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ABSTRACT: We present a two-dimensional (2D) electrically
conductive metal−organic framework (EC-MOF)-based artificial
synapse. The intrinsic electronic conductivity and subnanometer
channels of the EC-MOF facilitate efficient ion diffusion, enable a
high density of active redox centers, and significantly enhance
capacitance within the artificial synapse. As a result, the synapse
operates at an ultralow voltage of 10 mV and exhibits a remarkably
low power consumption of approximately 1 fW, along with the
longest retention time recorded for two-terminal electrolyte-type
artificial synapses to date. The alignment of the quantum size of
the subnanometer pores in the EC-MOF with various cations
allows for versatile synaptic plasticity. This capability is applied to
image refresh, classification, and efferent signal transmission for
controlling artificial muscles, thereby offering a methodology for achieving tunable neuromorphic properties. These findings suggest
the potential application of metal−organic frameworks in artificial nervous systems for future brain-inspired computation, peripheral
interfaces, and neurorobotics.
KEYWORDS: artificial synapse, electrically conductive metal−organic framework, pseudocapacitance, synaptic plasticity,
power consumption

Nervous systems integrate sensory input from the
peripheral nervous system with information processing

by the central nervous system, delivering signals of plasticity
changes through the synaptic cleft.1−7 Ionic/electronic hybrid
artificial synapses (ASs) have been developed to exploit ion
modulation at the electrolyte/semiconductor interface under
the action of pulses; these stimuli can modify the responses
(“weights”) of the devices in ways that emulate synaptic signal
transmission.8−12 Short-term plasticity in electrolyte-gate
synaptic transistors can be achieved by electrostatic modu-
lation, necessitating impermeable channel-layer materials,
whereas long-term plasticity is realized via electrochemical
doping,13−18 requiring permeable channel-layer materials.
However, in electrolyte-type ASs, the retention of the

plasticity is short, because ions form the dominant diffuse layer
and compact layer at the interface of the semiconductor.19−24

Considerable efforts have been made to boost synaptic
retention by applying heavy ion doping into organic semi-
conductors of different crystallinity.25−27 To extend the
duration of plasticity change in electrolyte/semiconductor
heterojunction devices, materials with excellent electrical
conductivity, high density of hosting sites (redox active
sites), as well as low ion diffusion barriers are highly desired.

Metal−organic frameworks (MOFs) consist of metal ions or
clusters coordinated to organic ligands to form two-, or three-
dimensional structures. Due to their synthetic tunability,
diverse functionality and intrinsic porosity, MOFs have
shown promising performances in catalysis, gas storage and
separation, energy storage,28−31 and environmental32−34 and
biomedical applications.35−37 Recently, electrically conductive
MOFs (EC-MOFs) have attracted growing attention for their
excellent electrical conductivity and redox activity, which yield
huge pseudocapacitance due to Faradaic process inside of the
pores.38−40 These features of EC-MOFs in artificial synapses
(EC-MOF-ASs) to increase the variety of synaptic cleft
plasticity change, holding promise for the development of
advanced brain-like information processing and analysis
capabilities.
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Herein we present a junction-type EC-MOF-AS by coupling
an EC-MOF film with electrolytes to achieve electrochemical
plasticity, such as pulse-dependent changes in postsynaptic
current. The long retention time (>30 min) and femtowatt
power consumption are achieved. As proof-of-concept, the
observed plasticity in neuromorphic devices is applied in array-
pixel memory, pattern recognition and signal transduction, and
in the development of artificial efferent nerves that regulate the
motion of artificial muscles.
The synaptic cleft is the basic unit that connects sensory

neurons, motor neurons, and interneurons that compose
neural circuits (Figure 1a).6,41 An arriving action potential
initiates the release of neurotransmitters and the influx of
calcium ions into the synaptic cleft.42−44 Repeated stimuli can
cause modifications to the responsiveness of the clefts. To
emulate these responses, EC-MOFs can be engineered to
enable plasticity alteration of responses to various ions at the
electrolyte interface. Hexaaminobenzene (HAB)45−51 is a small
ligand that facilitates the construction of subnanopore EC-
MOFs (8 Å) that include metal species such as Ni2+ (Figure
1b), and thereby enable regulation of the migration kinetics of
various alkali metal ions (Figure 1c). In this work, vertical two-
terminal electrolyte-type EC-MOF-ASs were fabricated by
stacking EC-MOFs with various ionic electrolytes (Li+, labeled
as EC-MOF-L-AS; Na+, labeled as EC-MOF-N-AS; and H+,
labeled as EC-MOF-H-AS; Supporting Information, Figure
S1).
Both the powder and thin film products of Ni-based

materials were prepared according to literature procedures
(Supporting Information, Figure S2).47 The particle size of the
EC-MOF is about 50 nm, and transmission electron
microscope (TEM), high-resolution TEM photographs and
the corresponding high-resolution fast Fourier transform
pattern show clear fringes (0.347 nm), which indicate that
the crystallinity is good (Supporting Information, Figures S3

and S4). Atomic force microscopy (AFM) images of the
surface of the as-prepared EC-MOF nanoparticle films show
both surface average roughness Ra < 20 nm and root mean
squared roughness <20 nm (Supporting Information, Figure
S5). The presence of Ni and N on the surface of the films was
confirmed by high-resolution X-ray photoelectron spectrosco-
py (XPS) spectra (Supporting Information, Figure S6).
Current−voltage (I−V) curves of EC-MOF-L-AS were
investigated to illustrate the kinetics of ions migration
(Supporting Information, Figure S7). The response eventually
stabilized and developed reversibility as the number of
scanning turns increased; an apparent negative differential
resistance (NDR) at low potential (1.5 to 1.8 V) is still
discernible. The conspicuous NDR in EC-MOF/electrolyte
system suggests a dominant pseudocapacitive mechanism and a
doping/dedoping kinetic process of ions at the interface under
periodic electric fields.52

EC-MOF-L-AS undergoes a process analogous to informa-
tion transmission across a biological synaptic cleft (Figure 2).
As the amplitude (ranging from 0.5 to 5 V) and width (from
1.5 to 5 s) of the presynaptic pulse fluctuate continuously, the
postsynaptic current modulates in response to changes in pulse
(Figure 2a). An intriguing phenomenon is observed at a
threshold of approximately 15 pA for changes in postsynaptic
currents with increasing pulse amplitude, which may be
attributed to steric blockage of ions entering the EC-MOF.
The current retention time for each pulse width (1.5, 2.2, 2.9,
3.6, 4.3, 5.0 s) increased following continuous pulse excitation
at various amplitudes (Supporting Information, Figure S8).
Notably, the current did not return to its initial level after a
decay period of 1 min from the peak. The relaxation-time
constant τ of the decay curves was 11 ± 1 s, derived from
fitting the data to a one-phase exponential decay function.53

Under sequential excitation by two identical pulses (3 V, 1.5
s), two sequential current peaks with distinct magnitudes (first

Figure 1. Schematic illustration of EC-MOF-ASs. a) Neurons in human brain and information transfer in biological synapse cleft. b) Schematic
representation of the synthetic route for Ni-HAB. c) Plasticity modulation of EC-MOF-ASs.
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A1 then A2) are generated in response (Figure 2b), with A2 >
A1, which is called paired-pulse facilitation (PPF). The
phenomenon occurs because the second pulse is applied
before all ions have returned to their equilibrium after the end
of the first pulse, so the total number of carriers at the interface
after the second pulse is larger than after the first pulse.54−56

This phenomenon is affected by the total excitation time,
including the pulse width and the number of pulses. The effect
of the second pulse on the interface ions over a brief interval
(10 s) is quantified using the PPF index (A2/A1 × 100%;
Supporting Information, Figure S9). The index has been
shown to be correlated with pulse width.
To track changes in current retention following the cessation

of pulse stimulation, the presynaptic pulse trains were arranged
to differ in three ways (i.e., pulse frequency f, pulse number N,
and pulse width; the corresponding forms of plasticity are
defined as pulse-frequency-dependent plasticity PFDP, pulse-
number-dependent plasticity PNDP and pulse-duration-
dependent plasticity PDDP, respectively; Figure 2c). The
parameters (τ1 and τ2) obtained under a double exponential
function are considered to be the interaction strength of the
ions and τ2 is related to the number of pulses.57 Here, the
current decay trend is essentially the same at the end of the
excitation of the three pulse sequences and the current
remained >40% of its initial level after 4 min of “forgetting”

(Figure 2d; Supporting Information, Figure S10); τ of the
decay curves increased to 24 s. The learning-forgetting-
relearning behavior (the Ebbinghaus forgetting curve) can be
observed by counting the number of consecutive pulses
(Figure 2e).58 The current-decay curves were fairly consistent
following excitation by two groups of pulse sequences with
different amplitudes (3 and 5 V) but the same number (20, 40,
60); the current was 88% greater than the initial level after 4
min (Figure 2f). The retention curve of the current was further
elevated and the current reached 236% of the initial value
when the pulse number was increased to 100 (Supporting
Information, Figure S11). The plasticity extension shown by
EC-MOF-L-AS can be used as an emulation of classical
conditioning learning (Supporting Information, Figure
S12).59−62 For instance, a powerful stimulus (i.e., food
stimulus) with a bigger amplitude and wider duration is
employed to deepen memory. When the food incentive is
taken away for a while, the memory level steadily deteriorates,
until the salivation response to the sound of the bell (i.e.,
relevance learning) fails.
For EC-MOF-N-AS, the responses of postsynaptic currents

varying pulse frequencies demonstrate that pulse width induces
greater changes in plasticity than pulse amplitude (Figure 3a).
The current remained 120% above the baseline level for 4 min
following the application of a longer-duration pulse (2.9 s),

Figure 2. Plasticity in EC-MOF-L-ASs. a) Pulse-voltage-dependent plasticity (PVDP) changes in current peaks. b) Paired-pulse facilitation. c)
Current changes and the corresponding d) current retention time curves under pulses of different frequencies, durations, and numbers (PFDP,
PDDP, and PNDP). e) Current variation and the corresponding f) current-retention time curves after excitation using numerous pulses (N ≥ 20).
Inset: “Learning-experience” behavior under continuous pulse excitation.
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with a relaxation time exceeding 100 s (Figure 3b; Supporting
Information, Figure S13). This retention level surpasses that
observed under pulse excitation with a narrower width (1.5 s).
However, the retention time curves of the two devices (EC-
MOF-L-AS and EC-MOF-N-AS) were not noticeably shifted
under the PFDP sequence with a 3 V amplitude. Enhanced
current retention is achieved through the arrangement of
multiple sets of pulse sequences (Figure 3c). When 100
consecutive pulses (3 V, 2.9 s) were applied, the current
remained at 516% and 380% of its initial level after 4 and 30
min, respectively (Supporting Information, Figure S14). These
results represent the highest retention levels achieved by the
vertical electrolyte-type two terminal device, and is even
comparable to some electrolyte-gate (such as metal ion

polymer electrolytes and ionic liquids) three-terminal devices
(Supporting Information, Table S1) as well as heterojunction
memristors.63,64 Alkali metal ions penetrate the pores of the
EC-MOF under continuous pulse excitation, progressively
increasing the internal electric field at the interface (Figure
3d). Ions can dope and dedope in EC-MOF due to the
competition between the internal and exterior electric fields. A
substantial concentration of sodium ions is present on the
surface of the EC-MOF, as shown by high resolution XPS
spectra at various depths (Figure 3e). The observed peak shifts
with depth further confirm the doping process of sodium ions
into the EC-MOF. Following an approximate 45 min period of
forgetting, the learning-forgetting-relearning behavior was
demonstrated (Supporting Information, Figure S15). Further-

Figure 3. Plasticity in EC-MOF-N-ASs. a) Current changes and the corresponding b) current-retention-time curves under pulses of different
frequencies. c) Current-retention time after excitation with N ≥ 20 pulses. d) Interface mechanism of EC-MOF synaptic device. Lithium and
sodium ions can migrate to the interface and then intercalate into EC-MOF under continuous spikes, demonstrating a plasticity change. e) High-
resolution Na 1s spectra in three states (fresh film, tested film at 0, 5, 10, and 15 nm depth) of EC-MOF and electrolyte/EC-MOF film (removal of
electrolyte layer after excitation). f) Cycles of potentiation and depression.
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more, charge excitation at millivolt level pulses is attributable
to the narrow bandgap properties of EC-MOF (∼0.57 eV),
achieved through incorporation of active d-electron transition
metals, such as nickel, which facilitate enhanced orbital
overlap. Consequently, the synaptic device exhibits response
currents as low as subpicoamperes and power consumption at
femtowatt levels (Supporting Information, Figure S16).
Neuromorphic computing requires excellent current retention
to achieve effective linear potentiation and depression.65−69

For instance, the synaptic weights progressively rise and fall in
a near-linear fashion while successively applying 50 positive

and 50 negative pulses (Supporting Information, Figure S17).
The dynamics of potentiation and depression showed
progressive stabilization after several rounds of excitation
with both positive and negative pulses (Figure 3f). The
subnanometer pores of the EC-MOF inhibit the immediate
release of ions under a constant, modest erasing voltage,
allowing ions to enter the pores only during continuous
positive pulse stimulation.
The human peripheral nervous system and central nervous

system play crucial roles in information processing and
memory storage, respectively.70−72 This necessitates the

Figure 4. Demonstration of applications of plasticity changes in EC-MOF-ASs. a) Schematic diagram of the human central nervous system and
peripheral nervous system and the development of three device applications. b) Radar maps of the performance of the three synaptic devices (EC-
MOF-L-AS, EC-MOF-N-AS, and EC-MOF-H-AS). c) Real-time memory and forgetting of letters “M”, “O”, and “F”. d) Neuron network structure
for MNIST pattern recognition of EC-MOF-N-ASs. e) Estimated recognition rate for the MNIST patterns as a function of the training number. f)
Weight changes for the MNIST patterns. g) Schematic illustration of an artificial efferent nerve, coupling EC-MOF-H-AS processing elements with
artificial muscles, to transduce signals from receptors to motor neurons. h) Postsynaptic current of EC-MOF-H-ASs with corresponding output
signal under successive pulses of different amplitudes. Inset: Digital image of the actuator according to postsynaptic current as triggered by pule
with 4 V amplitude.
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development of devices capable of plasticity adjustments to
facilitate the transition from short-term to long-term memory
(Figure 4a). Synaptic devices exhibiting adjustable plasticity
have potential applications in transient threshold switches
(actuating), dynamic image refresh, and classification recog-
nition (neuromorphic computing). The analysis indicates that
EC-MOF-N-AS and EC-MOF-L-AS exhibit superior signal
retention capabilities compared to EC-MOF-H-AS (Figure
4b). The former is suitable for neuromorphic computing
applications, while the latter can be utilized in the development
of sensitive threshold switches. Here, three applications,
including image memory, pattern recognition, and signal
transduction, were demonstrated using these electrolyte-type
devices. By building an EC-MOF-L-AS array, a dynamic image
refresh process is implemented (Figure 4c). A 25-pixel image
created by a 5 × 5 array of EC-MOF-L-AS can be refreshed
quickly due to the short-term plasticity of the synaptic unit
when the letters “M”, “O”, and “F” are input into the array.
Further pattern identification of handwritten digits from the
Modified National Institute of Standards and Technology
(MNIST) was accomplished using a single-layer artificial
neural network (Figure 4d). The pattern recognition accuracy
stabilized at 90.5% after 40 training epochs (Figure 4e). A clear
figure can be observed from the mapped images of different
training epochs (Figure 4f). Finally, an artificial efferent nerve
was established by coupling highly responsive EC-MOF-H-AS
(Supporting Information, Figure S18) with alloy fiber artificial
muscles to demonstrate information transduction from
electrical to mechanical signals (Figure 4g).73 The output
force of the actuator was 0, 3.5, and 9.1 N when three sets of
continuous pulses were supplied to the fast-responding
synaptic device (Supporting Information, Figure S19); this
trend indicates that signal transduction had occurred in the
artificial efferent neuron (Figure 4h; Supporting Information,
Figure S20). Thus, the prospective uses of void-modulated
materials in plasticity management have been confirmed as
new applications of frameworks in electronic devices
(Supporting Information, Table S2).
We successfully demonstrated synaptic devices that utilize

redox-active EC-MOFs as ion-interactive layers. The inter-
action kinetics of various cations with the subnanometer pores
of EC-MOF films were leveraged to implement versatile
synaptic plasticity. Due to the open channels within the
framework, the high-density redox centers in EC-MOF are
fully accessible, significantly enhancing the long-term plasticity
of these ionic/electronic hybrid synaptic devices. This
advancement enables a voltage response reduction to as low
as 10 mV, achieving power consumption as low as 1 femtowatt,
and realizing the longest potentiation among two-terminal
electrolyte-type artificial synapses. The successful demonstra-
tion of EC-MOF as a key component in neuromorphic devices
and systems paves the way for the exploration of ultrasensitive
and low-power brain-inspired electronics as well as artificial
peripheral systems and neurorobotics.
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