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Abstract. This study investigates the optimal selection of parameters
for collaborative clustering while ensuring data privacy. We focus on key
clustering algorithms within a collaborative framework, where multiple
data owners combine their data. A semi-trusted server assists in recom-
mending the most suitable clustering algorithm and its parameters. Our
findings indicate that the privacy parameter (¢) minimally impacts the
server’s recommendations, but an increase in € raises the risk of member-
ship inference attacks, where sensitive information might be inferred. To
mitigate these risks, we implement differential privacy techniques, partic-
ularly the Randomized Response mechanism, to add noise and protect
data privacy. Our approach demonstrates that high-quality clustering
can be achieved while maintaining data confidentiality, as evidenced by
metrics such as the Adjusted Rand Index and Silhouette Score. This
study contributes to privacy-aware data sharing, optimal algorithm and
parameter selection, and effective communication between data owners
and the server.
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1 Introduction

Clustering, a fundamental technique in unsupervised machine learning, involves
identifying patterns in unlabeled data. This process includes feature selection,
measuring data similarity, and evaluating algorithms [21,35]. There are several
types of clustering algorithms: partitioning based [25,34], distribution based [19,
22|, density based [3,6,31], and hierarchical [11,24]. Our study concentrates
on selecting the optimal hyperparameters for key representative clustering algo-
rithms from each category, within a privacy-preserving collaborative framework.
Specifically, we explore K-Means (partitioning-based), Hierarchical Clustering
(HC, hierarchical), Gaussian Mixture Models (GMM, distribution-based), and
DBSCAN (density-based).Choosing the right parameters is crucial as it directly
impacts the accuracy and effectiveness of the clustering results, thereby influenc-
ing the insights derived from the data while maintaining privacy.

Motivated by the fact that clustering algorithm perform better with larger
amount of data and that datasets are typically distributed across different par-
ties, cooperative clustering and collaborative clustering [7] techniques have
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been popular. In cooperative clustering, each party generates its own cluster-
ing results, and a final clustering is performed via a post-processing step once
individual processes are completed. In contrast, collaborative clustering aims to
leverage the contributions of multiple parties by exchanging information about
local data, current hypothesized clustering, or algorithm parameters to bene-
fit each other’s computations. Due to privacy concerns of the parties, privacy-
preserving algorithms have been proposed during collaborative clustering, which
aim to protect the sensitive information in each parties’ local dataset. How-
ever, depending on the type of clustering (partitioning-based, distribution-based,
density-based, or hierarchical clustering), parties need to decide on some common
input parameters. Selection of such parameters significantly effect the accuracy
of the clustering algorithm and existing privacy-preserving collaborative cluster-
ing techniques assume such parameters are pre-selected. On the other hand, such
parameters typically depend on the distribution of the federated dataset of the
parties and they should be determined in a privacy-preserving way before the
collaborative clustering. In addition, parties also need to decide the type of the
clustering algorithm depending on their federated dataset as different types of
algorithms perform differently in particular datasets. To fill this gap, we focus on
a server-assisted scenario for collaborative clustering, aiming to evaluate server-
provided input parameters and clustering algorithms. We experiment with K-
Means, Hierarchical Clustering, Gaussian Mixture Models, and DBSCAN using
a labeled numeric dataset, assessing results with metrics like Adjusted Rand
Index (ARI) and Silhouette Score.

Using a semi-trusted server enhances privacy and helps select optimal cluster-
ing algorithms and parameters without burdening data owners with large compu-
tational resources. Differential privacy techniques safeguard data throughout the
process. Our findings show that this approach effectively maintains data privacy
while delivering high-quality clustering, evidenced by ARI and Silhouette Scores.
The Randomized Response mechanism efficiently preserves data structure while
protecting privacy.

In this work, we make the following contributions to the context of collabo-
rative clustering with hyper parameter recommendation:

1. Privacy-Preserving and Efficient Communication: We introduce a novel
privacy-preserving step in the collaborative clustering process, where data
owners share parts of their datasets with the server after applying the random-
ized response (RR) mechanism to add noise to their respective datasets. This
step enhances privacy protection by concealing sensitive information while
still allowing for meaningful analysis. Additionally, we establish a seamless
communication framework between the data owners and the server, ensuring
privacy-preserving data sharing. Unlike previous works that primarily rely on
pre-selected clustering parameters and then apply encryption techniques in
distributed or collaborative clustering, our approach goes beyond by address-
ing the challenge of parameter selection by determining the optimal clustering
algorithm along with the respective hyper-parameters and incorporating the
randomized response (RR) mechanism to introduce noise and safeguard sen-
sitive information during data sharing.
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2. Optimal Algorithm Selection: The server plays a crucial role in identifying
the optimal clustering algorithm and its corresponding hyper-parameters.
By employing various methods, the server evaluates different algorithms and
provides data owners with recommendations for achieving the best cluster-
ing results. This step helps alleviate the burden of algorithm selection and
parameter tuning for data owners.

3. Server-Data Owner Interaction: The server communicates chosen algorithms
and parameters back to the data owners, ensuring that all parties are aligned
with the recommended strategies. This facilitates a coordinated effort that
enhances both accuracy and efficiency.

In summary, our study contributes to privacy-aware data sharing, optimal
algorithm and hyper-parameter selection, and effective communication between
data owners and the server. The results revealed that the amount of noisy data
shared and the privacy budget (¢) did not significantly affect the server’s algo-
rithm and parameter recommendations. However, an increase in the privacy bud-
get was found to elevate the risk of membership inference attacks, suggesting a
trade-off between privacy protection and attack vulnerability.

2 Related Work

Our study reviews privacy-preserving approaches in distributed and collabora-
tive clustering, categorized by algorithm types, introduced in Sect. 1. Existing
methods typically use predefined algorithms and hyperparameters, while our
contribution dynamically identifies optimal clustering algorithms and hyperpa-
rameters to enhance collaborative clustering performance in a privacy-aware
manner.

Bi et al.’s PriKPM scheme [5] introduces a privacy-preserving k-prototype
clustering method using additive secret sharing to handle mixed data types in
cloud environments, addressing privacy concerns. This framework ensures clus-
tering privacy through secure processing by dual servers, validated by experi-
ments demonstrating computational efficiency and accuracy.

Wang et al. [33] propose a privacy-preserving k-means clustering model
for IoT, using multi-key fully homomorphic encryption for secure cloud-
edge computations. The model optimizes resource use and ensures data pri-
vacy through secure communication protocols, demonstrating the feasibility of
privacy-sensitive cloud-edge collaborations with minimal overhead.

Further contributions include Jagannathan and Wright’s [20], as well as
Baby et al.’s [4], protocols for privacy-preserving distributed K-Means clus-
tering, designed for data partitioned arbitrarily. These protocols maintain data
confidentiality while following the K-Means algorithm’s iterative nature, allow-
ing secure computation of cluster centers and distances without data exposure.

Additionally, Lin et al. [22] present an expectation maximization-based strat-
egy for private clustering across distributed sites, utilizing secure summation to
protect horizontally partitioned data. Liu et al. [23] offer privacy-preserving
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Table 1. Overview of Adversary and System Models in Related Works
Reference Clustering System Model Adversary Model |Privacy Technique
Algorithm
Bi et al. [5] k-Prototype |Cloud-based with Semi-honest Additive Secret
dual servers adversary Sharing
Wang et al. [33] |k-Means ToT ecosystem with|Semi-honest Multi-Key Fully
cloud-edge adversary Homomorphic
collaboration Encryption
Jagannathan [20],k-Means Arbitrarily Honest-but-curious |Secure Multiparty
Baby et al. [4] partitioned data, |adversary Computation (SMC)
distributed
Lin et al. [22] Expectation |Distributed sites  |Honest-but-curious |Secure Summation
Maximization |with horizontally |adversary
partitioned data
Liu et al. 23]  DBSCAN Distributed with ~ [Honest-but-curious |Additive
various data adversary Homomorphic
partitions Encryption
Meng et al. [24] |Hierarchical |Two-party model |Semi-honest Homomorphic
Clustering adversary Encryption and
Garbled Circuits
Our Work Multiple Semi-trusted server |Semi-honest server, Local Differential
(K-Means, in collaborative honest-but-curious |[Privacy, Randomized
HC, GMM, clustering data owners Response
DBSCAN)

DBSCAN techniques for data distributed in various ways, employing a Multipli-
cation protocol based on additive homomorphic encryption for secure clustering.

Meng et al. [24] introduce privacy-preserving hierarchical clustering algo-
rithms, emphasizing a two-party model that employs homomorphic encryption
and garbled circuits. Their approach provides a dendrogram depicting the clus-
tering process, enriched with detailed merge metadata.

These diverse approaches share a common goal of enhancing privacy in collab-
orative clustering, yet they employ fixed algorithms and parameters. Our study
seeks to advance this domain by focusing on adaptive parameter selection to
achieve optimal clustering results, reflecting a significant leap toward balancing
privacy preservation and analytical utility in collaborative settings. To provide a
clearer comparison of the various approaches, Table 1 summarizes the adversary
models and system models considered in the related works discussed above.

3 Background

In this section we review some background and definitions of different cluster-
ing algorithms and clustering evaluation metrics as well as the local differential
privacy.
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3.1 Clustering Algorithms

This study explores four clustering algorithms: partitioning-based, distribution-
based, density-based, and hierarchical [3,6,11,19,22,24,25 34]. K-Means, a
widely used unsupervised algorithm, partitions data into K non-overlapping clus-
ters by minimizing distances between data points and centroids [25,34]. Gaussian
Mixture Models (GMM) handle clusters with varying sizes and correlations by
assuming data is generated from a mixture of Gaussian distributions [19,22].
DBSCAN identifies clusters of arbitrary shapes based on data density and auto-
matically detects outliers, without needing to predefine the number of clusters,
though it is sensitive to its parameters: neighborhood size (FEps) and minimum
points (minpoint) [3,6]. Hierarchical clustering creates a tree of clusters without
a pre-specified number, using either a bottom-up or top-down approach. It is
useful for hierarchical data but is computationally intensive and varies with the
linkage criterion used [14,15,17,24, 36].

Table 2. Table of symbols and notations.

Symbol Description

D; Dataset of each data owner 1%

ND; |Noisy data of each data owner i produced as a result of RR

fnpi  |Portion of the noisy data, ND;, shared with server from each data owner ¢

RR Randomized Response mechanism

€, eps |epsilon, Privacy Parameter

Eps Epsilon, Maximum distance between clusters in DBSCAN

k Number of clusters
ARI  |Adjusted Rand Index
CH Calinski-Harabasz Index

Homo |Homogeneity of the clusters

Comp |Completeness

3.2 Evaluation Metrics for Clustering Algorithms

This section outlines the evaluation metrics used to assess the effectiveness of
the proposed privacy-preserving collaborative clustering approach. To measure
the performance of our approach, we use the following metrics, each selected
for its capability to capture various dimensions of clustering quality and privacy
preservation:

Adjusted Rand Index (ARI): Measures the similarity between two clusterings,
with scores ranging from -1 (independent clusterings) to 1 (perfect agreement).
Higher ARI values indicate better clustering performance.
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Silhouette Coefficient Score: Evaluates cluster cohesion and separation, with
scores ranging from -1 to 1. Higher values indicate better-defined clusters.

Calinski-Harabasz Index (CH): Measures clustering quality based on the ratio
of between-cluster dispersion to within-cluster dispersion. Higher CH values indi-
cate better separation between clusters.

Classification Accuracy: We also added classification accuracy to our evalu-
ation framework, a metric that measures the proportion of correct predictions.
Although unusual in unsupervised learning tasks like clustering, it helps eval-
uate how well cluster assignments match predefined labels when known. This
metric is key in scenarios with known data classifications, allowing for direct
comparison between our privacy-preserving clusters and actual categories.

Table 2 contains a list of symbols and notations used throughout this paper.

3.3 Local Differential Privacy and Randomized Response
Mechanism

Local Differential Privacy (LDP) [8,10] is a more restricted form of traditional
differential privacy [9]. Unlike traditional differential privacy, LDP does not rely
on a trusted third party and provides a higher level of data protection for users. In
LDP, each user modifies their own data before sharing them with a data aggrega-
tor. The aggregator only sees the perturbed data, ensuring privacy. An algorithm
A satisfies e-local differential privacy (e-LDP) if, for any input values v1 and v2:
Pr{A(vl) = y] < e“Pr[A(v2) = y|, This condition holds true for all possible
outputs of the algorithm A. The randomized response mechanism is commonly
used to achieve e — LDP [12]. In this mechanism, an individual reports the true
value of a single bit of information with probability p and flips the true value
with probability 1 —p, following the (Zn%) — LDP property. Although initially
defined for binary inputs (e.g., yes/no), the randomized response mechanism can
be generalized. To achieve e-LDP, the generalized randomized response mecha-
nism [18] shares the correct value with probability p = (eefﬁ where m is the
number of possible states. Each incorrect value is shared with the probability.
q= m A data aggregator collects the perturbed values from individuals
and aims to calculate the frequency of values in the population while preserving
privacy.

4 System and Threat Models

In this section, we provide an explanation of the system and threat model for
privacy-preserving hyper-parameter identification for collaborative clustering.

4.1 System Model

In the proposed system model, the party who aims to collaborate in clustering
with other data owners is referred to as the “data owner” (or researcher), while
the server represents a third party that assists the data owners in identifying the
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optimal clustering algorithm and hyper-parameters. Our approach focuses on
the preliminary stages before actual clustering occurs in a collaborative environ-
ment. Our objective is to identify the optimal algorithm and input parameters
for collaborative clustering among multiple data owners who wish to maintain
data privacy. As discussed, different types of clustering algorithms perform dif-
ferently depending on the type and distribution of the datasets, and hence it
is crucial to identify the optimal clustering algorithm type beforehand. Once
these optimal conditions are determined, clustering can then be executed using
one of the existing algorithms mentioned in Sect. 3.1. In this context, data own-
ers selectively share differentially private data with a semi-trusted server. This
server plays a crucial intermediary role, analyzing the noisy data to recommend
the most suitable clustering algorithm and corresponding hyper-parameters for
the data received from data owners.

4.2 Threat Model

In this section, we outline the considered threats in our proposed scheme, which
involve both the server and the data owners.

Server: In this study, the server is considered semi-honest, indicating it might
engage in malicious activities, such as extracting sensitive information from the
datasets of the individual parties (data owners), but it honestly follows the pro-
tocol execution. The server’s role is pivotal, yet poses a risk of privacy violations.
Privacy attacks like membership inference [28-30], deanonymization [26,27,29],
and attribute inference [13,29] are concerns. Membership inference attacks aim
to determine whether a specific record is in the dataset. Deanonymization attacks
link anonymized data to actual identities using external information. Attribute
inference attacks deduce sensitive attributes from observed data. In our set-
ting, the most relevant is membership inference, where the server tries to deter-
mine if a specific record is part of one of the data owners’ datasets, leading to
privacy breaches. Our proposed scheme prevents this by sharing only a small,
differentially-private portion of the dataset (fyp;), which makes deanonymiza-
tion more complex and significantly reduces the threat of membership inference.

Data Owners: In our system model, we assume that the parties involved
in the collaborative clustering are honest but curious. This means that while
they trust each other and do not engage in malicious behavior, they may still
be interested in learning about each other’s data. This assumption is based on
the fact that other literature (such as those in Sect.2) has already addressed
the challenges posed by malicious or semi-honest data owners in collaborative
clustering using privacy-enhancing techniques like homomorphic encryption. In
our work, we specifically focus on the task of selecting the optimal algorithm and
hyper-parameters for the clustering process. By concentrating on this aspect, we
aim to improve the efficiency and effectiveness of collaborative clustering while
assuming a cooperative environment among the data owners.
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Fig. 1. Comprehensive five-step process, highlighting the interaction between multiple
data owners and the server. We show how data are shared, processed for noise addition
(to achieve differential privacy), and then utilized in a collaborative clustering algo-
rithm, all while maintaining strict privacy protocols. In step (1), data owners add noise
to part of their datasets using randomized response (RR). Data owners send a portion
of their noisy data to the server in step (2). In step (3), the server applies various meth-
ods to find the optimum algorithm with its corresponding hyper parameter(s), and the
server provides its outcome (algorithm and parameter) to the data owners in step (4).
Finally, the data owners perform collaborative clustering based on server suggestions
in step (5).

5 Proposed Solution and Framework

Our proposed system model and framework, as shown in Figure 1, encompass
five fundamental steps:

Step 1-Noise Addition to Datasets: Data owners (DO;_ ) add noise
to their datasets (to achieve differential privacy) through randomized response
(RR) ({D1,D3,....,.Dn} — {NDy,NDs,...,NDy}). In this process, we utilize
a generalized version of the RR mechanism as mentioned in Sect. 3.3, allowing
data owners to use perturbed data directly without encoding. The number of
possible states for each feature (attribute) can vary according to the specific
domain.

Step 2-Data Sharing with the Server: Data owners transmit a portion of
their noisy data (fnxp;) to the server. During this step, data owners share their
perturbed data with the server, enabling it to analyze the data and provide
recommendations for the clustering process.

Step 3-Server-Based Algorithm and Parameter Selection: The server
selects the best clustering algorithm and its hyperparameters using collaborative
clustering, where multiple data owners keep their data private with the Gener-
alized Randomized Response (RR) mechanism. Each owner sends noisy data to
a semi-trusted server, which combines the datasets and uses methods like the
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elbow method and silhouette method [37] to determine optimal parameters for
algorithms such as K-Means, hierarchical clustering, Gaussian mixture models.
For DBSCAN, it sets the Eps value using the k-Nearest Neighbors algorithm and
adjusts the minpoint parameter based on data dimensionality, following different
recommendations from prior research [14,32].

One of the challenges the server faces is the absence of ground truth data.
To address this, the server uses internal performance evaluation metrics that do
not require ground truth, such as the Silhouette Coefficient and the Calinski-
Harabasz (CH) index. These metrics objectively measure the effectiveness of
different algorithms, guiding the server in its selection process.

Here is the selection mechanism that server adapts to select the optimum
clustering algorithm and its corresponding parameters for the data it received
from data owners: The input to the selection algorithm includes a combined
dataset from all data owners (data), a list of candidate clustering algorithms
(algorithms), and a threshold parameter set to 0.1 («). The output is the opti-
mal clustering algorithm (best algorithm) and its corresponding parameters
(best_parameters). The procedure begins by initializing max_ silhouette to —oo,
best algorithm to None, best parameters to None, and best ch index to —oo.
It evaluates all algorithms, updating max_ silhouette if the Silhouette score is
higher. The algorithm then sets a silhouette threshold (maz _silhouette — «)
and selects algorithms within this range with the highest CH index, updating
best _algorithm, best_parameters, and best _ch_index accordingly.

Step 4-Communication of Recommendations: The server communi-
cates the recommended clustering algorithm and its parameters to the data
owners, based on the analysis of the shared data.

Step 5-Execution of Collaborative Clustering: Data owners apply the
suggested algorithm and hyper-parameters for collaborative clustering. As dis-
cussed in Sect. 2, previous approaches often used encryption for distributed or
collaborative clustering. In contrast, this study focuses on selecting the optimal
algorithm and hyper-parameters, assuming mutual trust among data owners for
clustering on the combined dataset. Further details are provided in Sect. 4.2.

By following these steps, our framework provides recommendations for the
optimal clustering algorithm and its hyper-parameters when data owners wish
to perform clustering in a collaborative environment.

6 Evaluation
6.1 Datasets

We use the Obesity dataset [2] (2,111 records, 17 features) and the Extended Iris
dataset [1] (1,200 rows, 20 features) which is an enhanced version of the classic
Iris dataset [16]. The Obesity dataset assesses obesity levels based on diet and
physical condition, while the Extended Iris dataset provides detailed biological
and ecological information about the iris flower. These datasets were chosen due
to their varying characteristics and complexity, which provide a comprehensive
evaluation of our proposed approach across different types of data distributions
and clustering challenges.
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6.2 Metric Significance and Evaluation Approach

ARI, Silhouette Score, classification accuracy, and Calinski-Harabasz Index (CH)
provide a comprehensive performance view. ARI and Silhouette Score assess
internal cluster consistency and separation, while classification accuracy offers
external validation, and CH highlights cluster distinctness. Together, these met-
rics enable a thorough assessment of both the clustering effectiveness and the
impact of privacy-preserving techniques on data utility. In our evaluation, we
analyze these metrics under varying conditions of data perturbation and pri-
vacy budget settings to explore the trade-offs between clustering quality and
privacy preservation. The goal is to achieve optimal hyper-parameter selection
that balances these aspects effectively, demonstrating the practical utility of our
approach in collaborative clustering scenarios.

6.3 Evaluation Results

The datasets were pre-processed by converting categorical variables to numerical
values for analysis. To determine the optimal number of clusters, we applied the
elbow and silhouette methods, as detailed in Sect.5. Our experiments, partic-
ularly under varying privacy budgets (e), aimed to identify the most effective
method for our data. The results for dataset 1 are shown in Table 3.

Given that dataset 1 has 7 clusters and dataset 2 has 3, our analysis shows
that the elbow method outperforms the silhouette method in determining the
optimal cluster count. Consequently, we use the elbow method for a more detailed
analysis, aiding in the selection of the optimal k for clustering algorithms like
K-Means, hierarchical clustering, and Gaussian mixture models.

Table 3. Comparison of Silhouette and Elbow Methods for Predicting the Optimal
Number of Clusters (k): It highlights the superior performance of the Elbow method
in predicting the optimal cluster count, leading to its selection for further analysis in
this study.

€ Baseline K|Silhouette K|Elbow K
0.0010|7 2 8
0.1000|7 2 8
1.00 |7 2 8
5.00 |7 2 7
10.00 |7 2 7

Optimum Input Parameter Selection Results on Noisy Datasets: The
experimental findings of this study are illustrated in Table4 and Fig. 2. Table 4
offers a glimpse into the server’s input parameter recommendations, based on
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the analysis of 10% of the noisy data shared by the data owners, with a noise
parameter (¢) set at 0.1. Figure2, on the other hand, showcases the clustering
outcomes derived from applying these server recommendations to the combined
dataset. Notably, the results from this application highlight the superiority of
the K-Means clustering algorithm for the combined dataset, a finding that res-
onates with the server’s initial suggestion regarding the most suitable algorithm
and hyper-parameter configuration. These findings and recommendations by the
server are not merely data points, but they serve as critical guidance for the
data owners. They enable the owners to align their clustering strategies with
the server’s insights, which are rooted in a meticulous analysis of optimal input
parameters. This alignment is key to enhancing the effectiveness and accuracy of
the clustering process in a collaborative, privacy-preserving data environment.

Table 4. Server Suggestions for Clustering Input Parameters: Recommendations for
various clustering algorithms based on 10% shared noisy data (¢ = 0.1).

Dataset Algorithm Data shared to Servere K or Eps Silhouette/ CH
GMM 10% 0.1k =238 0.34 301.30

Dataset #1DBSCAN [10% 0.1k = 10, Eps = 1} -
K-Means|10% 0.1k =8 0.36 318.13
HC 10% 0.1k =238 0.31 237.61
GMM 10% 01k=23 0.23 46.88

Dataset #2|DBSCAN [10% 0.1k =6,Eps =7 |- -
K-Means|10% 0.1k = 3 0.36 61.92
HC 10% 0.1k=3 0.37 51.57

Effect of Privacy Parameter e: We have examined the influence of different
levels of €, which perturb the data through the Randomized Response (RR)
mechanism, on the server’s ability to suggest input parameters for clustering
algorithms. In this experiment, the server receives the same amount of data
while varying the value of €, and its suggestions are evaluated on the joint dataset
without any noise. Experimental results, as shown in Tables5 and 6, reveal a
notable consistency in the server’s recommendations.

Regardless of the € value, the server consistently proposes around 7 clusters
for the first dataset (Obesity dataset) and approximately 3 clusters for the sec-
ond dataset (Extended Iris dataset). This consistency closely aligns with the
established ground truth, indicating a marginal effect of the privacy parameter e
on the server’s cluster count recommendations. However, it is important to note
that the actual quality of the clusters formed is subject to the specific clustering
algorithm employed. For instance, in the first dataset (Obesity dataset), cluster-
ing algorithms demonstrate varied effectiveness influenced by different privacy
budgets (¢€), shown in Table 5. K-Means excel, achieving high ARI values, reach-
ing up to 1.0 when less noise introduced to data (higher €), but maintain low
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Fig. 2. Visual Representation of Clustering Algorithm Performance Across Combined
Datasets. This figure illustrates the performance metrics from Table 4 for various clus-
tering algorithms—GMM, DBSCAN, K-Means, and Hierarchical Clustering (HC)—
evaluated under conditions of 10% data sharing and a privacy parameter of ¢ = 0.1.
Performance metrics including Adjusted Rand Index (ARI), Homogeneity (Homo),
Completeness (Comp), Silhouette Score, Calinski-Harabasz Index (CH), and Accuracy
are plotted. Algorithms recommended by the server are highlighted with dots, show-
casing their superior performance in comparison to others in each dataset scenario.

classification accuracy across all settings, indicating well-defined clusters that do
not match predefined labels. Silhouette scores also improve with increased €, sug-
gesting clearer cluster definition. Hierarchical Clustering (HC) shows moderate
and stable ARI values around 0.48 but face declines in accuracy under extreme
privacy settings, hinting at potential misalignments with actual labels. Gaus-
sian Mixture Models (GMM) record lower ARI and negative silhouette scores,
suggesting less effective clustering and poor separation, with fluctuating accu-
racy that sometimes aligned with class labels under minimal privacy constraints.
DBSCAN consistently performs poorly with very low ARI, negative silhouette
scores, and minimal accuracy, indicating its unsuitability for this dataset due
to its sensitivity to specific parameter settings and data density. In the sec-
ond dataset (Extended Iris dataset), the performance of clustering algorithms
vary significantly under different privacy settings as shown in Table 6. K-Means
showcases excellent clustering with ARI values of 0.997 at low and high e levels,
though it drops at € = 1, reflecting its sensitivity to privacy settings, despite
maintaining high silhouette scores for good cluster separation. However, its con-
sistently low accuracy indicates a misalignment between the clusters and actual
class labels. Hierarchical Clustering (HC) remains stable across all metrics and
€ settings, achieving moderate to high ARI and silhouette scores, and compara-
tively better accuracy at 0.38, suggesting it aligns more closely with true labels.
Gaussian Mixture Models (GMM) exhibit poor performance with negative ARIs
and low silhouette scores, with only moderate accuracy, underscoring its chal-
lenges in this dataset under privacy constraints. DBSCAN performs poorly, with
extremely low ARI, negative silhouette scores, and zero accuracy across all e
settings, confirming its unsuitability for the dataset. Overall, the K-Means algo-
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rithm excels over others when the server’s recommendation was k = 3, according
to various evaluation metrics. Furthermore, the server’s recommendations do not
significantly deviate from the original data in both datasets. To understand the
behavior of data points in dataset #1, we conducted an analysis by selecting
two clusters from the original dataset and applying the RR mechanism with
varying e values. This investigation revealed that the RR mechanism effectively
maintains the separation between clusters when present.

Origina VS, Noisydata, eps= 1 Origina VS Noisy data, eps= 1

Originel VS, Noisy daa,eps= 10

Oiginal Vs.

(b) (c)

Fig. 3. (a): Contrast in dataset #1 with Overlapping Clusters (e = 1, 5, 10): This
part displays the differences between original (O’) and noise-modified ("X’) data in
closely positioned clusters, colored blue and red. (b): Comparison in dataset #1 with
Clear Cluster Gaps (e = 1, 5, 10): Here, the focus is on the impact of the Randomized
Response (RR) method on data (original 'O’, noisy ’X’) in maintaining cluster gaps
despite noise variations, balancing privacy with data structure integrity. (¢): Original
vs. Noisy Data in dataset #2 (¢ = 1, 5, 10): This section compares original (’O’) and
noise-affected (’X’) data at different privacy levels, using blue, red, and green to show
cluster separation effectiveness via the RR mechanism. Note: Plots can be zoomed in
for clearer visualization. (Color figure online)

A comparison of Figs. 3a and 3b illustrates that the distinction between two
randomly selected clusters is retained even when the data is subjected to differ-
ent e values. This finding is significant as it demonstrates that despite lower €
values possibly leading to a more sparse appearance of the data, the server is
still capable of accurately identifying two distinct clusters. This is because the
RR mechanism ensures that data points are redistributed within a range akin
to their original positions. Furthermore, an analysis of Table4 shows that the
server’s recommendations for second dataset closely mirror the original data. An
exploration involving a comparison of the original and RR-perturbed data points
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across different € values, as demonstrated in Fig. 3¢, indicates that in two out of
the three clusters in dataset #2, data points overlap without a clear gap, while
the third cluster’s points are notably distanced from the others. This observation
reinforces the notion that the RR mechanism is capable of preserving existing
gaps between clusters for various e values.

These results underscore the RR mechanism’s proficiency in safeguarding
the intrinsic structure of the data while incorporating elements of privacy pro-
tection. By effectively maintaining the relative distances between data points,
the server is enabled to provide precise recommendations for the number of
clusters, despite the noise caused by different e values. This highlights the RR
mechanism’s balance in protecting data privacy while ensuring the accuracy of
clustering algorithm suggestions in a privacy-conscious data analysis setting.

Table 5. Differential Impact of Privacy Levels on Clustering Algorithms in the dataset
#1. This table explores the performance variations (measured through ARI, Silhouette,
and Accuracy) of four distinct clustering algorithms (K-Means, HC, GMM, DBSCAN)
at different privacy budget levels (e = 0.1, 1, 5) with a consistent data sharing percent-
age (10%).

Algorithm|Sharedle K ARI |Silhouette/Accuracy
K-Means [10% [0.1k =8 |0.75 ]0.41 0.18
K-Means [10% |1 k=28 |0.75 [0.41 0.18
K-Means 10% |5 k=171 0.44 0.15

HC 10% 0.1k = 8 |0.481 (0.39 0.005

HC 10% 1 k=710.482 0.41 0.17

HC 10% |5 |k =8 |0.482 |0.41 0.005

GMM 10% 0.1k = 6 |0.185 |—0.0143 |0.201
GMM 10% |1 k =8 |0.2069/—0.072 |0.05
GMM 10% |5 k =6 |0.2008—0.007 |0.14
DBSCAN [10% |0.1k = 10/0.017 |—0.504 |0.005
DBSCAN [10% |1 |k = 10/0.017 |—0.504 |0.005
DBSCAN [10% |5 |k = 10/0.017 |—0.504 |0.005

Impact of Shared Data Volume on Server Suggestions: In exploring the
influence of shared data volume on clustering algorithm suggestions for both
datasets 1 and 2, the results consistently indicate that varying the proportion
of data shared with the server does not significantly impact the server’s rec-
ommendations for clustering input parameters. To investigate this, we conduct
experiments where varying amounts of data are shared with the server while
keeping the privacy parameter (¢) unchanged. This observation is consistent
across both datasets and all tested algorithms, as shown in Tables 7 and 8.
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Table 6. Influence of Privacy Settings on Clustering Recommendations in the dataset
#2. This table details how varying privacy budgets (e = 0.1, 1, 5) affect the recom-
mendations for clustering parameters and subsequent algorithm performance (ARI,
Silhouette, and Accuracy) for multiple clustering algorithms (K-Means, HC, GMM,
DBSCAN), all with a consistent 10% data sharing arrangement.

Algorithm|Sharedle K ARI Silhouette/Accuracy

K-Means (10% 0.1k = 3/0.997 |0.52 0
K-Means (10% |1 |k = 2(0.44 0.57 0.18
K-Means (10% |5 |k = 3/0.997 |0.52 0
HC 10% 0.1k = 3|0.84 0.51 0.38
HC 10% |1 |k = 3/0.84 0.51 0.38
HC 10% |5 |k = 3/0.84 0.51 0.38

GMM 10% 0.1k = 3/—0.0003/0.021 0.3
GMM 10% |1 |k = 2/—0.0004/0.051 0.34
GMM 10% |5 |k = 3|—0.0003/0.021 0.3
DBSCAN [10% 0.1k = 6/0.003 |—0.6 0
DBSCAN [10% |1 |k =6/0.003 |-0.6 0
DBSCAN [10% |5 |k = 6/0.003 |—0.6 0

Table 7. Impact of Data Sharing Proportions on Clustering Algorithms’ Performance
in the dataset #1. This table evaluates how different proportions of data shared with
the server (10%, 30%, 50%) influence the clustering outcomes (ARI, Silhouette, and
Accuracy) for various algorithms (K-Means, HC, GMM, DBSCAN) at a fixed privacy
parameter (e = 0.1).

Algorithm|Sharedle K ARI |Silhouette/Accuracy

K-Means [10% [0.1k =8 [0.75 |0.41 0.18
K-Means (30% [0.1k =8 [0.75 |0.41 0.18
K-Means 50% 0.1k = 8 |0.75 ]0.41 0.18
HC 10% [0.1k = 8 0.481 |0.39 0.005
HC 30% 0.1k = 8 0.481 |0.39 0.005
HC 50% 0.1k = 8 |0.0.481/0.39 0.005

GMM 10% 0.1k =6 |0.185 |—0.143 |0.201
GMM 30% [0.1k =8 0.175 |—0.111 0.18
GMM 50% 0.1k =5 0.169 |—0.001 |0.23
DBSCAN [10% 0.1k = 100.017 |—0.504 |0.005
DBSCAN 30% 0.1k = 100.017 |—0.504 0.005
DBSCAN [50% 0.1k = 100.017 |—0.504 0.005
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For the first dataset, the K-Means algorithm maintains the same ARI, Sil-
houette, and Accuracy metrics across different data sharing proportions, sug-
gesting that its performance remains stable despite changes in the volume of
data shared. Similarly, Hierarchical Clustering (HC), Gaussian Mixture Mod-
els (GMM), and DBSCAN show consistent performance metrics across different
data sharing amounts, further supporting the notion that the quality of clus-
tering recommendations does not deteriorate with reduced data sharing. In the
second dataset, similar patterns emerge. For instance, the K-Means algorithm
and HC adjust their suggested number of clusters slightly depending on the data
share, but the overall performance metrics such as ARI and Silhouette remain
relatively stable. This trend continues with GMM and DBSCAN, which also
show little variation in performance across different data sharing proportions.

These findings suggest that the server is capable of providing robust and reli-
able recommendations for clustering parameters regardless of the amount of data
shared, enabling effective clustering outcomes even when data owners choose to
share minimal data. This is particularly advantageous in scenarios where data
privacy is a concern, as it allows data owners to restrict the amount of shared
data without compromising the effectiveness of the clustering process. Over-
all, the server’s ability to consistently suggest appropriate clustering parameters
across varying data proportions demonstrates its effectiveness and reliability in
guiding the clustering process under different data availability conditions.

Table 8. Analysis of Server Recommendations for Clustering Parameters Based on
Data Sharing Amounts in the second Dataset. This table examines the influence of
varying amounts of data shared (10%, 30%, 50%) on server-suggested clustering param-
eter (k) and their resulting ARI, Silhouette, and Accuracy metrics at a constant privacy
parameter (e = 0.1).

Algorithm|Sharedle K ARI Silhouette/Accuracy

K-Means [10% [0.1k = 3/0.997 0.52 0

K-Means 30% 0.1k = 2/0.44 0.57 0.18
K-Means 50% 0.1k = 2/0.44 0.57 0.18
HC 10% [0.1k = 3/0.84 0.51 0.38
HC 30% 0.1k = 2/|0.55 0.52 0.66
HC 50% 0.1k = 2/0.55 0.52 0.66

GMM 10% 0.1k = 3|—0.0003/0.021 0.3

GMM 30% |0.1k = 2/—0.0004/0.051 0.32
GMM 50% 0.1k = 2|—0.0004/0.051 0.32
DBSCAN [10% 0.1k = 6/0.003 |—0.6 0
DBSCAN [30% 0.1k = 6/0.003 |—0.6 0
DBSCAN [50% 0.1k = 6/0.003 |—0.6 0
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7 Privacy Analysis: Membership Inference Attack

Membership inference attacks (MIA) are techniques used to determine whether
specific individual data was included in a dataset. These attacks pose significant
privacy risks, especially when datasets contain sensitive information. Our goal
is to minimize these risks for individuals whose data is part of a dataset shared
with others. To enhance data privacy, only a portion of the dataset, even in its
noisy format, is shared with the server. It has been observed that the likelihood
of successful membership inference attacks is inversely related to the amount of
noise added to the dataset. We divide the data into two groups to assess the
impact of these attacks:

Case Group: This group contains data from specific number of individuals
(150 for first dataset and 100 for second dataset) and represents the subset of
the dataset that is shared with server, thus exposed to potential membership
inference attacks.

Control Group: This group includes data that remains entirely internal and
is not shared with the server. It serves as a benchmark to gauge the risk of data
exposure. We address membership inference attacks by computing a threshold
that determines whether an individual’s data is likely part of the training dataset
based on similarity between shared and unshared data. Similarity exceeding this
threshold indicates a risk of data exposure through membership inference.

Our detailed analysis is visually represented in Fig.4, demonstrating the
impact of the privacy parameter (¢), with increased e values reducing the noise
and thereby increasing the risk of data identification.

Our findings show that as e increases, the risk of membership inference
attacks rises, indicating less noise leads to higher identification likelihood. There-
fore, limiting shared data and augmenting it with noise is essential to reduce

104 ™ Dataset 1

mmm Dataset 2
0.8 1
0.6 4
0.01 0.1 1 3 10 20

Privacy parameter (epsilon)

o

MIA Power

o
ES

N

Fig. 4. Analysis of Membership Inference Attack Risks: This figure illustrates the
increasing likelihood of data identification in two datasets as privacy parameters (e)
increase. The blue bars represent dataset #1, and the green bars represent dataset #2,
highlighting the direct correlation between reduced noise levels and heightened data
vulnerability. (Color figure online)



30 M. Ghasemian and E. Ayday

these risks, necessitating a strategic approach to balance data utility and pri-
vacy in collaborative clustering.

8 Conclusion

This study aims to identify optimal input parameters for four clustering algo-
rithms to facilitate collaborative clustering among multiple data owners. Intro-
ducing a semi-trusted third party improves clustering reliability and accuracy
by recommending optimal algorithms and parameters. Results show that neither
the amount of perturbed data shared nor the privacy budget (e) significantly
impacts the server’s recommendations.

Furthermore, this study conducts an analysis of membership inference attacks
to evaluate the vulnerability of the system. As the privacy budget (€) increases,
the power of membership inference attacks also increases. This indicates that
higher levels of privacy budget compromise the effectiveness of privacy protec-
tion, making it easier for attackers to infer whether an individual’s data is part
of the shared dataset.

These findings emphasize the need for careful consideration of privacy-
preserving mechanisms and the importance of maintaining an appropriate bal-
ance between privacy protection and utility. While the server’s suggestions for
input parameters remain consistent regardless of the amount of perturbed data
or the privacy budget, the potential risks associated with membership infer-
ence attacks highlight the need to adopt appropriate safeguards and mitigation
strategies. Protecting the privacy of individuals and ensuring the security of col-
laborative clustering processes should be key priorities in future research and
system design.
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