is defined over the base field k. Let ¢/k be a finite Galois extension and
set L = ¢-K. First, it follows from [19, §4] that the assertion of Proposition 4 remains valid
for 1T (L/K, T, V) for any i > 1, so, in view of Lemma 6, the question about the finiteness of
1T (L/K, T, V) reduces to the finiteness of

I (¢/k, T, V) :=ker | H (¢1k, T) — [] H (L3/Ky, T)].
veV

Let us start with the case where dim X = 1. We note that for any v € V, the extension L;/K,
is unramified, and hence the map H'(L;/K,, T(0r,) — H!(Ly/K,, T(Ly)) is injective for all i > 1
(cf. [19, proof of Lemma 4.3]). Then the argument used in the proof of Lemma 8 shows that if v
corresponds to a point x € X(k), the map H'(¢/k, T) — H'(Ly/K,, T) is injective. Consequently,
if X(k) # @, the group 11T} (L/K, T, V) is trivial.

Continuing with this case, suppose now that k is a number field. As in the proof of Theorem 1,
one can pick a subset U c ij with finite complement such that for any u € U, there exists a

point x,, € X whose residue field k(x,) is contained in k,. Then one shows that LHé (L/IK,T,V)is
contained in
I (01K, T,U) :=ker | H'(¢/k, T) — [] H' (¢z/ky, T)
ueU

Since H_I;'C(é /k, T, U) is finite (for example, by [19, Proposition 4.2]; we note that it follows from the
Poitou-Tate theorems that H*(¢/k, T) is in fact finite for i = 3 — see [22, Ch. II, §6]), we conclude
that LH(i] (L/K, T, V) is finite as well. Thus, in the case where dim X = 1, the group IIT*(L/K, T, U) is
finite if either X (k) # @ or k is a number field, for all i = 1.

To conclude our discussion of this case, let us remark that one can construct a conic X (= the
Severi-Brauer variety for a quaternion algebra) over a finitely generated field k such that for a
suitable bi-quadratic extension ¢/ k, the kernel of the map H3(¢/k, T) — H3(L/K, T) is infinite for
the 1-dimensional split torus T = G,,. Thus, without the additional assumptions that we made in
the preceding statements, the group LHS(L/ K, T,V) may be infinite. This renders our approach
inapplicable. To the best of our knowledge, the question about the finiteness of III3(L/K, T, V) in
this situation remains open.
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Now suppose that dim X = 2. Recall that the proof of Lemma 9 relied on the fact thatif Y < X
is a geometrically integral smooth subvariety of codimension 1, then for a closed point y € Y (k)
the map

H (¢(V)/k(Y), T (0y,y)) — H (0(Y)/k(Y),T)

is injective for i = 1. But in fact this result also remains valid for i = 2 (see [1, Theorem 4.3]), so the
above argument yields the finiteness of I[11?(L/K, T, V) if k is finitely generated and X (k) # @ or if
k is a number field. On the other hand, as we have already noted, in the number field case, the
groups H i(¢/k, T) are finite whenever i = 3, and thus the groups IITE(L/K, T, V) are in fact finite
for all i = 1 whenever k is a number field.
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