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The theory of linear algebraic groups is concerned, broadly speaking, with the
study of matrix groups using the techniques of group theory and algebraic geometry.
Such groups arise naturally across many disciplines of mathematics, from algebra
and number theory to geometry, topology, and mathematical physics. Some familiar
examples include the general and special linear groups GL,(C) and SL,(C), the
special orthogonal groups SO,,(C), and the symplectic groups Sp,,,(C). While these
groups are often first encountered in a somewhat ad hoc fashion in courses on linear
algebra, one of the outstanding features of the theory of linear algebraic groups is
that it provides a unified perspective on the structure of all so-called reductive
groups.

As we will see in Section 1, the theory developed in stages. Stemming in the
late nineteenth century from essentially the same considerations that would later
lead to the development of Lie group theory, the theory of reductive groups over
algebraically closed fields came to fruition in the 1950s in the work of Chevalley,
Kolchin, Borel, and others. Subsequently, in the 1960s, Grothendieck and his school
substantially generalized these results to produce a powerful but technically very
demanding theory of reductive group schemes, which was laid out in the three
volumes of SGA 3 ([17]). Prior to the publication of Milne’s book, most existing
textbooks on algebraic groups operated within the classical framework of varieties
over algebraically closed fields. While this perspective is adequate for analyzing
structural issues, it becomes rather inconvenient when dealing with problems of a
more arithmetic nature. By contrast, Milne uses the more flexible functorial point
of view of scheme theory. However, by choosing to focus on affine group schemes of
finite type over a field, he is able to avoid many of the technical complications that
one encounters in SGA 3. Thus, Milne’s book fulfills the dual purpose of providing
an updated account of the theory of reductive groups while at the same time serving
as an accessible entry point into the general theory of reductive group schemes.

1. GENESIS OF THE THEORY OF ALGEBRAIC GROUPS

To put Milne’s exposition of the theory of algebraic groups in the appropriate
context, we begin with a panoramic look at the development of the subject (we
refer the reader to Armand Borel’s collection of essays [4] for a highly informative
historical account). Its origins can be traced back to the late nineteenth century to
ideas of Sophus Lie and Emile Picard on developing an analogue of Galois theory
for solutions of differential equations, work of Felix Klein on the “Erlangen Pro-
gram” that aimed to connect geometry and group theory, results of Wilhelm Killing
and Elie Cartan that provided a complete classification of simple Lie algebras, as
well as four (largely overlooked) papers of Ludwig Maurer, in which he, in effect,
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defined and studied the Lie algebra of a complex algebraic group, established the
Jordan decomposition, and analyzed various important classes of groups like tori
and unipotent groups.

After a period of relative dormancy, the theory began to take on its modern
form in the 1940s and 1950s in the works of Claude Chevalley and Ellis Kolchin.
The starting point for Chevalley was the theory of Lie groups as developed by
E. Cartan—Chevalley reworked and clarified many points of the theory, ultimately
producing the first volume [10] of his treatise on Lie groups. Subsequently, Cheval-
ley’s attention shifted to more algebraic aspects. Using a formal version of the
exponential map, Chevalley was able to generalize results of Maurer and others
from groups over C to groups defined over an arbitrary algebraically closed field
of characteristic 0, thus initiating a theory of linear algebraic groups in a much
broader context (this theory is described in Chevalley’s second volume [11]). At
around the same time, Kolchin was concerned with putting the ideas of Lie and
Picard in differential Galois theory on rigorous footing, which led him to consider
algebraic groups. In contrast to Chevalley’s approach, which was philosophically
inspired by the analytic techniques of Lie theory and thus restricted to character-
istic 0, Kolchin completely avoided Lie algebras and instead worked directly using
group-theoretic and algebro-geometric considerations. This, in particular, allowed
him to prove a number of substantial results over algebraically closed fields of ar-
bitrary characteristic. The change of perspective introduced in Kolchin’s work was
so significant that Borel refers to the papers [24] and [25] as constituting the “birth
certificate” of the theory of linear algebraic groups over general algebraically closed
fields.

In subsequent years, methods of algebraic geometry were imported in a system-
atic way into the subject. One of the notable developments was Borel’s paper [1],
which provided a detailed account of the theory of algebraic groups as it stood at
the time, and, perhaps most significantly, highlighted the importance of connected
solvable groups in the analysis of the structure of linear algebraic groups. Using
these ideas, Chevalley and other participants of a seminar that he organized in
Paris were then able to give in [12] a complete classification of semisimple algebraic
groups over algebraically closed fields of arbitrary characteristic in terms of root
systems. At this point, the theory of linear algebraic groups over an algebraically
closed field had reached essentially full maturity. The first textbook account of
this theory was given by Borel in [2]. Subsequently, more expanded treatments,
along with various corrections and refinements, appeared in the books of Borel [3],
Humphreys [21], and Springer [29], which, until the publication of Milne’s book,
were the standard references for the subject.

The next, and, for the present discussion, the final stage in the development of
the theory of reductive groups came in the early 1960s. Namely, using the results of
[12] as a starting point, Alexander Grothendieck and Michel Demazure initiated, in
1962, a seminar in which they developed a very general theory of reductive group
schemes not just over arbitrary base fields (or even arbitrary base rings), but over
arbitrary schemes. The resulting theory was assembled in the three volumes of SGA
3 ([17]; see also [18] and [19] for new editions of volumes 1 and 3, respectively).
This theory has proven to be extremely useful over the years in various contexts,
but what is perhaps most significant is that SGA 3 introduced a fundamentally
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new functorial perspective into the study of algebraic groups. Let us explain this
in more detail.

The work of Chevalley, Kolchin, and Borel, described above, all takes place
within the classical framework of algebraic varieties over algebraically closed fields,
where, essentially by definition, a variety is identified with its set of points over the
given algebraically closed field. More precisely, for an algebraically closed field K,
Kolchin originally defined a subgroup G of GL,,(K) to be algebraic if it is the set of
all invertible matrices whose coefficients annihilate a given set of polynomials in n?
variables with coefficients in K—in other words, G is the intersection of GL,,(K)
with a closed algebraic subvariety of M, (K) (which one views as the affine space
A’}f =K "2). Subsequently, the following a priori more general definition was
adopted: an affine algebraic group over K is a closed subvariety G of some affine
space A% (i.e., the vanishing locus of a collection of polynomials in K|z1,...,x])
that is equipped with polynomial maps

(1) m: G x G — G (multiplication) and ¢: G — G (inversion)

and a distinguished element e € G (the identity) such that (G, e, m, ) is a group. By
working with the coordinate ring K[G] of G (which is, by definition, the K-algebra
of polynomial functions G — K), one can show that G is in fact a Zariski-closed
subgroup of some general linear group GL,,(K). (We note that GL,,(K) is itself an
affine algebraic group since

GL,(K) = {(X, y) € My (K) x Al = AT+ | det(X)y — 1 = o} ,

where det(X) is the determinant of the matrix X.)

While this perspective is adequate for establishing structural results, it becomes
rather inconvenient in more arithmetic matters, where one not only needs to con-
sider algebraic groups in the context of nonalgebraically closed fields (usually global
fields), but also bring into play the completions of the base field, the associated ring
of adeles, and reductions modulo the maximal ideals of the ring of integers. Such
problems can be alleviated by instead adopting a more functorial approach pro-
vided by Grothendieck’s scheme theory. To illustrate the general idea, first suppose
that K is an algebraically closed field. Then by Hilbert’s Nullstellensatz, for any
affine algebraic variety V' over K, we have a bijection between the set V(K) of
K-points of V and the set Specm(K[V]) of maximal ideals of the coordinate ring of
V. The latter set is, in turn, in bijection with the set of K-algebra homomorphisms
Homp a1s. (K[V], K). One can then consider, for any commutative K-algebra B, the
set of B-points V(B) := Homg 1. (K[V], B), and one observes that a K-algebra
homomorphism f: B — B’ induces a map of sets

V(B) = V(B), ¢~ fop.
Thus, the variety V defines a functor, called the functor of points of V,

V: K-alg. — Set

from the category K-alg. of commutative K-algebras to the category Set of sets that
is represented by the K-algebra K[V].
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Next, if G is an affine algebraic group over K, then the existence of the morphisms
in (1) together with the identity element e € G(K') implies that we have K-algebra
homomorphisms

2) A: K[G] = K[G) 9k K[G], S:K[G] = K[G], e: K[G] = K

(called the co-multiplication, co-inverse or antipode, and co-identity, respectively)
that satisfy some compatibility relations forced by the group axioms in G. In other
words, K[G] is a finitely generated, commutative Hopf algebra over K. For example,
if G = SL,,(K), then

K[G} = K[Tll, Tlg, e ,Tn,L]/(det(Ej) — 1)
Since the group operation is matrix multiplication, we see that
(3) A(Ty;) = Tix ® Tiy.
k=1

Next, using the formula for the inverse of a matrix in terms of the classical adjoint,
we find that

(4) S(Tij) = (=) det(Trs)rrj,sri-

Finally, since the identity element is the (n x n) identity matrix I,,, we have

1, i=3j

0, ©#j.

The Hopf algebra structure on K[G] implies that for any commutative K-algebra
B, the set

(5) €(Tij) = 65 = {

G(B) := Homg .15 (K[G], B),
is, in fact, a group, and, moreover, any K-algebra homomorphism B — B’ induces
a group homomorphism G(B) — G(B’). So, in this more specialized case, the
functor
G: K-alg. — Group

represented by the Hopf algebra K[G] takes values in the category Group of groups.
The essential difference between the functorial point of view and the classical ap-
proach is that one now shifts the focus from the group of points G(K) over a fixed
algebraically closed field K to the functor of points G.

To bring arbitrary fields into the picture, suppose now that A is a finitely gen-
erated commutative algebra over a field F, and assume that A has the structure of
a Hopf algebra defined by F-algebra homomorphisms (A, S, ¢€) as in (2). Then, as
above, for any F-algebra B, the set Homp_aie. (A, B) is a group, and we obtain a
functor

G: F-alg. — Group, B+ G(B):= Homp.ag (4, B).

In more geometric terms, recall that to any commutative ring R, one associates
an affine scheme (X, Ox), where X = Spec(R) is the topological space of all prime
ideals of R endowed with the Zariski topology, and Ox is the corresponding struc-
ture sheaf—for simplicity, this scheme is usually denoted by Spec(R). Moreover,
if R has the structure of a commutative F-algebra, then we have a morphism
Spec(R) — Spec(F), so Spec(R) is in fact an affine scheme over F. It is known
that the correspondence

R +— Spec(R)
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sets up a contravariant equivalence between the category F-alg. of commutative F-
algebras and the category AffSch/F of affine schemes over F' (see, e.g., [20, Chapter
2] for the contruction and some basic properties of affine schemes). Now, it turns out
that under this equivalence, the tensor product of F-algebras R; ® p Ro corresponds
to the (fiber) product of affine schemes Spec(R;) X Spec(Rz). So, the fact that
A is a Hopf algebra implies that the associated affine scheme G = Spec(A) comes
equipped with morphisms

m:GxpG—G, 1:G—G, e:Spec(F)—G
satisfying the usual group axioms. In other words, G is an affine group scheme of

finite type over the field F. Furthermore, one shows that for any F-algebra B, we
have

G(B) := Homg, r(Spec(B), G) = Homp.a,. (A, B) = G(B).
Thus, G is the functor represented by G in the category AffSch/F.
Returning to our previous example, suppose F' = Q, and consider the Q-algebra

A = @[Tu,Tlg, P ,Tnn}/(det(Tw) — 1)

equipped with the Hopf algebra structure given by the analogues over QQ of the maps
A, S, and e described in (3), (4), and (5), respectively. Then it is straightforward
to see that for any commutative Q-algebra B, we have

G(B) = SL,(B) = {X € M, (B) | det(X) = 1}.

The focus of Milne’s book is on affine group schemes G of finite type over an
arbitrary field F' (which, by definition, come equipped with a structure morphism
G — Spec(F)). While this is, of course, only a special case of the theory developed
in SGA 3 (where group schemes with a structure morphism G — S to an arbitrary
scheme S are considered), the main advantage is that in this case, certain subtle
algebro-geometric considerations can be carried out fairly explicitly with Hopf al-
gebras. Now, while the theory of affine group schemes has been around for quite
some time, prior to the publication of Milne’s book, the most significant resources
where the reader could get acquainted with the subject were the books of Demazure
and Gabriel [16], and Waterhouse [32]; however, neither discusses reductive group
schemes in detail. To the best of the reviewer’s knowledge, Milne’s book is thus
the first complete textbook account of the structure theory of reductive groups
over fields that is written in scheme-theoretic language, and, as such, it is a very
welcome addition to the literature. Moreover, once readers are familiar with the
overall picture presented in Milne’s book, they will be in a better position to tackle
the general theory of SGA 3.

2. AN OVERVIEW OF MILNE’S BOOK

Due to limitations of space, we will not attempt to give a comprehensive account
of the contents of Milne’s book, and will only briefly comment on a few key points.
Roughly speaking, the book can be divided into four parts.

In the first part (consisting of Chapters 1-8), Milne discusses the basic defini-
tions and foundational material, some of it in the context of general (not necessarily
affine) group schemes of finite type over a field. Significant results of this part in-
clude the following. In Chapter 3, Milne proves Cartier’s theorem that all affine
group schemes of finite type over a field of characteristic 0 are smooth (or, equiv-
alently, geometrically reduced). This result highlights one of the major differences
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between the classical and scheme-theoretic perspectives. Classically, one deals only
with varieties, which are (geometrically) reduced by definition, and thus algebraic
groups are always smooth in any characteristic. By contrast, nonreduced group
schemes appear quite naturally over fields of positive characteristic, and, in fact,
are an essential part of the theory. For instance, let F' be a field and consider the
functor

ps: F-alg. — Group, B {bc B|b> =1},

This functor is clearly represented by the F-algebra F[X]/(X3 — 1), and thus G =
Spec(F[X]/(X? —1)) is an affine group scheme of finite type over F. If charF # 3,
then this is just the familiar group scheme of third roots of unity. On the other
hand, if charF = 3, then since X? — 1 = (X — 1)3, we see that G is not reduced.
Although us(K) = {1} for all fields K containing F' (so this group scheme carries
no information in the classical setting), us is not the trivial group scheme since
u3(B) may be nontrivial if B has nilpotent elements.

Perhaps the most substantial result of the first part is the Barsotti-Chevalley
theorem (proved in Chapter 8), which states that if G is a connected algebraic group
over a perfect field, then G contains a unique connected affine normal subgroup N
such that G/N is an abelian variety. In effect, this result allows one to reduce
the study of algebraic groups into two essentially disjoint cases: one focusing on
abelian varieties (i.e., algebraic groups whose underlying varieties are projective),
and the other dealing with linear (or affine) algebraic groups. Despite its conceptual
significance, this theorem is rarely seen in textbooks, so readers will appreciate
Milne’s decision to include it. For a different exposition of this result, one can also
consult [13]. Following the proof of the Barsotti-Chevalley theorem, Milne deals
exclusively with affine group schemes.

The second part, comprising Chapters 9-11, lays some of the groundwork that
will be needed later for a systematic study of reductive groups. Chapter 9 es-
tablishes the existence and various properties of Jordan decompositions (which is
essentially an extension of the Jordan canonical form, covered in linear algebra, to
the setting of arbitrary affine algebraic groups). Although this material is standard,
the exposition is notable for emphasizing the Tannakian philosophy that, in a pre-
cise sense, places an algebraic group and its category of representations on equal
footing. Chapter 10 is devoted to Lie algebras of algebraic groups—again, while this
material is very familiar, Milne’s account differs from the standard sources [3], [21],
and [29] by taking a more functorial point of view. Chapter 11 covers the theory
of finite group schemes, i.e., group schemes represented by finite-dimensional Hopf
algebras. Despite its great importance for number theory and arithmetic geometry,
this topic is typically omitted from textbooks on algebraic groups, so readers will
likely find this chapter very useful.

In the third part (Chapters 12-16), Milne carries out a systematic study of solv-
able algebraic groups, starting with diagonalizable groups and unipotent groups,
and proceeding to general trigonalizable groups. Although the exposition focuses
mainly on various standard core items (such as the classification of tori by their
character lattices, and the Lie-Kolchin theorem that all smooth connected solvable
groups are trigonalizable over a finite extension of the base field), some innovative
and less frequently encountered points include the following. First, in Chapter 13,
Milne discusses actions of tori on schemes, culminating with the Biatynicki-Birula
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decomposition. In Chapter 14, Milne presents a side-by-side comparison of unipo-
tent groups over fields of characteristic 0 (where one can use the exponential map,
going back to Chevalley’s second volume [11]) and over fields of positive character-
istic (where the picture is considerably more complicated but where one still has
a reasonable classification of so-called elementary unipotent groups using certain
rings of twisted polynomials). Finally, in Chapter 16, the reader can find, among
other things, a proof of the classification of connected one-dimensional algebraic
groups that requires fewer algebro-geometric prerequisites than the argument in
Borel’s book [3].

The fourth part, consisting of Chapters 17-25, is the technical heart of the
book. In Chapters 17-23, Milne develops in detail the structure theory of split
reductive groups and their representations in terms of their root data. Much of
this material goes back to the work of Chevalley’s seminar [12]; however, Milne’s
account is significant in that it provides the first complete and essentially self-
contained textbook treatment of the root datum of a reductive group, as well as
the Isogeny and Existence theorems, that is written in scheme-theoretic language.
Another notable point is Milne’s exposition of Chevalley’s theorem on the unipotent
radical: while the classical argument is deeply embedded in the general structure
theory and cannot be easily extracted from there, Milne presents an alternative
geometric approach due to Luna, which is based largely on the Bialynicki-Birula
decomposition and is thus, in many respects, more transparent. Finally, in Chapter
24, Milne describes the construction of all almost-simple algebraic groups in terms
of algebras with involution, and in Chapter 25, he briefly touches upon the structure
theory of nonsplit reductive groups.

3. AFTERWORD

In summary, Milne’s book provides a comprehensive yet accessible exposition of
the theory of linear algebraic groups over fields that is written in scheme-theoretic
language. One can expect that in the coming years, it will become a dominant
source for those seeking the first entry point into the subject with an eye towards
arithmetic applications of (affine) algebraic groups.

We would like to conclude this review by mentioning a few references that the
interested reader may wish to explore for a variety of more technical and specialized
topics. First, as previously mentioned, Milne focuses primarily on affine group
schemes of finite type over a field. If one is instead looking to learn about the
general theory of reductive group schemes, then, besides the original volumes of
SGA 3, one can consult Conrad’s notes [14] for a lucid account of the theory that,
in addition, incorporates various developments in algebraic geometry (particularly
in the theory of stacks and algebraic spaces) that came into being after the initial
publication of SGA 3.

Next, while Milne presents the complete structure theory for split reductive
groups, he stops short of discussing in detail the extension of this theory to nonsplit
groups, which is particularly important for those working with algebraic groups
over nonalgebraically closed fields. A structure theory for reductive groups over
arbitrary fields, based on the relative root system, was developed by Borel and
Tits in the papers [5] and [6], and a classification of semisimple algebraic groups
in terms of so-called Tits indices was given by Tits in [30]. An overview of this
material appears in [3, Chapter V] and a fairly detailed account can be found in
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[29, Chapters 12-17]. This theory has been generalized to the case of pseudo-
reductive groups by Conrad, Gabber, and Prasad [15]. We should also mention
that the study of semisimple algebraic groups over nonalgebraically closed fields
relies heavily on techniques from Galois cohomology and the theory of algebras
with involution—for details on these, the reader can consult [23] and [26] (see also
the new edition [27]).

The last topic that we would like to mention, which does not appear in Milne’s
book, is the arithmetic theory of algebraic groups, which is concerned with the study
of various properties of the groups of points of algebraic groups defined over fields
of arithmetic interest. For groups over number fields, an extensive account that
culminates in the proof of the local-global principle for simply connected semisimple
groups is given in [26]. In a different direction, a detailed structure theory for
reductive groups over a field complete with respect to a discrete valuation (such
as the field Q, of p-adic numbers) was developed by Bruhat and Tits in [7], [8],
and [9], and an overview of this theory was given by Tits in [31]. A new approach
to Bruhat-Tits theory, which avoids some of the original combinatorial arguments
and instead systematically utilizes certain techniques of SGA 3, recently appeared
in the book of Kaletha and Prasad [22]. Finally, some aspects of the developing
arithmetic theory of algebraic groups over fields other than global are discussed
in [28].

REFERENCES

[1] Armand Borel, Groupes linéaires algébriques (French), Ann. of Math. (2) 64 (1956), 20-82,
DOI 10.2307/1969949. MR93006

[2] Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969.
Notes taken by Hyman Bass. MR251042

[3] Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126,
Springer-Verlag, New York, 1991, DOI 10.1007/978-1-4612-0941-6. MR1102012

[4] Armand Borel, Essays in the history of Lie groups and algebraic groups, History of Mathemat-
ics, vol. 21, American Mathematical Society, Providence, RI; London Mathematical Society,
Cambridge, 2001, DOI 10.1090/hmath/021. MR1847105

[5] Armand Borel and Jacques Tits, Groupes réductifs (French), Inst. Hautes Etudes Sci. Publ.
Math. 27 (1965), 55-150. MR207712
[6] Armand Borel and Jacques Tits, Compléments a Uarticle: “Groupes réductifs” (French), Inst.

Hautes Etudes Sci. Publ. Math. 41 (1972), 253-276. MR315007
[7] F. Bruhat and J. Tits, Groupes réductifs sur un corps local (French), Inst. Hautes Etudes
Sci. Publ. Math. 41 (1972), 5-251. MR327923
[8] F.Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Ezistence
d'une donnée radicielle valuée (French), Inst. Hautes Etudes Sci. Publ. Math. 60 (1984),
197-376. MR756316
[9] F. Bruhat and J. Tits, Groupes algébriques sur un corps local. Chapitre III. Compléments et
applications & la cohomologie galoisienne (French), J. Fac. Sci. Univ. Tokyo Sect. IA Math.
34 (1987), no. 3, 671-698. MR927605
[10] Claude Chevalley, Theory of Lie Groups. I, Princeton Mathematical Series, vol. 8, Princeton
University Press, Princeton, NJ, 1946. MR15396
[11] Claude Chevalley, Théorie des groupes de Lie. Tome II. Groupes algébriques (French), Ac-
tualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1152,
Hermann & Cie, Paris, 1951. MR51242
[12] Séminaire C. Chevalley, 1956-1958. Classification des groupes de Lie algébriques, 2 vols.
Secrétariat mathématique, 11 rue Pierre Curie, Paris, 1958.
[13] Brian Conrad, A modern proof of Chevalley’s theorem on algebraic groups, J. Ramanujan
Math. Soc. 17 (2002), no. 1, 1-18. MR1906417


https://mathscinet.ams.org/mathscinet-getitem?mr=93006
https://mathscinet.ams.org/mathscinet-getitem?mr=251042
https://mathscinet.ams.org/mathscinet-getitem?mr=1102012
https://mathscinet.ams.org/mathscinet-getitem?mr=1847105
https://mathscinet.ams.org/mathscinet-getitem?mr=207712
https://mathscinet.ams.org/mathscinet-getitem?mr=315007
https://mathscinet.ams.org/mathscinet-getitem?mr=327923
https://mathscinet.ams.org/mathscinet-getitem?mr=756316
https://mathscinet.ams.org/mathscinet-getitem?mr=927605
https://mathscinet.ams.org/mathscinet-getitem?mr=15396
https://mathscinet.ams.org/mathscinet-getitem?mr=51242
https://mathscinet.ams.org/mathscinet-getitem?mr=1906417

[14]

[15]

[16]

(17]

18]

(19]

20]

21]
22]

23]

24]

[25]

[26]

27]

(28]

29]

(30]

BOOK REVIEWS 165

Brian Conrad, Reductive group schemes (English, with English and French summaries), Au-
tour des schémas en groupes. Vol. I, Panor. Synthéses, vol. 42/43, Soc. Math. France, Paris,
2014, pp. 93-444. MR3362641

Brian Conrad, Ofer Gabber, and Gopal Prasad, Pseudo-reductive groups, 2nd ed., New
Mathematical Monographs, vol. 26, Cambridge University Press, Cambridge, 2015, DOI
10.1017/CB0O9781316092439. MR3362817

Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique,
généralités, groupes commutatifs (French), Masson & Cie, Editeurs, Paris; North-Holland
Publishing Co., Amsterdam, 1970. Avec un appendice Corps de classes local par Michiel
Hazewinkel. MR302656

Schémas en groupes. I: Propriétés générales des schémas en groupes (French), Lecture Notes
in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970. Séminaire de Géométrie
Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck.
MR274458

Philippe Gille and Patrick Polo (eds.), Schémas en groupes (SGA 3). Tome I. Propriétés
générales des schémas en groupes (French), annotated edition, Documents Mathématiques
(Paris) [Mathematical Documents (Paris)], vol. 7, Société Mathématique de France, Paris,
2011. Séminaire de Géométrie Algébrique du Bois Marie 1962-64. [Algebraic Geometry Sem-
inar of Bois Marie 1962-64]; A seminar directed by M. Demazure and A. Grothendieck with
the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre; Edited
by Philippe Gille and Patrick Polo. MR2867621

Philippe Gille and Patrick Polo (eds.), Schémas en groupes (SGA 3). Tome III. Structure des
schémas en groupes réductifs (French), annotated edition, Documents Mathématiques (Paris)
[Mathematical Documents (Paris)], vol. 8, Société Mathématique de France, Paris, 2011.
Séminaire de Géométrie Algébrique du Bois Marie 1962-64. [Algebraic Geometry Seminar
of Bois Marie 1962—64]; A seminar directed by M. Demazure and A. Grothendieck with the
collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre; Edited by
Philippe Gille and Patrick Polo. MR2867622

Ulrich Gortz and Torsten Wedhorn, Algebraic geometry I. Schemes—uwith examples and ezer-
cises, Springer Studium Mathematik—Master, Springer Spektrum, Wiesbaden, [2020] (©2020.
Second edition [of 2675155], DOI 10.1007/978-3-658-30733-2. MR4225278

James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21,
Springer-Verlag, New York-Heidelberg, 1975. MR396773

Tasho Kaletha and Gopal Prasad, Bruhat—Tits theory—a new approach, New Mathematical
Monographs, vol. 44, Cambridge University Press, Cambridge, 2023. MR4520154
Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book
of involutions, American Mathematical Society Colloquium Publications, vol. 44, Ameri-
can Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits, DOI
10.1090/coll/044. MR1632779

E. R. Kolchin, Algebraic matric groups and the Picard—Vessiot theory of homogeneous linear
ordinary differential equations, Ann. of Math. (2) 49 (1948), 1-42, DOI 10.2307/1969111.
MR24884

E. R. Kolchin, On certain concepts in the theory of algebraic matric groups, Ann. of Math.
(2) 49 (1948), 774-789, DOI 10.2307/1969399. MR26996

Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and
Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the
1991 Russian original by Rachel Rowen. MR1278263

Vladimir Platonov, Andrei Rapinchuk, and Igor Rapinchuk, Algebraic groups and number
theory. Vol. I, Cambridge Studies in Advanced Mathematics, vol. 205, Cambridge University
Press, Cambridge, [2023] (©2023. Second edition [of 1278263]; The translation of the first
Russian edition was prepared by Rachel Rowen. MR4615820

Andrei S. Rapinchuk and Igor A. Rapinchuk, Linear algebraic groups with good reduction, Res.
Math. Sci. 7 (2020), no. 3, Paper No. 28, 66, DOI 10.1007/s40687-020-00226-3. MRA4149442
T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhauser
Boston, Inc., Boston, MA, 1998, DOI 10.1007/978-0-8176-4840-4. MR1642713

J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous
Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence,
RI, 1966, pp. 33—-62. MR224710


https://mathscinet.ams.org/mathscinet-getitem?mr=3362641
https://mathscinet.ams.org/mathscinet-getitem?mr=3362817
https://mathscinet.ams.org/mathscinet-getitem?mr=302656
https://mathscinet.ams.org/mathscinet-getitem?mr=274458
https://mathscinet.ams.org/mathscinet-getitem?mr=2867621
https://mathscinet.ams.org/mathscinet-getitem?mr=2867622
https://mathscinet.ams.org/mathscinet-getitem?mr=4225278
https://mathscinet.ams.org/mathscinet-getitem?mr=396773
https://mathscinet.ams.org/mathscinet-getitem?mr=4520154
https://mathscinet.ams.org/mathscinet-getitem?mr=1632779
https://mathscinet.ams.org/mathscinet-getitem?mr=24884
https://mathscinet.ams.org/mathscinet-getitem?mr=26996
https://mathscinet.ams.org/mathscinet-getitem?mr=1278263
https://mathscinet.ams.org/mathscinet-getitem?mr=4615820
https://mathscinet.ams.org/mathscinet-getitem?mr=4149442
https://mathscinet.ams.org/mathscinet-getitem?mr=1642713
https://mathscinet.ams.org/mathscinet-getitem?mr=224710

166 BOOK REVIEWS

[31] J. Tits, Reductive groups over local fields, Automorphic forms, representations and L-
functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Proc. Sym-
pos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 29-69. MR546588

[32] William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathemat-
ics, vol. 66, Springer-Verlag, New York-Berlin, 1979. MR547117

IGor A. RAPINCHUK
DEPARTMENT OF MATHEMATICS,
MICHIGAN STATE UNIVERSITY
Email address: rapinchu@msu.edu


https://mathscinet.ams.org/mathscinet-getitem?mr=546588
https://mathscinet.ams.org/mathscinet-getitem?mr=547117

	1. Genesis of the theory of algebraic groups
	2. An overview of Milne’s book
	3. Afterword
	References

