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A central challenge for cognitive science is to explain how abstract concepts are ac-
quired from limited experience. This has often been framed in terms of a dichotomy
between connectionist and symbolic cognitive models. Here, we highlight a re-
cently emerging line of work that suggests a novel reconciliation of these ap-
proaches, by exploiting an inductive bias that we term the relational bottleneck. In
that approach, neural networks are constrained via their architecture to focus on re-
lations between perceptual inputs, rather than the attributes of individual inputs. We
review a family of models that employ this approach to induce abstractions in a
data-efficient manner, emphasizing their potential as candidate models for the ac-
quisition of abstract concepts in the human mind and brain.

Modeling the efficient induction of abstractions

Human cognition displays a remarkable ability to transcend the specifics of limited experience to
entertain highly general, abstract ideas. Understanding how the mind and brain accomplish this
has been a central challenge of cognitive science and a major preoccupation of philosophy before
that [1-4]. Of particular importance is the central role played by relations, which enable human
reasoners to abstract away from individual entities and identify higher-order patterns across
distinct domains [5,6]. For instance, when presented with the images in Figure 1, one can easily
determine that a common relational pattern (ABA) is displayed on both the left and right, despite
the involvement of completely different objects. This capacity is a major component underlying
the human capacity for fluid reasoning [7,8] and has been proposed as a key factor distinguishing
human intelligence from that of other species [9].

A long tradition in cognitive science and artificial intelligence (Al) [10-12] holds that this capacity
for abstraction depends on processes akin to symbolic programs. A major appeal of this
approach is that symbols are, by design, abstracted away from the content to which they refer,
thus naturally accounting for the flexibility and systematicity of human concepts [13]. More
recently, program induction (see Glossary) has provided an account of how symbolic concepts
might be learned directly from data [14—-20], formalizing learning as a search for the program that
maximizes the likelihood of observed data. However, while this approach is capable in principle of
representing any possible set of concepts [21], the discovery of these concepts using traditional
search methods often proves intractable, making it difficult in practice to identify programs with
the richness and complexity of human natural concepts (though see Box 1 for discussion).

An alternative approach, connectionism, has for decades explored how cognitive abstractions
might emerge through experience in general-purpose neural architectures [22-25]. This endeavor
has taken on new relevance with the advent of large language models, demonstrating that it is pos-
sible, in some cases, for a human-like capacity for abstraction to emerge given sufficient scaling of
architecture and training data [26-29]. For instance, it has recently been shown that large language
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Figure 1. The relational bottleneck. An inductive bias that prioritizes the representation of relations (e.g., ‘same’ versus
‘different’) and discourages the representation of the features of individual objects (e.g., the shape or color of the objects
in the images). The result is that downstream pr ocessing is driven primarily, or even exclusively, by patterns of relations
and can therefore systematically generalize those patterns across distinct instances (e.g., the common ABA pattern
displayed on both left and right), even for completely novel objects. The approach is illustrated here with same/different rela-
tions, but other relations can also be accommodated. Note that this example is intended only to illustrate the overall goal of
the relational bottleneck framework. Figure 2 in the main text depicts neural architectures that implement the approach.

models can solve various analogy problems at a level equal to that of college students [30]. How-
ever, the ability of these models to perform abstract tasks depends on exposure to a much larger
training corpus than individual humans receive in an entire lifetime [31,32], thus failing to account for
the data efficiency of human concept learning.

Box 1. Neuro-symbolic modeling approaches

Many approaches have been proposed for hybrid systems that combine aspects of both neural and symbolic computing.
Early work in this area focused on incorporating a capacity for variable-binding (a key property of symbolic systems) into
connectionist systems. Notable examples of this approach include binding-by-synchrony [35], tensor product variable-
binding [34], and BoltzCONS [89]. A number of vector symbolic architectures have since been proposed that build on
the tensor product operation, but enable more elaborate symbolic structures to be embedded in a vector space of fixed
dimensionality [90-93]. These approaches have all generally relied on the use of pre-specified symbolic primitives.

More recently, hybrid systems have been developed that combine deep learning with symbolic programs. In this
approach, deep learning components are typically employed to translate raw perceptual inputs, such as images or natural
language, into symbolic representations, which can then be processed by traditional symbolic algorithms [94-96]. This
approach is complemented by recent neuro-symbolic approaches to probabilistic program induction, in which symbolic
primitives are pre-specified (following earlier symbolic-connectionist modeling efforts) and then deep learing is used to
assemble these primitives into programs [17].

An alternative approach (which might also be viewed as neuro-symbolic in some sense) involves the integration of key
features of symbolic computing within the framework of end-to-end trainable neural systems. Examples of this approach
include neural production systems [97], graph neural networks [46], discrete-valued neural networks [98] (see [99] for
further discussion of normative considerations regarding discrete-valued representations), sparse causal graphs [100],
and efforts to incorporate tensor product representations into end-to-end systems [101,102]. The relational bottleneck
falls into this broad category, as it incorporates key elements of symbolic computing (variable-binding and relational
representations) into fully differentiable neural systems that can be trained end-to-end without the need for pre-specified
symbolic primitives. Relative to these other approaches, the primary innovation of the relational bottleneck framework is
the emphasis on architectural components that promote the development of genuinely relational representations.
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Glossary

Attention: in the context of deep
learning, an operation that allows
information to be flexibly shared
between a set of embeddings [128]
(popularized by the Transformer
architecture [50]), also closely related
to content-addressable memory (see
external memory). This operation shares
some, but not all, properties of formal
treatments of attention in cognitive
psychology (see [129] for an example of
how the psychological notion of attention
may be implemented in neural networks;
see [130] for discussion of the relationship
between these different senses of
‘attention’).

Backpropagation: a technique used to
train multilayer neural networks, in which
the connection strengths between
processing units in intermediate layers are
updated based on an error signal in
downstream layers, allowing intermediate
representations to be automatically
learned in a manner that is most useful
for downstream tasks (without having
to specify those intermediate
representations).

Connectionism: a modeling framework
in cognitive science that emphasizes the
emergence of complex cognitive
phenomena from the interaction of
simple, neuron-like elements organized
into networks, in which connections are
formed through learning.

Embedding: a real-valued vector that
represents a particular input (e.g., a
word or image), often instantiated as the
state (set of activation values) of a
particular layer in a neural network.
Episodic memory (EM): a form of
memory in which arbitrary, but durable,
associations can be rapidly formed.
Often thought to be implemented by
hippocampal mechanisms for rapid
synaptic plasticity and similarity-based
retrieval.

External memory: in the context of
deep learning, an approach that
combines neural networks with separate
external stores of information, typically
with learnable mechanisms for writing to
and reading from these stores and in
which retrieval is usually similarity-based
(i.e., ‘content-addressable’). Often used
to implement a form of episodic memory
[131].

Inductive bias: an assumption made
by a machine learning model about the
distribution of the data. In deep learning
models, this often takes the form of
architectural features that bias learming
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In this review, we highlight an emerging approach that suggests a novel reconciliation of these
two traditions. The central feature of this approach is an inductive bias that we refer to as the
relational bottleneck: a constraint that biases neural network models to focus on relations
between objects rather than the attributes of individual objects. This approach enables the data
efficiency associated with symbolic cognitive models, while retaining the scalable training proce-
dures associated with neural network models (see Box 1 for further discussion of neuro-symbolic
approaches). In the following sections, we first provide a general characterization of this
approach, drawing on information theory, and discuss recently proposed neural network archi-
tectures that implement the approach. We then discuss the potential of the approach for model-
ing human cognition, relating it to existing theories and considering mechanisms through which it
might be implemented in the brain.

The relational bottleneck

We define the relational bottleneck as any mechanism that restricts the flow of information from
perceptual to downstream reasoning systems to consist only of relations (see Box 2 for a formal
definition). For example, consider the relational patterns depicted in Figure 1. In this example, the
images on the left and right are governed by the same abstract pattern (ABA), but these patterns
contain different sets of objects (dogs and cats versus planes and cars). Given inputs representing
individual objects (e.g., representations of the dog and cat images on the left), a relational
bottleneck would constrain the representations passed to downstream reasoning processes to
capture only the relations between these objects (e.g., whether the objects have the same shape)
and discard information about the individual objects (e.g., information about dogs and cats). The
result is that the images on the left will have the same representation as those on the right, despite
the different objects depicted in these images. This encourages downstream processes to identify
relational patterns in a manner that is abstracted away from specific instances of those patterns and
can therefore be systematically generalized to novel inputs (see Concluding remarks for discussion
of non-relational factors in human cognition). In the following section, we highlight three recently
proposed neural architectures that instantiate this approach in different guises, illustrating how
they utilize a relational bottleneck to induce abstract concepts in a data-efficient manner. It is also
worth emphasizing that, although we focus here on artificial neural networks, the approach may
also be applicable to other modeling approaches (see Outstanding questions).

The relational bottleneck in neural architectures

Figure 2, Key figure depicts three architectures that implement the relational bottleneck through
architectural inductive biases. Here, we discuss how the distinct mechanisms in these models
implement the same underlying principle. In particular, a common element is the use of inner
products to represent relations, which ensures that the resulting representations are genuinely
relational. In each case, we also contrast these architectures with related approaches that do
not incorporate a relational bottleneck, emphasizing how this key architectural feature enables
the data-efficient induction of abstractions.

Emergent symbol binding

We first consider the emergent symbol binding network (ESBN) (Figure 2A) [33], a deep neural
network architecture inspired by the notion of role-filler variable binding in cognitive models of
relational reasoning [34-36]. In those models, relational reasoning is supported by the existence
of separate ‘roles’, representing information about abstract variables, and fillers’, representing
information about concrete entities bound to those variables. This coding scheme enables
roles and fillers to be flexibly combined in new ways, capturing a key property of symbol-
processing systems: the ability of symbolic variables to be associated with any potential values.
Previous work focused on how binding might be performed in neural circuits (e.g., units coding
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toward certain (typically desirable)
outcomes. Genetically pre-configured
aspects of brain structure can be viewed
as a form of inductive bias.

Inner product: an operation in which
two vectors are converted to a scalar,
often interpreted as representing the
similarity of those two vectors.
Out-of-distribution generalization:
in machine learing, generalization to a
distribution that differs from the
distribution observed during training.
Program induction: a modeling
approach in which concepts are
represented as symbolic programs and
leared via a search process that seeks to
maximize the likelihood of observed data
(typically subject to some constraints,
e.g., parsimony).
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Box 2. The relational bottleneck principle

Information bottleneck theory [103] provides a normative framework for formalizing the notion of a relational bottleneck.
Consider an information processing system that receives an input signal X and aims to predict a target signal Y. X is proc-
essed to generate a compressed representation Z = f(X) (the ‘bottleneck’), which is then used to predict Y. At the heart of
information bottleneck theory is the idea of ‘minimal-sufficiency’. Z is sufficient for predicting Y if it contains all the information
X encodes about Y. That is, I(Z;Y) =I(X;Y), where I( - ; - ) is the mutual information. If Z is sufficient, then we write
X—Z—Y, meaning that Y is conditionally independent of X given the compressed representation Z. Z is minimal-sufficient
if it is sufficient for Y and does not contain any extraneous information about X that is not relevant to predicting Y. That is,

I1(X;Z2) <1 (X ;Z) for any other sufficient compressed representation Z.

Achieving maximum compression while retaining as much relevant information as possible is a tradeoff. It is captured by
the information bottleneck objective,

minimize £(Z) = I(X;Z) — PIZ;Y). l

This objective reflects the tension between compression, which favors discarding information as captured by the first term,
and the preservation of relevant information in Z, captured by the second term. The parameter 3 controls this tradeoff.

While this objective is well-defined when the joint distribution (X, Y) is known, obtaining a minimal-sufficient compressed
representation from datais, in general, very challenging for the high-dimensional signals that are often of interest. However,
it may be possible to implicitly enforce a desirable information bottleneck for a large class of tasks through architectural
inductive biases.

In particular, we hypothesize that human cognition has been fundamentally optimized for tasks that are relational in nature.
We define a ‘relational task’ as any task for which there exists a minimal-sufficient representation R that is purely relational.
Suppose the input signal represents a set of objects,

X = (X1, ..., XN). 1
A relational signal is a signal of the form,
R= {r(%i, %) };4 = {r(%,%2), 1(x1,X3), ..., T(Xn-1,XN)}, 0]

where r(xi, Xj) is a relation function. A ‘relation function’ is a function that takes a pair of objects as input and returns a
relation between them (see ‘Modeling more complex relations’ in the main text for discussion of higher-order relations).
We say that a task is relational if there exists some relational signal R that is sufficient for predicting the target Y
(i.e., X—R—Y). A relational bottleneck is any mechanism that restricts or biases the learned compressed representation
of the input to be a relational representation, separated from object-level features. This gives the model a smaller space
of possible compressed representations over which it must search. Moreover, this restricted space is guaranteed to contain
a sufficient representation for the task and excludes many representations that encode extraneous information about X,
promoting efficient learning of relational abstractions.

In practice, a relational bottleneck can be implemented in a learning model through the use of architectural inductive
biases. One particularly useful operation is inner products of the form (¢(x;), ¢ (x,-)), which naturally capture a notion of re-
lations in terms of similarity between learned attributes. Inner products can also capture asymmetric relations through the
use of separate encoders for x; and x; [i.e., (#(x;), w(xj))] and indeed can be shown to be universal approximators [104].
The class of functions that can be represented in this way is thus fully general, but the approach provides a useful inductive
bias for disentangling feature extraction (implemented by the encoders ¢ and ¥) from comparison (implemented by the
inner product operator).

for a particular role may be temporarily ‘bound’ to units coding for a particular filler by firing synchro-
nously [35]). However, role and filler representations were typically pre-specified by the modeler,
leaving open the question of how such symbolic representations might be learned.

The ESBN adopts this key idea of separate roles and fillers, but integrates them into a system that
can be trained end-to-end (via backpropagation, averting the need to pre-specify these repre-
sentations. The ESBN contains three major components: (i) a feedforward encoding pathway
(‘Encoder’ in Figure 2A), which generates object embeddings (i.e., fillers) from perceptual inputs
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Figure 2. Three neural architectures that implement the relational bottleneck. (A) Emergent symbol binding network (ESBN)
[33]. (B) Compositional relation network (CoRelNet) [43]. (C) Abstractor [49]. In all cases, high-dimensional inputs (e.g.,
images) are processed by a neural encoder (e.g., a convolutional network), yielding a set of object embeddings O. These
are projected to a set of keys K and queries Q, which are then compared yielding a relation matrix R, in which each entry
is an inner product between a query and key. Abstract values V are isolated from perceptual inputs (the core feature of the
relational bottleneck) and depend only on the relations between them.

(e.g., images); (i) a recurrent controller (‘Controller’ in Figure 2A), which operates over learned
representations of abstract variables (i.e., roles; though the system is not explicitly trained to
represent any particular variables, but instead learns these representations through backpropagation);
and (i) an external memory system responsible for binding representations of roles and fillers
(i.e., abstract variables and perceptual embeddings). The ESBN processes inputs sequentially.
For each observation, a pair of representations is appended to memory, one from the perceptual
pathway (referred to as a key) and one from the control pathway [referred to as a value; note
that the use of the terms ‘key’ and ‘value’ here is reversed relative to the original paper [33] in
order to be consistent with their usage in describing the compositional relation network (CoRelNet)
and Abstractor architecture]. To read from this memory, the embedding for the current observation
(referred to as a query) is compared with all keys in memory via an inner product, yielding a set of
scores (one for each key) that indicate the similarity of the current object embedding (i.e., filler) to
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each entry in memory. These scores are then used to compute a weighted average of the value
embeddings (i.e., roles) in the abstract pathway, which is then retrieved and passed to the
controller.

Importantly, in this retrieval operation, the control pathway cannot access the content of the
representations in the perceptual pathway (i.e., the fillers). Instead, the interaction is mediated
only by the comparison of perceptual representations with each other. In other words, to the
extent that a particular perceptual memory embedding (key) is similar to the current perceptual
embedding (filler, used as a query), the corresponding control memory (value) will be retrieved
and passed to the controller to be used as the role; critically, the perceptual embedding itself is
not passed to the controller. The ESBN thus implements the relational bottleneck as an architec-
tural prior, separating the learning and use of abstract representations (roles) by the controller
from the embeddings of perceptual information (fillers). It is precisely this separation that guaran-
tees the representations in the control pathway are abstract. This feature enables the ESBN to
rapidly learn relational patterns (such as the identity rules displayed in Figure 1) and generalize
them to out-of-distribution inputs (e.g., previously unseen shapes; Figure 3A) [33]. Indeed,
the ESBN can learn relational patterns from only a handful of examples (as few as four examples),
mirroring the data efficiency of relational learning in young children (who can typically learn to
perform relational tasks with fewer than ~20 examples [37], as opposed to the thousands of
examples that are necessary for standard neural network architectures). Critically, the ESBN
can be shown to use precisely the same representation for a given role, irrespective of filler, thus
exhibiting a critical feature of abstract, symbolic processing [13]. In this sense, the representations
in the model’s control pathway can be viewed as a form of learned ‘symbols’.

It is instructive to compare this model with similar approaches without a relational bottleneck. The
ESBN is part of a broader family of architectures that use content-addressable external memory:
a separate store of information with which a neural network can interact via learnable read and
write operations [38,39]. Notably, these read and write operations rely on a similarity computation
(based on inner products). These have often been cast as simplified implementations of the
brain’s episodic memory (EM) system [40,41]. Standard external memory architectures do
not typically isolate the control and perceptual pathways. Instead, perceptual inputs are passed
directly to a central controller, which is responsible for writing to and reading from a single, mono-
lithic memory. Though it is possible for a role-filler structure to emerge in these systems given a
sufficiently large amount of training data [42], they take much longer to learn relational tasks
(requiring approximately an order of magnitude more training data) and do not generalize as
well as the ESBN [33]. Thus, although external memory plays an important role in the ESBN,
the presence of external memory alone is insufficient to enforce a relational bottleneck. Rather,
it is the isolation of the perceptual and abstract processing components from one another that
does so. Furthermore, as we illustrate in the following sections, it is possible to achieve this isola-
tion without the use of external memory.

Relation matrices

An alternative approach to implementing the relational bottleneck is illustrated by CoRelNet
(Figure 2B) [43]. In that approach, a set of perceptual observations are first processed by an
encoder, yielding a sequence of object embeddings. A relation matrix is then computed over all
pairs of objects (within a given problem instance, e.g., all pairs of objects found within the ABA
pattern in Figure 1), in which each entry consists of the inner product between a pair of object
embeddings (thus capturing the similarity between each pair of objects). Finally, this relation matrix
is passed to a downstream decoder network (the architecture of this network can vary, e.g., using
a multilayer perceptron or Transformer). The relation matrix thus forms a relational bottleneck: all

834  Trends in Cognitive Sciences, September 2024, Vol. 28, No. 9


CellPress logo

Trends in Cognitive Sciences ¢? CellPress

(A) . (B)
Identity Rules
mm ESBN Random Object Sorting
= Transformer
mm NTM 1.00
> e MNM oy A
8 — LSTM 5 07 I / \\[ o
3 e PrediNet S /| |
Q
® = RN fb 0.50 I / -/'v
% <
ﬁ g 0.25 —e— Abstractor [
0 / / =~ Ablation Model
0.00 =T ’ i
0 500 1000 1500 2000 2500 3000
0 50 85 95 Training Set Size
Number of objects withheld during training
(©)
ESBN LSTM Transformer
4507 450 450
110
400 i ]
3z 100 ! * | g400 g400 } |
S350 w | I S 350 S 350
23004 ® i 2 2
< ; * 2 3001 2 300
8 2504 " I 8 250 Vi 8 2504
® oy ® 7V ® p
© 200 @ 200 7 ¥ © 200
B * 3 A 3 {
g 150 12 3 456 78 910 g 150_ 1—’7 g 150 *
*“ 100 a=t| " 1004 ;”; ' * 100
- .eo—""""‘—._’-' Pt A
- v v e - L3
50 T T T T T T T T T T 50 T T T T T T T T T T 50 T T T T T T T T T T
123 456 7 8 910 123 456 7 8 910 12345678910
N (Give-N) N (Give-N) N (Give-N)

Trends In Cognitive Sclences

Figure 3. The relational bottleneck encourages data-efficient and generalizable relation learning. (A) Results for
the emergent symbol binding network (ESBN) and baseline architectures [Transformer, neural Turing machine (NTM),
metalearned neural memory (MNM), long short-term memory (LSTM), PrediNet, and the relation network (RN)] on the
identity rules task, reproduced from [33]. The x axis represents the number of potential objects (out of 100 possible
objects) withheld during training. When all objects are observed during training (O withheld), most baselines perform well
on the task. When most objects are withheld (95 withheld; test set includes only objects withheld during training), only the
ESBN generalizes well to new objects. (B) Results for an object sorting task involving an asymmetric relation (greater-than/
less-than), reproduced from [49]. The Abstractor learns this task significantly faster than both the Transformer and an
ablation model in which relational cross-attention is replaced by standard cross-attention. (C) Results from the give-n task,
reproduced from [63]. The x axis represents the target number n (desired number of objects). The y axis represents the
episode at which the model reaches a particular criterion for the ability to count to each value of N. ESBN learns the task
significantly faster than the LSTM or Transformer baselines. ESBN also displays inductive transition (rapid learning for
N > 5) similar to that observed in human development.

perceptual information flows into this matrix, converting it into a form that only preserves relational
information (about the similarity between objects) and only this relational information is then passed
on to the decoder. As with the ESBN, this relational bottleneck enables CoRelNet to rapidly learn
and systematically generalize relational patterns.

CoRelNet can be viewed as a feedforward, parallelized implementation of the sequential process
(of encoding and similarity-based retrieval from external memory) carried out by the ESBN. This
results in performance benefits, as CoRelNet does not suffer from the vanishing gradient problem
that is a challenge for recurrent neural networks used to implement sequential processing [44].
That is, the gradients associated with all relations in a given scene are processed in parallel via
a single step of backpropagation, rather than being diluted over several iterations, as is the
case for the sequential processing carried out by the ESBN. This approach also makes the key
relational inductive bias underlying the ESBN more explicit. The ESBN’s memory retrieval proce-
dure, in which the current observation is compared with the entries in memory, can be interpreted
as computing a single row of the relation matrix. In both architectures, downstream processing is
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constrained so as to depend only on this relation matrix (which forms the relational bottleneck),
though the details of this dependency differ.

Here too, a useful contrast can be made with related architectures that do not incorporate a
relational bottleneck. In particular, architectures such as the Relation Net [45] (see [46] for related
approaches) explicitly perform a comparison between each pair of inputs, leading to improved
performance in relational tasks. However, whereas CoRelNet represents pairwise relations using
inner products, the Relation Net utilizes generic neural network components (e.g., multilayer
perceptrons) that are learned in a task-dependent manner. While this is in principle more flexible,
it does not constrain the network to learn representations that only capture relational information.
As a consequence, this architecture is susceptible to learning shortcuts consistent with the training
data (i.e., overfitting to perceptual details), compromising its ability to efficiently learn and reliably
generalize relations to out-of-distribution inputs [33,47,48]. This is in contrast to the inner product
operation employed by the ESBN and CoRelNet, which is inherently relational and, therefore,
guarantees that downstream processing is based only on relations.

Relational attention

The recently proposed Abstractor architecture (Figure 2C) [49] illustrates how the relational
bottleneck can be implemented within the broader framework of attention-based architec-
tures (including the Transformer [50]). The Abstractor is built on a novel attention operation
termed relational cross-attention. In this operation, a set of object embeddings (which may
be produced by an encoder given perceptual observations) is converted to form keys and
queries, using separate linear projections. A relation matrix is then computed, in which each
entry corresponds to the inner product between a query and key. The relation matrix is used
to attend over a set of learned values. The attention operation itself is identical to standard
self-attention, in which each value embedding is replaced with a weighted average of the set
of all value embeddings, where the weights are determined by the match between queries
and keys (i.e., the relation matrix). However, the value embeddings used for relational cross-
attention are formed from a separate set of representations that are learned through
backpropagation (based on the downstream task for which the network is trained) which
reference objects but are independent of their attributes (in the simplest scheme, these values
reference objects via their position, though more sophisticated referencing schemes are also
possible [49]). This is in contrast to standard self-attention, in which the values are computed
via a linear projection of the perceptual inputs (just as the queries and keys are computed).
As with the CoRelNet architecture, the relation matrix thus forms a relational bottleneck; in
the sense that it converts all perceptual information to relational information, and downstream
processing (in this case, the relational cross-attention operation) then depends only on this
relational information.

Relational cross-attention can be contrasted with the standard forms of attention employed in
Transformers: self-attention and cross-attention. In self-attention, the same set of object embed-
dings are used to generate keys, queries, and values. In cross-attention, object embeddings are
used to generate keys and values and queries are generated by a separate decoder network. In
both cases, the values over which attention is performed are based directly on the object embed-
dings and the information contained in these embeddings is, therefore, passed on for downstream
processing (thus contravening the relational bottleneck). By contrast, in relational cross-attention,
keys and queries are generated from object embeddings, but a separate set of learned vectors
are used as values (note that more complex architectures can be created by combining multiple
forms of attention, e.g., object embeddings can first be processed by standard self-attention before
applying relational cross-attention). As in the ESBN, these values can be viewed as learned
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‘symbols’, in the sense that they are isolated from the perceptual content of the objects with which
they are associated.

This implementation of the relational bottleneck yields the same benefits observed in others:
the Abstractor learns relational patterns faster than the Transformer and displays better
out-of-distribution generalizationof those patterns. The Abstractor also has a few advan-
tages relative to existing implementations of the ESBN and CoRelNet. Because the relation
matrix is computed using separate key and query projections, the Abstractor is capable of
representing asymmetric relations (e.g., can capture the difference in meanings between ‘A
is greater than B’ and ‘B is greater than A’; Figure 3B). In addition, multihead relational
cross-attention enables the Abstractor to model multidimensional relations. As proposed,
ESBN and CoRelNet are limited to relations along a single feature dimension only. Finally, sim-
ilar to Transformers, the Abstractor is a generative architecture, whereas the ESBN and
CoRelNet are purely discriminative (although an alternative implementation of the ESBN has
been proposed that can perform generative tasks [51]). This enables the Abstractor to per-
form a broader range of tasks, including the sequence-to-sequence tasks that are common
in natural language processing.

Modeling more complex relations

The neural network modeling work discussed in the previous sections was focused primarily,
though not exclusively, on relational patterns involving same/different relations. Although similarity
is fundamental to human reasoning, and has indeed been a central focus of theories of relational
and analogical reasoning [52-54], human cognition is also characterized by more complex rela-
tion types, including asymmetric relations [55] and higher-order relations [5] (relations
between relations). It is worth emphasizing that the relational bottleneck can also account for
many of these more complex relation types. First, although the inner product between two
vectors is inherently symmetric (a - b is identical to b - a), the relational bottleneck can also
account for asymmetric relations by computing the inner product between separate key and
query embeddings (g, - ko is not the same as q, - ka). This use of separate key and query
embeddings enables the Abstractor to model asymmetric relations such as greater-than/less-
than, as well as other asymmetric relations found in mathematical reasoning problems [49] (and
a similar architectural modification is also possible for the ESBN and CoRelNet). Second,
although the architectures discussed here focused on pairwise relations, higher-order relations
can be straightforwardly accommodated through the recursive application of the relational bottle-
neck (i.e., by treating the outputs of one relational bottleneck as the inputs to another relational
bottleneck, thus computing relations between other relations). Along these lines, recent work
proposed relational convolutional networks [56] and demonstrated that a hierarchical relational
architecture can learn representations of higher-order relations, outperforming both non-
hierarchical relational architectures (e.g., CoRelNet) and deep non-relational architectures
(e.g., Transformers). These results illustrate how the relational bottleneck can account for more
complex relation types, but it remains an important avenue for future work to investigate whether
and how such architectures can account for the full space of relations that characterize human
cognition.

As the examples we have considered illustrate, the relational bottleneck can be implemented in a
diverse range of architectures, each with their own strengths and weaknesses. In each case, the
inclusion of a relational bottleneck enables rapid learning of relations without the need for pre-
specified relational primitives. In the remainder of the review, we discuss the implications of this
approach for models of cognition and consider how the relational bottleneck may relate to the
architecture of the human brain (see Box 3).
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Box 3. Brain mechanisms supporting the relational bottleneck

How might the relational bottleneck principle be implemented in the human brain? A central element of this framework is
the presence of segregated systems for representing abstract versus perceptual information (i.e., abstract values versus
perceptual keys/queries in the ESBN or Abstractor). A large body of findings from cognitive neuroscience suggests the
presence of distinct neocortical systems for representing abstract structure (e.g., of space or events) versus concrete
entities (e.g., people or places), located in the parietal and temporal cortices, respectively [105-109]. This factorization
has also been explored in a number of recent computational models [110-112].

However, this segregation raises the question of how representations in these distinct neocortical systems are flexibly
bound together. Though many proposals have been made for how the brain might solve this variable-binding problem
(see Box 1 in the main text), one intriguing possibility involves use of the episodic memory (EM) system [40]. A common
view holds that EM is supported by rapid synaptic plasticity in the hippocampus, which complements slower statistical
learning in the neocortex [41,113]. According to this view, episodes are encoded in the hippocampus by the rapid binding
of features that co-occur within an episode, while the features themselves are represented in neocortical systems. This
same mechanism could in principle support an architecture similar to the ESBN, by enabling rapid binding of abstract
and perceptual neocortical representations. This is in fact very similar to models of cognitive map learning, in which
conjunctive representations are rapidly formed in the hippocampus [114]. These hippocampal conjunctive codes bind
structural and sensory information, which are thought to be encoded in the medial and lateral entorhinal cortices, respec-
tively, and are commonly understood as extensions of the parietal and temporal neocortical systems referenced earlier.
More generally, the involvement of EM in relational reasoning would be consistent with a growing body of recent findings
suggesting the potential involvement of EM in tasks traditionally associated with working memory [115-117].

That said, the extent to which variable-binding relies on the hippocampus remains an open question. Some lesion
evidence suggests that hippocampal damage does not lead to impairments of abstract reasoning [118]. Other alter-
natives are that variable-binding may be supported by other structures capable of rapid synaptic plasticity (e.g., the
cerebellum, which has been increasingly implicated in higher cognitive functions [119-121]), or by other structures
(such as the prefrontal cortex) that use other mechanisms for binding (such as selective attention [122] or working
memory gating [123]). The latter possibilities are consistent with findings that prefrontal damage often leads to severe
deficits in abstract reasoning tasks [124,125] and prefrontal activity is frequently implicated in neuroimaging studies of
abstract reasoning [126,127]. However, this may also reflect the role of prefrontal cortex in representing abstract struc-
ture (along with the parietal system described earlier), rather than the binding of that structural information to concrete
content. Of course, it is also possible that variable-binding is supported by a collection of distinct mechanisms, rather
than a single mechanism alone. These are all important questions for future work that we hope will be usefully guided
by the formalisms and computational models reviewed here.

The relational bottleneck in the mind and brain

Modeling the development of counting: a case study in learning abstractions

A core requirement for cognitive models of abstract concept acquisition is to account for the time-
course of acquisition during human development. A useful case study can be found in the early
childhood process of learning to count [57-59]. Children typically learn to recite the count
seqguence (i.e. ‘one, two, three...” etc.) relatively early, but their ability to use this knowledge to
count objects then proceeds in distinct stages (as measured by the ‘give n’ task [59], in which
the child is asked to give the experimenter n objects). Each stage is characterized by the ability
to reliably count sets up to a certain size (i.e., first acquiring the ability to reliably count only single
objects, then to count two objects, and so on). Around the time that children learn to count sets of
five, an inductive transition occurs, in which children rapidly learn to count sets of increasing size.
It has been proposed that this transition corresponds to the acquisition of the ‘cardinality princi-
ple’ (the understanding that the last word used when counting corresponds to the number of
items in a set [59]) though the exact nature and scope of this inductive transition has been the
subject of debate [60,61]. Previous work found that data accumulation played an essential role
in supporting this inductive transition [62], but that work employed a symbolic modeling
approach, leaving open the question of how such symbol-like processes might be implemented
in a neural system.

To address this, a recent study investigated the development of counting in deep neural network
architectures [63]. These included the ESBN, the Transformer, and long short-term memory
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(LSTM) [64] (a type of recurrent neural network). Each architecture displayed a distinct develop-
mental time-course (Figure 3C). The Transformer displayed a roughly linear time-course, taking
approximately the same amount of time to master each number. The LSTM displayed an exponen-
tially increasing time-course, taking more time to learn each new number. Only the ESBN displayed a
human-like inductive transition, gradually learning to count each number from one to four and then
rapidly acquiring the ability to count higher after learning to count to five. This was due to the ability
of the ESBN to learn a procedure over the representations in its control pathway that was abstracted
away from the specific numbers in the count sequence (represented in the model’s perceptual path-
way), allowing it to rapidly and systematically generalize between numbers. Specifically, the ESBN
learned a procedure in which it stopped counting once the count sequence matched the desired
number of objects (once the target value of n had been reached in the give-n task). The ESBN'’s
use of symbol-like representations (in its control pathway, representing ‘item at which to stop’)
allowed this procedure to be abstracted away from the particular target value (represented in the per-
ceptual pathway and bound to the symbol-like representation in external memory), facilitating rapid
generalization to higher values. This case study illustrates how the relational bottleneck can facilitate
a human-like developmental trajectory for learning abstract concepts.

Capacity limits and the curse of compositionality

The relational bottleneck principle may also help to explain the limited capacity of some cognitive
processes (e.g., working memory) [65]. Recent work has proposed a normative explanation of
capacity-limited processes, according to which these capacity limits arise from the use of com-
positional representations, implemented in an architecture that employs a relational bottleneck
[66]. In that architecture, two separate representational pools (each representing distinct feature
spaces, e.g., color and location) interact via a dynamic variable-binding mechanism (in that case,
implemented using rapid Hebbian learning [67]) in @ manner that is conceptually similar to the
ESBN. This mechanism enables the model to flexibly construct compositional representations
(e.g., representing a visual scene by binding together spatial locations and visual features). How-
ever, this flexibility comes at the cost of relying on compositional representations that, by defini-
tion, are shared across many different, potentially competing processes. For instance, the
representation of a blue object in the upper left corner (formed by binding together representa-
tions of ‘blue’ and ‘upper left’) will overlap with the representation of a blue object in the lower
right corner (formed by binding together representations of ‘blue’ and ‘lower right’), leading to
interference between these two representations (note that this interference is also further exacer-
bated by the use of maximally low-dimensional codes to represent features). This can be viewed
as an instance of the more general tradeoff between processing capacity and the use of shared
representations [68]and also relates to classic considerations regarding the ‘binding problem’ in
psychology [69], though it has not been previously appreciated that this tradeoff can explain the
severely capacity-limited nature of processes such as working memory (and others, including
subitizing [70], and absolute judgment [71]). This work illustrates how one of the most notable
strengths of human cognition (compositionality) may explain one of its most notable weaknesses
(capacity-limited processing) and how both can be implemented in neural networks via the
relational bottleneck.

Concluding remarks and future directions

The human mind has a remarkable ability to acquire abstract relational concepts from relatively
limited and concrete experience. Here, we have proposed the relational bottleneck as a functional
principle that may explain how the human brain accomplishes such data-efficient abstraction and
highlighted recently proposed computational models that implement this principle. We have also
considered how the principle relates to a range of cognitive phenomena and how it might be
implemented by the mechanisms of the human brain.

¢? CellPress

Outstanding questions

Can a more graded version of the
relational bottleneck capture ‘content
effects’, in which abstract reasoning
processes are influenced by the specific
content under consideration and
therefore are not purely abstract or
relational, while preserving a capacity
for relational abstraction?

Can the relational bottleneck principle
be usefully applied to symbolic (or
neuro-symbolic) models, in a manner
similar to its application to neural
network models? For instance, could
program induction models benefit
from a constraint that forces percep-
tual inputs to be recoded in terms of
relations?

What is the relationship between the
relational bottleneck and traditional
cognitive models of analogical
reasoning? Does the relational
bottleneck provide a useful inductive
bias toward learning to implement
processes such as analogical mapping?

How can other cognitive processes
(attention, memory, etc.) be integrated
with the relational bottleneck?

How is the relational bottleneck
implemented in the brain? To what
extent does this rely on mechanisms
responsible for episodic memory,
attentional mechanisms, and/or
other mechanisms that remain to
be identified? What role do the
hippocampus, prefrontal cortex,
and/or other structures play in these
computations?

How do architectural biases toward
relational processing interact with the
influence of training curricula and
other cultural sources of abstraction
(e.g., formal education)?
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It should be noted that the framework reviewed here is not necessarily at odds with the existence
of certain forms of domain-specific innate knowledge. In particular, a range of evidence from
developmental psychology has suggested that humans possess certain ‘core knowledge’
systems, such as an innate capacity to represent objects [72—74]. These findings have motivated
the development of neuro-symbolic models endowed with these innate capacities [75], although
it is also possible that these findings may ultimately be accounted for by the inclusion of additional
inductive biases into connectionist systems, such as mechanisms for object-centric visual
processing [76-79] (which have also been combined with the relational bottleneck [80]). Critically,
however, it is important to emphasize that the relational bottleneck is, in principle, orthogonal to
questions about these domain-specific capacities and is focused instead on explaining the induc-
tion of abstract, domain-general concepts and relations.

There are a number of important avenues for further developing the relational bottleneck frame-
work. One major question concerns how the framework relates to cognitive models of analogical
reasoning, which have traditionally afforded a central role to the process of analogical mapping,
driven by patterns of similarity over entities and relations [5,52-54]. An intriguing possibility is
that the relational bottleneck encourages neural networks to learn to implement such algorithms,
by re-representing their inputs in terms of patterns of similarity (represented as inner products),
though future work should aim to more precisely establish this link. Future work should also con-
sider how the proposed framework relates to other theoretical perspectives on out-of-distribution
generalization in neural networks, including group theoretic approaches [81] (S. Segert, PhD the-
sis, Princeton University, 2024), as well as other cognitive processes relevant to abstraction, in-
cluding attentional processes [82] and semantic cognition [83]. Additionally, much work has
suggested that human reasoning is not purely relational, but instead depends on a mixture of
concrete and abstract influences [84-87]. This suggests the potential value of a more graded
formulation that controls the amount of non-relational information allowed to pass through the
bottleneck. Finally, the human capacity for abstraction surely depends not only on architectural
biases such as those that we have discussed here, but also on the rich educational and cultural
fabric that allows us to build on the abstractions developed by others [88]. In future work, it will be
important to explore the interaction between education, culture, and relational inductive biases.
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